
Finitary reducibility on equivalence relations

Russell Miller & Keng Meng Ng ∗

April 15, 2016

Abstract

We introduce the notion of finitary computable reducibility on equiv-
alence relations on the domain ω. This is a weakening of the usual notion
of computable reducibility, and we show it to be distinct in several ways.
In particular, whereas no equivalence relation can be Π0

n+2-complete un-
der computable reducibility, we show that, for every n, there does exist
a natural equivalence relation which is Π0

n+2-complete under finitary re-
ducibility. We also show that our hierarchy of finitary reducibilities does
not collapse, and illustrate how it sharpens certain known results. Along
the way, we present several new results which use computable reducibil-
ity to establish the complexity of various naturally defined equivalence
relations in the arithmetical hierarchy.

1 Introduction

Computable reducibility provides a natural way of measuring and comparing
the complexity of equivalence relations on the natural numbers. Like most no-
tions of reducibility on sets of natural numbers, it relies on the concept of Turing
computability to rank objects according to their complexity, even when those
objects themselves may be far from computable. It has found particular useful-
ness in computable model theory, as a measurement of the classical property of
being isomorphic: if one can computably reduce the isomorphism problem for
computable models of a theory T0 to the isomorphism problem for computable
models of another theory T1, then it is reasonable to say that isomorphism on
models of T0 is no more difficult than on models of T1. The related notion of
Borel reducibility was famously applied this way by Friedman and Stanley in
[10], to study the isomorphism problem on all countable models of a theory.
Yet computable reducibility has also become the subject of study in pure com-
putability theory, as a way of ranking various well-known equivalence relations
arising there.

∗The first author was partially supported by NSF grants # 1362206 and 1001306, and by
several grants from The City University of New York PSC-CUNY Research Award Program.
The second author is partially supported by the grant MOE-RG26/13. The collaboration
of these authors was facilitated by the program Sets and Computations at the Institute for
Mathematical Sciences of the National University of Singapore in April 2015.

1

Recently, as part of our study of this topic, we came to consider certain
reducibilities weaker than computable reducibility. This article introduces these
new, finitary notions of reducibility on equivalence relations and explains some of
their uses. We believe that researchers familiar with computable reducibility will
find finitary reducibility to be a natural and appropriate measure of complexity,
not to supplant computable reducibility but to enhance it and provide a finer
analysis of situations in which computable reducibility fails to hold.

Computable reducibility is readily defined. It has gone by many different
names in the literature, having been called m-reducibility in [1, 2, 11] and FF-
reducibility in [7, 8, 9], in addition to a version on first-order theories which was
called Turing-computable reducibility (see [3, 4]).

Definition 1.1 Let E and F be equivalence relations on ω. A reduction from
E to F is a function g : ω → ω such that

∀x, y ∈ ω [x E y ⇐⇒ g(x) F g(y)]. (1)

We say that E is computably reducible to F , written E ≤c F , if there exists
a reduction from E to F which is Turing-computable. More generally, for any
Turing degree d, E is d-computably reducible to F if there exists a reduction
from E to F which is d-computable.

There is a close analogy between this definition and that of Borel reducibility :
in the latter, one considers equivalence relations E and F on the set 2ω of
real numbers, and requires that the reduction g be a Borel function on 2ω.
In another variant, one requires g to be a continuous function on reals (i.e.,
given by a Turing functional ΦZ with an arbitrary real oracle Z), thus defining
continuous reducibility on equivalence relations on 2ω.

So a reduction from E to F maps every element in the field of the relation
E to some element in the field of F , respecting these equivalence relations.
Our new notions begin with binary computable reducibility. In some situations,
while it is not possible to give a computable reduction from E to F , there
does exist a computable function which takes each pair 〈x0, x1〉 of elements
from the field of E and outputs a pair of elements 〈y0, y1〉 from that of F such
that y0Fy1 if and only if x0Ex1. (The reader may notice that this is simply
an m-reduction from the set E to the set F .) Likewise, an n-ary computable
reduction accepts n-tuples ~x from the field of E and outputs n-tuples ~y from F
with (xiExj ⇐⇒ yiFyj) for all i < j < n, and a finitary computable reduction
does the same for all finite tuples. Intuitively, a computable reduction (as in
Definition 1.1) does the same for all elements from the field of E simultaneously.

A computable reduction clearly gives us a computable finitary reduction,
and hence a computable n-reduction for every n. Oftentimes, when one builds
a computable reduction, one attempts the opposite procedure: the first step is
to build a binary reduction, and if this is successful, one then treats the binary
reduction as a basic module and attempts to combine countably many basic
modules into a single effective construction. Our initial encounter with finitary
reducibility arose when we found a basic module of this sort, but realized that
it was only possible to combine finitely many such modules together effectively.

2

At first we did not expect much from this new notion, but we found it to be
of increasing interest as we continued to examine it. For example, we found that

the standard Π0
n+2 equivalence relation defined by equality of the sets W ∅

(n)

i and

W ∅
(n)

j is complete among Π0
n+2 equivalence relations under finitary reducibility.

This is of particular interest because, for precisely these classes, no equivalence
relation can be complete under computable reducibility (as shown recently in
[13]). Extending our study to certain relations from computable model the-
ory, we found that the isomorphism problem FAC∼= for computable algebraically
closed fields of characteristic 0, while Π0

3-complete as a set, fails to be complete
under finitary reducibility: it is complete for 3-ary reducibility, but not for the
4-ary version. This confirms one’s intuition that isomorphism on algebraically
closed fields, despite being Π0

3-complete as a set, is not an especially difficult
problem, requiring only knowledge of the transcendence degree of the field. In
contrast, the isomorphism problem F alg

∼= for algebraic fields of characteristic 0,
while only Π0

2, does turn out to be complete at that level under finitary re-
ducibility.

This paper proceeds much as our investigations proceeded. In Section 2 we
present the equivalence relations on ω which we set out to study. We derive
a number of results about them, and by the time we reach Proposition 2.8, it
should seem clear to the reader how the notion of finitary reducibility arose for
us, and why it seems natural in this context. The exact definitions of n-ary
and finitary reducibility appear as Definition 3.1. In Sections 3 and 4, we study
finitary reducibility in its own right. We produce the natural Π0

n+2 equiva-
lence relations described above, defined by equality among Σ0

n sets, which are
complete under finitary reducibility among all Π0

n+2 equivalence relations. Sub-
sequently we show that the hierarchy of n-ary reducibilities does not collapse,
and that several standard equivalence relations on ω witness this non-collapse
for certain n.

2 Background in Computable Reducibility

The purpose of this section is twofold. First, for the reader who is not already
familiar with the framework and standard methods used in its study, it intro-
duces some examples of results in computable reducibility, with proofs. The
examples, however, are not intended as a broad outline of the subject; they are
confined to one very specific subclass of equivalence relations (those which, as
sets, are Π0

4), rather than offering a survey of important results in the field. In
fact the results we prove here are new, to our knowledge. They use computable
reducibility to establish the complexity of various naturally defined equivalence
relations in the arithmetical hierarchy. In doing so, we continue the program
of work already set in motion in [6, 2, 11, 5, 1, 13] and augment their results.
However, the second and more important purpose of these results is to help
explain how we came to develop the notion of finitary reducibility and why we
find that notion to be both natural and useful. By the end of the section, the
reader will have an informal understanding of finitary reducibility, which is then

3

formally defined and explored in the ensuing two sections.
The following definition introduces several natural equivalence relations which

we will consider in this section. Here, for a set A ⊆ ω, we write A[n] = {x :
〈x, n〉 ∈ A} for the n-th column of A when ω is viewed as the two-dimensional
array ω2 under the standard computable pairing function 〈·, ·〉 from ω2 onto ω.

Definition 2.1 First we define several equivalence relations on 2ω.

• Eperm = {〈A,B〉 | (∃ a permutation p : ω → ω)(∀n)A[n] = B[p(n)]}.

• ECof = {〈A,B〉 | For every n, A[n] is cofinite iff B[n] is cofinite}.

• EFin = {〈A,B〉 | For every n, A[n] is finite iff B[n] is finite}.

Each of these relations induces an equivalence relation on ω, by restricting to
the c.e. subsets of ω and then allowing the index e to represent the set We, under
the standard indexing of c.e. sets. The superscript “ce” denotes this, so that,
for instance,

Eceperm = {〈i, j〉 | (∃ a permutation p : ω → ω)(∀n)W
[n]
i = W

[p(n)]
j }.

Similarly we define EceCof and EceFin, and also the following two equivalence rela-

tions on ω (where the superscripts denote oracle sets, so that WD
i = dom(ΦDi)):

• En= = {(i, j) |W ∅
(n)

i = W ∅
(n)

j }, for each n ∈ ω.

• Enmax = {(i, j) | maxW ∅
(n)

i = maxW ∅
(n)

j }, for each n ∈ ω.

In Enmax, for any two infinite sets W ∅
(n)

i and W ∅
(n)

j , this defines 〈i, j〉 ∈ Enmax,
since we consider both sets to have the same maximum +∞.

2.1 Π0
4 equivalence relations

Here we will clarify the relationship between several equivalence relations oc-
curring naturally at the Π0

4 level. Recall the equivalence relations E3, Eset, and
Z0 defined in the Borel theory. Again the analogues of these for c.e. sets are
relations on the natural numbers, defined using the symmetric difference 4:

i Ece3 j ⇐⇒ ∀n [|(Wi)
[n]4(Wj)

[n]| <∞]

i Eceset j ⇐⇒ {(Wi)
[n] | n ∈ ω} = {(Wj)

[n] | n ∈ ω}

i Zce0 j ⇐⇒ lim
n

|(Wi4Wj) � n|
n

= 0

The aim of this section is to show that the situation in the following picture
holds for computable reducibility.

4

Eceset ≡c Eceperm ≡c EceCof ≡c E2
=

Ece3 ≡c Zce0

Hence all these classes fall into two distinct computable-reducibility degrees,
one strictly below the other. Even though no Π0

4 class is complete under ≤c, we
will show that each of these classes is complete under a more general reduction.

The three classes Ece3 , E
ce
set and Zce0 are easily seen to be Π0

4. This is not as
obvious for Eceperm.

Lemma 2.2 The relation Ecepermis Π0
4, being defined on pairs 〈e, j〉 by:

∀k∀n0 < · · · < nk ∃ distinct m0, . . . ,mk ∀i ≤ k (W [ni]
e = W

[mi]
j),

in conjunction with the symmetric statement with Wj and We interchanged.

Proof. Since “W
[ni]
e = W

[mi]
j ” is Π0

2, the given statement is Π0
4, as is the inter-

changed version. The statements clearly hold for all 〈e, j〉 ∈ Eceperm. Conversely,
if the statements hold, then each c.e. set which occurs at least k times as a
column in We must also occur at least k times as a column in Wj , and vice
versa. It follows that every c.e. set occurs equally many times as a column in
each, allowing an easy definition of the permutation p to show 〈e, j〉 ∈ Eceperm.

Theorem 2.3 Eceperm and Eceset are computably bireducible. (We write Eceperm ≡c
Eceset to denote this.)

Proof. For the easier direction Eceset≤c Eceperm, given a c.e. set A, define uniformly

the c.e. set Â by setting (for each e, i, x) x ∈ Â[〈e,i〉] iff x ∈ A[e]. That is,

we repeat each column of A infinitely many times in Â. Then A Eset B iff
Â Eperm B̂. (Since the definition is uniform, there is a computable function

g which maps each i with Wi = A to g(i) with Wg(i) = Â. This g is the
computable reduction required by the theorem, with i Eceset j iff g(i) Eceperm g(j)
for all i, j.)

We now turn to Eceperm ≤c Eceset. Fix a c.e. set A. We describe a uniform

procedure to build Â from A. We must do this in a way where for any pair of
c.e. sets W,V , WEcepermV iff ŴEcesetV̂ . The computable function q that gives

Wq(i) = Ŵi will then be a witness for the reduction Eceperm ≤c Eceset.
For each x let F (x) be the number of columns y ≤ x such that A[x] = A[y].

There is a natural computable guessing function Fs(x) such that for every s,
Fs(x) ≤ x and F (x) = lim sups Fs(x).

5

Associated with x are the c.e. sets C[x, n] for each n > 0 and D[x, i, j] for
each i > 0, j ∈ ω, defined as follows. D[x, i, j] is the set D such that

D[k] =


A[x], if k = 0,

{0, 1, · · · , j − 1}, if k = i,

∅, otherwise.

and C[x, n] is the set C such that

C [k] =


A[x], if k = 0,

{t : (∃s ≥ t)(Fs(x) ≥ n)} , if k = n,

∅, otherwise.

Now let Â be obtained by copying all the sets C[x, n] and D[x, i, j] into the

columns. That is, let Â[2〈x,n〉] = C[x, n] and Â[2〈x,i,j〉+1] = D[x, i, j]. Now

suppose that A EpermB. We verify that Â EsetB̂, writing C[A, x, n], C[B, x, n],

D[A, x, i, j], and D[B, x, i, j] to distinguish between the columns of Â and B̂.
Fix x and consider D[A, x, i, j]. Since there is some y such that A[x] = B[y]

it follows that D[A, x, i, j] = D[B, y, i, j] for every i, j. Now we may pick y such
that F (A, x) = F (B, y). It then follows that C[A, x, n] = C[B, y, n] for every
n ≤ F (A, x), and for n > F (A, x) we have C[A, x, n] = D[B, y, n, j] for some

appropriate j. Hence every column of Â appears as a column of B̂. A symmetric
argument works to show that every column of B̂ is a column of Â.

Now suppose that Â Eset B̂. We argue that A Eperm B. Fix x and n such
that there are exactly n many different numbers z ≤ x with A[z] = A[x]. We
claim that there is some y such that A[x] = B[y] and there are at least n many
z ≤ y such that B[z] = B[y].

The column C[A, x, n] of Â is the set C such that C [0] = A[x] and C [n] = ω.
Now C[A, x, n] cannot equal D[B, y, i, j] for any y, i, j since D-sets have every
column finite except possibly for the 0th column. So C[A, x, n] = C[B, y, n]

for some y. It follows that A[x] = (C[B, y, n])
[0]

= B[y], and we must have
lim sups Fs(B, y) ≥ n. So each A[x] corresponds to a column B[y′] of B with
F (B, y′) = F (A, x). Again a symmetric argument follows to show that each
B[y] corresponds to a column A[x] of A with F (A, x) = F (B, y). Hence A and
B agree up to a permutation of columns.

Theorem 2.4 EceCof ≡c Eceset ≡c E2
=.

Proof. We first show that Eceset ≤c E2
=. There is a Σ0

3 predicate R(i, x) which

holds iff ∃n(W
[n]
x = Wi). Let f(x) be a computable function such that R(i, x)

iff i ∈W ∅
′′

f(x). It is then easy to verify that x Eceset y ⇔ f(x) E2
= f(y).

Next we show E2
= ≤c EceCof. There is a single Σ0

3 predicate R such that for

every a, x, we have a ∈ W ∅
′′

x ⇔ R(a, x). Since every Σ0
3 set is 1-reducible to

the set Cof = {n : Wn = dom(ϕn) is cofinite}, let g be a computable function

6

so that a ∈ W ∅′′x ⇔ Wg(a,x) is cofinite. Now for each x we produce the c.e. set

Wf(x) such that for each a ∈ ω we have W
[a]
f(x) = dom(ϕg(a,x)). Hence f is a

computable function witnessing E2
= ≤c EceCof.

Finally we argue that EceCof ≤c Eceset. Given a c.e. set A, and i, n, we let
C(i, n) = [0, i] ∪ [i + 2, i + M + 2], where M is the smallest number ≥ n such
that M 6∈ A[i]. Hence the characteristic function of C(i, n) is a string of i + 1
many 1’s, followed by a single 0, and followed by M+1 many 1’s. Since the least
element not in a c.e. set never decreases with time, C(i, n) is uniformly c.e. Note
that if i 6= i′ then C(i, n) 6= C(i′, n′). Now let D(a, b) = [0, a]∪ [a+ 2, a+ b+ 1].

Now let Â be a c.e. set having exactly the columns {C(i, n) | i, n ∈ ω} ∪
{D(a, b) | a, b ∈ ω}. We verify that A ECof B iff Â Eset B̂. Again we write
C(A, i, n), C(B, i, n) to distinguish between the different versions. Suppose that

A ECof B. Since D(a, b) appear as columns in both Â and B̂, it suffices to
check the C columns. Fix C(A, i, n). If this is finite then it must equal D(i, b)

for some b, and so appears as a column of B̂. If C(A, i, n) is infinite then it
is in fact cofinite and so every number larger than n is eventually enumerated
in A[i]. Hence B[i] is cofinite and so C(B, i,m) is cofinite for some m. Hence

C(A, i, n) = C(B, i,m) = ω − {i + 1} appears as a column of B̂. A symmetric

argument works to show that each column of B̂ appears as a column of Â.
Now assume that Â Eset B̂. Fix i such that A[i] is cofinite. Then C(A, i, n) =

ω − {i + 1} for some n. This is a column of B̂. Since each D(a, b) is finite
C(A, i, n) = C(B, j,m) for some j. Clearly i = j, which means that B[i] is
cofinite. By a symmetric argument we can conclude that A ECof B.

Theorem 2.5 Ece3 ≡c Zce0 .

Proof. Ece3 ≤c Zce0 was shown in [5, Prop. 3.7]. We now prove Zce0 ≤c Ece3 . Let

Fs(i, j, n) =
|(Wi,s4Wj,s)�n|

n . Note that for each i, j, n, Fs(i, j, n) changes at most
2n times. The triangle inequality holds in this case, that is, for every s, x, y, z, n,
we have Fs(x, z, n) ≤ Fs(x, y, n) + Fs(y, z, n).

Given i, j, n, p where i < j < n and p > 3 we describe how to enumerate the
finite c.e. sets Ci,j,n,p(k) for k ∈ ω. We write C(k) instead of Ci,j,n,p(k). For
each k, C(k) is an initial segment of ω with at most n2(n+ 1) many elements.

If k ≥ n we permanently let C(k) = ∅. We enumerate C(0), · · · , C(n − 1)
simultaneously. Each set starts off being empty, and we assume that F0(i, j, n) <
2−p. At each stage, for every k < n, C(k) will be equal to either [0,M] or
[0,M + 1], where M is such that C(i) = [0,M]. At stage s > 0 we act only
if Fs(k0, k1, n) has changed for some k0 < k1 < n. Assume s is such a stage.
Suppose C(i) = [0,M − 1]. We then set C(i) = [0,M], and we will make every
C(k) equal to either [0,M] or [0,M +1]; this is possible as at the previous stage
C(k) = [0,M − 1] or [0,M].

If Fs(i, j, n) < 2−p we set every C(k) to be equal [0,M]. Otherwise suppose
that Fs(i, j, n) ≥ 2−p. Set C(j) = [0,M + 1], and for each k 6= i, j we need to
decide if C(k) = [0,M] or [0,M + 1].

7

To decide this, consider the graph Gi,j,n,p,s with vertices labelled 0, . . . , n−1.

Vertices k and k′ are adjacent iff Fs(k, k
′, n) < 2−(p+k+k

′+1), i.e. if Wk � n and
Wk′ � n are “close” in terms of the Hamming distance. It follows easily from
the triangle inequality that i and j must lie in different components (since
Fs(i, j, n) ≥ 2−p). If k is in the same component as j we increase C(k) =
[0,M + 1] and otherwise keep C(k) = [0,M]. This ends the description of the
construction.

It is clear that Ci,j,n,p(k) is an initial segment of ω with at most 2n
(
n
2

)
=

n2(n + 1) many elements. For each k, define the set Ŵk by letting Ŵ
[〈i,j,p〉]
k =

Ci,j,j+1,p(k) ? Ci,j,j+2,p(k) ? Ci,j,j+3,p(k) ? · · · on column 〈i, j, p〉, where i < j
and p > 3. Here Ci,j,j+1,p(k) ? Ci,j,j+2,p(k) denotes the set X where X(z) =
Ci,j,j+1,p(k)(z) if z ≤ (j+1)2(j+2) andX(z+(j+1)2(j+2)+1) = Ci,j,j+2,p(k)(z).
Essentially this concatenates the sets, with Ci,j,j+2,p(k) after the set Ci,j,j+1,p(k).
The iterated ? operation is defined the obvious way (and ? is associative). We

call the copy of Ci,j,n,p(k) in Ŵ
[〈i,j,p〉]
k the nth block of Ŵ

[〈i,j,p〉]
k .

We now check that the reduction works. Suppose Wx Z
ce
0 Wy, where x < y.

Hence we have lim supn F (x, y, n) = 0. Fix a column 〈i, j, p〉. We argue that for
almost every n, Ci,j,n,p(x) = Ci,j,n,p(y). There are several cases.

(i) {i, j} = {x, y}. There exists n0 > i, j such that for every n ≥ n0 we have
F (x, y, n) < 2−p. Hence Ci,j,n,p(x) = Ci,j,n,p(y) for all large n.

(ii) |{i, j} ∩ {x, y}| = 1. Assume i = x and j 6= y; the other cases will follow
similarly. There exists n0 > i, j, y such that for every n ≥ n0 we have
F (x, y, n) < 2−(p+x+y+1) and so x, y are adjacent in the graph Gi,j,n,p,s
where s is such that Fs(x, y, n) is stable. Since j cannot be in the same
component as x, we have Ci,j,n,p(x) = Ci,j,n,p(y).

(iii) {i, j} ∩ {x, y} = ∅. Similar to (ii). Since x, y are adjacent in the graph
Gi,j,n,p,s then we must have Ci,j,n,p(x) = Ci,j,n,p(y).

Hence we conclude that Ŵx E3 Ŵy. Now suppose that Ŵx E3 Ŵy for x < y.

Fix p > 2 and we have Ŵ
[〈x,y,p〉]
x =∗ Ŵ

[〈x,y,p〉]
y . So there is n0 > y such that

Cx,y,n,p(x) = Cx,y,n,p(y) for all n ≥ n0. We clearly cannot have F (x, y, n) ≥ 2−p

for any n > n0 and so lim supn F (x, y, n) ≤ 2−p. Hence we have Wx Z
ce
0 Wy.

Theorem 2.6 Eceset 6≤c Ece3 .

Proof. Suppose there is a computable function witnessing Eceset ≤c Ece3 , and

which maps (the index for) a c.e. set X to (the index for) X̂, so that X Eset Y

iff X̂ E3 Ŷ . Given (indices for) c.e. sets X and Y , define

Fs(X,Y) =

{
max{z < x : Xs(z) 6= Ys(z)}, if x enters X ∪ Y at stage s,

max{z < s : Xs(z) 6= Ys(z)}, otherwise.

Here we assume that at each stage s at most one new element is enumerated in
X ∪Y at stage s (for the function F to be well-defined), and we take max ∅ = 0.

8

One readily verifies that Fs(X,Y) is a total computable function in the variables
involved, with X =∗ Y iff lim infs Fs(X,Y) <∞.

We define the c.e. sets A,B and C0, C1, · · · by the following. Let A[0] = ω
and for k > 0 let A[k] = [0, k− 1]. Let B[k] = [0, k] for every k. Finally for each

i define C
[k]
i to be

[0, j], if k = 2j + 1,

ω, if k = 2j and ∃∞s
(
Fs(B̂

[i], Ĉ
[i]
i) = j

)
,[

0,max{s : Fs(B̂
[i], Ĉ

[i]
i) = j}

]
, if k = 2j and ∀∞s

(
Fs(B̂

[i], Ĉ
[i]
i) 6= j

)
.

By the recursion theorem we have in advance the indices for C0, C1, · · · so

the above definition makes sense. Fix i. If lim infs Fs(B̂
[i], Ĉ

[i]
i) = ∞ then

every column of Ci is a finite initial segment of ω and thus we have Ci Eset B.
By assumption we must have Ĉi E3 B̂ and thus the two sets agree (up to

finite difference) on every column. In particular lim infs Fs(B̂
[i], Ĉ

[i]
i) < ∞, a

contradiction. Hence we must have lim infs Fs(B̂
[i], Ĉ

[i]
i) = j for some j. The

construction of C ensures that Ci Eset A which means that Ĉi E
ce
3 Â and so

Ĉ
[i]
i =∗ Â[i]. Since lim infs Fs(B̂

[i], Ĉ
[i]
i) < ∞ we in fact have B̂[i] =∗ Ĉ

[i]
i =∗

Â[i]. Since this must be true for every i we have B̂ E3 Â and so B Eset A, which
is clearly false since B has no infinite column.

The result of Theorem 2.6 was something of a surprise. We could see how to
give a basic module for a computable reduction from Eceset to Ece3 , in much the
same way that Proposition 3.9 in [5] serves as a basic module for Theorem 3.10
there. In the situation of Theorem 2.6, we were even able to combine finitely
many of these basic modules, but not all ω-many of them. The following propo-
sitions express this and sharpen our result. One the one hand, Propositions
2.8 and ?? and the ultimate Theorem 3.3 show that it really was necessary to
build infinitely many sets to prove Theorem 2.6. On the other hand, Theorem
2.6 shows that in this case the proposed basic modules cannot be combined by
priority arguments or any other methods.

Before proceeding further we introduce a technical convention. Details about
it appear in [18, Thm. IV.3.2].

Remark 2.7 Given a computable approximation {Xs} to a Π0
2 set or predicate

X, we have lim supsXs(n) = X(n). At stage s, we say that (the Π0
2 approx-

imable fact) “n ∈ X” receives a chip if Xs(n) = 1. Hence n ∈ X holds if and
only if it receives infinitely many chips. We can even fix a uniform assignment
of chips in which at most one n receives a chip at each stage.

Proposition 2.8 There exists a binary reduction from Eceset to Ece3 . That is,
there exist total computable functions f and g such that, for every x, y ∈ ω,
x Eceset y iff f(x, y) Ece3 g(x, y).

Proof. We begin with a uniform computable “chip” function h (see Remark 2.7),
such that, for all i and j, Wi = Wj iff ∃∞s h(s) = 〈i, j〉; that is, the predicate

9

“Wi = Wi” gets an h-chip at infinitely many stages s. Next we show how to
define f and g.

First, for every k ∈ ω, Wf(x,y) contains all elements of every even-numbered

column ω[2k]. To enumerate the elements of Wg(x,y) from this column, we use
h. At each stage s+ 1 for which there is some c such that h(s) is a chip for the

sets W
[k]
x and W

[c]
y (i.e. the k-th and c-th columns of Wx and Wy, respectively,

identified effectively by some c.e. indices for these sets), we take it as evidence
that these two columns may be equal, and we find the c-th smallest element of

W
[2k]
g(x,y),s and enumerate it into Wg(x,y),s+1.

The result is that, if there exists some c such that W
[k]
x = W

[c]
y , then W

[2k]
g(x,y)

is cofinite, since the c-th smallest element of its complement was added to it

infinitely often, each time W
[k]
x and W

[c]
y received a chip. (In the language

of these constructions, the c-th marker was moved infinitely many times; for
instance, we refer the reader to Soare [18, IV.3] for more details on the “movable

markers” type constructions). Therefore W
[2k]
g(x,y) =∗ ω = W

[2k]
f(x,y) in this case.

Conversely, if for all c we have W
[k]
x 6= W

[c]
y , then W

[2k]
g(x,y) is coinfinite, since for

each c, the c-th marker was moved only finitely many times, and so W
[2k]
g(x,y) 6=

∗

ω = W
[2k]
f(x,y). Thus W

[2k]
g(x,y) =∗ W

[2k]
f(x,y) iff there exists c with W

[k]
x = W

[c]
y .

Likewise, Wg(x,y) contains all elements of each odd-numbered column ω[2k+1],

and whenever h(s) is a chip for W
[k]
y and W

[c]
x , we adjoin to Wf(x,y),s+1 the c-th

smallest element of the column ω[2k+1] which is not already in Wf(x,y),s. This
process is exactly symmetric to that given above for the even columns, and the

result is that W
[2k]
f(x,y) =∗ W

[2k]
g(x,y) iff there exists c with W

[k]
y = W

[c]
x . So we have

established that
x Eceset y ⇐⇒ f(x, y) Ece3 g(x, y)

exactly as required.

In Theorem 3.3, we will extend this idea, showing that, instead of merely
having functions f and g to address two natural numbers x and y, we could
address x, y, and z, simultaneously, or even x0, . . . , xn. That is (in the ternary
case, with x, y, and z), we can construct total computable functions f , g, and
h such that, for all x, y, z ∈ ω:

x Eceset y iff f(x, y, z) Ece3 g(x, y, z),

y Eceset z iff g(x, y, z) Ece3 h(x, y, z), and

x Eceset z iff f(x, y, z) Ece3 h(x, y, z).

We will refer to the triple (f, g, h) as a ternary reduction from Eceset to Ece3 .
Definition 3.1 will generalize this notion to arbitrary arity, and we will prove in
Theorem 3.3 that the n-ary reducibility holds uniformly, despite its failure (cf.
Theorem 2.6) to extend to a single reduction on all x ∈ ω simultaneously.

10

3 Introducing Finitary Reducibility

Here we formally begin the study of finitary reducibility, building on the con-
cepts introduced in Proposition 2.8. In Theorem 3.3, we will sketch the proof
that this construction can be generalized to any finite arity n. That is, we will
show that Eceset is n-arily reducible to Ece3 , under the following definition.

Definition 3.1 An equivalence relation E on ω is n-arily reducible to another
equivalence relation F , written E ≤nc F , if there exists a computable total func-
tion f : ωn → ωn (called an n-ary reduction from E to F) such that, whenever
f(x0, . . . , xn−1) = (y0, . . . , yn−1) and i < j < n, we have

xi E xj ⇐⇒ yi F yj .

If such functions exist uniformly for all n ∈ ω, then E is finitarily reducible
to F , written E ≤<ωc F . Thus a finitary reduction is just a function from ω<ω

to ω<ω, mapping n-tuples ~x to n-tuples ~y, with the above property.

An n-ary reduction is sometimes expressed as an n-tuple of n-ary ω-valued
functions, such as (f, g, h) when n = 3 (at the end of the preceding section).
We note that one can consider the “non-uniform” version of finitary reducibility,
where E is n-arily reducible to F for all n, but the reductions do not necessarily
exist uniformly. We do not know if this implies that E is finitarily reducible to
F . However we prefer to focus on the uniform version because, as mentioned in
the paragraph before Remark 2.7, our main motivation for considering finitary
reducibility was due to the observation that in order to construct a computable
reduction between two relations, one can sometimes form a basic module and
iterate it uniformly to obtain a computable reduction.

The following properties are immediate.

Proposition 3.2 Whenever E ≤n+1
c F , we also have E ≤nc F . Finitary re-

ducibility implies all n-reducibilities, and computable reducibility E ≤c F implies
finitary reducibility E ≤<ωc F .

Proof. If E ≤n+1
c F via h, then g(~x) = (h(~x, 0))�n is an n-reduction. If E ≤c F

via f , then (x0, . . . , xn−1) 7→ (f(x0), . . . , f(xn−1)) is a finitary reduction.

Unary reducibility is completely trivial, and binary reducibility E ≤2
c F is ex-

actly the same concept as m-reducibility on sets E ≤m F , with E and F viewed
as subsets of ω via a natural pairing function. For n > 2, however, we believe
n-ary reducibility to be a new concept. To our knowledge, Eceset and Ece3 form
the first example of a pair of equivalence relations on ω proven to be finitarily
reducible but not computably reducible. A simpler example appears below in
Proposition 4.1.

Theorem 3.3 Eceset is finitarily reducible to Ece3 (yet Eceset 6≤c Ece3 , by Theorem
2.6).

11

Proof. We begin by giving a full ternary reduction (f, g, h). The proof of the
theorem is not by induction, but we believe that this concrete case is the best
way to introduce the ideas and the (rather cumbersome) notation. Afterwards
we explain how to modify the proof, uniformly in n, to build an n-ary reduction.

To simplify matters, we lift the relation “Eset” to a partial order≤set, defined
on subsets of ω by:

A ≤set B ⇐⇒ every column of A appears as a column in B.

So A Eset B just if A ≤set B and B ≤set A.
As in Proposition 2.8, we describe the construction of individual columns

of the sets Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z), using a uniform chip function for
equality on columns. First, for each pair 〈i, j〉, we have a column designated
Lxij , the column where we consider x on the left for i and j. This means that

we wish to guess, using the chip function, whether the column W
[i]
x occurs as a

column in Wy, and also whether it occurs as a column in Wz. We make Wf(x,y,z)

contain all of this column right away. For every c, we move the c-th marker in
the column Lxij in both Wg(x,y,z) and Wh(x,y,z) whenever either:

• the c-th column of Wy receives a chip saying that it may equal W
[i]
x ; or

• the c-th column of Wz receives a chip saying that it may equal W
[j]
x .

Therefore, these columns in Wg(x,y,z) and Wh(x,y,z) are automatically equal, and

they are cofinite (i.e. =∗ Wf(x,y,z) on this column) iff either W
[i]
x actually does

equal some column in Wy or W
[j]
x actually does equal some column in Wz.

The result, on the columns Lxij for all i and j collectively, is the following.

1. Wg(x,y,z) and Wh(x,y,z) are always equal to each other on these columns.

2. If Wx ≤set Wy, then Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofinite on
each of these columns.

3. If Wx ≤set Wz, then again Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofi-
nite on each of these columns.

4. If there exist i and j such that W
[i]
x does not appear as a column in Wy

and W
[j]
x does not appear as a column in Wz, then on that particular

column Lxij , Wg(x,y,z) and Wh(x,y,z) are coinfinite (and equal), hence 6=∗
Wf(x,y,z) = ω.

This explains the name Lx: these columns collectively ask whether eitherWx ≤set
Wy or Wx ≤set Wz. We have similar columns Lyij and Lzij , for all i and j, doing
the same operations with the roles of x, y, and z permuted.

We also have columnsRzij , for all i, j ∈ ω, asking aboutWz on the right – that
is, asking whether either Wx ≤set Wz or Wy ≤set Wz. The procedure here, for a
fixed i and j, sets both Wf(x,y,z) and Wg(x,y,z) to contain the entire column Rxij ,
and enumerates elements of this column into Wh(x,y,z) using the chip function.

12

Whenever the column W
[i]
x receives a chip indicating that it may equal W

[c]
z for

some c, we move the c-th marker in column Rxij in Wh(x,y,z). Likewise, whenever

the column W
[j]
y receives a chip indicating that it may equal W

[c]
z for some c,

we move the c-th marker in Rxij in Wh(x,y,z). The result of this construction is
that the column Rxij in Wh(x,y,z) is cofinite (hence =∗ ω = Wf(x,y,z) = Wg(x,y,z)

on this column) iff at least one of W
[i]
x and W

[j]
y appears as a column in Wz.

Considering the columns Rzij for all i and j together, we see that:

1. Wf(x,y,z) and Wg(x,y,z) are always equal to ω on these columns.

2. If Wx ≤set Wz, then Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofinite on
each of these columns.

3. If Wy ≤set Wz, then again Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) are all cofi-
nite on each of these columns.

4. If there exist i and j such that neither W
[i]
x nor W

[j]
y appears as a column

in Wz, then on that particular column Rzij , Wh(x,y,z) is coinfinite, hence
6=∗ ω = Wf(x,y,z) = Wg(x,y,z).

Once again, in addition to the columns Rzij , we have columns Rxij and Ryij
for all i and j, on which the same operations take place with the roles of x, y,
and z permuted.

We claim that the sets Wf(x,y,z), Wg(x,y,z), and Wh(x,y,z) enumerated by
this construction satisfy the proposition. Consider first the question of whether
every column of Wx appears as a column in Wz. This is addressed by the
columns labeled Lx and those labeled Rz (which are exactly the ones whose
construction we described in detail.) If every column of Wx does indeed appear
in Wz, then the outcomes listed there show that all three of the sets Wf(x,y,z),
Wg(x,y,z), and Wh(x,y,z) are cofinite on every one of these columns.

On the other hand, suppose some columnW
[i]
x fails to appear inWz. Suppose

further that W
[i]
x also fails to appear in Wy. Then the column Lxii has the

negative outcome: on this column, we have

Wf(x,y,z) 6=∗ ω = Wg(x,y,z) = Wh(x,y,z).

This shows that 〈f(x, y, z), h(x, y, z)〉 (and also 〈f(x, y, z), g(x, y, z)〉) fail to lie
in Ece3 , which is appropriate, since 〈x, z〉 (and 〈x, y〉) were not in Eceset.

The remaining case is that some column W
[i]
x fails to appear in Wz, but does

appear in Wy. In this case, some column W
[j]
y (namely, the copy of W

[i]
x) fails

to appear in Wz, and so the negative outcome on the column Rzij holds:

Wh(x,y,z) 6=∗ ω = Wf(x,y,z) = Wg(x,y,z).

This shows that 〈f(x, y, z), h(x, y, z)〉 (and also 〈g(x, y, z), h(x, y, z)〉) fail to lie
in Ece3 , which is appropriate once again, since 〈x, z〉 (and 〈y, z〉) were not in
Eceset.

13

Thus, the situation Wx 6≤set Wz caused Wf(x,y,z) and Wh(x,y,z) to differ
infinitely on some column, whereas if Wx ≤set Wz, then they were the same on
all of the columns Lx and Rz. Moreover, if they were the same, then Wg(x,y,z)

was also equal to each of them on these columns. If they differed infinitely,
but Wx ≤set Wy, then Wg(x,y,z) was equal to Wf(x,y,z) on all those columns;
whereas if they differed infinitely and Wy ≤set Wz, then Wg(x,y,z) was equal to
Wh(x,y,z) on all those columns.

The same holds for each of the other five situations: for instance, the columns
Ly and Rx collectively give the appropriate outcomes for the question of whether
Wy ≤set Wx, while not causing Wh(x,y,z) to differ infinitely from either Wf(x,y,z)

or Wg(x,y,z) on any of these columns unless (respectively) Wz 6≤set Wx or
Wy ≤set Wz. Therefore, the requirements are satisfied by this construction,
and we have a ternary reduction.

To address the general case of an n-ary reduction from Eceset to Ece3 , we
broaden these ideas. The columns Lx can be viewed as a way of asking whether
X has anything else in its equivalence class. With n = 3, a negative answer
meant that Wx 6≤set Wy and Wx 6≤set Wz, clearly implying that neither 〈x, y〉
nor 〈x, z〉 lies in Eceset. A positive answer, on the other hand, could fail to imply
the ≤set relations, if Wy ≤set Wx, for instance. With n = 3, such other cases
were handled by Ly or similar columns. Here we will give a full argument about
the possible equivalence classes into which Eset partitions the n given c.e. sets.

For any fixed n, consider each possible partition P of the c.e. sets A1, . . . , An
(given by (arbitrary) indices m0, . . . ,mn−1, with Ak = mk−1) into equivalence
classes. If P is consistent with Eset (that is, if every Eset-class is contained in
some P -class), then for each i, j with 〈Ai, Aj〉 /∈ P , we have two possible rela-
tions: either Ai 6≤set Aj or Aj 6≤set Ai. We consider every possible conjunction
of one of these possibilities for each such pair 〈i, j〉.

We illustrate with an example: suppose n = 5 and P has classes {A1, A2},
{A3, A4}, and {A5}. One possible conjunction explaining this situation is:

A1 6≤set A3 & A1 6≤set A4 & A2 6≤set A3 & A2 6≤set A4 &

A1 6≤set A5 & A2 6≤set A5 & A3 6≤set A5 & A4 6≤set A5.

Another possibility is:

A1 6≥set A3 & A1 6≤set A4 & A2 6≤set A3 & A2 6≥set A4 &

A1 6≥set A5 & A2 6≤set A5 & A3 6≥set A5 & A4 6≥set A5.

For this n and P there are 28 such possibilities in all, since there are 8 pairs
i < j with 〈Ai, Aj〉 /∈ P . If this P is consistent with Eset, then at least one of
these 28 possibilities must hold.

Now, for every partition P of {A1, . . . , An} and for every such possible con-
junction (with k conjuncts, say), we have an infinite set of columns used in

building the sets Â1, . . . , Ân. These columns correspond to elements of ωk. In
the second possible conjunction in the example above, the column for 〈i1, . . . , ik〉

14

corresponds to the question of whether the following holds.

(∃c A[c]
1 = A

[i1]
3) or (∃c A[i2]

1 = A
[c]
4) or (∃c A[i3]

2 = A
[c]
3) or (∃c A[c]

2 = A
[i4]
4) or

(∃c A[c]
1 = A

[i5]
5) or (∃c A[i6]

2 = A
[c]
5) or (∃c A[c]

3 = A
[i7]
5) or (∃c A[c]

4 = A
[i8]
5).

As before, a negative answer implies that P is consistent with Eset on these sets.
Conversely, if P is consistent with Eset, then at least one of these 28 disjunctions
(in this example) must fail to hold.

With this framework, the actual construction proceeds exactly as in the case
n = 3. A uniform chip function guesses whether any of these eight existential
(really Σ0

3) statements holds. If any one does hold, then all sets Âi are cofinite
in the column for this P and this conjunction and for 〈i1, . . . , ik〉. If the entire

disjunction (as stated here) is false, then Âi =∗ Âj on this column iff 〈Ai, Aj〉 ∈
P . So, if P is consistent with Eset, then we have not caused Âi E3 Âj to fail for

any 〈i, j〉 for which Ai Eset Aj , but we have caused Âi E3 Âj to fail whenever
〈Ai, Aj〉 /∈ P . (Also, if P is inconsistent with Eset, then every disjunction has

a positive answer, so every Âi is cofinite on each of the relevant columns, and
thus they are all =∗ there.)

Of course, one of the finitely many possible equivalence relations P on
{A1, . . . , An} is actually equal to Eset there. This P shows that, whenever

〈Ai, Aj〉 /∈ Eset, we have 〈Âi, Âj〉 /∈ E3; while the argument above shows that
whenever Ai Eset Aj , neither this P nor any other causes any infinite difference

between any of the columns of Âi and Âj , leaving Âi E3 Âj . So we have satisfied
the requirements of finitary reducibility, in a manner entirely independent of n
and of the choice of sets A1, . . . , An.

A full understanding of this proof reveals that it was essential for each dis-
junction to consider every one of the sets A1, . . . , An. If the disjunction caused
Â1 6=∗ Â2 on a particular column, for example, by making Â2 coinfinite on that
column, then the value of Âp (for p > 2) on that column will be either 6=∗ Â1 or

6=∗ Â2, and this decision cannot be made at random. In fact, one cannot even

just guess from Ap whether or not the relevant column A
[i]
1 which fails to appear

in A2 appears in Ap; in the event that it does not appear, Âp may need to be

not just coinfinite but actually =∗ Â2 on that column. Since Ap is included in
the disjunction (and in the partition P which generated it), we have instructions

for defining Âp: either we choose at the beginning to make it = Â1(= ω) on

this column, or we choose at the beginning to keep it = Â2 there. The partition
P is thus essential as a guide. For a finite number n of sets, there are only
finitely many P to be considered, but on countably many sets A1, A2, . . . (such
as the collection W0,W1, . . . of all c.e. sets), there would be 2ω-many possible
equivalence relations. Even if we restricted to the Π0

4 partitions P (which are
the only ones that could equal Eceset), we would not know, for a given P , whether

Âp should be kept equal to Â1 or to Â2, since a Π0
4 relation is too complex to

allow effective guessing about whether it contains 〈1, p〉 or 〈2, p〉.

15

The concept of n-ary reducibility could prove to be a useful measure of how
close two equivalence relations E and F come to being computably reducible.
The higher the n for which n-ary reducibility holds, the closer they are, with
finitary reducibility being the very last step before actual computable reducibil-
ity E ≤c F . The example of Eceset and Ece3 is surely quite natural, and shows that
finitary reducibility need not imply computable reducibility. At the lower levels,
we will see in Theorem 4.2 that there can also be specific natural differences
between n-ary and (n+ 1)-ary reducibility, at least in the case n = 3. Another
example at the Π0

2 level will be given in Proposition 4.1. Right now, though,
our first application is to completeness under these reducibilities.

Working with Ianovski and Nies, we showed in [13, Thm. 3.7 & Cor. 3.8] that
no Π0

n+2 equivalence relation can be complete amongst all Π0
n+2 equivalence

relations under computable reducibility. However, we now show that, under
finitary reducibility, there is a complete Π0

n+2 equivalence relation, for every n.
Moreover, the example we give is very naturally defined. We consider, for each

n, the equivalence relation En= = {(i, j) |W ∅
(n)

i = W ∅
(n)

j }. Clearly En= is a Π0
n+2

equivalence relation. We single out this relation En= because equality amongst
c.e. sets (and in general, equality amongst Σ0

n+1 sets) is indisputably a standard
equivalence relation and, as n varies, permits coding of arbitrary arithmetical
information at the Σ0

n+1 level.
We begin with the case n = 0.

Theorem 3.4 The equivalence relation E0
= (also known as =ce) is complete

amongst the Π0
2 equivalence relations with respect to the finitary reducibility.

Proof. Fix a Π0
2 equivalence relation R. We must produce a computable function

f(k, ~x) such that f(k, ·) : ωk → ωk gives the k-ary reduction from R to E0
=. We

will define f(k, ·) = (fk,0, . . . , fk,k−1) as a k-tuple of functions from ωk to ω.
Note that the case k = 2 follows trivially from the fact that E0

= is Π0
2-complete

as a set. However the completeness of E0
= under ≤kc for k > 2 does not follow

trivially from this. Nevertheless we will mention the strategy for k = 2 since it
will serve as the basic module.

k = 2: The strategy for k = 2 is simple. We monitor the stages at which
the pair (m0,m1) gets a new chip in R. Each time we get a new chip we make
Wf2,0(m0,m1) = [0, s] and Wf2,1(m0,m1) = [0, s + 1] where s is a fresh number.
Clearly m0Rm1 iff Wf2,0(m0,m1) = Wf2,1(m0,m1) = ω. This will serve as the basic
module for the pair (m0,m1).

k = 3: We fix the triple m0,m1,m2. For ease of notation we rename these
as 0, 1, 2 instead. We must build, for i < 3, the c.e. set Ai = Wf3,i(0,1,2). Each

Ai will have
(
3
2

)
= 3 columns, which we denote as Aa,bi for 0 ≤ a < b < 3. That

is, A
[0]
i = A0,1

i , A
[1]
i = A1,2

i , A
[2]
i = A0,3

i and A
[j]
i = ∅ for j > 2. We assume that

at each stage, at most one pair (i, i′) gets a new chip.
Each time we get a (0, 1)-chip we must play the (0, 1)-game, i.e., we set

A0,1
0 = [0, s] and A0,1

1 = [0, s + 1] for a new large number s. Of course A0,1
2

must decide what to do on this column; for instance if there are infinitely many
(0, 2)-chips then we must make A0,1

2 = A0,1
0 and if there are infinitely many

16

(1, 2)-chips then we must make A0,1
2 = A0,1

1 . At the next stage where we get
an (i, 2)-chip we make A0,1

2 = A0,1
i . This can be done by padding the shorter

column with numbers to match the longer column, and if A0,1
0 is made longer

then we need to also make A0,1
1 longer to keep A0,1

0 6= A0,1
1 at every finite stage.

If there are only finitely many (0, 2)-chips and finitely many (1, 2)-chips then
¬0R2 and ¬1R2 and we do not care if A0,1

2 = A0,1
0 or A0,1

2 = A0,1
1 . Of course A2

has to be different from both A0 and A1 but this will be true at the appropriate
columns: the strategy will ensure that A0,2

2 6= A0,2
0 and A1,2

2 6= A1,2
1 . At some

point when the (i, 2)-chips run out we will stop changing the columns A0,1
0 and

A0,1
1 due to having to ensure the correctness of A2. Hence the outcome of the

(0, 1)-game will be correctly reflected in the columns A0,1
0 and A0,1

1 .
If on the other hand there are infinitely many (0, 2)-chips and only finitely

many (1, 2)-chips then we have 0R2 and ¬1R2. We would have ensured that
A0,1

2 = A0,1
0 (which is important as we must make A2 = A0). Again we do not

care if A0,1
2 equals A0,1

1 .
Lastly if there are infinitely many (i, 2)-chips for each i < 2 then the inter-

ference of A2 will force both columns A0,1
0 and A0,1

1 to be ω. This is acceptable,
because 0R1 must hold (unless R is not an equivalence relation) and so the
(0, 1)-game would be played at infinitely many stages anyway.

k = 4: Again we fix the elements 0, 1, 2, 3 and build Aa,bi for i < 4 and
0 ≤ a < b < 4. There are now

(
4
2

)
= 6 columns in each Ai. The strategy

we used above would seem to suggest in this case that every time we get a
(i, j)-chip we play the (i, j)-game and match columns Aa,bi and Aa,bj whenever
{a, b} ∩ {i, j} = 1. At n = 4, however, it is clear that this will not be enough.
For instance we could have the equivalence classes {0}, {1}, {2, 3}. It could well
be that the final (0, 2)-chip came after the final (1, 2)-chip, while the final (1, 3)-
chip came after the final (0, 3)-chip. Then A0,1

2 would end up equal to A0,1
0 while

A0,1
3 would end up equal to A0,1

1 . Since A0,1
0 6= A0,1

1 this makes A2 6= A3, which
is not good.

Thus every time (i, j) gets a chip we have to to match columns Aa,bi and

Aa,bj for every pair a, b except the pair (i, j). In the above scenario this new rule

would force A0,1
0 and A0,1

1 to increase when a (2, 3)-chip is obtained. The only
way this can happen infinitely often is when 2R3, and either (0R2 and 1R3)
or (1R2 and 0R3). This cycle means that 0R1 must also be true, and so the
(0, 1)-game would be played infinitely often anyway.

Arbitrary k ≥ 2: We now fix k ≥ 2, and fix c.e. sets A0, . . . , Ak−1. We
describe how to build Aa,bi for i < k and 0 ≤ a < b < k. At every stage every

column Aa,bi is just a finite initial segment of ω. We assume at each stage, at

most one chip is obtained. At the beginning enumerate 0 into Aa,bb for every
a < b. At a particular stage in the construction, if no chip is obtained, do
nothing. Otherwise suppose we have an (i, j)-chip. We play the (i, j)-game,
i.e. set Ai,ji = [0, s] and Ai,jj = [0, s + 1] for a fresh number s. For each pair

a, b such that (a, b) 6= (i, j) we match the columns Aa,bi and Aa,bj . What this
means is to do nothing if they are currently equal, and if they are unequal,
say |Aa,bi | < |A

a,b
j |, we fill up Aa,bi with enough numbers to make it equal Aa,bj .

17

Furthermore if a = i then Aa,bb should also be topped up to have one more

element than Aa,bi . This ends the construction of the columns Aa,bi and of the
sets Ai.

We now verify that the construction works. It is easy to check that at every
stage of the construction, and for every a < b and i, we have |Aa,ba |+ 1 = |Aa,bb |
and |Aa,bi | ≤ |A

a,b
b |. Now suppose that iRj. Then there are infinitely many

(i, j)-chips obtained during the construction and each time we play the (i, j)-
game and match every other column of Ai and Aj . Hence Ai = Aj . Now

suppose that ¬iRj. We verify that Ai,ji 6= Ai,jj . Suppose they are equal, so that
they both have to be ω. Let t0 be the stage where the last (i, j)-chip is issued.
Hence Ai,ji = [0, s] and Ai,jj = [0, s+ 1] for some fresh number s, and so we have

|Ai,jl | ≤ |A
i,j
i | for every l 6= j. Let t1 > t0 be the least stage such that either

Ai,ji or Ai,jj is increased.

Claim 3.5 If Ai,jl is increased to equal Ai,jj for some l 6= j at some stage t > t0,

then at t some (l, c)-chip or (c, l)-chip is obtained with Ai,jc = Ai,jj .

Proof. At t suppose a (i0, j0)-chip was issued. At t we have three different kind
of actions:

(i) The (i0, j0)-game is played, affecting columns Ai0,j0i0
and Ai0,j0j0

.

(ii) For each (a, b) 6= (i0, j0), the smaller of the two columns Aa,bi0 or Aa,bj0 is
increased to match the other.

(iii) Ai0,bb is increased in the case a = i0 and Ai0,bi0
is smaller than Ai0,bj0

, or Aj0,bb

is increased in the case a = j0 and Aj0,bj0
is smaller than Aj0,bi0

.

At t the column Ai,jl is increased due to an action of type (i), (ii) or (iii). (i)
cannot be because otherwise we have i0 = i and j0 = j, but we have assumed
that no more (i, j)-chips were obtained. It is not possible for (iii) because
otherwise l = j. Hence we must have (ii) which holds for some a = i, b = j.
Furthermore l ∈ {i0, j0}, and letting c be the other element of the set {i0, j0}
we have the statement of the claim.

At t1 we cannot have an increase in Ai,jj without an increase in Ai,ji , due
to the fact that the two always differ by exactly one element. Hence at t1 we
know that Ai,ji is increased. It cannot be increased by more than one element
because the (i, j)-game can no longer be played and we have already seen that
|Ai,jl | ≤ |A

i,j
j | for every l. Hence at t1, Ai,ji (and also Ai,jj) is increased by exactly

one element. Now apply the claim successively to get a sequence of distinct
indices c0 = i, c1, c1, c2, · · · , cN = j such for every x, at least one (cx, cx+1)- or
(cx+1, cx)-chip is obtained in the interval between t0 and t1. Hence we have a
new cycle of chips beginning with i and ending with j.

Note that at t1, Ai,ji was increased to match Ai,jc . Thus the construction at

t1 could not have increased the column Ai,jl for any l 6∈ {i, j}. Hence after the

18

action at t1 we again have the similar situation at t0, that is, we again have
|Ai,jl | ≤ |A

i,j
i | for every l 6= j. If t1 < t2 < t3 < · · · are exactly the stages where

Ai,ji or Ai,jj is again increased, we can repeat the claim and the argument above
to show that between two such stages we have a new cycle of chips starting with
i and ending with j. Since there are only finitely many possible cycles, there is
a cycle which appears infinitely often, contradicting the transitivity of R.

The construction produces computable functions fk,i(~x) giving the k-ary
reduction from the Π0

2 relation R to E0
=. Since the construction is uniform in

k, finitary reducibility follows.

Next we relativize this proof to an oracle. This will give Π0
n+2 equivalence

relations which are complete at that level under finitary reducibility, and will
also yield the striking Corollary 3.9 below, which shows that finitary reductions
can exist even when full reductions of arbitrary complexity fail to exist.

Corollary 3.6 For each X ⊆ ω, the equivalence relation EX= defined by

i EX= j ⇐⇒ WX
i = WX

j

is complete amongst all ΠX
2 equivalence relations with respect to the finitary

reducibility.

Proof. Essentially, one simply relativizes the entire proof of Theorem 3.4 to the
oracle X. The important point to be made is that the reduction f thus built
is not just X-computable, but actually computable. Since every set WX

e in
question is now X-c.e., the program e = f(i, k, ~x) is allowed to give instructions
saying “look up this information in the oracle,” and thus to use anX-computable
chip function for an arbitrary ΠX

2 relation R, without actually needing to use
X to determine the program code e.

By setting X = ∅(n), we get Π0
n-complete equivalence relations (under finitary

reducibility) right up through the arithmetical hierarchy.

Corollary 3.7 Each equivalence relation En= is complete amongst the Π0
n+2

equivalence relations with respect to the finitary reducibility.

This highlights the central role En= plays amongst the Π0
n+2 equivalence re-

lations; it is complete with respect to the finitary reducibility. A wide variety of
Π0
n+2 equivalence relations arise naturally in mathematics (for instance, isomor-

phism problems for many common classes of computable structures), and all of
these are finitarily reducible to En=. In particular, every Π0

4 equivalence relation
considered in this section is finitarily reducible to E2

=. Indeed, Ece3 is complete
amongst Π0

4 equivalence relations with respect to the finitary reducibility, even
though E2

= 6≤c Ece3 .

Corollary 3.8 Ece3 is complete amongst the Π0
4 equivalence relations with re-

spect to the finitary reducibility.

19

Proof. By Theorem 2.4, E2
= ≤c Eceset, and by Theorem 3.3, Eceset ≤<ωc Ece3 .

The corollary then follows from Corollary 3.7 and Proposition 3.2.

Allowing arbitrary oracles in Corollary 3.6 gives a separate result. Recall
from Definition 1.1 the notion of d-computable reducibility.

Corollary 3.9 For every Turing degree d, there exist equivalence relations E
and F on ω such that E is finitarily reducible to F (via a computable function,
of course), but there is no d-computable reduction from E to F .

Proof. We again recall from [13] that there is no Π0
2-complete equivalence rela-

tion under ≤c. The proof there relativizes to any degree d and any set D ∈ d, to
show that no ΠD

2 equivalence relation on ω can be complete among ΠD
2 equiv-

alence relations even under d-computable reducibility. (The authors of [13] use
this relativization to show that there is no Π0

3-complete equivalence relation, for
example, by taking D = ∅′, but their proof really shows that for every Π0

3 equiv-
alence relation, there is another one which is not even 0′-computably reducible
to the first one.)

Therefore, there exists some ΠD
2 equivalence relation E such that E 6≤d ED= .

However, Corollary 3.6 shows that E does have a finitary reduction f to ED=
(with f specifically shown to be computable, not just d-computable).

4 Further Results on Finitary Reducibility

4.1 Π0
2 equivalence relations

Recall the Π0
2 equivalence relations Ecemin and Ecemax, which were defined by

i Ecemin j ⇐⇒ min(Wi) = min(Wj) i Ecemax j ⇐⇒ max(Wi) = max(Wj).

(Here the empty set has minimum +∞ and maximum −∞, by definition, while
all infinite sets have the same maximum +∞.) It was shown in [5] that Ecemax

and Ecemin are both computably reducible to Ece= = E0
=, and that Ecemax and Ecemin

are incomparable under ≤c. The proof given there that Ecemax 6≤c Ecemin seemed
significantly simpler than the proof that Ecemin 6≤c Ecemax, but no quantitative
distinction could be expressed at the time to make this intuition concrete. Now,
however, we can use finitary reducibility to distinguish the two results rigorously.

Proposition 4.1 Ecemax is not binarily reducible to Ecemin. However Ecemin is
finitarily reducible to Ecemax.

Proof. To show Ecemax is not binarily reducible to Ecemin, let f be any computable
total function. We build the c.e. sets Wi,Wj and assume by the recursion
theorem that the indices i, j are given in advance. At each stage, Wi,s and
Wj,s will both be initial segments of ω, with Wi,0 = Wj,0 = ∅. Whenever
max(Wi,s) = max(Wj,s) and min(Wf(0,i,j),s) = min(Wf(1,i,j),s), we add the
least available element to Wi,s+1, making the maxima distinct at stage s + 1.

20

Whenever max(Wi,s) 6= max(Wj,s) and min(Wf(0,i,j),s) 6= min(Wf(1,i,j),s), we
add the least available element to Wj,s+1, making the maxima the same again.
Since the values of min(Wf(0,i,j),s) and min(Wf(1,i,j),s) can only change finitely
often, there is some s with Wi = Wi,s and Wj = Wj,s, and our construction
shows that these are both finite initial segments of ω, equal to each other iff
min(W(f(0,i,j)) 6= min(Wf(1,i,j)). Thus f was not a binary reduction.

To show that Ecemin is finitarily reducible to Ecemax, we must produce a com-
putable function f(k, i, ~x) such that f(k,−,−) gives the k-ary reduction from
Ecemin to Ecemax. Fixing k ≥ 2 and indices m0, · · · ,mk we describe how to build
Wf(k,i,~m) for each i < k. We denote Ai = Wf(k,i,~m). We begin with Ai = ∅
for all i. Each time at a stage s we find a new element enumerated into some
Wmi

[s] below its current minimum we set Aj = [0, t + minWmj
[s]] for every

j < k, where t is a fresh number.
There are only finitely many mi, so Aj is modified only finitely often. So

there exists t such that for every j < k, Aj = [0, t+minWmj
]. Hence minWmi

=
minWmj iff maxAi = maxAj .

This tells us that Ecemin ≤c Ecemax is a lot closer to being true than Ecemax ≤c Ecemin.
Surprisingly, we found that the Π0

2 relation Ecemax is complete for the ternary
reducibility but not for 4-ary reducibility.

Theorem 4.2 Ecemax is complete for ternary reducibility ≤3
c among Π0

2 equiva-
lence relations, but not so for 4-ary reducibility ≤4

c.

Proof. By Theorem 3.4, we may use the relation E0
= of equality of c.e. sets (also

known as =ce), needing only to show that E0
= ≤3

c Ecemax and that E0
= 6≤4

c Ecemax.
First we address the former claim, building a computable 3-reduction f(n, i, j, k)
as follows.

For any i, j, k ∈ ω and any stage s, let

mij,s =

{
s, if Wi,s = Wj,s;

min(Wi,s4Wj,s), else.

Thus Wi 6= Wj iff limsmij,s <∞. We define mik,s and mjk,s similarly for those
pairs of sets, and set f(0, i, j, k), f(1, i, j, k) and f(2, i, j, k) to be c.e. indices of

the three corresponding sets Ŵi, Ŵj , and Ŵk built by the following construction.

At each stage s, Ŵi,s, Ŵj,s, and Ŵk,s will each be a distinct finite initial
segment of ω. Each time the sets Wi and Wj get a chip (i.e. appear to be

equal), we lengthen each of these initial segments to be longer than Ŵk (but

still distinct from each other), so that Ŵi = Ŵj = ω iff Wi = Wj , and otherwise
they have distinct maxima. Similar arguments apply for i and k, and also for j
and k.

Let Ŵi,0 = {0, 1}, Ŵj,0 = {0}, and Ŵk,0 = ∅. At each stage s + 1, set

m̂s = max(Ŵi,s, Ŵj,s, Ŵk,s). We first act on behalf of i and j, checking whether

mij,s+1 6= mij,s. If so, then we make Ŵi = [0, m̂s + 3] and Ŵj = [0, m̂s + 2], so
that both are longer than they were before, and if also either mik,s+1 6= mik,s

21

or mjk,s+1 6= mjk,s, then we set Ŵk,s+1 = [0, m̂s + 1]. (Otherwise Ŵk stays
unchanged at this stage.)

If mij,s+1 = mij,s, then we check whether mik,s+1 6= mik,s. If so, then we

make Ŵi = [0, m̂s + 3] and Ŵk = [0, m̂s + 2], and if also mjk,s+1 6= mjk,s, then

we set Ŵj,s+1 = [0, m̂s + 1]. (Otherwise Ŵj stays unchanged at this stage.)
Lastly, if mij,s+1 = mij,s and mik,s+1 = mik,s, then we check whether

mjk,s+1 6= mjk,s. If so, then we make Ŵj = [0, m̂s + 3] and Ŵk = [0, m̂s + 2],

with Ŵi staying unchanged. This completes the construction.
Notice first that if Wi = Wj , then Ŵi and Ŵj were both lengthened at

infinitely many stages, so that max(Ŵi) = max(Ŵj) = +∞. The same holds
for Wi and Wk, and also for Wj and Wk, (even though in those cases some of
the lengthening may have come at stages at which we acted on behalf of Wi and
Wj). On the other hand, if Wi 6= Wj , then at least one of these must be distinct

from Wk as well. If Wi 6= Wk, then Ŵi was lengthened at only finitely many
stages; likewise for Ŵj if Wj 6= Wk. So, if two of these sets were equal but the
third was distinct, then the two equal ones gave rise to sets with maximum +∞
and the third corresponded to a finite set. And if all three sets were distinct,
then after some stage s0 none of Ŵi, Ŵj , and Ŵk was ever lengthened again,
in which case they are the three distinct initial segments built at stage s0, with
three distinct (finite) maxima. So we have defined a ternary reduction from E0

=

to Ecemax.
However, no 4-ary relation exists. We prove this by a construction using the

Recursion Theorem, supposing that f were a 4-ary reduction and using indices
i, j, k, and l which “know their own values.” We write Ŵi for Wf(0,i,j,k,l), Ŵj

for Wf(1,i,j,k,l), and so on as usual, having first waited for f to converge on
these four inputs. If it converges on them all at stage s, we set Wi,s+1 = {0},
Wj,s+1 = {0, 2}, Wk,s+1 = {1}, and Wl,s+1 = {1, 3}.

Thereafter, at any stage s + 1 for which Wi,s 6= Wj,s and max(Ŵi,s) 6=
max(Ŵj,s), we add the next available even number to Wi,s+1, leaving Wi,s+1 =

Wj,s+1 = Wj,s. At any stage s + 1 for which Wi,s = Wj,s and max(Ŵi,s) =

max(Ŵj,s), we add the next available even number to Wj,s+1, leaving Wi,s+1 =
Wi,s (Wj,s+1. Similarly, at any stage s + 1 for which Wk,s 6= Wl,s and

max(Ŵk,s) 6= max(Ŵl,s), we add the next available odd number to Wk,s+1,
leaving Wk,s+1 = Wl,s+1 = Wl,s. At any stage s + 1 for which Wk,s = Wl,s

and max(Ŵk,s) = max(Ŵl,s), we add the next available odd number to Wl,s+1,
leaving Wk,s+1 = Wl,s (Wl,s+1. This is the entire construction.

Now if f is indeed a 4-ary reduction, then it must keep adding elements to
both Ŵi and Ŵj , since if either of these sets turns out to be finite, then the
construction would have built Wi and Wj to contradict f . So in particular,

Wi = Wj = {0, 2, 4, . . .}, and max(Ŵi) = max(Ŵj) = +∞. Similarly, it must

keep adding elements to both Ŵk and Ŵl, and so Wk = Wl = {1, 3, 5, . . .}, and

max(Ŵk) = max(Ŵl) = +∞. But then Wi 6= Wk, yet max(Ŵi) = max(Ŵk) =
+∞. So in fact f was not a 4-ary reduction.

22

The preceding proof of the lack of any 4-ary reduction can be viewed as
the simple argument that, since Ecemax has exactly one Π0

2-complete equivalence
class (and all its other classes are ∆0

2) while E0
= has infiinitely many Π0

2-complete
classes, the latter cannot reduce to the former. It requires four distinct elements
of the equivalence relation to show this, as evidenced by the first half of the
proof. One naturally conjectures that a Π0

2 equivalence relation with exactly
two Π0

2-complete classes might be complete under ≤4
c , but not under ≤5

c . In
Subsection 4.3 we will see that this intuition was not correct.

Corollary 4.3 Theorem 4.2 relativizes. That is, for every set D, the equiva-
lence relation EDmax defined by

i EDmax j ⇐⇒ max(WD
i) = max(WD

j)

is complete for ternary computable reducibility ≤3
c among ΠD

2 equivalence rela-
tions, but not so for 4-ary computable reducibility ≤4

c.

Proof. Notice that relativizing the proof of Theorem 4.2 entirely would give
this same result for D-computable ternary and 4-ary reducibility. That would
be correct, and it follows that EDmax is not ΠD

2 -complete for 4-ary computable
reducibility ≤4

c either, since certain ΠD
2 relations are not even D-computable

4-arily reducible to it. However, the ternary completeness required is also under
computable reducibility. Proving it requires the use of the same trick as in
Corollary 3.6. Our ternary reduction accepts an input 〈i, j, k〉 and outputs

indices î, ĵ, and k̂ of oracle Turing programs which enumerate WD
i , WD

j , and

WD
j using their own oracles (since those oracles all happen to be D as well),

and then execute the same strategy as in Theorem 4.2 for those three sets.

The relations Ecemax and EDmax are quickly seen to be computably bireducible
with the equivalence relations Ececard and EDcard (respectively) defined by:

i Ececard j ⇐⇒ |Wi| = |Wj | i EDcard j ⇐⇒ |WD
i | = |WD

j |.

So Ececard is are also Π0
2-complete under ternary reducibility but not under 4-ary

reducibility (by Proposition 3.2), and similarly with EDcard for ΠD
2 -completeness

under these reducibilities. The reason for introducing such a similar relation is
that a specific relativized version of it, E∅

′

card, appears very useful in computable

model theory. The discussion above, along with Corollary 4.3, shows that E∅
′

card

is Π0
3-complete under ternary 0′-computable reducibility but not under 4-ary

computable reducibility. We will use this fact in the next subsection.

Proposition 4.4 The equivalence relation E∅
′

card is Π0
3-complete under ternary

computable reducibility, but not under 4-ary computable reducibility.

4.2 Equivalence Relations from Algebra

Having so far considered only equivalence relations from pure computability
theory, we now turn briefly to computable model theory, which one naturally

23

expects to be a fertile source of equivalence relations. For background and
details relevant to this section, we refer the reader to [14, 15, 16].

Definition 4.5 Fix a computable presentation K of the algebraic closure Q of
the rational numbers. For each e, define the field Ke to be the subfield of K
which one gets by closing the c.e. subset We of the domain of K under the
field operations. The equivalence relation F alg

∼= is now defined to represent the
isomorphism relation among these fields:

i F alg
∼= j ⇐⇒ Ki

∼= Kj .

Since every computable algebraic field has a computable embedding into K,
with c.e. image, we know that the sequence 〈Ke〉e∈ω includes representatives
of every computable algebraic field, up to computable isomorphism. Notice
also that each Ke may be considered, up to computable isomorphism, as a
computable field itself, since the domain of Ke (which is c.e., uniformly in e,
and infinite) can be pulled back to ω, uniformly in e. In fact, given an e such that
ϕe computes the atomic diagram of a computable algebraic field of characteristic
0, one can uniformly find an i and a j such that ϕi is a computable isomorphism
from Kj onto that field.

Algebraically closed fields are usually seen as a simpler class of structures
than algebraic fields, even when the former are allowed to contain transcen-
dental elements. In fact, though, the isomorphism problem for computable
algebraically closed fields of characteristic 0 is Π0

3-complete, and thus quantifi-
ably more difficult than that for computable algebraic fields. Theorem 4.6 below
shows that the gap is not as large as suggested by the raw complexity levels:
while F alg

∼= for algebraic fields is Π0
2-complete for finitary reducibility, FAC∼= for

computable algebraically closed fields is not Π0
3-complete in this way. Rather, it

exhibits the same properties as the relation E∅
′

card from the preceding subsection:
it is Π0

3-complete under ternary reducibility, but not under 4-ary reducibility.
To make isomorphism on computable algebraically closed fields into an

equivalence relation on ω in a natural way, we define the field Le to have tran-
scendence degree de = |We|. Notice that one can construct a computable copy
of this field Le uniformly effectively in e: for each n, we have a field element xn
which appears to be transcendental over the preceding elements x0, . . . , xn−1,
but becomes algebraic over Q if ever n enters We. Conversely, given any com-
putable algebraically closed field F of characteristic 0, we can find an i with
F ∼= Li, effectively in an index e such that ϕe decides the atomic diagram of
F . This is straightforward, since the property of being algebraically indepen-
dent over all previous elements of the field is Π0

1. Thus, Li ∼= Lj iff Wi and
Wj have the same size (possibly infinite). This should immediately remind the

reader of E∅
′

card, and indeed, the real content of the following theorem is that
the equivalence relation FAC∼= defined by

i FAC∼= j ⇐⇒ Li ∼= Lj

is computably bireducible with E∅
′

card, while F alg
∼= is bireducible with E0

=.

24

Theorem 4.6 The equivalence relation F alg
∼= on ω, which is Π0

2-complete as a
set (under 1-reducibility), is complete under finitary reducibility ≤<ωc among all
Π0

2 equivalence relations. However, the equivalence relation FAC∼= on ω, which is
Π0

3-complete as a set, is only complete under ternary reducibility ≤3
c among all

Π0
3 equivalence relations; it is incomplete under 4-ary reducibility ≤4

c there.

Proof. The ≤<ωc -completeness result for F alg
∼= follows (using Proposition 3.2 and

Theorem 3.4) from the computable reduction f from E0
= to ≤<ωc which we now

describe. In Q, we can effectively find pn-th roots of 2, where pn is the n-th
prime number in the subring Z. Let qn be the first element in the domain ω
of this presentation of Q satisfying (qn)pn = 2. Of course, for each n, qn does
not lie in the subfield generated by the set {qm : m 6= n}, since this subfield
contains no extension of Q of prime degree pn. Thus, adjoining any collection
W of these qm’s to Q to form a field will not cause any pn-th root of 2 with
qn /∈ W to appear in that field. Therefore, our computable reduction f simply
maps each e to an index f(e) of the c.e. set {qn ∈ Q : n ∈We}.

On the other hand, we will show that FAC∼= and E∅
′

card are computably bire-

ducible. (Recall that E∅
′

card is the relation which holds of indices of Σ0
2 sets

which have the same cardinality.) Propositions 4.4 and 3.2 then complete our

argument. The computable reduction h from FAC∼= to E∅
′

card is easy: just let

W ∅
′

h(e) enumerate the elements of We.

For the computable reduction g from E∅
′

card to FAC∼= , we define g(e) using a

fixed total computable chip function c(e, n, s) with n ∈W ∅′e iff only finitely many
s have c(e, n, s) = 1. Build a computable field extension F of Q, starting with
elements xn,0 (for every n) which do not yet satisfy any algebraic relation over
Q. Go through all pairs 〈n, s〉 in turn, and whenever we find that c(e, n, s) = 1,
we make the current xn,k algebraic over Q (in some way consistent with the
finite portion of the atomic diagram of F enumerated thus far), and create a
new element xn,k+1 of F which does not yet satisfy any algebraic relation over
the existing elements. As we continue, we fill in all the atomic facts needed
to make F into a computable algebraically closed field; details may be found
in [17]. Thus, if n ∈ W ∅′e , then xn,kn will stay transcendental forever over the
preceding elements (where kn is the greatest k for which xn,k ever appears in F);
while otherwise all xn,k (for every k) will eventually be made algebraic. Thus

{xn,kn : n ∈ W ∅
′

e } is a transcendence basis for F , and so the transcendence

degree of F is the cardinality of W ∅
′

e . We set g(e) to be an index such that Lg(e)
is isomorphic to F ; this index can be found effectively, as remarked above, and
clearly then g is a computable reduction from E∅

′

card to FAC∼= .

On the other hand, there do exist natural Π0
3 isomorphism problems which

are complete under ≤<ωc at that level. The example we give here is quick, albeit
slightly unnatural, in that the field of the equivalence relation E0∼= is a proper
subset of ω. (An equivalence structure is just an equivalence relation on the
domain ω.) For details, we refer the reader to [12, 14].

25

Theorem 4.7 The isomorphism problem E0∼= for the class E0 of computable
equivalence structures with no infinite classes is Π0

3-complete under ≤<ωc ; indeed,
E1

= is computably reducible to E0∼=.

Proof. For the computable reduction, given an index i of a set W ∅
′

i , we build
a computable equivalence structure S with domain ω. S begins with infinitely
many classes of each odd size. Whenever we see an initial segment σ ⊆ ∅′s of
the stage-s approximation to ∅′, and an n ∈ ω for which Φσe,s(e)↓, we add a new
equivalence class to S, containing 2n+ 2 elements. As long as this convergence
persists at subsequent stages t > s, we keep this class this way. However, if we
ever reach a stage t > s with ∅′t� |σ| 6= ∅′s� |σ|, then we add one more element to
this class, giving it an odd number of elements. In this case, we start searching
again for a new σ for which convergence occurs. This is the entire construction.

It follows that S has a class of size 2n + 2 iff n ∈ W ∅
′

i , and that S has
infinitely many classes of each odd size. Hence E1

= ≤c E0∼= as required. (Similar
constructions show that E1

= ≤c Eα∼= for every α ≤ ω, where this is the iso-
morphism problem for the class Eα of computable equivalence structures with
exactly α-many infinite classes.)

We remark that the completeness results about FAC∼= can readily be seen also
to hold of computable rational vector spaces, which form an extremely similar
class of structures, and could be conjectured to hold for the class of all com-
putable models of any other strongly minimal theory for which the independence
relation is Π0

1 and the spectrum of computable models of that theory contains
all countable models of the theory. (In all such classes, the isomorphism relation
is determined by the dimension, which is the size of a particular subset of the
structure, usually a maximal independent set.) On the other hand, it would be
natural to investigate other classes for which the isomorphism problem is Π0

2,
and to determine whether their isomorphism problems are also Π0

2-complete
under finitary reducibility, as in Theorem 4.6.

4.3 Distinguishing Finitary Reducibilities

Theorem 4.2 implies that 3-ary and 4-ary reducibility are distinct notions, and it
is natural to attempt to extend this result to other finitary reducibilities. Above
we suggested that one way to do so might be to create Π0

2 equivalence relations in
which only finitely many of the equivalence classes are themselves Π0

2-complete
as sets. (We use the class of Π0

2-equivalence relations simply because it is the
one we found useful in the preceding subsection. The same principle could be
applied at the Π0

p or other levels, for any p.) Theorem 4.12 below will prove this
attempt to be in vain, but the suspicion that n-ary reducibilities are distinct for
distinct n turns out to be well-founded, as we will see in Theorem ??.

It is not difficult to create a Π0
2 equivalence relation E on ω having exactly

c distinct Π0
2-complete equivalence classes. Define m E n iff:

(∃i < m)[m ≡ n ≡ i (mod c) & max(Wm−i
c

) = max(Wn−i
c

)].

26

This essentially just partitions ω into c distinct classes modulo c, and then
partitions each of those classes further using the relation Ecemax. As with Ecemax,
we intend here that max(W) = max(V) iff W and V are both infinite or both
empty or else have the same (finite) maximum. For each i < c, the class of those
m ≡ i(mod c) with m−i

c ∈ Inf is Π0
2-complete, while every other class is defined

by such an i along with a condition of having either a specific finite maximum
(which is a ∆0

1 condition) or being empty (which is Π0
1).

However, this E is not complete among Π0
2 equivalence relations under 4-ary

reducibility. To build an F with F 6≤4
c E, one uses infinitely many nonconflicting

basic modules, one for each e, showing that no ϕe is a 4-ary reduction from F to
E. To do this, assign four specific numbers w = 4e, x = 4e+ 1, y = 4e+ 2 and
x = 4e+ 3 to this module. Wait until all four of these computations converge:
ϕe(1, w, x, y, z), ϕe(2, w, x, y, z), ϕe(3, w, x, y, z), and ϕe(4, w, x, y, z). (If any
diverges, then ϕe is not total, and we define each of the four inputs to be an
F -class unto itself.) If the four outputs are all congruent modulo c, then we
use the same process which showed that Ecemax is not 4-arily complete for Π0

2

equivalence relations, since now there is only one Π0
2 complete class to which

ϕe(w) and the rest could belong. On the other hand, if, say, ϕe(1, w, x, y, z) 6≡
ϕe(2, w, x, y, z) (mod c), then these two values lie in distinct E-classes, so we
just make w F x; similarly for the other five possibilities.

Nevertheless, there is a straightforward procedure for building an equivalence
relation which is 4-complete but not 5-complete among Π0

2 equivalence relations,
and it generalizes easily to larger finitary reducibilities as well, showing them
all to be distinct. This will be discussed in Theorem 4.9.

Recall first the following fact.

Proposition 4.8 For every p ≥ 0, there exists a Σ0
p equivalence relation which

is complete under finitary reducibility ≤<ωc among Σ0
p equivalence relations, and

a Π0
p equivalence relation which is complete under ≤<ωc among Π0

p equivalence
relations.

Proof. For p = 0, equality on ω is Σ0
0-complete (equivalently, Π0

0-complete).
For p > 0, it is well known that there is an equivalence relation which is Σ0

p-
complete under full computable reducibility: let {Ve : e ∈ ω} be a uniform list
of the Σ0

p sets, and take the closure of {(〈e, i〉, 〈e, j〉) : 〈i, j〉 ∈ Ve} under re-
flexivity, symmetry, and transitivity. A Π0

1-complete equivalence relation under
computable reducibility was constructed in [13], and the equivalence relation

{(i, j) : W ∅
(p−2)

i = W ∅
(p−2)

j } is Π0
p-complete under ≤<ωc for each p > 1.

Theorem 4.9 For every p ≥ 0 and every n ≥ 2, there exists a Σ0
p equivalence

relation which is complete under n-ary reducibility ≤nc among Σ0
p equivalence

relations, but fails to be complete among them under ≤n+1
c . Likewise, there ex-

ists a Π0
p equivalence relation which is complete under ≤nc among Π0

p equivalence
relations, but not under ≤n+1

c .

Proof. The p = 0 case is trivial: every computable equivalence relation with
exactly n equivalence classes clearly satisfies the theorem. Now we consider
p > 0. We first illustrate the special case of Π0

2 equivalence relations:

27

We first prove that for every n > 1, there exists a Π0
2 equivalence relation E

which is Π0
2-complete under ≤nc , but not under ≤n+1

c . Start with a computable
listing {(am,0, . . . , am,n−1)}m∈ω of all n-tuples in ωn, without repetitions. The
idea is that E should use the natural numbers nm, nm + 1, . . . , nm + n − 1 to
copy =ce from the m-th tuple. For i, j ∈ ω, we define i E j if and only if

∃m[nm ≤ i < (n+ 1)m & nm ≤ j < (n+ 1)m & am,i−mn =ce am,j−mn].

The last condition just says that Wam,i−mn
= Wam,j−mn

, which is Π0
2. Of course,

for each i, only m = b inc can possibly satisfy the existential quantifier, so this
E really is a Π0

2 equivalence relation. Moreover, it is immediate that =ce has an
n-reduction f to E: for each n-tuple (x0, . . . , xn−1) ∈ ωn, just find the unique m
with (am,0, . . . , am,n−1) = (x0, . . . , xn−1), and set f(i, x0, . . . , xn−1) = mn + i.
That f is an n-reduction follows directly from the design of E. But every Π0

2

equivalence relation F has an n-reduction to =ce, since =ce is complete under
finitary reducibility, and so our E is complete under ≤nc among Π0

2 equivalence
relations.

To show that E is not complete under ≤n+1
c , we show that =ce 6≤n+1

c E.
This is surprisingly easy. Fix any e ∈ ω, and define x0, . . . , xn to be the indices of
the following programs, using the Recursion Theorem. The programs wait until
ϕe(i, x0, . . . , xn) has converged for every i ≤ n, say with x̂i = ϕe(i, x0, . . . , xn).
If all of x̂0, . . . , x̂n lie in a single interval [nm, (n + 1)m) for some m, then
each program xi simply enumerates i into its set. Thus we have xi 6=ce xj
for i < j ≤ n, but some two of x̂0, . . . , x̂n must be equal, by the Pigeonhole
Principle, and hence ϕe was not an (n + 1)-reduction. On the other hand, if
there exist j < k ≤ n for which x̂j and x̂k do not lie in the same interval
[nm, (n + 1)m), then no program xi ever enumerates anything. In this case
we have xj =ce xk, since both are indices of the empty set, yet 〈x̂j , x̂k〉 /∈ E
by the definition of E. Therefore, no ϕe can be an (n + 1)-reduction, and so
=ce 6≤n+1

c E.
Now fix an arbitrary p > 0 and consider Σ0

p equivalence relations. The
technique is almost the same as above. Fix the Σ0

p equivalence relation F which
is complete among Σ0

p equivalence relations under ≤<ωc , as given in Proposition
4.8. Define i E j if and only if

∃m[nm ≤ i < (n+ 1)m & nm ≤ j < (n+ 1)m & am,i−nm F am,j−mn],

again using an effective enumeration {(am,0, . . . , am,n−1) : m ∈ ω} of ωn. Once
again we have an n-reduction from F to E: set f(i, x0, . . . , xn−1) = nm + i,
where (am,0, . . . , am,n−1) = (x0, . . . , xn−1).

The same strategy as for Π0
2 succeeds in showing that no ϕe can be an

(n+ 1)-reduction from F to E, although this must be checked for the different
cases. When p > 0, for each fixed ϕe, there is a computable reduction to
the Σ0

p-complete equivalence relation F from the Σ0
p equivalence relation which

makes 0, . . . , n all equivalent if all ϕe(xi) converge to values in the same interval
[nm, n(m+ 1)), and leaves them pairwise inequivalent otherwise.

28

Now consider Π0
p for arbitrary p > 0. The same argument also works with

Π0
p in place of Σ0

p. Our F , defined exactly the same way, is now a Π0
p equivalence

relation, and the n-ary reduction from E is also the same. We claim that again

E 6≤n+1
c F . For p > 1, our F is equality of the sets W ∅

(n)

i and W ∅
(n)

j , and so
the proof using the Recursion Theorem still works, each c.e. set being also c.e.
in ∅(n). For p = 1, let all the numbers ≤ n be equivalent unless, on all of those
(n + 1) numbers, ϕe converges to values in the same interval [nm, n(m + 1)),
in which case they become pairwise inequivalent. This Π0

1 equivalence relation
must have a computable reduction to the Π0

1-complete equivalence relation F ,
which therefore cannot have any (n+ 1)-ary reduction to E.

Corollary 4.10 For every n 6= n′ in ω, n-ary reducibility and n′-ary reducibil-
ity do not coincide.

Finally, we adapt Theorem 4.9 to compare finitary reducibility with full
computable reducibility. Of course, it is already known that equality of ∅(n)-c.e.
sets is Π0

n+2-complete under the former, but not under the latter.

Theorem 4.11 For each p > 0, there exists a Σ0
p equivalence relation E which

is complete under finitary reducibility among Σ0
p equivalence relations, but not

under computable reducibility.

Proof. Again, let F be Σ0
p-complete under computable reducibility. This time

we use an effective enumeration {(am,0, . . . , am,nm
)}m∈ω of ω<ω, and define the

computable function g by g(0) = 〈0, 0〉, and

g(x+ 1) =

{
〈m, i+ 1〉, if g(x) = 〈m, i〉 with i < nm;
〈m+ 1, 0〉, if g(x) = 〈m,nm〉.

We let x E y iff there is an m with g(x) = 〈m, j〉 and g(y) = 〈m, k〉 and
am,j F am,k. Since F is Σ0

p, so is E, and the finitary reduction from F to E is
given by h(i, x0, . . . , xn) = g−1(〈m, i〉), where (x0, . . . , xn) = (am,0, . . . , am,nm

).
With F Σ0

p-complete under ≤c, this makes E Σ0
p-complete under ≤<ωc . But

for each computable total function f (which you think might be a full com-
putable reduction from F to E), there would be a computable reduction to E
from a particular slice of F (say the c-th slice) on which we wait until f(〈c, 0〉)
converges to some number 〈m, k〉, then wait until f has converged on each of
〈c, 1〉, . . . , 〈c, 1+nm〉 as well, and define these (2+nm) elements to be in distinct
F -classes if f maps each of them to a pair of the form 〈m, j〉 for the same m,
or else all to be in the same F -class if not. As usual, this shows that f cannot
have been a computable reduction.

So we have answered the basic question. However, the proof did not in-
volve any equivalence relation with only finitely many Π0

2-complete equivalence
classes, as we had originally guessed it would. Indeed, 4-completeness for Π0

2

equivalence relations turns out to require a good deal more than just two Π0
2-

complete equivalence classes, as we now explain.

29

Say that a total computable function h is a Π0
2-approximating function for

an equivalence relation E if

(∀x∀y)[x E y ⇐⇒ ∃∞s h(x, y, s) = 1].

(We may assume that h has range ⊆ {0, 1}. Every Π0
2 equivalence relation has

such a function h.) We say that, under this h, a particular E-class [z]E is ∆0
2 if,

for all x, y ∈ [z]E , we have lims h(x, y, s) = 1. Of course, if x ∈ [z]E and y /∈ [z]E ,
then lims h(x, y, s) = 0, so in this case the class [z]E really is ∆0

2, uniformly in
any single element x in the class. On the other hand, even if [z]E is not ∆0

2 under
this h, it could still be a ∆0

2 set, under some other computable approximation.
For this reason, our next theorem does not preclude the possibility that cofinitely
many E-equivalence classes might be ∆0

2, but it does say that cofinitely many
classes cannot be uniformly limit-computable.

For an example of these notions, let E be the relation Ecemax, saying of i and
j that Wi and Wj have the same maximum. More formally, i Ecemax j iff

(∀x∀s∃t∃y, z ≥ x)[(x ∈Wi,s =⇒ y ∈Wj,t) & (x ∈Wj,s =⇒ z ∈Wi,t)].

We can define h here by letting h(i, j, s) = 1 when either max(Wi,s) = max(Wj,s)
or else max(Wi,s) > max(Wi,t) and max(Wj,s) > max(Wj,t) (where t is the
greatest number < s with h(i, j, t) = 1), and taking h(i, j, s) = 0 otherwise.
Then the Ecemax-class Inf of those i with Wi infinite is the only class which
fails to be ∆0

2 under this h, and since the set Inf is in fact Π0
2-complete, it

cannot be ∆0
2 under any other h either. Recall that Ecemax is complete among

Π0
2 equivalence relations under ≤3

c , but not under ≤4
c . The following theorem

generalizes this result.

Theorem 4.12 Suppose that E is complete under ≤4
c among Π0

2 equivalence
relations. Let h be any computable Π0

2-approximating function for E. Then E
must contain infinitely many equivalence classes which are not ∆0

2 under this h.

Proof. Suppose that z0, . . . , zn were numbers such that 〈zi, zj〉 /∈ E for each
i < j, and such that every E-class except these (n+ 1) classes [zi]E is ∆0

2 under
h. For each e, we will build four c.e. sets which show that ϕe is not a 4-reduction
from the relation =ce to E. (Recall that i =ce j iff Wi = Wj , and that this Π0

2-
equivalence relation is complete under finitary reducibility, making it a natural
choice to show 4-incompleteness of E.)

Fix any e, and choose four fresh indices a, b, c and d of c.e. sets A = Wa,
B = Wb, C = Wc, and D = Wd, which we enumerate according to the following
instructions. First, we wait until ϕe(i, a, b, c, d) has converged for each i < 4.
(By the Recursion Theorem, these indices may be assumed to know their own

values.) Set â = ϕe(0, a, b, c, d), b̂ = ϕe(1, a, b, c, d), etc. If ϕe is a 4-reduction,

then A = B iff â E b̂, and A = C iff â E ĉ, and so on.
At an odd stage 2s+ 1, we first compare â and b̂, using the computable Π0

2-

approximating function h for E. If h(â, b̂, s) = 1 and A2s = B2s, then we add to
A2s+1 some even number not in B2s, so A2s+1 6= B2s+1. On the other hand, if

30

h(â, b̂, s) = 0 and A2s 6= B2s, then we make A2s+1 = B2s+1 = A2s ∪ B2s. (The

purpose of these maneuvers is to ensure that lims h(â, b̂, s) diverges, so that â

and b̂ lie in one of the properly Π0
2 E-classes.)

Next we do exactly the same procedure with ĉ and d̂ in place of â and b̂,
and using a new odd number if needed, instead of a new even number. This
completes stage 2s+ 1, ensuring that lims h(ĉ, d̂, s) also diverges.

At stage 2s+2, fix the i ≤ n such that h(â, zi, s
′) = 1 for the greatest possible

s′ ≤ s, and similarly the j ≤ n such that h(ĉ, zj , s
′′) = 1 for the greatest possible

s′′ ≤ s. (If there are several such i, choose the least; likewise for j. If there is
no such i or no such j, then we do nothing at this stage.) If i = j, then add a
new even number to both A2s+2 and B2s+2, thus ensuring that they are both
distinct from C2s+2 and D2s+2 (and keeping A2s+2 = B2s+2 iff A2s+1 = B2s+1).
If i 6= j, then we add all the even numbers in A2s+1 to both C2s+2 and D2s+2,
and add all the odd numbers in C2s+1 to both A2s+2 and B2s+2. (This is the
only step in which even numbers are enumerated into C or D, or odd numbers
into A or B.) This completes stage 2s+ 2, and the construction.

We claim first that the odd stages succeeded in their purpose of making
â, b̂, ĉ, and d̂ all belong to properly Π0

2 E-classes. At each stage 2s + 1 such

that h(â, b̂, s) = 1, we made A2s+1 contain a new even number, which only
subsequently entered B if A2s′ = B2s′ at some stage s′ > s. Therefore, if
lims h(â, b̂, s) = 1, this even number would show A 6= B, yet â E b̂, so that ϕe
would not be a 4-reduction. So there are infinitely many s with h(â, b̂, s) = 0,
and at all corresponding stages 2s + 1 we made A2s+1 = B2s+1, which implies
A = B. If ϕe is a 4-reduction, then we must have â E b̂, so there were infinitely
(but also coinfinitely) many s with h(â, b̂, s) = 1. Therefore lims h(â, b̂, s) di-

verged, and so the E-class of â must be one of the [zi]E with i ≤ n, with b̂ lying

in the same class. We now fix this i. A similar analysis on ĉ and d̂ shows that
they both lie in one particular E-class [zj]E with j ≤ n, and that C = D.

Recall that z0, . . . , zn were chosen as representatives of distinct E-classes.
Therefore, there must exist some stage s0 such that, at all stages s > s0, we had
h(â, zk, s) = 0 = h(b̂, zk, s) for every k 6= i, and also h(ĉ, zk, s) = 0 = h(d̂, zk, s)
for every k 6= j. Moreover, we know that i = j iff zi E zj . If indeed i = j, then
at every even stage > 2s0 we were in the i = j situation, and we added a new
even number to A and B at each such stage, while no even numbers were added
to either C or D at any stage > 2s0. Therefore, if i = j, we would have A 6= C,
yet â E zi E ĉ, which would show that ϕe is not a 4-reduction. On the other
hand, if i 6= j, then at every even stage > 2s0 we were in the i 6= j situation,
and so all even numbers ever added to A were subsequently added to both C
and D, and all odd numbers in C were subsequently added to both A and B.
However, no odd numbers were ever added to A or B except numbers already
in C, and no even numbers were ever added to C or D except numbers already
in A. So we must have A = B = C = D, yet â E zi and ĉ E zj , which lie in
distinct E-classes. So once again ϕe cannot have been a 4-reduction from =ce

to E. This same argument works for every e (by a separate argument for each;
there is no need to combine them), and so =ce 6≤4

c E.

31

It remains open whether an equivalence relation E which is Π0
2-complete

under ≤4
c might have cofinitely many (or possibly all) of its classes be ∆0

2 in
some nonuniform way.

5 Questions

Computable reducibility has been independently invented several times, but
many of its inventions were inspired by the analogy to Borel reducibility on 2ω.
Therefore, when a new notion appears in computable reducibility, it is natural
to ask whether one can repay some of this debt by introducing the analogous
notion in the Borel context. We have not attempted to do so here, but we
encourage researchers in Borel reducibility to consider this idea. First, do the
obvious analogues of n-ary and finitary reducibility bring anything new to the
study of Borel reductions? And second, in the context of 2ω, could one not
also ask about ω-reducibility? A Borel ω-reduction from E to F would take an
arbitrary countable subset {x0, x1, . . .} of 2ω, indexed by naturals, and would
produce corresponding reals y0, y1, . . . with xi E xj iff yi F yj . Obviously,
a Borel reduction from E to F immediately gives a Borel ω-reduction, and
when the study of Borel reducibility is restricted to Borel relations on 2ω, such
ω-reductions always exist. The interesting situation would involve E and F
which are not Borel and for which E 6≤B F : could Borel ω-reductions (or
finitary reductions) be of use in such situations? And finally, if the Continuum
Hypothesis fails, could the same hold true of κ reductions, or < κ-reductions,
for other κ < 2ω?

There are plenty of specific questions to be asked about computable finitary
reducibility. Computable reductions have become a basic tool in computable
model theory, being used to compare classes of computable structures under
the notion of Turing-computable embeddings (as in [3, 4], for example). In
situations where no computable reduction exists, finitary reducibility could aid
in investigating the reasons why: is there not even any binary reduction? Or is
there a computable finitary reduction, but no computable reduction overall? Or
possibly the truth lies somewhere in between? Finitary reducibility has served
to answer such questions in several contexts already, as seen in Subsection 4.2,
and one hopes for it to be used to sharpen other results as well.

References

[1] U. Andrews, S. Lempp, J. Miller, K.M. Ng, L. San Mauro, and A. Sorbi.
Universal computably enumerable equivalence relations. Journal of Sym-
bolic Logic, 79(1):60–88, 2014.

[2] C. Bernardi and A. Sorbi. Classifying positive equivalence relations. J.
Symbolic Logic, 48(3):529–538, 1983.

32

[3] W. Calvert, D. Cummins, J.F. Knight, and S. Miller. Comparing classes
of finite structures. Algebra and Logic, 43(6):374–392, 2004.

[4] W. Calvert and J.F. Knight. Classification from a computable viewpoint.
Bull. Symbolic Logic, 12(2):191–218, 2006.

[5] S. Coskey, J.D. Hamkins, and R. Miller. The hierarchy of equivalence rela-
tions on the natural numbers under computable reducibility. Computability,
1(1):15–38, 2012.

[6] Yu.L. Eršov. Teoriya numeratsii. “Nauka”, Moscow, 1977. Matematich-
eskaya Logika i Osnovaniya Matematiki. [Monographs in Mathematical
Logic and Foundations of Mathematics].

[7] E.B. Fokina and S.-D. Friedman. Equivalence relations on classes of com-
putable structures. In Proceedings of the 5th Conference on Computability
in Europe: Mathematical Theory and Computational Practice. Springer-
Verlag, 2009.

[8] E.B. Fokina and S.-D. Friedman. On Σ1
1 equivalence relations over the

natural numbers. Mathematical Logic Quarterly, 2011.

[9] E.B. Fokina, S.-D. Friedman, and A. Törnquist. The effective theory of
Borel equivalence relations. Ann. Pure Appl. Logic, 161(7):837–850, 2010.

[10] H. Friedman and L. Stanley. A Borel reducibility theory for classes of
countable structures. J. Symbolic Logic, 54(3):894–914, 1989.

[11] S. Gao and P. Gerdes. Computably enumerable equivalence relations. Stu-
dia Logica, 67(1):27–59, 2001.

[12] S.S. Goncharov and J.F. Knight. Computable structure and non-structure
theorems. Algebra and Logic, 41(6):351–373, 2002.

[13] I. Ianovski, R. Miller, K.M. Ng, and A. Nies. Complexity of equivalence
relations and preorders from computability theory. J. Symbolic Logic,
79(3):859–881, 2014.

[14] K. Lange, R. Miller, and R.M. Steiner. Effective classification of computable
structures. Notre Dame Journal of Formal Logic. To appear.

[15] R. Miller. Computable fields and galois theory. Notices of the American
Mathematical Society, 55(7):798–807, 2008.

[16] R. Miller. d-Computable categoricity for algebraic fields. Journal of Sym-
bolic Logic, 74(4):1325–1351, 2009.

[17] M. Rabin. Computable algebra, general theory, and theory of computable
fields. Transactions of the American Mathematical Society, 95:341–360,
1960.

33

[18] R.I. Soare. Recursively enumerable sets and degrees. Perspectives in Math-
ematical Logic. Springer-Verlag, Berlin, 1987. A study of computable func-
tions and computably generated sets.

Department of Mathematics
Queens College – C.U.N.Y.
65-30 Kissena Blvd.
Flushing, New York 11367 U.S.A.

Ph.D. Programs in Mathematics & Computer Science
C.U.N.Y. Graduate Center
365 Fifth Avenue
New York, New York 10016 U.S.A.

E-mail: Russell.Miller@qc.cuny.edu

Webpage: qcpages.qc.cuny.edu/˜rmiller
Nanyang Technological University

Department of Mathematics
Singapore

E-mail: kmng@ntu.edu.sg

Webpage: www.ntu.edu.sg/home/kmng/

34

