
THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS

HEER TERN KOH AND KENG MENG NG

Abstract. We provide a full characterisation of which equivalence relations have a dense punc-

tual degree structure.

1. Introduction

Computable structure theory is an area of research that studies the algorithmic content of math-
ematical structures. The main objects of interest are computable structures, which are defined as
structures with domain N and having uniformly computable operations and relations [15, 12]. A
large body of work in computable structure theory is dedicated to studying isomorphisms between
computable structures. If there exists a computable isomorphism between any two isomorphic
computable copies of a structure A, then we say that the structure A is computably categorical. A
well-known example of such a structure is the countable dense linear order with no endpoints. In
some sense, being computably categorical reflects the algorithmic nature of the classical proof of
its categoricity. It should not be too surprising that not all structures are computably categorical.
For such structures, there have been some interest in studying ∆0

n-categoricity, which informally
speaking, measures how much non-computable information is encoded by the isomorphisms of such
structures.

Rather than measuring the amount of non-computable information required to compute isomor-
phisms of certain structures, a recent research program seeks instead to measure the amount of
unbounded search required [8]. More broadly, the research program seeks to investigate the ques-
tion, “What happens if we forbid unbounded search in computable structure theory?” To investigate
this question, it was proposed that one should study punctual structures defined as follows.

Definition 1.1 ([8]). A countable structure is punctual if its domain is N and its operations and
relations are uniformly primitive recursive.

Under this framework, it follows intuitively that the isomorphisms should also be similarly restricted
to those computable without delay. However, as the inverse of a primitive recursive function is not
necessarily primitive recursive, it is not immediately obvious what the correct notion of isomor-
phisms between punctual structures should be. Within the literature, there have been some work
on studying punctual structures up to different notions of isomorphisms like punctual isomorphisms
and honest isomorphisms [9, 14, 4]. Another approach is to think of the relation “being primitive
recursively isomorphic” as a reduction rather than a symmetric relation [9]:

Date: June 4, 2024.
K.M. Ng was supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2

(MOE-T2EP20222-0018).

1

2 HEER TERN KOH AND KENG MENG NG

Definition 1.2 ([8]). Given two isomorphic punctual structures A and B we define A ≤pr B if
there exists a primitive recursive isomorphism f : A → B. This is a pre-ordering of the set of all
punctual copies of a fixed punctual structure A. The equivalence relation induced by ≤pr is known
as the punctual degrees of A.

The basic idea of considering the partial ordering of the punctual degrees of A is that it allows
formal insight into the punctual content of the structure A. If A ≤pr B then it intuitively means
that B is revealed at least as fast as A (up to a punctual delay). By considering how all punctual
copies of A relate to each other under ≤pr, it allows a different way of understanding how easily
the algebraic aspects of A can be concealed. For instance, having a greatest punctual degree means
that the structure A has a “fastest” copy in which all important information of A must be revealed
quickly. Having a least punctual degree means that the structure A has a “slowest” copy which
produces no more than the absolutely necessary information, for instance finitely generated free
groups.

The study of the induced degree structure has collected a number of interesting results. For ex-
ample, the punctual degrees of the countable dense linear ordering with no endpoints, the random
graph and the universal countable abelian p-group have been shown to be pairwise non-isomorphic
[13], suggesting that the algorithmic content encoded by the respective isomorphisms differ on
some sub-recursive level. This contrasts sharply with the fact that these structures are largely
indistinguishable when viewed through the coarser lense of computable isomorphisms.

When faced with a degree structure (as a partial ordering), one of the immediate questions is
whether the structure is bounded (from above or below), and whether or not the degree structure is
dense. Indeed, some of the early work in classical degree theory focussed on the density of various
degree structures. Some well-known results that come to mind include the results of Spector (global
Turing degrees), Sacks (c.e. Turing degrees), Cooper (local enumeration degrees) and Gutteridge
(global enumeration degrees). It is therefore absolutely natural to classify the punctual structures
which have dense punctual degree structures.

Apart from the traditional interest in density, this question is also important in that it allows us to
understand how finely stratified the different relative speed of enumerations of A are. For instance,
it has been shown that algebraically simple classes like finitely generated structures, or (computably
almost) rigid structures have dense punctual degrees [1, 3]. This is due to the fact that in these
classes we can vary the speed of enumerating the structure using the relatively simple descriptions.
In fact, Kalimullin, Melnikov and Zubkov [10] showed that every countable distributive lattice can
be embedded in the punctual degrees of a rigid finitely generated structure. In contrast, Melnikov
and Ng [14] produced a structure of punctual dimension 2, where the structure has exactly two
different speeds of enumeration.

Proving that a structure does not have a dense degree structure turned out to be a much more
difficult problem. In fact no such degree structure was known until relatively recently. The first
example produced in [6] was that of a graph. However, one could argue that this example was a
pathological one specifically constructed to have such a property. Remarkably, it was later shown
that the punctual degrees of the countable dense linear ordering without endpoints is not dense
[11]. This suggests that the punctual degrees of even relatively simple relational structures can
potentially possess non-trivial properties. The aforementioned result is also surprising in that
the given structure is a very natural one which is homogeneous, and therefore we cannot encode

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 3

information in the usual way, nor can we identify “gadgets” or “components” that a computability-
theoretic proof might do.

In this paper, we continue with the systematic study of the punctual degrees of various natural
classes of structures. In particular, we study the density of the punctual degrees of equivalence
structures. We fully classify the equivalence relations that generate dense punctual degree struc-
tures, using a relatively simple condition:

Theorem 2.5. Let E be a punctual equivalence relation. The punctual degrees of E is not dense iff
there exists nice (to be defined later) functions G1, G2 such that for all y ∈ ω, either G1(y) < G2(y)
or G2(y) = ∞.

As shown in [2, 7, 5], isomorphisms between equivalence structures can be algorithmically compli-
cated; isomorphisms between certain computable equivalence structures can only be found using
a ∆0

3 oracle (folklore). Much of this complexity comes from computing the sizes of each class. In
some ways, the result above reflects this intuition. The existence of the nice functions provides
an algorithmically complex set of sizes within the equivalence structures, resulting in pathological
properties in the respective punctual degrees. However, even when the set of sizes is seemingly
simple, we may still obtain non-density. As shall be shown, having infinitely many infinite classes is
a sufficient condition for non-density of the punctual degrees of equivalence structures (recall that
the equivalence structure with only infinite classes is computably categorical).

The techniques used in this paper is a culmination of various techniques discovered thus far. In
particular, the proof strategy for non-density combines techniques from the first example of non-
density and the aforementioned result about the countable dense linear ordering with no endpoints.
We believe that the proof presented here is a nice middle ground between the two; we do not have
the pressing advantage as the isomorphism type is fixed beforehand, but also manage to avoid
the high combinatorial complexity in the case for the dense linear order. In this way, we hope
that this paper provides a clearer picture of the essence of non-density of the punctual degrees.
Furthermore, we hope the characterisation presented in this paper is a step towards meta-theorems
relating algebraic properties of structures with degree-theoretic properties of its punctual degrees.

Nevertheless the proof of the main result of this paper is still rather delicate. This is particularly
true in the case where we analyse the equivalence relations that do not have a dense punctual degree
structure. As mentioned above, the main difficulty is that even in these cases, the structure is a
natural one in which the usual encoding methods do not work. This forces the complexity of the
proof to shift towards the combinatorial aspects and analysis of the strategies.

2. Definitions and the main idea

Definition 2.1. Let E,F ⊆ ω2 be equivalence relations. We say that E ≤pr F iff there is some
bijective primitive recursive function h : ω → ω such that for any m,n ∈ ω,

(m,n) ∈ E ⇐⇒ (h(m), h(n)) ∈ F.

If we also have that F ̸≤pr E, then we write E <pr F .

We think of E,F as primitive recursive structures (ω,E) and (ω, F). Consequently, each primitive
recursive function h can be interpreted as a map between structures, written as h : E → F .
Similarly, we will also write m ∈ E to mean that m is an element of the domain of (ω,E).

4 HEER TERN KOH AND KENG MENG NG

Notation 2.2. Let E ⊆ ω2 be a punctual equivalence relation, and let m,n ∈ ω be given.

• We write m =E n iff (m,n) ∈ E.

• We use [m]E to denote the equivalence class of E containing m.

• We use #[m]sE to denote the size at stage s of [m]E. Similarly, #[m]E denotes the size of
[m]E in the limit.

Definition 2.3. Let G : ω2 → ω be a total computable function. For a natural number N we say
that G is N -nice for E if G has the following properties.

• For all y, s ∈ ω, G(y, s) ≤ G(y, s+ 1).

• For all y ∈ ω, sups G(y, s) > N .

• For all y ∈ ω, there are at least y classes of size exactly sups G(y, s) in E. This condition
must still hold even when sups G(y, s) = ∞.

To avoid making the notation heavy, we simply write G(y) to mean sups G(y, s) ∈ ω ∪ {∞}. Fur-
thermore, although the definition of ‘nice-ness’ depends on E, since we fix E before a construction,
we simply call a function N -nice. If in addition N = 0, we then say that G is nice.

Lemma 2.4. There exists an N -nice G iff there exists an N -nice G that is non-decreasing1 in y;
for all y ∈ ω, sups G(y, s) ≤ sups G(y + 1, s).

Proof. The converse is trivial. Suppose that there is some N -nice G. We split the proof non-
uniformly into two cases.

If there exists some n for which there are infinitely many y such that G(y) = n, then define F (y) = n
for all y. F is clearly a non-decreasing N -nice function.

If for each n, there are only finitely many y such that G(y) = n, then define F recursively as follows.
F (2) to be the first place where G is finite, and F (y + 1) = G(x) where x ∈ ω is the least such
that x > y and G(x) ≥ F (y). Such an x must exist as there can only be finitely many x′ for which
G(x′) < F (y). It is also evident that F as defined is a non-decreasing N -nice function. □

We present a classification for density of the punctual degrees of E as follows.

Theorem 2.5. Let E be a punctual equivalence relation. The punctual degrees of E is not dense iff
there exists nice non-decreasing (in y) functions G1, G2 such that for all y ∈ ω, either G1(y) < G2(y)
or G2(y) = ∞.

The proof of the theorem will be split into the following lemmas.

Lemma 2.6. Let E be a punctual equivalence relation with only finitely many infinite classes and
where there is at most one size which is repeated infinitely often.

• If there are no sizes repeated infinitely often and there does not exist a nice G, or

1We adopt the usual convention that for any n ∈ ω, n < ∞.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 5

• there is exactly one size N repeated infinitely often and there does not exist a N -nice G,

then the punctual degrees of E is dense.

Lemma 2.7. Let E be a punctual equivalence relation. If there exists nice non-decreasing G1, G2

such that for all y, either G1(y) < G2(y) or G2(y) = ∞, then the punctual degrees of E is not
dense.

Proof of Theorem 2.5. The converse can be obtained directly from Lemma 2.7. It remains to argue
that the forward direction follows from Lemma 2.6.

Fix some punctual equivalence relation E. First suppose that there are no nice non-decreasing
functions G1, G2 such that for all y, either G1(y) < G2(y) or G2(y) = ∞. Then we wish to apply
Lemma 2.6 to conclude that E is dense. Observe that E can only have finitely many infinite
classes, otherwise the functions G1(y) = G2(y) = ∞ for all y, would be nice functions contradicting
the assumption. Furthermore, if E has at least two different sizes repeated infinitely often, say
M1 < M2 < ∞, then G1(y) = M1 and G2(y) = M2 for all y ∈ ω would also serve as nice functions
contradicting the assumption. Thus E must have only finitely many infinite classes and at most
one size repeated infinitely often. Now consider the following two cases; E has one size N repeated
infinitely often or E has no sizes repeated infinitely often.

If E has exactly one size N repeated infinitely often, by Lemma 2.6, we would be done if we can
show that there does not exist an N -nice G. Suppose for a contradiction that there exists a N -
nice G. Applying Lemma 2.4, we may assume that G is a non-decreasing N -nice function. Then
G1(y) = N and G2(y) = G(y) gives two nice non-decreasing G1, G2 for which G1(y) = N < G2(y)
for all y, a contradiction. If on the other hand, E has no sizes repeated infinitely often, and there
exists a nice G, then it can easily be made strictly increasing by following the proof of Lemma 2.4.
Now we can define non-decreasing nice G1, G2 by letting G1(y) = G(2y) and G2(y) = G(2y + 1), a
contradiction. □

The rest of this paper will be dedicated to proving Lemma 2.6 in Section 3 and Lemma 2.7 in
Section 4.

3. Proof of Lemma 2.6

Lemma 2.6. Let E be a punctual equivalence relation with only finitely many infinite classes and
where there is at most one size which is repeated infinitely often.

• If there are no sizes repeated infinitely often and there does not exist a nice G, or

• there is exactly one size N repeated infinitely often and there does not exist a N -nice G,

then the punctual degrees of E is dense.

Let B ∼= T punctual equivalence relations be given such that B <pr T . We also assume that
B, T satisfies the premise of Lemma 2.6; B, T have only finitely many classes of infinite size and
at most one size which is repeated infinitely often. Let h : B →onto T be the primitive recursive
isomorphism which witnesses B ≤pr T and fix some listings {βe}e∈ω and {αe}e∈ω of the primitive

6 HEER TERN KOH AND KENG MENG NG

recursive functions. We construct A, an equivalence relation, with primitive recursive isomorphisms
p : B →onto A and q : A →onto T such that qp = h, while satisfying the following requirements.

Pe : βe : A → B is not a surjective isomorphism.

Qe : αe : T → A is not a surjective isomorphism.

Let N < ∞ be the size which is repeated infinitely often by B, T . To make the description uniform,
if there are no sizes which are repeated infinitely often, then we take N = 0. In addition, we may
also assume that N is the least size repeated infinitely often in B, T and that there are no classes
of smaller size in B, T . This is because there can only be finitely many classes of smaller sizes, on
which we can non-uniformly fix our definitions of p, q respectively.

3.1. Informal description. During the construction, given βe : A → B, we will monitor if for
any a, a′ ∈ A, βe(a) =B βe(a

′) iff a =A a′. If ever we find some a, a′ such that this does not hold,
then βe cannot possibly be an isomorphism and we need not act anymore for this requirement. We
also monitor a similar property for αe : T → A; for any t, t′ ∈ T , αe(t) =A αe(t

′) iff t =T t′. These
assumptions will be implicit throughout the rest of Section 3.

3.1.1. Main idea. Each requirement will attempt to define some N -nice G. In doing so, each
requirement can only be attended to for a finite amount of time, otherwise we would succeed in
defining the N -nice function, contradicting the assumption of Lemma 2.6.

Since each requirement will be attended to for only a finite amount of time and essentially do not
interact, we suppress the indices until the formal construction in Section 3.2. While attempting to
satisfy some P -requirement, we will have A ‘copy’ the structure T by making q−1 look temporarily
primitive recursive. Then we can attempt to diagonalise against β : A →onto B by defining some
φ : T →onto B based on β. Evidently, such a φ cannot be successfully defined or else B ≡pr T .
Thus, either β is observed to fail in finite time or it has to be temporarily non-surjective. Whenever
we find some potential witness for the non-surjectivity of β, we will abandon the current definition
of φ, and instead extend the definition of the N -nice function. While waiting for β to ‘recover’ by
providing a preimage to the potential witness, we attend to other requirements in the meantime. The
idea is that if β attempts to ‘recover’ from non-surjectivity infinitely often, then we will succeed in
defining the N -nice function on all inputs y ∈ ω. The Q requirements will be satisfied in a similar
way; instead of making q−1 look primitive recursive, we make p−1 look primitive recursive and
attempt to define φ : T →onto B based on α : T →onto A.

3.1.2. Strategy for P . In order to prepare for the strategy for P , we start by letting A ‘copy’ T ;
ensure that q−1(t) ↓ for each t currently in T . Once we have that As

∼= Ts, we may begin the strategy
for P . While attending to P , we continue ensuring that q−1(t) ↓ for each newly enumerated t as
follows.

• If there exists some t′ ∈ Ts such that t′ =T t and q−1(t′) ↓ = a′, then enumerate an element
a into As, and define a =A a′, q(a) = t.

• If there is no such t′ ∈ Ts where t′ =T t and q−1(t′) ↓, then enumerate an element a into
As where a ̸=A x for any x ∈ As and let q(a) = t.

In addition, we may then define p(b) = q−1h(b), ensuring that qp = h and that p is kept primitive
recursive.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 7

B

A

T •
t

•
t1

•
t2

• • •

• • • q−1
:

p :

β :

Figure 1. β-locus

In order to satisfy P , we attempt to define φ : T →onto B based on β. More specifically, for each
t ∈ T , φ(t) =B β(pβ)kq−1(t) for some k ∈ Z. Obviously we cannot possibly succeed in doing so as
B <pr T . Our attempt at defining φ fails when we find some s ∈ ω and t ∈ T such that #[t]T stays
strictly larger than #[φ(t)]sB for longer than φ is allowed to wait. When this is discovered, we will
abandon this definition of φ and instead extend the definition of G. For the rest of this discussion,
we fix y ≥ 2 such that G(x) has been defined for each x < y.

We first address how we will keep φ primitive recursive and injective. Given some t ∈ Ts which is
not yet in the domain of φ, if there is some t′ ∈ Ts such that φ(t′) ↓ and t =T t′, then map φ(t) to
some element in [φ(t′)]B not yet in rng(φ). If such an element does not exist, that is, it currently
looks like #[t′]sT > #[φ(t′)]sB , then we abandon this attempt at defining φ. If there is instead no
t′ ∈ Ts for which t′ =T t and φ(t′) ↓, then search for the least k ≥ 0 for which b := β(pβ)kq−1(t) is
such that b ̸=B b′ for any b′ currently in the range of φ. Once such a b is found, then let φ(t) = b.
This ensures that φ does not map two distinct equivalence classes in T to the same one in B. We
now provide a brief explanation as to why such a k can always be found quickly. (For the formal
proof of this, we refer the reader to Lemma 3.6.)

Definition 3.1. For t, t′ ∈ T , let t ∼ t′ if there exists some k ∈ Z such that q−1(t′) =A (pβ)kq−1(t).

The relation ∼ as defined above is clearly an equivalence relation on the elements in rng(q). We
shall refer to the equivalence class [t]∼ as the β-locus of t. In addition, if there is some k > 0 such
that q−1(t) =A (pβ)kq−1(t), then we say that the β-locus of t closes.

Given some t /∈ dom(φ), and t ̸=T t′ for any t′ currently in dom(φ), for each 0 ≤ i ≤ |Bs|+1, check
if β(pβ)iq−1(t) =B b for some b currently in the range of φ. If the β-locus of t has yet to close,
then there must be an image available for φ(t) as β(pβ)|Bs|+1q−1(t) /∈ Bs and thus not in the range
of φ. On the other hand, if the β-locus has already closed, then the number of T -classes in [t]∼
must be the same as the number of B-classes in {βq−1(t′) | t′ ∈ [t]∼} as q−1 and β must currently
be injective on classes (see Fig. 1 for an illustration). Provided that φ is currently well-defined on
classes, it follows that there is at least one B-class in {βq−1(t′) | t′ ∈ [t]∼} that is not yet in rng(φ)
(see Lemma 3.6 for the details).

The procedure described above guarantees that φ is primitive recursive and injective on both
elements and classes provided that we never abandon its definition (recall that this means that for
all s and for all t ∈ Ts, #[t]

s
T ≤ #[φ(t)]sT). If β is surjective, note that φ as defined above will also

8 HEER TERN KOH AND KENG MENG NG

be surjective. However, since surjectivity is a Π0
2 property, we will only discover whether or not β

is surjective in the limit. Thus, we need to actively attempt to make φ surjective regardless of the
current behaviour of β. Recall that the plan is to successfully define φ, or G(y), or to discover that
β is not an isomorphism. More specifically, in the event that we are unable to keep φ primitive
recursive and injective or we find that φ cannot currently be made surjective, we need to progress
the strategy for P by finding at least y many T -classes of sizes > N .

Let b ∈ B be an element that is currently not in the range of φ. If the β-locus of h(b) closes, then
b must enter rng(φ) shortly after. Although we do not require b to enter the range of φ quickly to
satisfy surjectivity requirements for φ, it is important that it does so here. This is because we have
not made any progress in defining G(y) and cannot simply wait without any guarantee that β will
be surjective. We may thus assume that the β-locus of h(b) does not close. Further wait for some
stage s such that the following holds.

• There are at least y many T -classes in [h(b)]∼.

• #[b]sB ≥ N .

Since the β-locus is assumed not to close and N is assumed to be the smallest class size, such a
stage s is guaranteed to exist. Once such a stage is reached, we may then attempt to place b in
rng(φ) as follows.

Case 1: If there does not currently exist any t′ such that φ(t′) =B b, then pick some t ∼ h(b) such
that t ̸=T t′ for any t′ currently in dom(φ) and define φ(t) = b.

Case 2: If there currently exists some t′ such that φ(t′) =B b, then wait for a stage s′ such that

#[t′]s
′

T ≥ N . Once again, since N is assumed to be the smallest class size in T , such a stage is

guaranteed to exist. At such a stage, b must have entered rng(φ) unless #[b]s
′

B > #[t′]s
′

T ≥ N .

If this happens, we cannot wait for some later stage s′′ where #[t′]s
′′

T ≥ #[b]s
′

B as there is no
guarantee that such a stage will exist. Instead, we can now define G(y) = #[h(b)]T > N
and abandon the definition of φ.

Observe that in both cases, when we abandon the definition of φ, we find some t where there are at
least y many T -classes in [t]∼ and #[t]T > N . Furthermore, if we ever find some T -class such that
#[t]sT > #[φ(t)]sB , it must be that φ(t) =B β(pβ)kq−1(t) for some k < 0 and thus must have been
defined via Case 1 above. Recall that when defining φ for injectivity requirements, we always have
that k ≥ 0. That is to say, if we ever have to abandon the definition of φ, we are able to find some
β-locus which contains at least y many T -classes with at least one of them, say t, having size > N
and can thus define G(y) = #[t]T . Once we have defined G(y) = #[t]T , wait for the β-locus of t
to close. Such a wait may never terminate, but this implies that β cannot be surjective, otherwise
there will be infinitely many T -classes in [t]∼ all of the same size > N , which is impossible. Thus,
we either wait forever and satisfy P , or there is some finite stage at which the β-locus closes. While
waiting, we will attend to other requirements, and only return to this requirement when the β-locus
of t closes.

Once the β-locus of t closes, provided that β is an isomorphism, all T -classes within [t]∼ will
eventually have the same size. That is, either G(y) will be correct or β fails to be an isomorphism.
We then begin a new attempt at defining φ as described thus far. In summary, under the assumption
that β is a surjective isomorphism, the strategy for the P -requirement has the following outcomes.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 9

• Every version of φ that we begin must be abandoned, otherwise φ : T →onto B is a primitive
recursive isomorphism (see Lemma 3.6).

• We can only finitely often abandon and begin defining some version of φ, otherwise G(x)
is successfully defined (see Lemma 3.8).

• If we wait forever for some β-locus to close, then β cannot be surjective, otherwise there are
infinitely many T -classes of the same size > N (see Lemma 3.9). Thus, P must be satisfied
without being returned to after some finite stage.

3.1.3. Strategy for Q. The strategy to satisfy Q will be rather similar to the strategy for P . We
summarise the ideas needed for the strategy to work.

• A ‘fast’ map from T to A, provided previously via q−1.

• A ‘fast’ map from A to A, provided previously via pβ.

• A ‘fast’ map from A to B, provided previously via β.

By taking the compositions of the maps above, we are able to define φ : T → B. When attempting
to satisfy Q, observe that we already have ‘fast’ maps α : T → A and αq : A → A. The final
ingredient needed is to ensure that p−1 : A → B is ‘fast’, at least for the stages during which we
are attending to Q. This matches the intuitive idea that in making A resemble B, we can use the
assumption that B <pr T to obtain a diagonalisation against α : T → A.

To make A ‘copy’ B, we need to slow down the enumeration of A while keeping it primitive recursive.
Stop enumerating any new elements into A unless some element b is enumerated into B satisfying
one of the following.

• If there does not exist a′ currently in A such that q(a′) =T h(b), then enumerate a new
element a into A and let p(b) = a and q(a) = h(b).

• If there is some a′ currently in A such that q(a′) =T h(b) but #[a′]A < #[b]B , then let
#[a′]sA = #[b]sB for stages s where Q is being attended to.

In other words, we enumerate new elements into A only for the sake of maintaining p : B → A.
As long as the definition of p is not in danger of failing, we never enumerate elements into A. To
see that A remains primitive recursive, observe that at each stage, there can only be primitive
recursively many elements in T but not in B. Therefore, after some primitive recursively bounded
number of enumerations of elements into B, we must also enumerate some new element into A.

Once p−1(a) ↓ for every a currently in A, then we may begin our attempt to define φ : T → B in
a similar way as before; for each t ∈ T , φ(t) =B p−1(αq)kα(t) for some k ∈ Z. Just as described
previously, as long as α is primitive recursive and injective, we will be able to maintain φ to also be
primitive recursive and injective. Furthermore, each potential witness of non-surjectivity of φ (and
hence α), will be paired with an extension of the definition of G. Either some true witness is found,
in which case α cannot be surjective, or we succeed in defining G if Q is attended to infinitely often.

3.2. Formal construction. As discussed in Sections 3.1.2, 3.1.3, the strategies for P and Q are
essentially the same. To simplify the construction, we relabel the requirements as Re, where R2e =
Pe and R2e+1 = Qe. The requirements are then arranged in order of priority as R0, R1, R2, For
the sake of each requirement Re, we also make the following definitions.

10 HEER TERN KOH AND KENG MENG NG

Waiting Being attended to Paused

Figure 2. Transitions between states

Definition 3.2. For each e ∈ ω, define the following.

• fe =

{
pβn if e = 2n

αnq if e = 2n+ 1

• re =

{
q−1 if e = 2n

αn if e = 2n+ 1

• de =

{
βn if e = 2n

p−1 if e = 2n+ 1

The idea here is that while we are attending to Re, the maps with index e will behave primitive
recursively.

For the sake of each Re, we will attempt to define either φe : T → B or Ge := lims Ge,s a N -
nice function. In the informal description, when attempting to define φe : T → B, we utilise an
equivalence relation ∼. Here we provide a more general definition to be used later in the formal
construction.

Definition 3.3. Let fe : A → A and re : T → A be isomorphisms. Then define a relation ∼e on T
such that t ∼e t

′ if there exists some k ∈ Z such that fk
e re(t) =A re(t

′).

It is clear that the relation is an equivalence relation and we call each equivalence class [t]∼e
the

fe-locus of t. In addition, if there is a positive k such that fk
e re(t) =A re(t), then we say the fe-locus

of t has closed.

Throughout the construction, each Re will always be in one of the following states.

(1) Waiting.

(2) Being attended to.

(3) Paused.

(4) Satisfied.

At any given stage, only one requirement will be in state being attended to. Whenever some
requirement enters the state being attended to, all lower priority requirements not yet in the satisfied
state goes back to the waiting state. The state of a requirement (which has yet to enter the satisfied
state) possibly goes through the changes as illustrated in Fig. 2. For each requirement Re, we
maintain a marker ye,s defined stage-wise in order to track the inputs on which Ge,s is already
defined. While a requirement Re is being attended to, we attempt to define φe : T → B. A

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 11

requirement that is being attended to becomes paused at some stage s if there exists some b ∈ Bs

such that all of the following holds. (We shall refer to the conjunction of all of the following
properties as (∗∗).)

• b /∈ rng(φe).

• There is some t ∈ Ts such that t ∼e h(b) and #[t]sT > N .

• There are at least ye,s distinct T -classes in [h(b)]∼e
.

If such an element exists, we denote it as be. For a paused requirement, we say that it is ready at
stage s if the fe-locus of h(b

e) has closed.

Throughout the construction, we also assume that the following actions automatically take place.

A1. If we find a, a′ ∈ As such that a ̸=A a′ but βe(a) =B βe(a
′), or a =A a′ but βe(a) ̸=B βe(a

′),
then we change the state of R2e to satisfied.

A2. If we find t, t′ ∈ Ts such that t ̸=T t′ but αe(t) =A αe(t
′), or t =T t′ but αe(t) ̸=A αe(t

′),
then we change the state of R2e+1 to satisfied.

A3. Once we have defined φe(t) for some t ∈ Ts, for any other t′ entering T in subsequent stages
such that t′ =T t, map φe(t

′) to some element in [φe(t)]B not yet in the range of φe. If we
find that no such suitable element in [φe(t)]B exists, then abandon this definition of φe and
change the state of Re to paused. Furthermore, let be = φe(t), and resume the requirement
when the fe-locus of h(b

e) has closed.

A4. Whenever some element b enters Bs, define p(b) = q−1h(b) if it currently exists in A.
Otherwise, enumerate a new element a into As and define p(b) = a and q(a) = h(b).

We are now ready to present the formal construction.

Stage 0: For each e ∈ ω define ye,0 = 2 and let Ge,0(n) = 0 for all n ∈ ω.

Stage s > 0: Search for the least e such that one of the following holds.

(1) Re is currently paused but ready to be resumed.

(2) Re is waiting.

(3) Re is being attended to.

In each of the above cases, do the following.

Case 1: Change all lower priority requirements not in the satisfied state to the waiting
state. For each e′ > e, let Ge′,s(n) = 0 for all n ∈ ω and also let ye′,s = 2. Recall that
if a requirement was paused and becomes ready to resume, then the fe-locus of h(b

e)
has closed. Restart our attempt at defining φe by letting φe(t) = dere(t) for each t
such that the fe-locus of t is closed. In particular, we now have that be ∈ rng(φe). For
the remaining t ∈ Ts, we refer to Case 3.

Case 2: Change the state of Re to being attended to and all lower priority requirements
not in the satisfied state to the waiting state. Now refer to Case 3 for the actions
required when Re is being attended to.

12 HEER TERN KOH AND KENG MENG NG

Case 3: If Re is a P -requirement (e = 2n for some n ∈ ω), then let A ‘copy’ T . That is,
for each t ∈ Ts, if q

−1(t) ↑, enumerate an element a into As and let q(a) = t. If Re

is a Q requirement (e = 2n + 1 for some n ∈ ω), then wait for B to ‘catch up’ with
A. As long as there exists some a ∈ As such that p−1(a) ↑, we do nothing (except the
automatic actions A1-A4) and proceed to the next stage.

We may now assume that the functions re : T → A, fe : A → A and de : A → B are all
temporarily primitive recursive. While Re is being attended to, we keep φe primitive
recursive and attempt to make it surjective. If the current stage is even, proceed to
Case 3i, and proceed to Case 3ii otherwise.

Case 3i: During even stages s, let t ∈ Ts be the lowest indexed element not currently in
the domain of φe. We may assume that there are currently no other t′ ∈ Ts such
that φe(t

′) ↓ and t′ =T t, otherwise Action A3 would have defined φe(t) or paused Re.
Search for the first k ≥ 0 such that def

k
e re(t) ̸=B b for any b currently in rng(φe).

Once found, define φe(t) to be the smallest indexed element in [def
k
e re(t)]B . We check

in Lemma 3.6 that such a class can always be found in primitive recursive time.

Case 3ii: During odd stages s, we attempt to make φe surjective. Let b ∈ Bs be the lowest
indexed element satisfying all of the following. (We shall refer to the conjunction of
all of the following properties as (∗).)

• b is not currently in the range of φe.

• #[b]sB ≥ N .

• There are at least ye,s many distinct T -classes in the fe-locus of h(b).

If there is also some t ∈ dom(φe) such that φe(t) =B b, then we wait for some stage

s′ ≥ s where either #[b]s
′

B > N or #[t]s
′

T ≥ N . At such a stage, if the former holds, then
observe that b satisfies the conditions (∗∗), and can thus pause the requirement, let

be = b and proceed to attend to other requirements. If on the other hand #[b]s
′

B = N ,

and #[t]s
′

T ≥ N , then b must have been placed in rng(φe) via Action A3.

At any stage s, if Re is to be paused, then abandon the current definition of φe and define
the following. ye,s+1 = ye,s + 1 and Ge,s′(ye,s) for each s′ > s to be #[h(be)]s

′

T . (Recall
that be is defined whenever Re becomes paused.) When proceeding to the next stage, let
Ge′,s+1 = Ge′,s and ye′,s+1 = ye′,s for any e′ unless otherwise stated in one of the above
actions.

3.3. Verification.

Lemma 3.4. q : A → T is a primitive recursive isomorphism and qp = h.

Proof. We proceed by induction on the elements in their order of enumeration into A. The base
case is trivial. Suppose recursively that q is a primitive recursive isomorphism on the first n many
elements in A. When the n+1-th element, a, is enumerated, we consider the following possibilities.

• A is currently ‘copying’ T . Recall from Section 3.1.2 that when this is happening, for each
t currently in T , if q−1(t) is undefined, we enumerate some element into A to serve as the q

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 13

preimage for t. That is, when a is enumerated, there must already exist some q image for
a. Furthermore, such an image is chosen carefully to ensure that q is an isomorphism.

• A is currently ‘copying’ B. We refer the reader to Section 3.1.3. During such stages,
elements will only be enumerated into A if some element b is enumerated into B and
q−1h(b) is currently undefined. Then depending on whether there are currently a′ such
that q(a′) =T h(b), the new element a will be enumerated into either an existing A-class or
a new A-class to ensure that q is a primitive recursive isomorphism.

Observe that the above actions also enusre that qp = h. □

A similar analysis will allow us to obtain that p is also primitive recursive. Applying this fact with
the lemma above gives us the following.

Corollary 3.5. p : B →onto A and q : A →onto T are primitive recursive surjective isomorphisms.

To prove that each Re is satisfied, we follow a standard priority argument. The idea is as follows.
First, we prove that each Re can only be attended to for finitely many stages (see Lemmas 3.6 and
3.8). Next, we prove that if we never again attend to Re, then it must be satisfied (Lemma 3.9).

Lemma 3.6. If Re is attended to for cofinitely many stages, then φe : T → B is a surjective
primitive recursive isomorphism.

Proof. By assumption that Re is attended to for cofinitely many stages, there is some version of φe

that is never abandoned. We prove that this attempt at defining φe produces a primitive recursive
surjective isomorphism. Given some element t ∈ T , φ(t) could have been defined in one of the
following ways. Suppose inductively that φe currently satisfies the property that φe(x) =B φe(x

′)
iff x =T x′ and that φe is currently injective.

(1) If φe(t) is defined via Action A3, then there must be some t′ =T t such that φe(t
′) has

already been defined. Furthermore, there is currently some element in [φe(t
′)]B that is not

yet in rng(φe) and can be chosen to serve as the φe image for t. In other words, φe still
satisfies the desired property and is both primitive recursive and injective.

(2) If φe(t) is defined via Case 3i of the formal construction, then recall that we search for some
k > 0 such that def

k
e re(t) ̸=B b for any b currently in rng(φe). This ensures that φe still

satisfies the desired properties. It remains to check that this process is primitive recursive.
Let n be the current number of elements in rng(φe). If the fe-locus of t does not close;
f i
ere(t) ̸=T re(t) for each i < n + 1. Since fe is assumed to be an isomorphism, then it
follows that this gives n + 1 distinct A-classes, [re(t)]A, [fere(t)]A, . . . , [f

n
e re(t)]A. As de if

also an isomorphism, it follows that [dere(t)]B , [defere(t)]B , . . . , [def
n
e re(t)]B are all distinct

B-classes. Therefore, at least one of these classes is not currently in rng(φe) and can thus
act as a φe image for t.

Now suppose that the fe-locus of t closes; there exists some i < n+1 such that f i
ere(t) =T

re(t). We may further assume that such an i is the least at which this occurs. Similar to
before, this implies that [dere(t)]B , [defere(t)]B , . . . , [def

i
ere(t)]B are all distinct B-classes.

Suppose for a contradiction that for each j ≤ i, there is some tj ∈ dom(φe) such that
φe(tj) =B def

j
e re(t). Now consider the elements b = dere(t) and bj = dere(tj) for each

14 HEER TERN KOH AND KENG MENG NG

j ≤ i. Since each tj ∼e t, and the classes [dere(tj)]B are all distinct, then there must be
some j such that dere(tj) =B dere(t). Since φe(t) is not being defined via Action A3, it
implies that t ̸=T tj ; one of de or re cannot be an isomorphism, a contradiction. Therefore,
a suitable φ image for t can be found in primitive recursive time via Case 3i. Furthermore,
it is clear that the way φe(t) is defined ensures that it is still an isomorphism.

(3) Finally, we check the case when φe(t) is defined via Case 3ii of the formal construction. In
this case we need not worry about the primitive recursiveness of φe as we are only searching
for a suitable φe preimage for some element b. Recall also that we will define φe(t) = b via
Case 3ii only if such a b satisfies the following conditions.

• b ̸=B b′ for any b′ currently in rng(φe).

• The current size of [b]B is at least N .

• There are at least sufficiently many T -classes in the fe-locus of h(b).

However, by the assumption that this version of φe is never abandoned, we can then obtain
that #[b]B = N . Furthermore, the T -class that is chosen to map to [b]B will also never have
size > N otherwise we would have abandoned this definition of φe.

Therefore, if Re is attended to for cofinitely many stages, then φe : T → B is a surjective primitive
recursive isomorphism. □

Since B <pr T , by applying the lemma above, it must be that every attempt at defining φe must be
abandoned at some finite stage. We now show that Re also cannot begin infinitely many attempts
at defining φe. Before we state and prove the lemma, we make the following observation.

Fact 3.7. Let f : A → A be a primitive recursive isomorphism (possibly non-surjective), then up
to a primitive recursive delay d, we have the following.

• At each stage s, for each a ∈ As, #[a]
d(s)
A ≤ #[f(a)]sA.

• If there exists k > 0 such that fk(a) =A a, then for each i < k, and for each s > k,

#[f i(a)]
d(s)
A = #[a]sA.

Lemma 3.8. If Re swaps infinitely often between being paused and being attended to, then Ge is a
N -nice function.

Proof. We may further assume that e is the least index for which Re swaps between being paused
and being attended to infinitely often. That is to say, past some finite stage, Re never enters the
waiting state. Fix such a stage s, and let the stages s0 < s1 < s2 < . . . be the infinitely many
stages (after s) at which Re enters the paused state. Whenever Re enters the paused state at stage
si, we act as described in Case 3 of the formal construction.

• Define ye,si+1 = ye,si + 1.

• For each s′ > si, define Ge,s′(ye,si) to be #[h(be)]s
′

T . (Recall that be is always defined
whenever Re becomes paused.)

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 15

That is, Ge(y) = lims Ge,s(y) is defined for all values of y ≥ 2. Furthermore, as T is a primitive
recursive presentation of E, it follows from the second point that Ge is a l.m.f.. It then remains to
check that E has at least y classes of size Ge(y) for each y ≥ 2. To do so, we analyse the conditions
for Re to become paused. Recall that in order for a requirement to become paused, one of the
following must happen.

(1) There exists some t ∈ Ts such that #[t]sT > #[φe(t)]
s
B .

(2) There exists some b ∈ Bs such that (∗∗) holds.

We consider the two cases below.

Case 1: If t ∈ Ts is such that #[t]sT > #[φe(t)]
s
B , then we claim that φe(t) =B def

k
e re(t) for some

k < 0, and that the fe-locus of t has not closed. If the fe-locus has closed, then we will
be able to find some k′ > 0 such that φe(t) =B def

k′

e re(t) and since de, fe and re are all
primitive recursive isomorphisms, it cannot be that #[t]sT > #[φe(t)]

s
B (recall Fact 3.7).

In order for φe(t) to be in the same B-class as def
k
e re(t) for some k < 0, it must be that

φe(t) was defined via Case 3ii of the formal construction. In other words, the b chosen to be
the φe image of t must satisfy (∗); in particular, there are already at least N many elements
in [b]B and there are at least ye,s many distinct T -classes in [h(b)]∼e

. Together with the
case assumption, this implies that be = φe(t) satisfies the conditions (∗∗). We may thus
assume that we are in Case 2.

Case 2: In order for de, fe, re to all be isomorphisms, it must be that all distinct E-classes in
[h(b)]∼e

has the same number of elements. Since (∗∗) implies that there is at least one
class in [h(b)]∼e that has size > N , then all classes in [h(b)]∼e should also have sizes > N
eventually. In fact, all classes in [h(b)]∼e should have the same size eventually. Furthermore,
when the requirement is paused at stage s, there are at least ye,s many distinct T -classes in
[h(b)]∼e

. Therefore, there will be at least ye,s many distinct T -classes with sizes Ge(ye,s).

Thus, as long as de, fe, re are all isomorphisms, and Re is paused and attended to infinitely often,
then we must succeed in defining an N -nice Ge. □

Recall that a requirement Re only ever enters the waiting state if some higher priority requirement
leaves the paused state. By the assumptions (premise of Lemma 2.6) that B <pr T and no nice
G exists, this allows us to conclude that each requirement Re is paused for cofinitely many stages.
Finally, we show that if this happens, then each Re is satisfied.

Lemma 3.9. If Re is paused for cofinitely many stages, then Re is satisfied.

Proof. Fix some stage s such that for all s′ > s, Re is in the paused state at stage s′. Recall that
in order for a requirement to become paused, one of two things must happen.

(i) There exists some t ∈ Ts such that #[t]sT > #[φe(t)]
s
B .

(ii) There exists some b ∈ Bs such that (∗∗) holds.

If (ii) holds, then there must exist some t ∼e h(b) such that #[t]T currently has size > N . We now
show that this must also be true if (i) holds. Suppose that (i) holds and fix the t which witnesses
(i). Recall that for each t ∈ T , φe(t) =B def

k
e re(t) for some k ∈ Z. Since de, fe, re are all defined

16 HEER TERN KOH AND KENG MENG NG

primitive recursively during the stages s at which Re is being attended to, then it cannot be that
#[t]sT > #[def

k
e re(t)]

s
B for any k ≥ 0. In other words, it must be that φe(t) =B def

k
e re(t) for

some k < 0. Recall however that this only happens when we are attempting to make φe surjective
and so b = def

k
e re(t) satisfies (∗) (see Case 3ii of the formal construction). We thus obtain that

#[t]sT > #[b]sB ≥ N and thus b = def
k
e re(t) satisfies (∗∗). Once this is discovered during the

construction, be must have been defined to be b.

In order for Re to become ready to be resumed, the fe-locus of h(b
e) must have closed; thus we may

assume that the fe-locus of h(b
e) never closes. That is, for each k ≥ 0, fk

e reh(b
e) ̸=A reh(b

e). And
so, each k ≥ 0 gives a distinct T -class which must each contain #[h(be)]T > N elements provided
that re and fe are isomorphisms. But T has no size > N which is repeated infinitely often, thus
either re or fe cannot be isomorphisms. Therefore Re is satisfied as either βe/2 (if e is even) or
α(e−1)/2 (if e is odd) fails as an isomorphism. □

4. Proof of Lemma 2.7

Recall that Lemma 2.6 allows us to obtain the forward implication of the main theorem. It thus
remains to prove the converse which we restate below.

Lemma 2.7. Let E be an equivalence relation. If there exists nice non-decreasing G1, G2 such that
for all y, either G1(y) < G2(y) or G2(y) = ∞, then the punctual degrees of E is not dense.

Let E be some equivalence relation such that there are nice non-decreasing functions G1, G2 which
satisfies the premise. Also fix some effective listing {Ai}i∈ω of primitive recursive equivalence
relations, and {pj}j∈ω, {qk}k∈ω, {φe}e∈ω primitive recursive functions. We aim to construct B, T
primitive recursive equivalence relations isomorphic to E, and a primitive recursive isomorphism
h : B →onto T , satisfying the following requirements.

R⟨i,j,k⟩ : If pj : B → Ai and qk : Ai → T are primitive recursive isomorphisms,

then β⟨i,j,k⟩ : Ai → B or α⟨i,j,k⟩ : T → Ai is also a primitive recursive isomorphism.

Qe :φe : T → B is not a primitive recursive isomorphism.

As is the usual convention, we replace the indices i, j, k with a single e by applying the pairing
function. We shall thus refer to R⟨i,j,k⟩, Ai, pj , qk simply as Re, Ae, pe and qe subsequently.

In contrast to the proof in the previous section, instead of simply ‘copying’ either the top or
bottom structure, we are now responsible for constructing structures B, T which are of the correct
isomorphism type. We shall do so by ‘copying’ some punctual presentation of E. This process will
be assumed to take place automatically while the construction happens.

4.1. Padding. Fix some primitive recursive presentation of E and let the distinct classes of E be
denoted by [e0]E , [e1]E , We aim to construct T also with distinct classes [t0]T , [t1]T , We
split T into two parts, the classes with even indices and the classes with odd indices. Evidently, we
cannot copy E exactly. Some level of control over the classes and their sizes should be retained by
us in order to satisfy the requirements Re and Qe. Thus, we will use the even indexed classes to
satisfy the requirements while using the odd indexed classes to ensure that T ∼= E.

In the construction, each class will have a tag. In some sense, the tag will dictate the size of the
class. However, the classes will not strictly follow the size of its tag stagewise, as we want to have

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 17

the freedom to temporarily stop a class from increasing its size. Instead, we shall ensure that the
size of the class in its limit is equal to the size of the tag in the limit. Under this assumption, we
define a function f from the classes of T to the classes of E with a stagewise approximation fs
based on the tags of the classes. The details are as follows.

At each stage s, define fs([ti]T) in order of the index i.

• If i is even, let fs([ti]T) = [ej]E where j is the least index such that j ≥ i, #[ej]
s
E is currently

equal to the tag of [ti]T , and [ej]E ̸= fs([ti′]T) for any i′ < i. If no such j currently exists,
then we let fs([ti]T) ↑.

• If i is odd, let fs([ti]T) = fs−1([ti]T) if fs−1([ti]T) ↓ and fs−1([ti]T) ̸= fs([ti′]T) for any
i′ < i and i′ even. Otherwise, let fs([ti]T) = [ej]E where j is the least index satisfying all
of the following.

– [ej]E ̸= fs−1([ti′]T) for any odd i′.

– [ej]E ̸= fs−1([ti′]T) for any even i′ < i.

– #[ej]
s
E is at least as large as the current tag of [ti]T .

If no such j exists, let fs([ti]T) ↑.

Note that if i is odd, then fs([ti]T) can only be ‘displaced’ by fs([t2n]T) for some 2n < i. In order to
ensure that lims fs([ti]T) ↓ for all odd i, during stage s of the construction, as long as there is some
i odd for which fs([ti]T) ↑, we do not define fs([ti′]T) for any newly enumerated classes with odd
index i′. The idea here is that provided that G2(y) < ∞ for all y, then fs([t2i]T) eventually stabilises
for each i. Since the odd indexed classes can only be ‘displaced’ by lower indexed even classes, then
it follows that fs([t2i+1]T) also stabilises. Therefore, lims fs exist and is an isomorphism from T to
E (we prove this formally in Lemma 4.1).

Applying the procedure above, we will produce a presentation of E while maintaining some control
over the sizes of the even indexed classes via the functions G1, G2, provided that G2(y) is finite for
all y. If we instead have that G2(y) = ∞ for some (and hence cofinitely many) y, then we simply use
the odd indexed classes to copy the punctual presentation of E and take G∗

1(x) = G∗
2(x) = G2(y)

for all x as the nice functions. Observe that T as constructed would then consist of infinitely many
infinite classes (in all the even indexed classes) joined with E. But since G2(y) = ∞ for some y ∈ ω
and G2 is nice and non-decreasing, then E must have infinitely many infinite classes. Thus the
presentation of T we produce is in fact still isomorphic to E. With this in mind, we fix the nice
functions G1 and G2 and proceed with the informal description.

4.2. Informal description. The idea for the local strategy would be to start with enumerating a
free element (t ∈ T without a preimage under h : B → T) and wait for φ(t) ↓ for each φ. Intuitively,
this ensures that there is a ‘shift’ in φ, more specifically, φ ̸= h−1. Using this fact, we attempt to
make φ non-surjective by monitoring whether h−1(t) ever enters the range of φ. If it never does so,
then we succeed in satisfying some Q requirement. If it instead enters rng(φ) at some finite stage,
then we obtain a diagonalisation by increasing the size of [φ−1h−1(t)]T while keeping [h−1(t)]B
temporarily at its current size. Then φ cannot possibly be a primitive recursive isomorphism if we
are able to maintain #[h−1(t)]B < #[φ−1h−1(t)]T for as long as we like. The main tension would
thus be to keep β : A → B and α : T → A primitive recursive while retaining the ability to increase

18 HEER TERN KOH AND KENG MENG NG

h−1(t∗)

t∗

•

•

•

•

•

•

•

•

• •B

A

T

Open β-block

h−1(t∗)

t∗

•

•

•

•

•

•

•

•

•B

A

T

Closed β-block

β :

p :

q :

Figure 3. The β-block

the size of [φ−1h−1(t)]T when required. To satisfy the requirements, we will construct infinitely
many gadgets, one at a time, where each gadget satisfies finitely many R and Q requirements.

4.2.1. Strategy for R. In order to satisfy R, we need only succeed in defining either β : A → B or
α : T → A, which we shall refer to as the Π0

2 and Σ0
2 outcome respectively. A single requirement R

will have two lists of parameters given by lβ and lα (to be explained later). For now, we can think
of lβ and lα as dictating the delay β and α are allowed before they have to be defined on newly
enumerated elements in their respective structures. Each gadget will be started by enumerating a
free class [t∗]T into T without enumerating its h preimage into B. The idea for the R strategy is
to ‘guess’ whether q−1(t∗) shows up quickly in A. If q−1(t∗) is fast relative to lα, then we satisfy
R via the Σ0

2 outcome. If q−1(t∗) is slow relative to lα, then we will satisfy R via the Π0
2 outcome.

Once we have decided which outcome will be used to satisfy R, we enumerate h−1(t∗) into B and
say that this gadget is prepared.

The Π0
2 strategy : If q−1(t∗) is ‘slow’, that is, it is not enumerated into A within the delay allowed by

lα, then we satisfy R via defining β. More specifically, once the time given by lα runs out, we may
then enumerate h−1(t∗) into B and define βq−1(t∗) = h−1(t∗). It follows that β is both primitive
recursive and surjective on this gadget as it consists only of t∗ and its h preimage.

The Σ0
2 strategy : If q−1(t∗) is ‘fast’, that is, it is enumerated into A before the time given by lα

runs out, then we are able to define α(t∗) = q−1(t∗). Even though we are satisfying R via defining
α, since the Π0

2 outcome is to the left, then we must keep β defined (but possibly non-surjective)
while attempting to define α. Thus, once q−1(t∗) is enumerated into A, we have to enumerate some
‘new’ class [b]B into B, for which h(b) ̸=T t∗, to serve as the β image for q−1(t∗). Furthermore, in
order to keep β primitive recursive and injective, whenever q−1(t) ↓ for some t in this gadget we
must enumerate some appropriate element b to serve as the β image for q−1(t). That is, we may be
required to enumerate new classes into B to keep β primitive recursive and injective. On the new
elements within these new classes, we then define α(t) = ph−1(t). Since none of these elements are
enumerated without a h preimage, then α is guaranteed to be primitive recursive. To ensure that
α is an isomorphism, some care is required in ensuring that α is injective, but we leave the details
to Section 4.2.3.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 19

Once we enumerate h−1(t∗) (the specifics of when we decide to do so can be found in Sections 4.2.3
and 4.2.4), then we say that the gadget is prepared. Assuming that when this happens, and we have
chosen the Σ0

2 outcome for this R requirement, then there are two further possibilities as follows.

(1) We never again visit the Π0
2 outcome of this R requirement. In this case, the β-block

remains open forever (see Fig. 3), then β is not surjective, as h−1(t∗) /∈ rng(β). In this
case, R is instead satisfied by successfully defining α (to be explained in more detail later).

(2) At some later stage, we again visit the Π0
2 outcome for R. Then, we make β surjective on

this gadget by closing the β-block as illustrated in Fig. 3. It becomes clear that β is now
surjective on this gadget, but the trade-off is that all classes within the β-block must now
be kept at the same size (up to some primitive recursive delay) as [t∗]T for the sake of β.
In other words, we do not want to close the β-block unless we are prepared to sacrifice the
ability to keep the classes within the β-block at a different size from the size of [t∗]T .

4.2.2. Strategy for Q. As mentioned, when a gadget is started, some free class [t∗]T is enumerated
into T . Let φ : T → B be given and we wait for φ(t∗) ↓. If φ(t∗) converges and no other classes
are enumerated into this gadget, we claim that we are then able to diagonalise φ. As long as we
retain the ability to keep distinct gadgets and the portion of the structure dedicated to padding
‘sufficiently disjoint’, we can increase the size of t∗ without worrying about having also to increase
the size of φ(t∗) at the same rate. (The full diagonalisation procedure is explained in Section 4.3.2.)

Recall that the main idea was to attempt to keep φ non-surjective. In particular, we will never
enumerate h−1(t∗) into B until after φ(t∗) ↓. Thus, the only possibility that we do not immediately
obtain a diagonalisation is if q−1(t∗) ↓ before φ(t∗) does. Now according to the strategy described
for R above, for the sake of β, we would have to start enumerating new classes b, where h(b) ̸=T t∗,
to serve as the β image of q−1(t∗). Such a class could then become the φ image for t∗. Observe
that if φ(t∗) = (hβq−1)k(t∗) for some k > 0, then in order to keep β primitive recursive, it must
be that #[t∗]T ≤ #[φ(t∗)]B . That is to say, φ cannot be diagonalised without damaging β. The
intuition here would then be to use φ to define α (more details on that later).

Once φ(t∗) ↓ = (hβq−1)k(t∗) for some k > 0, then enumerate b∗ := h−1(t∗) into B, keep the β-block
in this gadget open, and wait for φ−1(b∗) ↓.

• If φ−1(b∗) ↓ and is not in the same gadget as b∗, then close the β-block, and wait for φ to
converge on all classes t ∈ T currently within this gadget. By pigeonhole principle, since
the number of classes in B and T within this gadget are the same, there must exist some
t ∈ T for which φ(t) is not within this gadget. Once again, we may then diagonalise φ as
long as the different parts of the structure are ‘sufficiently disjoint’. (Again we refer the
reader to Section 4.3.2 for the full diagonalisation procedures.)

• If φ−1(b∗) is in the same gadget as b∗, then note that the β-block is still open. Therefore,
we are able to increase the size of [φ−1(b∗)]T (which must be from the β-block) while
temporarily preventing [b∗]B and [t∗]T from increasing in size. We illustrate this further
using Fig. 4. Since we are only committed to maintaining the primitive recursiveness of
β, when increasing the size of some class at the ‘back’ of the gadget, there is no reason
for us to increase the size of [b∗]B . As long as the gadget is not closed, when increasing
the size of some class [b]B , we need only increase the sizes of ‘subsequent’ classes given by
[(βq−1h)n(b)]B for n > 0. Then we need only wait for some finite amount of time for φ to

20 HEER TERN KOH AND KENG MENG NG

b∗

t∗

•

•

•

•

•

•

•

•

• •B

A

T

φ

β :

p :

q :

Figure 4. Diagonalising φ

converge on the new elements introduced to [φ−1(b∗)]T to obtain a diagonalisation, thus
satisfying Q. Once φ is observed to fail, we close the β-block.

Throughout the construction, each gadget will be used at most once to obtain a diagonalisation
against some φ as described above.

4.2.3. One R strategy and two Q strategies. We arrange the strategies on a tree. Let us assume for
now that we only have R0, Q0, Q1 arranged as follows.

R0

Q0 Q1

Let lβ0 = ∅ and lα0 = {φ0}, where φ0 is given by Q0. Recall that these lists dictate the delay allowed
by β0 and α0 respectively. More specifically, in this setup, β0 is not allowed any delay, while α0

need not be defined until φ0 ↓.

As before, we begin a gadget by enumerating a free class [t∗]T into T . We enumerate no other
classes while waiting for either φ0(t

∗) ↓ or q−1
0 (t∗) ↓. We may assume that q−1

0 (t∗) converges before
φ0(t

∗), otherwise we simply enumerate h−1(t∗) into B and declare the gadget prepared (as φ0(t
∗)

converges to some class outside of this gadget and will be diagonalised). Once q−1
0 (t∗) ↓, to maintain

the primitive recursiveness of β0, we have to start enumerating classes to form the β0-block. We
may further assume that φ0(t

∗) must lie within this gadget, and hence must be one of the classes
in the β0-block. Roughly speaking, this means that φ0 is ‘copying’ β0, and since β0 is associated
with the branch above Q0, we cannot satisfy φ0 while successfully defining β0. Furthermore, since
the delay allowed by lα0 = {φ0} is over, we must start the definition of α0 now.

α0(t) =

{
q−1
0 (t) if t =T t∗,

p0h
−1(t) otherwise.

While we are preparing the gadget we keep all classes within the gadget temporarily at size 1. As
mentioned previously, if φ0(t

∗) ↓ and q−1
0 (t∗) ↑, then we are able to diagonalise against φ0. Thus,

at least on t∗, α0 is primitive recursive. On all other classes, α0 = p0h
−1, which is always primitive

recursive as h−1 is possibly only slow on t∗. It is also not too hard to see that before the gadget
is prepared, q−1

0 (t∗) /∈ rng(p0), otherwise we are able to diagonalise against q0p0 by increasing the
sizes of the classes at the ‘back’ of the gadget and temporarily keeping #[t∗]T = 1. (For the formal
and more general procedure, see Section 4.3.2.)

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 21

Now that we have decided to pursue the Σ0
2 outcome for R0, we wait for φ1(t

∗) ↓. As before, if
φ1(t

∗) does not lie within this gadget, then we will diagonalise against φ1. Thus, we may assume
that φ1(t

∗) is within the β0-block. The intuition here is that φ1 can only ‘copy’ β0, as this is the
only block within this gadget. Once this is observed, enumerate h−1(t∗) into the gadget and we
say that the gadget is prepared. The main difference between φ0 and φ1 ‘copying’ β0 is that we
are allowed to keep β0 not surjective for the satisfaction of Q1, but not for the satisfaction of Q0.
Thus, we only enumerate h−1(t∗) after we find that φ1(t

∗) = (hβ0q
−1
0)k(t∗) for some k > 0.

Once the gadget is prepared, we will tag (recall from Section 4.1) each class with G1(y) for some
appropriate y and let the classes grow. This potentially causes issues in maintaining the primitive
recursiveness of α0 on new elements t =T t∗. To keep α0 primitive recursive while growing the
individual classes, we ensure that q−1

0 (t∗) enters rng(p0) after the gadget becomes prepared. For
q0, p0, we ensure that q−1

0 (t∗) =A0
p0h

−1(t∗) and keep #[h−1(t∗)]B = #[t∗]T for every subsequent
stage. If such a condition is not met by q0, p0 after the gadget is prepared, then we will be able to
diagonalise against q0 or p0 in finite time, thus satisfying R0 (more details in Section 4.3.2).

On this gadget, we can thus successfully define α0 while keeping φ1 not surjective. In this scenario,
we will say to assign Q1 to this gadget. As long as Q1 is assigned to this gadget, we never close
the β0-block. At present, the status of each requirement is as follows.

• R0 is temporarily satisfied by α0 being primitive recursive and surjective (as long as p0 is
also surjective). β0 though not currently surjective, is still kept primitive recursive.

• Q0 is currently to the left of the path of the construction and thus we may ignore its status.
But in the event that α0 fails to be defined for some t ∈ [t∗]T , we have a guarantee that
φ0 also fails as a primitive recursive isomorphism and thus can return to pursuing the Π0

2

outcome for R0.

• Q1 is temporarily satisfied as h−1(t∗) /∈ rng(φ1). If h
−1(t∗) enters the range of φ1, then as

discussed in Section 4.2.2, we may obtain a diagonalisation against φ1 since the β0-block is
still open. Once the diagonalisation is obtained, we may then close the β0-block and note
that this would place h−1(t∗) into the range of β0, thus making β0 surjective on this gadget.
Furthermore, if we have yet to find a diagonalisation against φ0 on this gadget, then α0

will also still be a primitive recursive surjective isomorphism.

In summary, after Q1 is assigned to the gadget and it is prepared, we either wait forever for h−1(t∗)
to enter rng(φ1), or find some finite stage at which we successfully witness the failure of φ1. On
the other hand, if on some later gadget, we decide to pursue the Π0

2 outcome for R0, then we close
the β0-block in this gadget to place h−1(t∗) into rng(β0), making the gadget consistent with the
construction.

4.2.4. Three R strategies and multiple Q strategies. We once again place the different requirements
on a tree given as follows.

R0

R1 R2

Q0 Q1 Q2 Q3

22 HEER TERN KOH AND KENG MENG NG

When there are multiple R requirements, the gadget could now potentially consist of multiple
β-blocks. Recall that when q−1

i (t∗) ↓, we enumerate the βi-block (if the gadget is currently not

prepared). Therefore, when there are multiple R requirements, q−1
i (t∗) could converge for multiple

i before we are ready to enumerate h−1(t∗). As a result, other than defining βi on the βi-block,
we also need to keep βi primitive recursive on the βj-blocks for j ̸= i. This can easily be done
by taking βi(t) = h−1qi(t) for each t ̸=T t∗ and t not within the βi-block. There is no issue with
taking this definition as h−1 is only ever ‘slow’ on the free class [t∗]T . Thus, βi(t) will always
converge in primitive recursive time once qi(t) ↓. In addition, it is easy to see that βi is still only
ever non-surjective if the βi-block is enumerated and left open.

Before we proceed to the strategy to satisfy the various requirements, we compute the parameters
for each βi and αi. In general, βi is allowed up to a delay of all the φj functions given by the Qj

which are lexicographically left of Ri. In addition to these, αi is also allowed to wait for those φj

which are descendants of the left branch of Ri. Applying this procedure allows us to obtain the
following.

• lβ0 = ∅, lα0 = {φ0, φ1}.

• lβ1 = ∅, lα1 = {φ0}.

• lβ2 = {φ0, φ1}, lα2 = {φ0, φ1, φ2}.

As before, begin the gadget by enumerating a free class [t∗]T into T and compute φi(t
∗) in order of

the index i. We may once again assume that each φi(t
∗) converges to some class within the gadget,

otherwise we simply enumerate h−1(t∗) into B and begin the diagonalisation procedure to satisfy
Qi. While waiting for φ0(t

∗) ↓, one of q−1
j (t∗) could converge for j = 0, 1, 2. Recall that if q−1

j (t∗)
converges, we start a βj-block in order to maintain the primitive recursiveness of βj . However, since

β2 is allowed to wait for φ0, φ1 to converge on t∗ first, even if q−1
2 (t∗) is enumerated into A2, we do

not begin building the β2-block. We note here that there is no real disadvantage even if we were
to begin the β2-block; it just leads to more cases when considering the φ0 image of t∗. As such, we
turn our focus to q−1

0 (t∗) and q−1
1 (t∗).

If q−1
1 (t∗) is enumerated ‘quickly’ into A1, then the strategy to satisfy R1 was to attempt to define

α1 surjectively; α1(t
∗) = q−1

1 (t∗) ↓. However, if we choose to do so, we need the ability to keep
α1 primitive recursive even after the gadget is prepared. To this end, there will be two main
mechanisms for ensuring the above.

(M1) The first way is to ensure that q−1
1 (t∗) =A1 p1(b) for some b where [b]B can be kept at the

same size as [t∗]T . In particular, for q1, p1, such a b must be contained within the β0-block.
More generally, for qi, pi, the b for which q−1

i (t∗) =Ai
pi(b) must be contained in some

block associated with Rj for some j < i, or we will be able to diagonalise against qi or pi
(see Section 4.3.2). Which means, if we decide to define α1(t

∗) = q−1
1 (t∗), then we need to

commit to closing the β0-block once the gadget becomes prepared.

(M2) The second way is via challenging some φ ∈ lα1 . To illustrate this, suppose that φ0(t
∗) ↓

is contained in the β1-block. That is, φ0(t
∗) = β1q

−1
1 (hβ1q

−1
1)k(t∗) for some k ≥ 0. We

are then able to ‘force’ #[q−1
1 (t∗)]A1

to increase by keeping all classes within the β1-block

the same size as [q−1
1 (t∗)]A1 . This ensures that as long as [q−1

1 (t∗)]A1 does not grow, then
#[φ0(t

∗)]B ≤ #[q−1
1 (t∗)]A1

< #[t∗]T , allowing us to obtain a diagonalisation against φ0.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 23

•
t∗

B

A1

T

◦

•

•

◦

•

•

◦

•

•
α1 :
p1 :

Figure 5. The α1-block

While a gadget is being prepared, we do not know which blocks will end up becoming closed as that
depends on the behaviour of the various φi. But α1 needs to be defined within the delay allowed by
lα1 ; we cannot wait until the gadget is prepared before deciding whether or not to define α1 = q−1

1 .
To ensure that we are able to keep α1 primitive recursive after the gadget is prepared regardless of
which blocks become closed, we can only define α1(t

∗) = q−1
1 (t∗) if we are able to guarantee that at

least one of the two mechanisms work; in particular, we will define α1(t
∗) = q−1

1 (t∗) only if φi(t
∗)

is in the β1-block for some φi ∈ lα1 . Similarly, we will pursue the Σ0
2 outcome for R0 only if φi(t

∗)
is in the β0-block for some φi ∈ lα0 . We consider some the different possibilities for the position of
φ0(t

∗) below.

(1) If φ0(t
∗) is in the β0-block, then we pursue the Σ0

2 outcome for R0 as mentioned previously.
This would however mean that both the Π0

2 and Σ0
2 outcomes for R1 are now lexicographi-

cally left of the current path of our construction. Therefore, we need to keep α1(t
∗) defined

using only the delay allowed by φ0. To do so, we begin a new block which we shall call the
α1-block. Enumerate classes [b]B such that h(b) ̸=T t∗ to generate new classes [p1(b)]A1

in
A1 that keep α1 primitive recursive (see Fig. 5). Evidently, as long as the α1-block remains
open, α1 will not be surjective as p1h

−1(t∗) /∈ rng(α1). But just as before, if we ever visit
the Σ0

2 outcome for R1 (or some other strategy lexicographically left), then we will close
the α1-block so as to place p1h

−1(t∗) into its range.

(2) If φ0(t
∗) is in the β1-block, then we pursue the Σ0

2 outcome for R1 and proceed to com-
puting φ1(t

∗). Note here that even though q−1
0 (t∗) may have converged by the time φ0(t

∗)
converges, we do not commit to the definition of α0(t

∗) = q−1
0 (t∗) at this point as we are

unable to ensure that one of (M1) or (M2) will hold for α0. In contrast to the previous
case, there is no need to begin a α0-block here even though φ0(t

∗) is not in the β0-block.
The difference is that lα0 = {φ0, φ1} whereas lα1 = {φ0}. In other words, α0(t

∗) need not be
defined until after φ1(t

∗) ↓.

To summarise, below are some of the key ideas behind the actions taken for each strategy.

• Whenever q−1
i (t∗) ↓ for some i, if φj(t

∗) has already converged for each φj ∈ lβi , then
we enumerate the βi-block into the gadget. As a result of this, βi would temporarily be
non-surjective within this gadget.

• If φj(t
∗) ↓ and is in the βi-block where φj ∈ lαi , then we define αi(t

∗) = q−1
i (t∗).

• If φj(t
∗) ↓ for every φj ∈ lαi but none of φj(t

∗) is in the βi-block, then we enumerate the
αi-block into the gadget, keeping αi primitive recursive with the parameters in lαi . We will
do so regardless of whether q−1

i (t∗) has converged or not.

24 HEER TERN KOH AND KENG MENG NG

Start β0-block

β1-block

β1-block

β0-block

β0-block

β1-block

β2-block

α1-block

β2-block

β0-block

β1-block

β2-block

α1-block

Assign Q1

Assign Q3

Assign Q2

Enumerate
[t∗]T

φ0(t
∗) is

in the:
φ1(t

∗) is
in the:

φ2(t
∗) is

in the:
φ3(t

∗) is
in the

Enumerate
[h−1(t∗)]B

Figure 6. Procedure for a single gadget. Note that if φ0(t
∗) is in the β1-block,

no α1-block will be enumerated.

• Once some φi(t
∗) has converged to some element in a block associated with some strategy

lexicographically left of φi, we will assign Qi to the gadget and enumerate [h−1(t∗)]B . The
idea here is that this gadget is a witnessof the non-surjectivity of φi.

Fig. 6 illustrates the procedure for a gadget aiming to satisfy the tree of requirements presented at
the beginning of Section 4.2.4. Start by enumerating the free class [t∗]T and compute φi(t

∗) for
the various i in lexicographic order. Once some φi(t

∗) converges to some block associated with an
outcome lexicographically left of Qi, then we assign Qi to the gadget, enumerate [h−1(t∗)]B , and
close all blocks within this gadget except the one φi(t

∗) is contained in.

Note that Q0 will never be assigned as it is the left-most Q requirement. Intuitively, a Q requirement
being assigned to the gadget means that φ is being kept non-surjective at the cost of keeping some
other map either βe or αe non-surjective. This only makes sense if βe or αe is associated with some
outcome lexicographically left of Q, and thus Q0 will never be assigned as there are no outcomes
lexicographically left of it.

It is not too hard to see that by the time φ3(t
∗) ↓, at least one of the φi(t

∗) where i ≤ 3 must lie
within some block which is associated with an outcome that is lexicographically left of Qi, allowing
us to finish preparing this gadget. Furthermore, the various statuses of the maps are consistent
with the satisfaction of the Qi being assigned to this gadget (see the end of Section 4.2.5 for a more
detailed discussion).

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 25

4.2.5. After a gadget is prepared. Recall that while a gadget is being prepared, all classes are
temporarily left at size 1. Once it is prepared, we need to begin tagging the classes with some
target size so as to produce a copy of E in the limit. The tags will be based on the functions G1, G2

and the specifics can be found in Section 4.4. The main issue while attempting to grow the classes
would be in keeping the various αe primitive recursive while being consistent with the strategy to
satisfy the assigned Q requirement. As mentioned previously, there are two main mechanisms we
shall use to force [q−1

e (t∗)]Ae to grow when [t∗]T increases in size. We provide some details below.

When a gadget becomes prepared, there will only be one block which is left open. Suppose that
this block is associated with either the Π0

2 or Σ0
2 strategy for Rn. For each αe where e ≤ n and

αe(t
∗) = q−1

e (t∗), we will use (M1) to keep αe primitive recursive. Recall that this means that we
have to ensure q−1

e (t∗) =Ae
pe(b) for some b contained in a block associated with some strategy for a

higher priority Re′ (e
′ < e) or for b = h−1(t∗). Since all but one block is closed, it follows that every

block associated with some strategy for Re′ where e′ < e ≤ n must also be closed. That is to say,
there are only finitely many distinct classes in B within these blocks, say [b0]B , [b1]B , . . . , [bm]B .
If qepeh

−1(t∗), qepe(b0), qepe(b1), . . . , qepe(bm), are all not contained in [t∗]T , then by pigeonhole
principle, there is some b ∈ {h−1(t∗), b0, b1, . . . , bm}, such that qepe(b) is contained in some block
associated with some strategy for Re′′ where e

′′ ≥ e. Therefore, we are able to temporarily stop the
size of [qepe(b)]T from increasing whilst increasing the size of [b]B , thus obtaining a diagonalisation
against qepe (see Section 4.3.2 for more details). Thus, once a gadget becomes prepared, for e ≤ n,
q−1
e (t∗) =Ae

pe(b) either for b = h−1(t∗) or for some b contained in some block associated with some
strategy for a higher priority requirement. As long as we commit to keeping the classes contained
within all blocks of higher priority than n at the same size as [t∗]T , we are able to keep αe primitive
recursive on t ∈ [t∗]T .

For αe where e > n and αe(t
∗) = q−1

e (t∗), we keep them primitive recursive via (M2); by challenging
some φ ∈ leα. Recall that this means keeping the classes within the βe-block at the same size as
[q−1

e (t∗)]Ae
. As long as #[q−1

e (t∗)]Ae
< #[t∗]T , all classes in the βe-block remains at a size strictly

smaller than #[t∗]T . Thus, we obtain that #[t∗]T > #[q−1
e (t∗)]Ae

= #[φ(t∗)]B for the φ ∈ lαe
where φ(t∗) is in the βe-block. Such a φ must exist, otherwise we would not have chosen to define
αe(t

∗) = q−1
e (t∗). Thus, either [q−1

e (t∗)]Ae
grows to the size of [t∗]T , allowing us to keep αe primitive

recursive, or we obtain a diagonalisation against some φ ∈ lαe (necessarily lexicographically left of
the Σ0

2 outcome for Re). Note here that we only need to keep the classes within the βe-block the
same size as [q−1

e (t∗)]Aσ
for as long as we are defining αe(t

∗) = q−1
e (t∗). Once some φ ∈ lαe is

discovered to fail, we can (and will) initialise this definition of αe and allow the classes within the
βe-blocks to grow and match their tags. This will be important in ensuring that the structure we
construct is isomorphic to E in the limit.

Finally, for αe-blocks where e > n, we simply keep the classes within them at the same size as [t∗]T .
It is easy to see that this is consistent with the strategies described thus far and serves to keep the
various αe where αe(t

∗) ̸= q−1
e (t∗) primitive recursive. In summary, the classes within all blocks

associated with Re where e ≤ n need to be kept at the same size as [t∗]T while blocks associated
with Re where e > n must always have sizes ≤ #[t∗]T .

We now explain how the conditions above may be maintained while satisfying the Q requirement
assigned to this gadget. Suppose that Qi was assigned to the gadget; φi(t

∗) is contained in either
the βn-block or the αn-block. Recall that the basic idea to satisfy Qi is to wait for φ−1

i h−1(t∗) ↓
and keep #[φ−1

i h−1(t∗)]T > #[h−1(t∗)]B until φi fails. Observe that if φ−1
i h−1(t∗) = h(b) for some

26 HEER TERN KOH AND KENG MENG NG

b in a block associated with Re where e ̸= n, then we are unable to keep #[h(b)]T > #[h−1(t∗)]B
without damaging the primitive recursiveness of some α or β. To circumvent this, rather than
simply waiting for h−1(t∗) to enter rng(φi), we wait for b ⊆ rng(φi) where b contains h−1(t∗) and
a single representative from each class within the closed blocks. Clearly, b contains only finitely
many elements, and if b ⊈ rng(φi), then φi is not surjective. On the other hand, once b ⊆ rng(φi),

it must be that φ−1
i (b) =T h(b′) for some b ∈ b and b′ in the open block. To see why this is so,

let b = {h−1(t∗), b0, b1, . . . , bm} and suppose for a contradiction that for each b ∈ b, there exists
b′ ∈ b such that φ−1

i (b) =T h(b′). Since φi(t
∗) maps to some element in the open block, we know

that φi(t
∗) ̸=B b for any b ∈ b. Thus, by pigeonhole principle, there exists two distinct elements

c, d ∈ b such that φ−1
i (c) =T φ−1

i (d), meaning that φi is not an isomorphism. Therefore, once
b ⊆ rng(φi), we either discover that φi is not an isomorphism, or that there is some b ∈ b such
that φ−1

i (b) ̸=T h(b′) for any b′ ∈ b. In the latter case, we will diagonalise against φi by increasing
the sizes of all classes within the open block while temporarily freezing the sizes of those in the
closed blocks (see Section 4.3.2). In this way, we satisfy Qi while keeping the various α primitive
recursive. Once φi is witnessed to fail, we will close all blocks within the gadget and never return
to it again.

Placing the strategies together, we now provide a brief explanation of how each requirement is
satisfied. We refer the reader again to the tree at the beginning of Section 4.2.4 and the flowchart
in Fig. 6.

Q0 is satisfied: Note that Q0 will never be assigned to the gadget since it is the left-most outcome.
More specifically, the only way we will finish preparing the gadget while satisfying Q0 is if
q−1
i (t∗) are all ‘slow’ and do not converge before φ0(t

∗). If this happens, then φ0(t
∗) must

be in some other gadget and we can thus obtain a diagonalisation against it.

In addition, since q−1
0 (t∗) and q−1

1 (t∗) both do not converge until after φ0(t
∗) ↓, then we can

define both β0, β1 surjectively on this gadget by letting β0q
−1
0 (t∗) = h−1(t∗) and β1q

−1
1 (t∗) =

h−1(t∗). That is, this gadget becomes prepared with only one class in B and one class in
T .

Q1 is assigned: Following the flowchart in Fig. 6, the only time Q1 is assigned to the gadget
once it’s prepared is if both φ0(t

∗) and φ1(t
∗) are in the β1-block. That is to say, q−1

1 (t∗)
must have converged before φ0(t

∗), and thus, α1(t
∗) = q−1

1 (t∗) is defined quickly relative
to lα1 = {φ0}.

Once the gadget becomes prepared, since φ1(t
∗) is within the β1-block, all other blocks must

have become closed once the gadget is prepared. Thus, even if q−1
0 (t∗) ↓ before h−1(t∗) is

enumerated, β0 is surjective on this gadget as the β0-block is closed once the gadget is
prepared. In addition, α1 remains primitive recursive, particularly on [t∗]T , as q

−1
1 (t∗) =A1

p1(b) for some b in the (closed) β0-block or b = h−1(t∗). And so, R0 is satisfied via its Π0
2

strategy, R1 is satisfied via its Σ0
2 strategy, and Q1 is satisfied because once φ1 attempts to

become surjective on this gadget, it will be diagonalised.

Q2 is assigned: In order for Q2 to be assigned to the gadget, observe that one of φ0(t
∗) or φ1(t

∗)
must be within the β0-block. Thus, we are able to define α0 surjectively on this gadget
by taking α0(t

∗) = q−1
0 (t∗) within the delay allowed by its parameters lα0 = {φ0, φ1}. Fur-

thermore, once the gadget becomes prepared, since R0 is the highest priority requirement,
q−1
0 (t∗) = p0h

−1(t∗), thus keeping α0 primitive recursive.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 27

Turning our attention to R1, which is lexicographically left of Q2, if φ0(t
∗) is not within

the β1-block, either because q−1
1 (t∗) is ‘slow’ or simply because φ0(t

∗) is in the β0-block
instead, then we would have started the α1-block, thus keeping α1(t

∗) primitive recursive
(with the parameters lα1). On the other hand, if φ0(t

∗) is in the β1-block, then we would
have defined α1(t

∗) = q−1
1 (t∗). Once the gadget is prepared, if the β0-block becomes closed,

then α1 can be kept primitive recursive for the same reasons as before. However, there is
no guarantee that this will happen. In fact, if φ2(t

∗) is in the β0-block, then it must remain
open to satisfy Q2. In this case, we will keep α1 primitive recursive via challenging φ0 ∈ lα1 .
Therefore, α1 can be kept primitive recursive regardless of where φ0(t

∗) is, and thus both
the Π0

2 and Σ0
2 outcomes of R1 can be preserved.

Finally, R2 will be satisfied via its Π0
2 outcome. If q−1

2 (t∗) is ‘slow’ (q−1
2 (t∗) ↑ until after

h−1(t∗) is enumerated), then we define β2q
−1
2 (t) = h−1(t) for any t within this gadget. Note

that regardless of whether q−1
2 (t∗) is ‘fast’ or ‘slow’, we would define β2q

−1
2 (t) = h−1(t) for

any t ̸=T t∗ and not within the β2-block. If we instead have that q−1
2 (t∗) converges before the

gadget is prepared, we would have enumerated the β2-block to keep β2 primitive recursive,
but temporarily non-surjective. Since Q2 is assumed to be assigned to this gadget, then
it cannot be that φ2(t

∗) is within the β2-block (see Fig. 6), and thus once the gadget is
prepared, the β2-block becomes closed, making β2 surjective.

In summary, Q2 is satisfied as φ2 cannot become surjective (or it gets diagonalised), R0 is
satisfied as q−1

0 (t∗) converges before φ0(t
∗) ↓ or φ1(t

∗) ↓, R1 is preserved, and R2 is satisfied
via defining β2 surjectively.

Q3 is assigned: The arguments for why R0 is satisfied via its Σ0
2 outcome and why both outcomes

of R1 are preserved is similar to the previous cases. In order for Q3 to become assigned
to the gadget, φ2(t

∗) must be within the β2-block; q−1
2 (t∗) converged within the delay

allowed by lα2 , and α2 was defined such that α2(t
∗) = q−1

2 (t∗). Once the gadget becomes
prepared, if φ3(t

∗) is in the β2-block, then α2 will be kept primitive recursive via (M1) as
all blocks associated with higher priority outcomes are closed. If φ3(t

∗) is instead in some
block associated with a higher priority outcome, then α2 is kept primitive recursive via
challenging φ2 ∈ lα2 . Note that regardless of the block which φ3(t

∗) is contained in, it must
be associated with some outcome lexicographically left of Q3. Thus, leaving it open and
consequentially making the associated map non-surjective is consistent with the current
path of the construction. Therefore, we successfully define α0 and α2 surjectively, and keep
φ3 non-surjective.

4.2.6. A global overview of the construction. We arrange the strategies on a tree. The details can
be found in Section 4.3. At each stage of the construction, we will explore a finite subtree and
construct a gadget that aims to satisfy one Q requirement. Each gadget considers some finite cover
of all possible paths through the tree and becomes prepared by assigning some Q requirement to the
gadget. Recall that the intuition behind assigning a Q requirement is that this gadget will witness
the non-surjectivity of φ given by the assigned Q requirement. We provide some more details below.

Let {φ0, φ1, . . . , φk} be a list in lexicographic order of all current terminal nodes in the finite subtree
we are considering. As mentioned, we compute φi(t

∗) for each i in lexicographic order. Once some
φi(t

∗) is found to be contained within a block associated with a strategy lexicographically left (on
the tree), we will assign φi to the gadget, enumerate b∗ and declare it prepared. At the next stage,

28 HEER TERN KOH AND KENG MENG NG

we will extend the finite subtree by adding the descendants of the node associated with φi. (See
Section 4.4 for more details.)

In Lemma 4.3, we shall show that the procedure above produces finite subtrees with depths that
tend to infinity. The true path of the construction will be the left-most path in the union of all the
finite subtrees.

4.3. The tree of strategies. We arrange the strategies on a subtree Γ ⊆ {∞, f}<ω where σ ∈ Γ

iff σ(2n+1) = ∞ for all n < |σ|
2 . We induce a lexicographic ordering on nodes of the tree by letting

∞ ≺ f . For strings σ and τ , we write σ ⊆ τ to mean σ is a prefix of τ , and we use σ− to denote ξ
such that ξ⌢x = σ for some x. Each node represents some strategy as follows.

• The various versions of Qe are represented by the nodes σ where |σ| = 2e+ 1.

• The various versions of Re are represented by the nodes σ where |σ| = 2e.

In view of this, we omit the index of the requirements and instead refer to them directly as Rσ or
Qσ respectively. The requirements will be arranged with the usual priority; σ is of higher priority
than τ if σ ≺ τ or σ ⊊ τ .

During the construction, we maintain a list Γn consisting of all the nodes that have been visited
so far up to the nth gadget. Each requirement Rσ also has two lists of parameters given by the
following.

• lβσ containing all τ ∈ Γn terminal and τ ≺ σ.

• lασ containing all τ ∈ Γn terminal and τ ≺ σ⌢f .

Recall that the lists lβσ and lασ dictate the delay which is allowed by the current versions of βσ and
ασ respectively.

4.3.1. The gadgets. Within the nth gadget, we use [tn0]T to denote the free class enumerated at the
start of the nth gadget. In addition, for the requirement Rσ, where |σ| = 2e for some e, we reserve
the σ⌢∞-block and σ⌢f -block to correspond to the βσ-block and ασ-block respectively. These
blocks will contain classes denoted by [tnγ,j]T and [bnγ,j]B where γ is either σ⌢∞ or σ⌢f and j ∈ ω.

Let τ0, τ1, . . . , τk denote the terminal nodes in lexicographic order in Γn. Wait for φτi(t
n
0) ↓ for each

i ≤ k. Now for each σ of even length and |σ| < 2n, we wait for q−1
σ (tn0) ↓. Consider the following

possibilities.

(1) Wait for φτi(t
n
0) ↓ for each τi ∈ lβσ . Once this happens, if q−1

σ (tn0) has converged, then
enumerate [tnσ⌢∞,0]T (and [bnσ⌢∞,0]B) into T (and B). Whenever q−1

σ (tnσ⌢∞,j) ↓, enumerate
[tnσ⌢∞,j+1]T (and [bnσ⌢∞,j+1]B) into T (and B).

(2) Wait for φτi(t
n
0) ↓ for each τi ∈ lασ . Once this happens, if q−1

σ (t0) has not converged or
φτi(t

n
0) ↓ ̸= bσ⌢∞,j for any j and any τi ∈ lασ , then enumerate the class [tσ⌢f,0]T (and

[bσ⌢f,0]B) into T (and B). Otherwise, do nothing; we do not build the σ⌢f -block.

Once φτk(t
n
0) ↓ = bnγ,j for some τk and γ ≺ τk, enumerate [bn0]B into B, close all blocks except the

γ-block, assign Qσk
to this gadget and declare it prepared. Define bn as the collection of elements

containing bn0 and bnξ,j where ξ ̸= γ. Since every block except the γ-block is closed, |bn| is finite.

Tag [bn0]B and all classes within the closed blocks with G1(N) for some N sufficiently large. For

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 29

the classes within the γ-block which is open, we tag each class with G1(y) for some appropriately
chosen y > N .

In general, after a gadget is prepared, the sizes of the classes within the gadget should satisfy the
following conditions.

• If γ is such that the γ-block is open, then for any b ∈ B or t ∈ T within a ξ-block where
Rξ− is of higher priority than Rγ− , #[b]sB = #[t]sT = #[tn0]

s
T for all stages s.

• Suppose that ξ = σ⌢∞ and the ξ-block is closed. If in addition ασ(t
n
0) = q−1

σ (tn0), then
for each b ∈ B in the ξ-block, #[b]sB = #[h(b)]sT = #[q−1

σ (tn0)]
s
Aσ

. Otherwise, let #[b]sB =
#[h(b)]sT = #[tn0]

s
T for each b ∈ B in the ξ-block.

• If ξ = σ⌢f and the ξ-block is closed, then for each b ∈ B within the ξ-block, let #[b]sB =
#[h(b)]sT = #[tn0]

s
T .

• If γ is such that the γ-block is open, then for each class within the γ-block, it follows the
size of its tag.

4.3.2. The diagonalisation procedures. Throughout the discussion thus far, we have stated a few
different properties that we require the various qσpσ and φγ to satisfy during the construction. We
restate them here.

(D1) For any t ∈ T in the nth gadget and γ a terminal node of Γn, φγ(t) must also be contained
within the nth gadget.

(D2) If Qγ was assigned to the nth gadget, then as long as some block remains open within the
nth gadget, bn ⊈ rng(φγ).

(D3) For any b ∈ B in the nth gadget and σ ∈ Γn where |σ| = 2e for some e, qσpσ(b) must also
be contained within the nth gadget.

(D4) If the nth gadget is prepared with the γ-block left open, then for any σ ∈ Γn of even length
where σ ≺ γ− or σ ⊊ γ−, (qσpσ)

−1(tn0) ↓ = b where b =B bn0 or b is contained within a
ξ-block for some ξ ≺ σ or ξ ⊊ σ.

(D5) If the nth gadget has not been prepared, then for any σ ∈ Γn of even length, (qσpσ)
−1(tn0) ↑.

In addition, once the gadget becomes prepared, if (qσpσ)
−1(tn0) ↓ =B b, then b must be

contained in some closed block of the nth gadget.

We shall discuss here how we diagonalise against qσpσ or φγ should any of the conditions above
fail to be met. The specific diagonalisation strategy shall differ slightly depending on G1, G2 and
so we split the procedures into two cases.

For all y, G1(y) = M1 and G2(y) = M2: Non-uniformly fix M1,M2 and consider the following
scenarios.

• Suppose that there is some t ∈ T within the nth gadget and some terminal γ ∈ Γn

such that φγ(t) ↓ is not within the nth gadget. If [φγ(t)]B is currently tagged with M1,
then we close all blocks within the nth gadget and change all their tags to M2. After
some finite wait, φγ must be observed to fail.

30 HEER TERN KOH AND KENG MENG NG

If [φγ(t)]B is instead tagged with M2, then we similarly close all blocks within the nth

gadget but leave all their tags at M1. As long as the tags of the nth gadget remains
at M1, φγ must fail to be surjective. To ensure this, we will only change the tags of
the nth gadget for the sake of some requirement in Γn.

• Let Qσ be the requirement assigned to the nth gadget and suppose that bn ⊆ rng(φγ).
Recall that since φγ(t

n
0) ̸=B b for any b ∈ bn, then by applying pigeonhole principle,

there must be some b ∈ bn for which φ−1
γ (b) ̸=T h(b′) for any b′ ∈ bn. We may

further assume that φ−1
γ (b) is still within the nth gadget, otherwise we simply close

all blocks in the nth gadget and apply pigeonhole principle again to conclude that φγ

fails (D1). Then given that φ−1
γ (b) is within the nth gadget and not in any closed

block, we will then increase the tags of all classes within the sole open block of the
nth gadget to M2 and wait for φγ to fail. This must happen in finite time since
#[b]B = M1 < M2 = #[φ−1

γ (b)]T . Furthermore, as the block that φ−1
γ (b) is contained

in is still open, we are able to keep #[b]B = M1 until after φγ is witnessed to fail. Once
this is observed, then we close the nth gadget and tag every class within it with M2.

• If (D3) fails, then we apply the same procedure to diagonalise against qσpσ as in (D1).

• Suppose that (D4) fails; there exists some σ ∈ Γn of higher priority than Rγ− where
the γ-block is left open, such that (qσpσ)

−1(tn0) ̸=B b for any b contained in ξ-blocks
of higher priority than Rσ. Since the nth gadget is assumed to have already been
prepared with only the γ-block left open, it must be that all ξ-blocks where ξ ≺ σ or
ξ ⊊ σ are closed. Let m be the number of distinct classes in B which are contained in
some ξ-block within the nth gadget. For each of these classes, we pick representatives,
say b1, b2, . . . , bm and compute qσpσ(b

n
0) and qσpσ(bi) for each 1 ≤ i ≤ m. By our

assumption, none of these can be contained within [tn0]T . That is to say, there is at
least one b ∈ {bn0 , b1, b2, . . . , bm} such that qσpσ(b) =T t where t is contained in some
τ -block where τ ≻ σ or τ ⊋ σ (we may assume qσpσ satisfies (D3)). To diagonalise
against qσpσ, we will then tag [tn0]T and all classes within the ξ-blocks where Rξ− is
of higher priority than Rσ with M2 and keep the tags of all other classes within the
nth gadget at M1. Such an action could threaten the primitive recursiveness of βτ− or
ατ− since we are preventing the classes within τ -blocks of lower priority from growing
while increasing #[tn0]T , but in return we obtain a satisfaction for Rσ where σ ≺ τ−

or σ ⊆ τ−. Once Rσ is met via witnessing the failure of qσpσ, we close the γ-block in
the nth gadget and tag all classes with M2.

• If (D5) fails while the gadget is still not prepared, then all blocks within the nth gadget
must still be open. We may thus increase the size of every class except [tn0]T to M2

and wait for qσpσ to fail. This must happen in finite time, and once it is witnessed,
we enumerate [bn0]B into the gadget and close all blocks, tagging [tn0]T with M2. The
argument for when the gadget becomes prepared is similar, as we also obtain that
(qσpσ)

−1(tn0) ↓ must be contained in the open block.

A careful analysis of the procedures above allows us to conclude that once all blocks within
a gadget is closed, the tags of the classes never again changes. Furthermore, the various
actions are consistent with the conditions that the sizes of various classes should satisfy as
mentioned in Section 4.3.1.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 31

Not the previous case: Recall that G1, G2 are non-decreasing; we may thus assume in this case
that G2 is strictly increasing or G2(y) = ∞ for all y. In particular, we may assume that
G2(y) > y for all y.

• Once again, suppose that (D1) fails and let t and γ be such that φγ(t) ↓ is not within
the nth gadget. If φγ(t) is in another gadget, say the mth, temporarily pause the size
of [tm0]T , wait for all classes with representatives in bm to reach the current size of
[tm0]T , then pause the classes in the open block within the mth gadget if it exists. This
is to ensure that this action does not damage the definition of any other maps being
maintained on the mth gadget. Once the sizes of classes within the mth gadget have
temporarily stabilised, say at x, we close the nth gadget and tag all classes within the
nth gadget with G2(y) for some sufficiently large y ≥ x. After a finite wait, φγ must
be witnessed to fail as #[t]T = G2(y) > y ≥ x = #[φγ(t)]B . Once such a failure is
witnessed, resume growing the classes within the mth gadget.

• Suppose that Qγ was assigned to the nth gadget and that φγ satisfies (D1). If there
is still some block which is open in the nth gadget and bn ⊆ rng(φγ , then applying
pigeonhole principle allows us to conclude that there is some b ∈ bn such that φ−1

γ (b) =
t for some t within the open block. Temporarily pause the size of [tn0]T , and tag all
classes within the open block with G2(x) where x is the current size of [tn0]T . After
some finite wait, φγ must be witnessed to fail and we will then close the final open
block in the nth gadget and tag all classes within the nth gadget with G2(y) for some
sufficiently large y ≥ x.

• If (D3) fails, we can diagonalise against qσpσ by applying the same procedure as if
(D1) fails.

• If (D4) fails, then applying the same pigeonhole argument as before allows us to con-
clude that there exists b such that the following holds. qσpσ(b) is contained within
some τ -block where τ− ⊇ σ and either b = bn0 or b is contained within some closed
ξ-block, where Rξ− is of higher priority than Rσ. By tagging [tn0]T and the classes
within the ξ-blocks where Rξ− is of higher priority than Rσ with G2(y) for some large
y, we must witness the failure of qσpσ after some finite delay provided we temporarily
pause all other classes within the nth gadget. Clearly, this action prevents certain
τ -blocks from growing and would thus injure the strategies for Rτ− , but all such τ is
necessarily either such that τ− ⊇ σ or τ− ≻ σ.

• If (D5) fails, then we tag all classes within the nth gadget except [tn0]T with G2(y) for
some fresh y and wait for qσpσ to fail. Once it does, enumerate [bn0]B , close all blocks
within the nth gadget and tag all classes within the nth gadget with G2(y

′) for some
new fresh y′.

4.4. Formal construction. We split the construction into stages; at every stage, a new gadget
will be started and the stage only ends when the gadget becomes prepared. That is, a single
stage need not last only for a primitive recursive amount of time. In order to keep B, T primitive
recursive, recall that we have some fixed primitive recursive presentation of E. Whenever the fixed
presentation enumerates some element or class, we enumerate a new class of size one into the portion
of the structure dedicated to padding. This ensures that B, T are kept primitive recursive.

32 HEER TERN KOH AND KENG MENG NG

At each stage n of the construction, we will maintain a finite subtree Γs of Γ and a finite path
δs contained in Γs. Recursively define Γs as follows. Γ0 = {⟨⟩, ⟨∞⟩, ⟨f⟩}. Γs is the smallest set
satisfying the following.

• Contains all nodes σ ∈ Γs−1 of higher priority than δs.

• Contains δ⌢s ∞ if |δs| is odd.

• Closed under the property “if σ ∈ Γs and |σ| is even, then σ⌢∞ and σ⌢f are also in Γs”.

At each stage s of the construction, we will define δs and proceed to stage s+ 1 once δs is defined.
In addition, once δs has been defined, close all blocks in each gadget assigned with some lower
priority Qγ .

Nodes which are currently contained in Γs are termed as active, and all other nodes are inactive.
The active nodes σ may additionally be in one of the following states.

• Satisfied.

• Assigned to some gadget, provided σ is of odd length. For convenience, we will use γm to
denote the node for which Qγm is assigned to the mth gadget.

During the construction, we say that the nth gadget requires attention if one of (D1), (D2), (D3),
or (D4) is witnessed to fail within the nth gadget via some currently active and unsatisfied node,
and the gadget still has some open block.

Stage s ≥ 0: Let Γs be given and suppose that we have defined δs′ for each s′ < s and the mth

gadget for each m < n. The stage will be split into three main phases. In the first phase, we
increase the sizes of each class currently enumerated where necessary. During the second
phase, we attend to each gadget requiring attention. Finally, we prepare the nth gadget in
the third phase.

Phase 1: Let m < n be given. If all blocks in the mth gadget is already closed, then let the
size of each class within the mth gadget grow to the current size of their tags. Similarly,
each class within a block associated with a currently inactive strategy will also simply copy
its tag.

If there is some block in the mth gadget still open, then let #[tm0]nT and #[bm0]nB be the
current size of their tags. For the remaining classes within the mth gadget, consider the
following cases.

• If [b]B , [h(b)]T are such that b (and h(b)) is contained in a closed σ-block where σ of
lower priority than the open block of the mth gadget, and σ = σ− ⌢∞, then let #[b]nB
and #[h(b)]nT be the size of #[q−1

σ−(t
m
0)]nAσ−

.

• Otherwise, let #[b]nB ,#[h(b)]
n
T be the current size of their tags.

For the mth gadget, wait until φγ(t) ↓ for each newly enumerated t ∈ [tm0]T and for each
terminal γ ∈ Γsm (where sm is the stage the mth gadget was prepared) and γ ≺ γm or
γ = γm. Once this finite wait is over, increase the sizes of all remaining classes which do
not yet match their tags. If in addition, a diagonalisation against some φγ was obtained,
then declare γ satisfied and let δs = γ.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 33

Phase 2: If there are no gadgets which require attention, proceed to the next phase. Oth-
erwise, suppose that the mth gadget requires attention; there is some active σ which is
witnessed to fail one of (D1), (D2), (D3), or (D4) within the mth gadget. If there are
multiple such gadgets, then we act for the highest priority σ. Once we have applied the ap-
propriate actions as described in Section 4.3.2, declare σ satisfied and let δs = σ. Note that
this causes all other requirements which possibly required attention to become inactive.

Phase 3: Let τ0 ≺ τ1 ≺ . . . ≺ τk be the current terminal nodes of Γs (after the various
actions in Phases 1 and 2, Γs could be different than it was at the beginning of the stage).
Enumerate the free class [tn0]T to begin preparing the nth gadget. In the lexicographic order
of τi, we compute φτi(t

n
0). While computing φτi(t

n
0), we also check that for each σ of higher

priority than τi and |σ| is even, qσpσ(b) is contained within the nth gadget for any b in the
nth gadget. Otherwise, σ fails to satisfy (D3) which allows us to obtain a diagonalisation
against qσpσ. Once such a diagonalisation is obtained, declare σ satisfied, close all blocks
in the nth gadget, let δs = σ and proceed to the next stage. Similarly, if φτi(t

n
0) ↓ and is not

in the nth gadget (τi fails (D1)), then we apply the appropriate diagonalisation procedure,
declare τi satisfied, close all blocks in the nth gadget, let δn = τi and proceed to the next
stage. We may thus assume that for each τi and for each σ of higher priority than τi where
|σ| is even, τi and σ satisfies (D1) and (D3) respectively.

Wait for φτi(t
n
0) ↓ = b where b is contained in a ξ-block for some ξ ≺ τi. To see that

such a τi exists, note that for any σ ⊆ τk where |σ| is even, the σ⌢f -block will never be
enumerated. That is, once φτk(t

n
0) ↓, if it is contained within the nth gadget, it has to be

in a ξ-block where ξ ≺ τk (τk is the right-most terminal node in Γs). Once the first such
τi is found, let δs = τi, assign τi to the nth gadget and close every block in the nth gadget
except the one containing φτi(t

n
0).

4.5. Verification. In the lemma that follows, fs is as defined in Section 4.1.

Lemma 4.1. If for all y, G2(y) < ∞, then f = lims fs exists and is a total isomorphism.

Proof. We prove by induction that for each i ∈ ω, f([ti]T) ↓. That is, for each i, there exists
some s such that for all s′ ≥ s, fs′([ti]T) = fs([ti]T) ↓. First consider the case when i = 0. By
assumption, G2(y) < ∞ for all y. In particular, since the index of [t0]T is even, it will have a tag
in rng(G1) ∪ rng(G2). In addition, since we choose the tags for the even indexed classes, as long
as we only change them finitely often, the tag of [t0]T must eventually stabilise. Since G1, G2 are
nice, then there must be some class in E which has the size of the tag of [t0]T . Let [ej]E be such
a class with the lowest index. Then fix a stage s such that #[t0]

s
T = #[ej]

s
E = #[t0]T which must

exist as #[t0]T < ∞. By the definition of fs, it follows that fs([t0]T) = [ej]E . Since [t0]T is always
the first class on which fs′ is defined, and the sizes of [ej]E and [t0]T never change after stage s,
then we obtain that fs′([t0]T) = [ej]E for all s′ ≥ s.

Suppose inductively that for each i′ < i, f([ti′]T) ↓. Then there exists some stage n such that for
all stages s ≥ n, fs([ti′]T) = fn([ti′]T) ↓.

Case 1: i is odd. If fn([ti]T) ↓, then we must have that fs([ti]T) = fn([ti]T) for all s ≥ n as fs([ti′]T)
for each i′ < i are already fixed after stage n. We may thus assume that fn([ti]T) ↑. It thus
remains to show that there is some class in E that [ti]T can map to. If there is no stage
n′ < n for which fn′([ti]T) ↓, then it must be that #[ti]

n
T = 1, because the sizes of the odd

34 HEER TERN KOH AND KENG MENG NG

indexed classes always follow the sizes of their images under the current approximation of
f . Since there are infinitely many classes of size at least 1 in E, then there must be some
stage s ≥ n such that some fresh class [ej]E of size at least 1 is enumerated. Then at such
a stage s, fs([ti]T) ↓ = [ej]E .

Now suppose that there is some n′ < n such that fn′([ti]T) ↓. We may further suppose that
n′ is such that for each n′′ where n′ < n′′ ≤ n, fn′′([ti]T) ↑. Recall that since fn′([ti]T) ↓,
then fn′+1([ti]T) ↑ only if at stage n′ + 1, some class [t2m]T where 2m < i is mapped to
fn′([ti]T). That is to say, the tag of [t2m]T at stage n′ + 1 is the same as the size of the
tag of [ti]T at stage n′ + 1. Then there must be infinitely many classes of size at least the
current tag of [ti]T , as G1 and G2 are nice and non-decreasing and the tag of [t2m]T always
lies in rng(G1) ∪ rng(G2). Furthermore, after stage n′, f will not be defined on any of the
newly enumerated odd indexed classes until some image is found for [ti]T . Thus, at some
sufficiently large stage s ≫ n, there must be some class [ej]E such that [ej]E ̸= fs−1([ti′]T)

for any i′ odd, #[ej]
s
E ≥ #[ti]

s
T = #[ti]

n′

T and [ej]E ̸= fs([ti′]T) for any i′ < i and even. Then
such a class [ej]E must be chosen as the image of [ti]T . Furthermore, as all even indexed
classes < i are fixed, then for all s′ ≥ s, we have that fs′([ti]T) = fs([ti]T) = [ej]E .

Case 2: i is even. Recall that each even class ti will be tagged with G1(m) or G2(m) for some
m > 2i. Furthermore, we will also ensure that the tag of each given class is changed only
finitely often. By assumption that G2(y) < ∞ for all y, then the limit of the tag of ti
must be some finite value N . Consider some stage s large enough after n such that the tag
of [ti]T currently matches N , and at least m many classes of size exactly N have shown
up in the primitive recursive presentation of E and are also currently of size N . Such a
stage s must exist as N is in the range of G1 or G2; there should be at least m classes of
size N in E. At such a stage, we claim that fs([ti]T) ↓. When defining fs([ti]T), we must
ensure that [ti]T maps to some [ej]E of the same size (as the tag of ti) where j ≥ i/2 and
[ej]E ̸= fs([ti′]T) for any i′ < i. We need then to count the maximum number of classes
of size N which [ti]T is not allowed to map to. Consider the worst case as follows. Each
of the classes [ej′]E where j′ < i/2 is of size N . Furthermore fs([ti′]T) also maps to some
class [ej′]E of size N for all i′ < i. That is, there are potentially i + i = 2i many classes
of size N which [ti]T is not allowed to map to. However, we know that there are at least
m > 2i classes of size N . Thus there must be some [ej]E which can serve as the image for
fs([ti]T). After such a stage s, since s ≥ n, and #[ej]

s
E = #[ej]E = N , then for all s′ ≥ s,

fs′([ti]T) = fs([ti]T) ↓.

By induction, we have that lims fs(ti) ↓ for all i ∈ ω. It thus remains to check that f = lims fs is
an isomorphism. If i is even, then at the stage where fs([ti]T) becomes fixed, we know that the size
of fs([ti]T) is the same as the tag of [ti]T at that stage. Since [ti]T will eventually match the size
of its tag, then the size of [ti]T is the same as fs([ti]T). If i is odd, recall that the size of [ti]T is
kept the same as fs([ti]T) stagewise if fs([ti]T) ↓. That is, for stages s′ ≥ s after fs([ti]T) becomes
fixed, the size of [ti]T is the same as the size of fs([ti]T).

It follows directly from the definition of f that it is injective. To see that it is also surjective, let
[ej]E be some class in E. Fix some stage s such that #[ej]

s
E = #[ej]E and #[t2n]

s
T = #[t2n]

s
T for all

2n ≤ j. If one of [t2n]T is mapped to [ej]E by fs, then we have that [ej]E ∈ rng(f) as fs([t2n]T)
must have become fixed by the choice of s. Suppose then that none of the even indexed classes
2n ≤ j are mapped to [ej]E . Since fs([t2n]T) are all fixed, the next odd indexed class which maps

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 35

to [ej]E will have its image fixed as [ej]E . Recall that only even indexed classes are able to remove
another class from the domain of fs. Since all the even indexed classes with the ability to change
f−1
s′ ([ej]E) for s′ ≥ s already have fixed images, then once f−1

s′ ([ej]E) ↓ for some s′ ≥ s, it never
again changes. Furthermore, by the definition of fs′ , some odd indexed class must eventually map
to [ej]E . Thus f is surjective. □

Recall from Section 4.1 that if G2(y) = ∞ for some y, then we do not actually require f to witness
the bijection between E and T . Thus, in any case, we will construct equivalence structures T and
B of the correct isomorphism type.

Lemma 4.2. For each b ∈ B, #[b]B is equal to the limit of its tag.

Proof. The only classes which are possibly restricted are those of the form [bnσ⌢∞,j]B . If the nth

gadget was prepared with the ξ-block left open, then for σ of lower priority than ξ−, [bnσ⌢∞,j]B
needs to be kept at the same size as [q−1

σ (tn0)]Aσ
provided ασ(t

n
0) was defined to be q−1

σ (tn0). The
challenge procedure (recall from Section 4.2.4) now serves another purpose; if the size of [q−1

σ (tn0)]Aσ

does not grow, then we are able to diagonalise against some φτ where τ ≺ σ, making σ inactive,
and thus grow [bnσ⌢∞,j]B to the desired size. □

Applying Lemmas 4.1 and 4.2, we obtain that B ∼= E, and since h is trivially an isomorphism, we
also get that T ∼= E. It remains to verify that each requirement is met.

Lemma 4.3. lim sups |δs| = ∞.

Proof. We proceed by induction on m and show that for each m, there exists s such that |δs| ≥ m.
More specifically, we construct an infinite string σ approximated by σm = σ ↾ m such that for each
m, there are infinitely many s such that δs ⊇ σm. Furthermore, there are only finitely many s for
which δs ≺ σm.

Let σ0 = ⟨⟩. It is easy to see that the desired property holds for such a choice of σ. Now suppose
inductively that we have defined σm satisfying the desired property. We claim now that there exists
infinitely many s for which δs ⊇ σ⌢

m∞ or δs ⊇ σ⌢
m f . Suppose for a contradiction that there are

only finitely many stages s for which δs ⊇ σ⌢
m∞ or δs ⊇ σ⌢

m f . By the inductive hypothesis, this
means that there are infinitely many stages s for which δs = σm. Let these stages be given by
s0 < s1 < s2 < We may further assume that for all s ≥ s0, δs does not strictly extend σm.

Let si be given. We shall show that there exists some s > si for which δs ≺ σm. Referring the reader
back to the construction, each node δs is chosen from Γs−1 and if δs is not a terminal node of Γs−1,
then δs must have required attention at stage s−1 and subsequently marked as satisfied thereafter.
If δs never shifts left of δsi for any s > si, then any node τ ⊆ σm = δsi never becomes inactive
after stage si and will thus remain marked as satisfied. Since each node marked as satisfied can no
longer require attention, as long as δs never becomes lexicographically left of δsi , there can only be
finitely many stages s for which δs ⊆ δsi . But this contradicts our assumption that δsj = σm for
infinitely many sj > si. That is, for each si, there exists s > si where δs ≺ σm, which contradicts
the inductive hypothesis. That is, there must be infinitely many stages s for which δs ⊇ σ⌢

m∞ or
δs ⊇ σ⌢

m f .

36 HEER TERN KOH AND KENG MENG NG

If there are infinitely many s for which δs ⊇ σ⌢
m∞, then let σm+1 = σ⌢

m∞. Otherwise, let
σm+1 = σ⌢

m f . Observe that this ensures σm+1 satisfies the property that there are infinitely
many s for which δs ⊇ σm+1. Furthermore, by choice of σm+1, if there are infinitely many s for
which δs ≺ σm+1, then it follows that there are infinitely many s for which δs ≺ σm. □

As δs ∈ Γs, it follows that |
⋃

s Γs| = ∞ and that there is a path through
⋃

s Γs. Let δ denote the
left-most infinite path in

⋃
s Γs, and we now show that along δ, each requirement is satisfied. (In

fact δ = σ defined in the proof above.)

Lemma 4.4. Let σ ∈
⋃

n Γn of even length be given. If σ⌢∞ ⊆ δ, then lβσ becomes fixed after some
finite stage s. Similarly, if σ⌢f ⊆ δ, then lασ becomes fixed after some finite stage s.

Proof. Fix a stage s such that for all s′ > s, no nodes γ ≺ δ are added to
⋃

n Γn. Such a stage s
must exist, as the collection γ ∈

⋃
n Γn such that γ ≺ δ must be finite as δ is the left-most path. It

follows that lβσ (or lασ) does not change after stage s. □

Lemma 4.5. Let ξ ∈
⋃

n Γn of odd length be such that ξ ⊆ δ or ξ ≻ δ. For any gadget in which
the ξ-block is left open when it is prepared, there exists some later stage s where the ξ-block becomes
closed.

Proof. Let ξ be such that the nth gadget was prepared with the ξ-block left open. Recall that this
only happens if φτ (t

n
0) ↓ =B bnξ,j for some τ ∈ Γn terminal and τ ≻ ξ. Suppose for a contradiction

that the ξ-block within the nth gadget never becomes closed. This implies that after the nth gadget
becomes prepared, δs is never of higher priority than τ for all subsequent stages s. This directly
contradicts the assumption that ξ ≻ δ or ξ ⊆ δ. □

Definition 4.6. Let σ ∈
⋃

n Γn of even length be given. We define βσ on each gadget separately.
For each a ∈ Aσ where qσ(a) is in a gadget prepared before this version of βσ began, define βσ(a) =
h−1qσ(a). We now consider a for which qσ(a) is in some gadget, say the nth, started after this
version of βσ. While the nth gadget is being prepared, define βσ as follows.

• If qσ(a) =T tn0 , then define βσ(a) =B bn0 if it exists (at the time that βσ(a) has to be defined).
Otherwise, define βσ(a) =B bnσ⌢∞,0.

• If qσ(a) =T tnσ⌢∞,j for some j, then define βσ(a) =B bnσ⌢∞,j+1.

• Otherwise, define βσ(a) =B h−1qσ(a).

Once the σ⌢∞-block of the nth gadget is closed, let [tnσ⌢∞,k]T be the final class of the σ⌢∞ block

(if it exists). Then define βσ(a) =B bn0 for the a such that qσ(a) =T tnσ⌢∞,k.

While the definition above only defines βσ on classes, as long as we can prove that for the final
version of βσ, #[a]sAσ

is always at most #[βσ(a)]
s
B , and that #[a]Aσ

= #[βσ(a)]B , then βσ is a
primitive recursive isomorphism from Aσ onto B.

Recall that the intuition behind the definition of βσ on a single gadget is that if the structure Aσ

shows q−1
σ (tn0) ‘quickly’, in order to maintain the primitive recursiveness of βσ, we enumerate the βσ

block into the nth gadget. However, doing so would result in the temporary loss of surjectivity of

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 37

βσ. If instead q−1
σ (tn0) is ‘slow’ to show up, we then attempt to make βσ surjective, at least within

this gadget. We provide the formal details below.

Lemma 4.7. Let σ of even length be such that σ⌢∞ ⊆ δ. If qσ : Aσ →onto T is a primitive
recursive isomorphism, then βσ : Aσ →onto B is a primitive recursive isomorphism.

Proof. Fix some σ of even length such that σ⌢∞ ⊆ δ. Applying Lemma 4.4 allows us to conclude
that lβσ is fixed after some stage, say s∗. In particular, after s∗, the version of βσ is the final one.
Also suppose that lβσ = {τ0, τ1, . . . , τm}. We split the proof into three main parts; proof of primitive
recursiveness, surjectivity and injectivity.

Proof of primitive recursiveness. Let a ∈ Aσ be given. Once a is enumerated into Aσ, wait for
qσ(a) ↓ (which must happen in primitive recursive time). We run through the possible cases in
the definition of βσ. On all classes [t]T enumerated before stage s∗, it must be that [h−1(t)]B has
also been enumerated. Therefore, if qσ(a) =T t for some [t]T enumerated before stage s∗, then we
are able to define βσ(a) =B h−1qσ(a). In the cases that follow, we consider only the classes [t]T
enumerated after stage s∗.

• If qσ(a) =T tn0 , we claim that βσ(a) ↓ before (or within some primitive recursive delay of)
φτm(tn0) converging. If the gadget becomes prepared before φτm(tn0) ↓, then βσ(a) =B bn0
the moment the gadget becomes prepared. We may thus suppose that φγm(tn0) ↓ before bn0 is
enumerated into B. Referring the reader back to Section 4.3.1, if φτm(tn0) ↓ after q−1

σ (tn0) ↓,
then we would have enumerated [bnσ⌢∞,0]B into the nth gadget, serving as the βσ image for
[a]Aσ

.

• If qσ(a) =T tnσ⌢∞,j for some j and the σ⌢∞-block is not yet closed, then bσ⌢∞,j+1 must

have been enumerated into B the moment q−1
σ (tnσ⌢∞,j) ↓. On the other hand, if qσ(a) =T

tnσ⌢∞,j where j is the largest index in the σ⌢∞-block and the block has closed, we define
βσ(a) =B bn0 . We know that [bn0]B has been enumerated by the time that the σ⌢∞-block
closes as this only happens after the gadget is prepared.

• Finally, if none of the previous cases hold, then qσ(a) ̸=T tn0 and qσ(a) ̸=T tnσ⌢∞,j for

any j. That is, we have the property that [h−1qσ(a)]B is always enumerated at the same
time as [qσ(a)]T , and [h−1qσ(a)]B is not yet in the range of βσ. Thus we are able to let
βσ(a) =B h−1qσ(a).

We now have that βσ is primitive recursive as a map from the equivalences classes of Aσ to the
equivalence classes of B. It remains to prove that #[a]sAσ

≤ #[βσ(a)]
s
B . Observe that except t = tn0

for some n where the nth gadget is started after s∗, we have that for all s ≥ s∗, #[t]sT = #[h−1(t)]sT .
In particular, if βσ(a) =B h−1qσ(a) (qσ(a) ̸=T tn0), then we know that #[a]sAσ

≤ #[qσ(a)]
s
T =

#[h−1qσ(a)]
s
T or qσ cannot be primitive recursive and injective. On the other hand, if βσ(a) ̸=B

h−1qσ(a), then it follows that βσ(a) is in the σ⌢∞-block of the nth gadget. Recall that all classes
within such a block are either kept at the same size as #[q−1

σ (tn0)]
s
Aσ

or kept at the same size as
#[tn0]

s
T . Thus, for any a ∈ Aσ where qσ(a) =T tn0 or qσ(a) =T tnσ⌢∞,j for some j, it follows that

#[a]sAσ
≤ #[qσ(a)]

s
Aσ

≤ #[βσ(a)]
s
B .

Proof of surjectivity. We first prove that βσ is surjective on classes, and then argue that for each
a ∈ Aσ, #[βσ(a)]B = #[a]Aσ

. Let [b]B be given. If [b]B is not contained within any gadget, once
h(b) enters rng(qσ), then we would have defined βσ(a) =B b for the a such that qσ(a) =T h(b).

38 HEER TERN KOH AND KENG MENG NG

Furthermore, in such a case, provided that qσ is surjective, we will then obtain that #[a]Aσ
=

#[qσ(a)]T = #[h(b)]T = #[b]B . That is, for any element b which is not contained in a gadget,
b ∈ rng(βσ). The argument for elements contained within some gadget started before stage s∗ is
similar.

We may thus suppose now that [b]B is contained within some gadget started at some stage s ≥ s∗

(recall s∗ such that δs ⊇ σ⌢∞ or δs ≻ σ⌢∞ for all s ≥ s′). In addition to this, we may further
assume that b is of the form bn0 , or bnσ⌢∞,j for some n. If b is not of the form bn0 or in the σ⌢∞-
block, then applying a similar argument to before, once qσ(a) ↓ =T h(b) for some a, βσ(a) ↓ =B b
and b eventually enters rng(βσ). Recall from Definition 4.6 that once qσ(a) ↓ =T tnσ⌢∞,j for some
j, then we would have defined βσ(a) =B bnσ⌢∞,j+1. Similarly, once qσ(a) ↓ =T tn0 , then we would
have defined βσ(a) =B bnσ⌢∞,0. In summary, for each j, there exists some a ∈ Aσ for which
βσ(a) =B bnσ⌢∞,j , provided qσ is surjective.

Recall the intuition that if the σ⌢∞-block is not closed, then βσ will not be surjective. Applying
Lemma 4.5 together with the assumption that σ⌢∞ ⊆ δ allows us to conclude that the σ⌢∞-block
must eventually become closed. Once the σ⌢∞-block becomes closed, then we would have defined
βσ(a) =B bn0 for the a ∈ Aσ where qσ(a) ↓ =T tnσ⌢∞,k and [tnσ⌢∞,k]T is the final class within the
σ⌢∞-block. That is, after the σ⌢∞-block closes, provided qσ is surjective, we must eventually
define βσ(a) =B bn0 . Furthermore, after the block is closed, all classes within it are kept at size
either #[q−1

σ (tn0)]
s
T or #[tn0]

s
T . Provided that qσ is surjective, this would imply that all classes within

the σ⌢∞-block must have size #[tn0]T in the limit.

Proof of injectivity. From before, we already have that for any a ∈ Aσ, #[a]sAσ
≤ #[βσ(a)]

s
B .

Provided that βσ is injective on classes, then it follows that βσ can also be made injective on
elements. Suppose that βσ(a) =B βσ(a

′). We run through the following possibilities.

• Let n be such that the nth gadget was started after stage s∗. If βσ(a) =B βσ(a
′) =B bnσ⌢∞,j

for some j, then either qσ(a) =T qσ(a
′) =T tn0 or qσ(a) =T qσ(a

′) =T tnσ⌢∞,j−1. If qσ is
injective, we thus obtain that a =Aσ

a′.

• If βσ(a) =B βσ(a
′) =B bn0 for some n where the nth gadget is started after stage s∗, then we

have qσ(a) =T qσ(a
′) =T tnσ⌢∞,k where k is the largest index in the σ⌢∞-block within the

nth gadget, or qσ(a) =T qσ(a
′) =T tn0 (if the σ⌢∞-block does not exist in the nth gadget).

We may thus obtain that a =Aσ a′ provided that qσ is injective.

• If neither of the previous cases hold, then qσ(a) =T qσ(a
′) =T hβσ(a). Once again, this

implies that a =Aσ
a′.

Since βσ is surjective and injective on both the classes and elements, it follows that it is an isomor-
phism. □

Definition 4.8. Let σ ∈
⋃

n Γn of even length be given. We define ασ on each gadget separately.
For each t ∈ T in a gadget prepared before this version of ασ began, define ασ(t) = pσh

−1(t). Now
let t ∈ T be in some gadget, say the nth, which was started after this version of ασ. While the nth

gadget is being prepared, define ασ as follows.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 39

• If t = tn0 , then wait for φγ(t
n
0) ↓ for all τ ∈ lασ . If at least one of the τ is such that

φτ (t
n
0) ↓ =B bnσ⌢∞,j for some j, then define ασ(t

n
0) =Aσ

q−1
σ (tn0). Otherwise, define

ασ(t
n
0) =Aσ

pσ(b
n
σ⌢f,0).

• If t = tnσ⌢f,j for some j, then define ασ(t) =Aσ pσ(b
n
σ⌢f,j+1).

• Otherwise, define ασ(t) =Aσ
pσh

−1(t).

Once the nth gadget becomes prepared, if the σ⌢f -block exists within the nth gadget and becomes
closed, let [tnσ⌢f,k]T be the final class within the block, then define ασ(t

n
σ⌢f,k) =Aσ

pσ(b
n
0). On the

other hand, if the σ⌢f -block was not enumerated (ασ(t
n
0) =Aσ

q−1
σ (tn0) ↓), and t is such that t ̸=T tn0

but pσh
−1(t) =Aσ q−1

σ (tn0), then define ασ(t) =Aσ pσ(b
n
0).

Lemma 4.9. Let σ be of even length. If σ⌢f ⊆ δ, pσ : B →onto Aσ and qσ : Aσ →onto T are both
primitive recursive isomorphisms, then ασ : T →onto Aσ is a primitive recursive isomorphism.

Proof. Fix some σ of even length such that σ⌢f ⊆ δ. Applying Lemma 4.4 allows us to con-
clude that lασ is fixed after some stage s∗, and ασ never gets initialised again after s∗. Let
lασ = {τ0, τ1, . . . , τm} be the stable state of lασ . We split the proof into three main parts as be-
fore; proof of primitive recursiveness, surjectivity and injectivity.

Proof of primitive recursiveness. Let t ∈ T be given. It is easy to see that if ασ(t) was defined to be
pσh

−1(t), then t ̸=T tn0 for any n and the classes [t]T and [h−1(t)]B would have been enumerated into
B and T respectively at the same time. Thus, for such classes, #[t]sT = #[h−1(t)]sB ≤ #[pσh

−1(t)]sAσ
;

ασ is primitive recursive on all elements contained in such classes. In the cases that follow, we
consider the classes on which ασ is not defined to be pσh

−1. In particular, t is of the form tn0 or
tnσ⌢f,j for some j, or t is such that ασ(t) =Aσ

pσ(b
n
0).

Recall that when defining ασ(t
n
0), we are allowed to wait until φτi(t

n
0) ↓ for all τi ∈ lασ . We then

have the following possibilities.

• There is some i such that φτi(t
n
0) ↓ =B bnσ⌢∞,j for some n. In order for this to hold, it must

be that q−1
σ (tn0) ↓, otherwise we would not have enumerated any class of the form [bnσ⌢∞,j]B

into the nth gadget. This implies that we are able to successfully define ασ(t
n
0) =Aσ q−1

σ (tn0).
It remains to check that at each stage s ≥ s∗, #[tn0]

s
T ≤ #[ασ(t

n
0)]

s
Aσ

. In particular, we need

only check that it holds after the nth gadget becomes prepared (recall that all classes are
of size 1 while the gadget is being prepared).

Suppose that the gadget becomes prepared with the ξ-block left open. If σ is of higher
priority than ξ−, or if σ = ξ−, then provided (D4) holds, we obtain that (qσpσ)

−1(tn0) ↓ =B b
for some b where #[b]sB = #[tn0]

s
T for all s ≥ s∗. On the other hand, if σ is of lower priority

than ξ−, then all classes of the form [bnσ⌢∞,j]B are kept at the same size as [q−1
σ (tn0]Aσ

stagewise. That is to say, if #[tn0]
s
T > #[q−1

σ (tn0)]
s
Aσ

= #[bnσ⌢∞,j]
s
B , then we obtain that

#[tn0]
s
T > #[φτi(t

n
0)]

s
B for the φτi ∈ lασ which converged to some element in the σ⌢∞-block.

By the time the delay allowed for ασ is up, either [q−1
σ (tn0)]Aσ has grown, or we obtain a

diagonalisation against some τi ≺ σ. But the latter cannot happen since we assumed that
δs never goes left of σ⌢f for s ≥ s∗.

40 HEER TERN KOH AND KENG MENG NG

If the gadget becomes prepared with all blocks closed, then all classes within this gadget
will be kept at the same size. That is to say, as long as (D3) holds, we obtain that there
exists b within the nth gadget such that q−1

σ (tn0) =Aσ
pσ(b) and #[b]sB = #[tn0]

s
T .

• Not the previous case: none of φτi(t
n
0) converged to some element within the σ⌢∞-block.

Recall from Section 4.3.1 that if this happens, then we would enumerate the class [bnσ⌢f,0]B
into B. Furthermore, the pσ image of such a class will serve as the ασ image for tn0 . Since
the classes within any γ-block where γ = γ− ⌢f is kept to be the same size as [tn0]T , we
thus obtain that #[tn0]

s
T = #[bnσ⌢f,0]

s
B ≤ #[pσ(b

n
σ⌢f,0)]

s
Aσ

for all s ≥ s∗.

If t =T tnσ⌢f,j for some j, then provided that the σ⌢f -block within the nth gadget is not yet closed,

we would have enumerated [bnσ⌢f,j+1]B into B, thus providing the ασ image for t via pσ(b
n
σ⌢f,j+1).

Once the σ⌢f -block closes, we would define ασ(t
n
σ⌢f,k) =Aσ

pσ(b
n
0). Using the same argument as

before, since all classes within the σ⌢f -block is always kept at the same size as [tn0]T , then we have
that on all such elements, #[t]sT ≤ #[ασ(t)]

s
Aσ

.

Finally we consider the case that ασ(t
n
0) =Aσ q−1

σ (tn0) and t is such that t ̸=T tn0 but pσh
−1(t) =Aσ

ασ(t
n
0). For such a class [t]T , we would like to define ασ(t) =Aσ pσ(b

n
0). It thus remains to argue

that should such a class [t]T be found, the nth gadget must have become prepared. This follows
directly from ensuring that (D5) holds during the construction. If (D5) is discovered to fail for σ at
stage s, then we would have declared δs = σ. Applying the assumption that for all stages s ≥ s∗,
δs ⊇ σ⌢f or δs ≻ σ⌢f , we obtain that (D5) will never be discovered to fail for σ after stage s∗.
Furthermore, such a t must be contained within some closed block of the gadget, allowing us to
obtain #[t]sT ≤ #[tn0]

s
T = #[bn0]

s
B ≤ #[pσ(b

n
0)]

s
Aσ

.

Proof of surjectivity. We first show that ασ is surjective on the classes, and then show that for each
t, #[t]T = #[ασ(t)]Aσ

. Provided that pσ is surjective, there exists b ∈ B such that pσ(b) =Aσ
a. We

consider the following possibilities for b.

If b is not contained within any gadget, then we know that ασh(b) =Aσ
pσ(b). Furthermore, we

have that #[h(b)]T = #[b]B , and if pσ is surjective and an isomorphism, it must also be that
#[b]B = #[pσ(b)]Aσ

= #[a]Aσ
. Thus, for all a ∈ Aσ where p−1

σ (a) is not contained within any
gadget, a ∈ rng(ασ).

We may thus suppose that a is such that b := p−1
σ (a) is contained within some gadget. We may

further assume that this gadget was started after stage s∗, otherwise b will have the property that
ασh(b) =Aσ pσ(b) and the previous argument applies. Let this gadget be the nth and suppose that
the σ⌢f -block was not enumerated into the nth gadget (ασ(t

n
0) =Aσ q−1

σ (tn0)). We consider the
different possible b within the nth gadget.

• If b is such that pσ(b) =Aσ
q−1
σ (tn0), then we have that ασ(t

n
0) =Aσ

a. Using the assumption
that qσ is an isomorphism, we have that #[tn0]T = #[q−1

σ (tn0)]Aσ
; [a]Aσ ⊆ rng(ασ).

• If b =B bn0 , then provided that pσ is surjective and (D5) holds, there must be some b′ within
the nth gadget for which pσ(b

′) =Aσ
q−1
σ (tn0). Once such a b′ is found, we would have defined

ασh(b
′) =Aσ

pσ(b
n
0). Provided that (D5) holds, such a b′ must come from one of the closed

blocks within the nth gadget. Applying Lemma 4.2, we obtain that #[h(b′)]T = #[bn0]B
which in turn must be equal #[pσ(b

n
0)]Aσ

provided pσ is an isomorphism.

THE PUNCTUAL DEGREE STRUCTURE OF EQUIVALENCE RELATIONS 41

• If neither of the previous cases hold, then it follows that ασh(b) =Aσ pσ(b). It is easy to see
that #[h(b)]T = #[b]B = #[pσ(b)]Aσ

, where the last equality follows from the assumption
that pσ is an isomorphism.

Now consider the possibility that the σ⌢f -block was enumerated into the nth gadget. This means
that within the nth gadget, we did not define ασ(t

n
0) =Aσ

q−1
σ (tn0). Since σ

⌢f ⊆ δ, then by Lemma
4.5, there must be some finite stage at which the σ⌢f -block becomes closed. Once it does, let
[bnσ⌢f,k]B be the final class in the σ⌢f -block. Following Definition 4.8, we know that

• for each j ≥ 1, ασ(t
n
σ⌢f,j−1) =Aσ pσ(b

n
σ⌢f,j),

• ασ(t
n
σ⌢f,k) =Aσ pσ(b

n
0) ,and

• ασ(t
n
0) =Aσ

pσ(b
n
σ⌢f,0).

That is, for the a ∈ Aσ such that p−1
σ (a) =B b where b = bn0 or is contained within the σ⌢f -block,

there exists t ∈ T such that ασ(t) =Aσ
a. Since all classes within the σ⌢f -block will be kept at

the same size stagewise as #[tn0]
s
T , we also obtain that for all such a ∈ Aσ, [a]Aσ

⊆ rng(ασ). Thus,
regardless of whether σ⌢f -block was enumerated into the nth gadget or not, for each a ∈ Aσ where
p−1
σ (a) is in the nth gadget, a ∈ rng(ασ).

Proof of injectivity. Since we already have that for each t ∈ T and for each stage s ≥ s∗, #[t]sT ≤
#[ασ(t)]

s
Aσ

, it suffices to show that ασ is injective on the classes. Suppose that t, t′ are such that
ασ(t) =Aσ

ασ(t
′). If t, t′ are not contained within any gadget or contained within some gadget

prepared before s∗, then it follows that ασ(t) =Aσ
pσh

−1(t) and ασ(t
′) =Aσ

pσh
−1(t′). Since pσ is

assumed to be an isomorphism, it follows that t =T t′.

We may thus assume that t, t′ are contained within some gadget started after stage s∗. It is not hard
to see that if t ̸=T tn0 and t′ ̸=T tn0 , then ασ(t) ̸=Aσ

ασ(t
′), otherwise pσ cannot be an isomorphism.

It thus remains to check the possibility that t =T tn0 but t′ ̸=T t. In particular, it could potentially
be an issue only if ασ(t

n
0) was defined to be q−1

σ (tn0) and t′ is such that pσ(t
′) =Aσ q−1

σ (tn0). However,
recall that should this be discovered, we would have defined ασ(t

′) =Aσ
pσ(b

n
0). Furthermore, as

h(bn0) = tn0 , for no other t′′ would ασ(t
′′) =Aσ

pσ(b
n
0).

Since ασ is bijective on classes and for each t ∈ T, #[t]T = #[ασ(t)]Aσ
, then ασ is an isomorphism.

□

Lemma 4.10. If τ ⊆ δ is of odd length, then Qτ is satisfied.

Proof. Since τ ⊆ δ, then there exists some stage s∗ such that for all s ≥ s∗, δs ⊇ τ or δs ≻ τ . In
other words, past stage s∗, τ is always an active node (contained in Γs). Since δ ⊇ τ , then we know
that the subtree extending τ in

⋃
n Γn must be infinite. In particular, there must be some stage

s ≥ s∗ such that δs = τ . By a simple analysis of the formal construction, we may then conclude
that τ must have been placed in either the assigned state or the satisfied state during such a stage.

If Qτ was assigned to the nth gadget, then on the nth gadget, bn ⊈ rng(φτ). Otherwise, the nth

gadget would have required attention should the aforementioned property be found to fail. This
then guarantees that we obtain a permanent diagonalisation against φτ , thus satisfying Qτ . Either
φτ is never surjective, or we obtain a diagonalisation against it at some finite stage. On the other

42 HEER TERN KOH AND KENG MENG NG

hand, if τ is ever placed in a satisfied state, a simple analysis of the formal construction allows us
to conclude that a diagonalisation against it was obtained. □

References

[1] Nikolay Bazhenov, Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Online presentations of finitely

generated structures. Theoretical Computer Science, 844:195–216, 2020.

[2] Wesley Calvert, Douglas Cenzer, Valentina Harizanov, and Andrei Morozov. Effective categoricity of equivalence
structures. Annals of Pure and Applied Logic, pages 61–78, 2006.

[3] Marina Dorzhieva, Rod Downey, Ellen Hammat, Alexander Melnikov, and Keng Meng Ng. Punctually presented

structures II: comparing presentations. Submitted.
[4] Rod Downey, Noam Greenberg, Alexander Melnikov, Keng Meng Ng, and Dan Turetsky. Punctual categoricity

and universality. Journal of Symbolic Logic, 85:1427–1466, 2020.

[5] Rod Downey, Alexander Melnikov, and Keng Meng Ng. On ∆0
2-categoricity of equivalence relations. Annals of

Pure and Applied Logic, 166:851–880, 2015.

[6] Noam Greenberg, Matthew Harrison-Trainor, Alexander Melnikov, and Dan Turetsky. Non-density in punctual
computability. Annals of Pure and Applied Logic, 172:102985, 2021.

[7] Asher M. Kach and Daniel Turetsky. ∆0
2-categoricity of equivalence structures. New Zealand Journal of Math-

ematics, 39:143–149, 2009.
[8] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures computable without delay.

Theoretical Computer Science, 674:73–98, 2017.

[9] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. The diversity of categoricity without delay.
Algebra and Logic, 56:171–177, 2017.

[10] Iskander Kalimullin, Alexander Melnikov, and Maxim Zubkov. Punctual degrees and lattice embeddings. Aspects

of Computation and Automata Theory with Applications, pages 315–334, 2023.
[11] Heer Tern Koh, Alexander Melnikov, and Keng Meng Ng. A non-density aspect of the rationals. Submitted.

[12] Anatoly I. Mal’tsev. Constructive algebras I. Russian Mathematical Surveys, 16:77–129, 1961.

[13] Alexander Melnikov and Keng Meng Ng. The back-and-forth method and computability without delay. Israel
Journal of Mathematics, 234:959–1000, 2019.

[14] Alexander Melnikov and Keng Meng Ng. A structure of punctual dimension two. Proceedings of the American
Mathematical Society, 148:3113–3128, 2020.

[15] Michael O. Rabin. Computable algebra, general theory and theory of computable fields. Transactions of the

American Mathematical Society, 95:341–360, 1960.

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

