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ABSTRACT. An a-coloring ¢ of a structure . is distinguishing if there are no nontrivial automorphisms of . respect-
ing ¢. In this note we prove several results illustrating that computing the distinguishing number of a structure can
be very hard in general. In contrast, we show that every computable Boolean algebra has a 0"’ -computable distin-
guishing 2-coloring. We also define the notion of a computabile distinguishing 2-coloring of a separable space; we
apply the new definition to separable Banach spaces.

We study distinguishing numbers of computable structures and computable separable spaces. The dis-
tinguishing number of a structure is defined as follows. An a-coloring, where a < w, of a structure . is a
function from the domain of . into a set of size a. An a-coloring ¢ is distinguishing if there are no nontrivial
automorphisms of . respecting ¢: i.e. if f is a nontrivial automorphism of ., then there is an element a € .
with ¢(f (a)) # ¢(a). The distinguishing number of a countable structure .# is the least @ < w such that . has
a distinguishing a-coloring. The idea is that the distinguishing number of a structure gives a new measure
of the complexity of the structure. Distinguishing numbers have been extensively studied in combinatorics.
Albertson and Collins [1I] introduced the notion for finite graphs, and [16] studied distinguishing numbers
of infinite graphs. For example, the random graph has a distinguishing 2-coloring [16]. For more results in
combinatorics, the reader is referred to, e.g., [17}23}[13].

How hard is it to decide whether the distinguishing number of a given algebraic structure is equal to 22
Also, how difficult is it to compute the a-coloring of a given structure? Miller, Solomon, and Steiner [20] ini-
tiated the study of computability-theoretic aspects of distinguishing colorings. They mainly restricted them-
selves to trees. The main purpose of this note is to extend the approach from [20] to arbitrary algebraic struc-
tures and also define the notion of a computable coloring for separable spaces. To do that, we apply the tools
of computable structure theory (12} 2] and computable analysis [24]. To keep the note as brief as possible,
we shall not give any detailed explanation or motivation here. We only note that the questions raised above
can be viewed as computable classification problems. See surveys [14} [21}[I0] for more about applications of
computability to classification problems, and see [8}[9}/5}[19] for several recent results into this direction.

In Subsectionwe prove that, for any computable ordinal e, there is a computable structure . with dis-
tinguishing number 2, which does not have 0(%)-computable distinguishing 2-colorings. In Subsection
we prove that the index set of structures having distinguishing number 2 is both Zi—hard and 1'[% -hard. Since
the results are fully relativizable, the results of the first two sections give a strong evidence that the distin-
guishing coloring problem does not have any tractable solution for countable structures. In contrast with
this “anti-structure” result (in the sense of [14]), in Subsectionwe prove that every computable Boolean
algebra has a 0”-computable distinguishing 2-coloring; we leave open whether 0" is sharp. In Section[2]we
introduce the notion of a computable distinguishing 2-coloring for a separable space. We apply the new no-
tionin Subsectionwhere we prove that every Banach space that has a strongly computable Schauder basis
(to be defined) has a computable distinguishing 2-coloring. In each of these subsections we also state open
problems, some of which seem to be rather challenging.

1. COLORING COUNTABLE ALGEBRAIC STRUCTURES

1.1. The complexity of distinguishing colorings. Recall that a computable presentation of a countably infi-
nite algebraic structure < is a structure 4 = o/ upon the domain of natural numbers w such that the oper-
ations and relations on 2 are (uniformly and Turing) computable. In this section, we show that for a com-
putable structure ., the complexity of an optimal distinguishing coloring cannot be bounded in the hyper-
arithmetical hierarchy.

Given a graph G, we define a new graph Double(G): Every node v of G is replaced by two nodes v[0] and
v[1]. Nodes v[i] and w|j] are connected by an edge in Double(G) if and only if there is an edge from v to w
inside G. It is not hard to prove:

Lemma 1.1. Let G be a graph.
(a) Foranodev e G, the map
v(1-il, ifx=vlil,

X, otherwise,

fv(x):{
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is an automorphism of the structure Double(G). Hence, if¢ is a distinguishing coloring of Double(G),
then¢(v[i]) #{(v[1—il).

(b) Suppose that¢: Double(G) — {0,1} is a distinguishing 2-coloring of Double(G). Then for i € {0,1}, the
substructure H; < Double(G) on the domain {x : {(x) = i} is isomorphic to G.

(c) Supposethaté: G—{1,2,...,n} is a distinguishing n-coloring of G. Then the map

&), ifi=0,

EDouble (V[i]) = {{(y) on ifiol,

is a distinguishing 2n-coloring of Double(G).

Theorem 1.1. For every computable ordinal a, there is a computable structure # with distinguishing number
2, which does not have 0% -computable distinguishing 2-colorings.

Proof. The language of . contains unary predicates Ry, n € w, and one binary predicate Q. For e € w, the

predicate R, forms the e-th box inside .. This box is intended to witness that the function (pg(a) cannot be a
distinguishing 2-coloring of .. Beforehand, we add elements ae, b, and c, inside the e-th box.

Without loss of generality, one may assume that a > w and @ = 2 + 1. For convenience, we interpret 0
as “red” and 1 as “blue”. By employing the technique of pairs of computable structures 3] (see, e.g., Theo-
rem 3.1 of [4] for a similar argument), we build computable sequences (Ze)ecw, (Be)ecw, and (€e) ecw With
the following properties:

(i) If some of the values wg(m (ae), ng(m (be), or (pg(m (ce) is undefined or some of these values does not

belong to {0, 1}, then o, = P, Be = P2, and e = wh 3.
(ii) Assume otherwise. Then:
(a) e is isomorphic to P -aif <p2(°” (ae) = <p2(“) (be) or <p2‘°” (ae) = <p2(“) (ce) # (pg(a) (be). Other-
wise, ofp = wh.
D e = 90 (co) # 00 (ap). Other-

(b) e is isomorphic to oP-4if ng(a) (ae) = (pg(m (be) or (pg(
wise, B, = wP 2.
(€) 6. isisomorphic to oP-aif wg(a) (ae) # (,ogmJ (be). Otherwise, €, = P 3.

Inside the structure ., we put the graphs Double(<.), Double(28,), and Double(%é,) into the e-th box.
We add an edge between a, and every element of Double(<f). We note that by Lemma the structure
Double(«,) has a distinguishing 2-coloring. Treat b, and Double(Z,), c. and Double(%é,) in a similar way.

It is not difficult to show that the structure . is not rigid. Moreover, there is a distinguishing 2-coloring
of & For every e, the e-th box contains at most two isomorphic “double graphs” — e.g., suppose that <7, =
PBe Z €e. Then the desired coloring can be defined as follows. Choose arbitrary distinguishing 2-colorings of
Double(s#,), Double(%,), and Double(%,). After that, the node a, is colored blue, b, is colored red, and for
Ce ONe can assign any color.

Aiming for a contradiction, assume that tpg(a) is a distinguishing 2-coloring of .. Then there are at least
two nodes from the set {ae, be, e} such that (pg(a) colors them in the same color; say, <p2“" (be) = (pg(a) (ce) =0.

If (pg(a) (ae) =0, then by Lemma (b), each of the graphs Double(«,) and Double(Z,) can be decom-
posed in a red copy of P-4 and a blue copy of wPB-4. Note that both ae and b, are colored red. Thus, one can
recover a color preserving automorphism of ., which maps Double (<) onto Double(%,).

If (pg(a) (ae) = 1, then a similar argument shows that there is a color preserving automorphism mapping
Double(%,) onto Double(%,). We obtained a contradiction, hence, no 0(“)—computable function can be a
distinguishing 2-coloring for the structure .. O

1.2. Index sets.

Theorem 1.2. The index set of computable structures with distinguishing number 2 is both Zi -hard and H% -
hard.

Proof. First, we establish the Z% -hardness. In order to do this, we prove the following:

Lemma 1.2. Let & be a computable linear order such that every block of £ is infinite. Then there is a 0'-
computable distinguishing 2-coloring of £ .

Proof. We write a < bif b is an immediate successor of a inside £. We define our coloring as follows. At stage
0, pick the element 0 of £, and find three elements a < b < ¢ such that 0 € {a, b, ¢} (using the 0'-oracle to find
successors). Both a and c are colored red, and b is colored blue.

At stage s > 0, use the oracle to find s+ 3 immediate successors ny < n] < --- < ng4] < ngyp such that
se{ng,ny,..., ns4+2}. If any of these elements is already colored, then simply color all of these s+ 3 elements
red, except those which are already colored. If none of these elements is already colored, then color ng and
ng4o red, and color the intervening elements ny,..., ng41 blue, creating a sequence of exactly s+1 consecutive
blue elements in Z. This completes stage s.
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Clearly this construction gives a 0'-computable 2-coloring of . Moreover, within £, every block contains
at least one sequence of finitely many blue elements with red at each end, created at the first stage at which
the construction encountered an element of this block. However, no two of these sequences have the same
length, since no two were created at the same stage. Therefore, no automorphism can map any block to a
different block and still respect the coloring. Furthermore, a similar argument shows that if an automorphism
respects the coloring, then every {-block must stay fixed. Therefore, the only automorphism respecting the
coloring is the identity. O

Let S be a H} set. There exists a computable total function f such that, for all n, f(n) is the index of a
computable linear order %, with

somea<w1CK, ifnes,

1 Zn =
W " {wla(-(lw]), ifngs.

Any ordinal & has distinguishing number 1. By Lemma the Harrison order wICK -(1+mn) has distinguishing
number 2. Therefore, our index set is Z} -hard.
Now we show that the index set is H% -hard. For the sequence (£)) new from , define .4, = Double(%y,).
If n€ S, then %, is isomorphic to an ordinal. By Lemma the structure .#, has distinguishing number 2.
Suppose that n ¢ S. Let .4 = My, and let ¢: 4 — {0,1} be a distinguishing 2-coloring. Consider the
substructure o of .4 on the domain {a: {(a) = 0}. By Lemma (b), the graph &/ is isomorphic to the
Harrison order. Fix a nontrivial automorphism g of . Define D(v[i]) := v[1 — i]. Then the map

g () = gx), ifxe o,
D(g(D(x)), ifx¢ o,

is a nontrivial automorphism of .#, which respects . Therefore, .# has no distinguishing 2-colorings, and
our index set is 1'[} -hard. O

Problem. What is the exact (optimal) complexity of the 2-coloring problem in the analytic hierachy?

1.3. Boolean algebras. In contrast to Theorem computable structures from some familiar classes admit
distinguishing colorings of fairly low arithmetical complexity. We illustrate this by the following:

Theorem 1.3. Any computable Boolean algebra B has a 0" -computable distinguishing 2-coloring.

Proof. Without loss of generality, we assume that 28 is infinite. We build a generating tree T for 28 such that T
is 0"'-computable (a detailed exposition of the generating trees technique can be found in [15]). The desired
coloring ¢ is defined as follows:

(a) If anode from T has precisely two children a, b, and both a and b are atoms of %, then color a red
and b blue.
(b) All other nodes from T are colored red. All elements from 28\ T are colored blue.

Let f be an automorphism of 98, which respects our coloring. If a is a generator (i.e., an element of T), then
f(a) is also a generator. The construction of T will ensure that f(a) equals a. Since every element of 48 is a
finite sum of generators, we deduce that f is the identity map.

We build T as a subtree of w<®. For a € 4, let cr(a) = card({x : x <@ a}).

If a is a sum of n = 2 atoms of 98, then its fishbone is the following tuple of elements. For n = 2, put
fb(a) := (b, c), where b < ¢ are the atoms below a. For n = 3, define fb(a) := (b, a\ b,fb(a\ b)), where b is the
<n-least atom below a. Every fishbone is associated with a finite tree in a natural way: For n = 2, its root a
has two children b and c. For n = 3, the root a has two children b and a\ b; and a\ b serves as the root of an
adjoined tree corresponding to fb(a\ b). It is clear that there is no nontrivial automorphism of a fishbone tree,
which respects the coloring described above.

At stage 0, we put the element 1% as the root of T. Choose an element a ¢ {0%,1%}. One may assume that
22 < cr(a) < cr(a). Here a denotes the complement of a. We add a and @ as the children of 198,

For k = 2, define r(k) =2+3+---+ (k+ 1). Using the 0" -oracle, check whether a is a sum of finitely many
atoms. If a is a sum of n atoms, then adjoin the fishbone tree corresponding to fb(a) under 1%, Split @ into
three parts by, b1, by such that for each i, we have cr(b;) = 2@ putall b; as children of a.

If cr(a) = w, then split a into 2 parts (they will be children of a) and @ into 3 parts (children of a). We
require that for each of these parts u, we have cr(u) = 2" @ In both cases, it is clear that the elements a and a
are not automorphic as elements of the tree.

Atstage s > 0, we look at each element a of the tree such that a does not have children and a is not an atom.
Note that each of the siblings of a also has these properties. Let v be the parent of a, and let by, b,..., by be
all children of v. The previous stage ensured that for each i, cr(b;) = 2’””2), and at least one of b; satisfies
cr(b;) =w.

If b; is a sum of m atoms, then we split b; into (i +2) parts ¢y, ..., c;+1 (the children of b;) such that cr(Cj) =

272 for j =i, and add the fishbone trees corresponding to all ¢; under b;. If cr(b;) = w, then we split b; into
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(k +3) parts do, dy,...,dyp such that cr(d;) = 2rk+4) for each Jj. This kind of procedure ensures that the
elements b;, i <k, of the tree are pairwise not automorphic. Moreover, all ¢; are pairwise not automorphic.
Consider the coloring ¢ of 28 discussed in the beginning. Let f be an automorphism of 28 respecting ¢.
Then f [ T is an automorphism of T. A nontrivial automorphism of T can only switch a pair of atoms a and b
described in the condition (a) above. This implies that the coloring ¢ is distinguishing. O

We do not know if the estimate 0" is sharp. Note that if % is an atomless Boolean algebra, then the proof
of Theoremproduces a computable 2-coloring of 2.

Problem. Does every computable Boolean algebra possess a computable distinguishing coloring?

2. COLORING SEPARABLE SPACES

2.1. The definition of a computable 2-coloring for a separable space. Let .4 = (M, d) be a metric space and
x be a cardinal. We follow [6] and define the distinguishing number of ./ as the least cardinal x such that .4
has a distinguishing x-coloring, up to surjective isometry. For simplicity, in this section we focus on the case
when k =2.

Recall that a computable presentation of a Polish metric space .4 is a countable metric space X = (w,d)
such that d(i, j) is a real uniformly computable in i, j, and the completion X = .#, where = stands for iso-
metric isomorphisnﬂ A Cauchy name of a point a € ./ is a sequence (in) new in X such that d(a,in) <27".
A point is computable if it has a computable Cauchy name. Let X, Y be computable presentations of Polish
metric spaces. Amap F: X — Y is computable if there is a Turing functional ® such that, for each x in the
domain of F and for every Cauchy name y for x, (®X (n)) e is a Cauchy name for F(x). Note that we do not
require the Cauchy names to be necessarily computable. It is well-known that computability of F implies that
F is continuous; e.g., [24].

The first, naive attempt to define computable 2-coloring says that the coloring function ¢ : .4 — {0,1} is
computable. In particular, if & : .4 — {0,1} is computable then then ¢~1(0) u&~1(1) must be a partition of
. into its clopen components. For a connected .#, this is vacuously impossible unless one of the £1(i) is
empty. Even for spaces which are not connected, the condition “¢~1(i) is clopen” seems too strong.

We therefore abandon this idea. Instead, we put computability-theoretic conditions on the sets ¢ -1 (i), as
follows. Let X be a computable presentation of .#. Recall that an open subset L of ./ is Z(l) or c.e. (withrespect
to X) if there is a a computably enumerable set W such that L = Uci,ryew Br (i), where By (i) = {x: di,x)<r}
is the basic open ball centered in i and with radius r € Q. A closed set C is H(l) if #\Cis Z(l). A closed set C
is computable if it is H(l) and additionally it contains a sequence (x;) ¢, of uniformly computable points such
that its completion is equal to C.

We return to colorings of a metric space .#. Most common separable metric and normed spaces have a
natural computable presentation. We fix such a computable structure X on ..

Definition 1. A distinguishing 2-coloring ¢ : .4 — {0,1} is computable if ¢ -1 (0) is a computable closed subset
of M.

2.2. Coloring separable Banach spaces. We test the new notion to separable Banach spaces. For the theory
of computable Banach spaces, see [22]. For a Banach space, on top of computability of the metric induced by
the norm, we also require that the standard operations of addition and scalar multiplication are computable
with respect to this metric induced by the norm. This extra assumption about computability of the operations
cannot be dropped even for the space C[0,1]; see [18]. However, every computable Banach space is still a
computable Polish space, thus Deﬁnitiondoes not have to be adjusted.

Let B be a Banach space. A sequence (ey;) new of elements of B is a Schauder basis of B if for any element
v € B, there is a unique sequence of scalars (a) new such that v = Z?S:(] anpen. Ina computable Banach space
B, we say that a Schauder basis (e;)new of B is strongly computable if the sequence (e;)new is uniformly
computable and furthermore there is a computable procedure B — R® which, on input x € B, outputs a
sequence of real numbers (a;) such that x =Y ; a;x;. (Here R? is the standard computable presentation of
the w -dimensional Hilbert space.)

Theorem 2.1. Let B be a real computable Banach space with a strongly computable Schauder basis. Then B
has a computable distinguishing 2-coloring (as a metric space).

Proof. Let (e;)je be a strongly computable Schauder basis of B. We color the following set of elements from
B red:
U={0tufe;,(i+2)e;:icw}
and all other elements are colored blue.
We claim that the set U is closed. Indeed, suppose that a sequence (v5)new of distinct elements from U
converges to some w € B. For m € w, consider the projection operator Py, : Zi"zo aep — ZZ":O apey. For
almost all vy, we have Py, (vy) = 0. Since the operator Py, is continuous, we obtain Py, (w) = 0. Therefore,

LFor a finite metric space we also allow the domain to be an initial segment of w. We allow d(i, j) = 0 in X = (w, d); a standard trick can be
used to remove repetitions.
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we deduce that w = 0 € U. Furthermore, we claim that U is a computable closed set. To see why, fix the
computable map s : B — R“ witnessing strong computability of the Schauder basis (e;;) pew. Then B\ U is
equal to the pre-image under s of the effectively open set

{7=wnere: @i ju#08v; #0) v @iv; ¢ 1,i+23)}.

It follows that U is H(l). Since the sequence (ey;) e is uniformly computable by assumption and the operations
on B are computable, we conclude that the set U = {0} U {e;, (i + 2)e; : i € w} is a computable closed set.

Now we show that our 2-coloring is distinguishing. Suppose that F is a surjective isometry of B, which
respects the coloring. Since B is a real normed space, the Mazur—Ulam Theorem implies that there is a linear
map L: B— B such that F(x) = L(x) + F(0) for all x.

Since F respects the coloring, we have F(0) € U. Assume that F(0) = me; for some i € w and m > 0. For
every j € w, we have

F(ej) = L(ej) + F(0) = L(e;j) + me; € U;
hence, L(e;) = gjer; —me; for some gj,r;j € w. Since F is a bijection, one can choose j such that r; # i. On
the other hand, we obtain

F((j+2)ej) = (j+2)Llej) + me; = (j+2)qjer; —m(j+1)e; ¢ U,

which contradicts the coloring preservation. Therefore, we deduce that F(0) = 0, and F itself is a linear map.
By employing the linearity of F, it is not hard to show that F(e;) = e; for all i € w. Let x be an arbitrary
element from B. Consider its decomposition x = Z‘Z":O ayepn. Then we have

k k k
d(x, > anen) = d(F(x),F( > anen)) =d(F(x), > anen) — 0.
n=0 n=0 n=0 k—o0
Therefore, F(x) = x, and F is the identity map. Od

Many common spaces such as C[0, 1] and ¢, satisty Theorem Nonetheless, not every Banach space
possesses a Schauder basis; see, e.g., [11]. In fact, the existence of such a space had been an open problem
for quite some time. On the other hand, we conjecture that there is a computable Banach space that admits
a Schauder basis but has no computable presentation with a strongly computable Schauder basis. Note that
Bosserhoff [7] constructed a computable Banach space with a Schauder basis, which does not have a com-
putable Schauder basis.

Problem. Is there a Banach space with no distinguishing 2-coloring or atleast with no computable 2-coloring.
More generally, the problem below is wide open.

Problem. Investigate the computability-theoretic content of the coloring problem for Polish metric and sep-
arable Banach spaces.

Finally, we wonder whether Deﬁnitioncan be naturally extended to the case of more than 2 colors.
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