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Abstract. We investigate which computable equivalence structures are isomorphic relative
to the Halting problem.

1. Introduction

This paper is within the scope of two frameworks: the first one investigates effective prop-
erties of equivalence relations (to be discussed in Subsection 1.1), and the other one studies
non-computable isomorphisms between computable structures (see Subsection 1.2). The main
idea of this paper can be described as follows: We view a computable equivalence structure as
an abstraction to the situation when a computable algebraic structure has several components.
Examples of such structures include direct or cardinal sums of groups or rings, shuffle and
free sums of Boolean algebras, and graphs having several connected components. We simplify
the situation by essentially removing all algebraic content from each component, so that we
have to care only about matching the sizes of components correctly when we construct an
isomorphism. The idea is that to understand the general situation, we should first understand
the much simpler associated setting where the algebra has been stripped away. In particular,
the present paper is a companion to Downey, Melnikov and Ng [12], where p-groups are as-
sociated with equivalence relations. One might expect that it would be easy to understand
∆0

2-isomorphisms for these “degenerate” computable structures, particularly ones as simple as
equivalence relations. We will see that the subject is a lot deeper than one might expect. Hav-
ing abstracted the algebraic properties into a setting with no apparent algebraic difficulties,
now one faces many computability-theoretic difficulties in such studies. Indeed, we see that
a non-standard ∅′′′-technique is required to answer a very basic (but fundamental) question.
The proof is of some purely technical interest; its high complexity also partially explains why
so little is known about ∆0

2-isomorphisms between computable structures in general. We now
turn to a more detailed discussion and background.

1.1. Effectively presentable equivalence structures. Arguably, the study of effective
reducibilities between countable equivalence relations goes back to Mal’cev who founded the
theory of numberings (see Ershov [15] for a detailed exposition). Many results of numbering
theory can be translated into results on equivalence relations and visa versa, see the recent
paper [1] for more details. Numbering theory has been one of the central topics in the Soviet
logic school for over 40 years. In the West, the topic has traditionally received less attention
(but see Lachlan [25]), and it is fair to say that it did not occupy center stage in computability
theory.
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Recently however, the subject has enjoyed a rapid development, partially because of the
simultaneous and successful development of the theory of Borel equivalence relations, see
textbook [6]. The theory of effective equivalence relations has grown to a rather broad area;
we cite [1, 19, 9] for recent results on this subject. Many results of this paper can be stated
in terms of ∆0

2-embeddings between effectively presented equivalence structures. However, we
choose a different approach (see the next subsection) and thus we will not provide any further
background on effective reducibilities between equivalence structures.

1.2. Non-computable isomorphisms between computable structures. Recall that a
structure is computable if its open diagram is a computable set. Recall that a computable
algebraic structure A is computably categorical if any computable structure B isomorphic to
A is computably isomorphic to A. In many common classes computable categoricity can be
understood as a synonym of being algebraically tame. For example, it is well-known that
a computable linear order is computably categorical iff it has finitely many adjacencies, a
computable Boolean algebra is computably categorical off it has finitely many atoms, and there
is a full and simple description of computably categorical abelian p-groups, see [27, 31, 32]
and [2, 16] for further examples. Most of these classes are not effectively universal (i.e., these
structures cannot effectively encode an arbitrary computable arbitrary graph, see [20]). On the
other hand, when we want to study more complex algebraic structures and their computability
theory, we often need to abandon computable categoricity. As a consequence, there has been
an increasing interest in non-computable isomorphisms between computable structures.

The central notion in the study of noncomputable isomorphisms is:

Definition 1.1. Let n > 1 be a natural number. A computable algebraic structure A is
∆0
n-categorical if every two computable presentations of A are 0(n−1)-isomorphic1.

In contrast to computable categoricity, obtaining a complete classification of ∆0
n-categoricity

in a given class is typically a difficult task. Already for n = 2 and even for algebraically
very well understood classes, the problem may be challenging. The study of ∆0

n-categorical
structures has some independent technical interest as such investigations typically require new
ideas and techniques (see, e.g., [3, 13, 14]). As a consequence of these technical difficulties, our
knowledge of ∆0

n-categorical structures is rather limited even when n = 2. Only recently, there
has been significant progress in understanding ∆0

n-categoricity in several specific classes, for
small n. It follows from [8, 29] that every free (non-abelian) group of rank ω is ∆0

3-categorical,
and the result can not be improved to ∆0

2. It is also known that every computable com-
pletely decomposable group is ∆0

5-categorical, and the result is sharp [14]. Every computable
homogeneous completely decomposable group is ∆0

3-categorical, and a group of this form is
∆0

2-categorical if and only if it encodes a semi-low set into its divisibility relation [13]. See
also [30, 28, 4, 5] for more results on ∆0

n-categorical structures for small n. We emphasize that
most of the results discussed above are technically quite difficult, and some of these results
require new algebraic or computability theoretic techniques, and sometimes both.

1.3. Results. As we noted above, the study of ∆0
2-categorical structures already tends to be

technically difficult both algebraically and computability-theoretically. We would like to pick
a very tame algebraic class where we could concentrate only on the computability-theoretic
aspects of ∆0

2-isomorphisms. The class of computable equivalence classes is as algebraically
simple as it could get, yet we have good evidence that equivalence structures have interesting
effective properties as we discussed in Subsection 1.1 above.

1Here 0(n+1) stands for the (n + 1)th iterate of the Halting problem. We note that there are variations
of Definition 1.1 such as the notion of relative ∆0

n-categoricity [2], and also related notions of categoricity
spectra [17] and degrees of categoricity [18, 10].
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In the context of this paper, a computable equivalence structure is an abstraction to the
situation when a computable algebra has several components; e.g., think of a cardinal or
direct sum of algebras, or imagine a graph with several connected components. We remove
all structure from each component and keep only one fundamental property:

From stage to stage, a component can only increase in size.

To build a ∆0
2-isomorphism, we need to (at least) match the sizes correctly. In a companion

paper [12] we consider abelian groups of Ulm type 1. This is a slightly more complicated class.
It reflects the situation when “components” are not invariant under automorphisms and have
to be guessed.

Calvert, Cenzer, Harizanov and Morozov [7] observed that every computable equivalence
structure is ∆0

3-categorical, and they gave several sufficient conditions for a computable equiv-
alence structure to be ∆0

2-categorical. We address the following problem left open in [7]:

Which computable equivalence structures are ∆0
2-categorical?

A computable equivalence structure E is uniquely described, up to isomorphism, by the Σ0
2

multiset of sizes of classes that occur in the structure. Thus, the question above is really a
question about Σ0

2-multisets. Our understanding of Σ0
2-multisets is very limited, and we wish

to reduce the the question to the more familiar case of Σ0
2-sets. Given an equivalence structure

E, keep only one equivalence class for each finite size (i.e., remove repetitions of sizes). Call

the resulting equivalence structure Ê the condensation of E. If E is computably presentable,

then so is Ê (to be discussed in Section 2). We arrive at:

Is it true that E is ∆0
2-categorical if and only if Ê is?

The first main result of the paper answers the question in the affirmative:

Theorem 1.2. Let E be a computable equivalence structure. Then E is ∆0
2-categorical if

and only if its condensation Ê is ∆0
2-categorical.

Theorem 1.2 came to us as a surprise, as it seemed that having multiple classes of the same
size was a natural viable property we can use to diagonalize. However, the hope for carrying
out such a diagonalization had an unavoidable non-uniform blockage. This is exploited for
the proof of Theorem 1.2. We remark that the proof has significant combinatorial complexity.
Theorem 1.2 also reduces the main problem to the study of Σ0

2-sets of a special kind, as we
explain below.

From the ∆0
2-categoricity point of view, the only non-trivial case is when an equivalence

structure E has infinitely many infinite classes, and arbitrarily large finite classes. We shall call
such equivalence structures nondegenerate. Given a set X, define E(X) to be a nondegenerate
equivalence structure having exactly one class of size x for every x ∈ X. We emphasize that
X is Σ0

2 iff E(X) has a computable copy (folklore). For notational convenience, we omit “∆0
2”

when we speak about sets:

Definition 1.3. We say that an infinite Σ0
2-set X is categorical if E(X) is ∆0

2-categorical.

Theorem 1.2 reduces the ∆0
2-categoricity problem to the question:

Which Σ0
2 sets are categorical?

No classical notion of computability theory seems to capture categoricity of a Σ0
2 set. We

compare categoricty of a Σ0
2-set to some other properties that occur in effective structure the-

ory. It seems that the answer might lie in sets with weak guessing procedures for membership,
such as low or semilow sets (soon to be described). In Theorem 4.2 we prove that every
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d-c.e. semi-low1.5 set is not categorical, but the converse fails. Our interest in semi-low1.5 sets
is motivated by the recent results on ∆0

2-categorical completely decomposable groups, where
semi-lowness actually captures ∆0

2-categoricity [13]. Semi-low and semi-low1.5 sets play an
important role in the theory of automorphisms of the lattice of c.e sets under set-theoretical
operations [33]

We will see that each infinite limitwise monotonic set (to be defined in Section 2) is not
categorical, but there exists a non-categorical Σ0

2 set which is not limitwise monotonic (The-
orem 4.1). Limitwise monotonic sets and functions naturally appear in the characterization
of computable equivalence structures, direct sums of cyclic groups, and in many other con-
texts (see [23, 24, 11, 22]). Limitwise monotonicity fails to describe categoricity of a Σ0

2-set.
Nonetheless, our intuition is that limitwise monotonicity “almost” captures (non-)categoricity
of a Σ0

2-set. Our second main result shows that the difference between non-categoricity and
limitwise monotonicity is so subtle that c.e. degrees do not “see” this difference:

Theorem 1.4. For a c.e. degree a, the following are equivalent:

(1) a is high;
(2) a bounds an infinite set which is not limitwise monotonic;
(3) a bounds an infinite categorical set.

We prove (2) ↔ (3) in Theorem 4.6 which will be stated in Section 4.2, and (1) ↔ (2)
follows from [11]. To prove Theorem 4.6 we introduce a new computability-theoretic notion
equal to the standard domination property [33] for high degrees. The new notion is much more
convenient in the context of categorical sets; this new notion might be of some independent
interest to the reader. We note that Theorem 1.4 continues the line of research into degrees
bounding effective model-theoretic and algebraic properties, see survey [26].

2. Computable equivalence structures

Given a computable presentation of an equivalence structure E, we write [i] for the equiva-
lence class of the ith element in the representation, and we write #[i] for the size of [i]. We will
denote the least element of the nth distinct equivalence class by cn. That is, c0 = 0 and cn+1

is the least number i > cn such that [i] 6= [x] for any x ≤ cn. Let Cn = [cn]. The sequence
{Cn}n∈ω is a uniformly c.e. sequence of pairwise disjoint sets. Without loss of generality,
we may allow Cn = ∅ in case the equivalence structure has less than n classes. Conversely,
given any uniformly c.e. sequence of pairwise disjoint sets {Cn}n∈ω, we can effectively and
uniformly obtain a computable equivalence structure whose equivalence classes are exactly
{Cn}n∈ω − {∅}, and whose universe is ∪nCn. Henceforth, we may think of a computable
equivalence structure (relation) as of a uniformly c.e. sequence of pairwise disjoint sets.

Definition 2.1. The characteristic of an equivalence relation E on ω is the set

χE = {〈m, k〉 : E has at least k classes of size m},
where k ∈ ω and m ∈ ω ∪ {ω}.

Evidently, E ∼= F if and only if χE = χF . We will also use χfinE = {〈m, k〉 ∈ χE : m ∈ ω}
and πE = {m : 〈m, 1〉 ∈ χfinE }.

Recall that a total function F : ω → ω is limitwise monotonic [23, 22, 11] if there exists a
total computable function g(x, y) of two arguments such that F (x) = supy g(x, y) for every x.
An infinite set is limitwise monotonic (l.m. for short) if it is the range of a limitwise monotonic
function. It is well-known that a Σ0

2 set is limitwise monotonic if and only if it contains an
infinite limitwise monotonic subset [22]. Furthermore, an infinite limitwise monotonic set is
always a range of some injective limitwise monotonic function [22].
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Fact 2.2 (Folklore). An equivalence structure is computably presentable if and only if one of
the following conditions holds:

(1) E has infinitely many infinite classes, and the set χfinE is Σ0
2, or

(2) E has finitely many infinite classes, the set χfinE is Σ0
2, and πE is limitwise monotonic.

2.1. Categoricity of equivalence structures. This subsection contains the basic informa-
tion about ∆0

2-categoricity of equivalence structures. Recall that a computable structure A
is relatively ∆0

n-categorical if for each B ∼= A there is an isomorphism witnessing B ∼= A that

is ∆
D0(B)
n , where D0(B) is the quantifier-free diagram of B. Relative ∆0

n-categoricity clearly
implies ∆0

n-categoricity.

Fact 2.3 (Calvert, Cenzer, Harizanov, Morozov). Every computable equivalence structure is
relatively ∆0

3-categorical. An equivalence structure is relatively ∆0
2-categorical if and only if

it has either finitely many infinite equivalence classes or πE is finite.

Thus, only equivalence structures with infinitely many infinite classes and unbounded finite
classes may be not ∆0

2-categorical.

Definition 2.4. We say that a countable equivalence structure is nondegenerate if it has
infinitely many infinite classes and the collection of sizes of its finite classes is an infinite set
(i.e., arbitrarily large sizes occur).

We may accept the following:

Convention 2.5. From this point on, we will assume that all considered equivalence structures
are nondegenerate.

Recall that #[i] stands for the size of class [i]. The proposition below will be used heavily.

Proposition 2.6. For a computable (nondegenerate) equivalence structure E, the following
are equivalent:

(1) E is ∆0
2-categorical.

(2) In every computable copy of E, the size function # : ω → ω ∪ {∞} is ∅′-computable.

Proof. It is not difficult to check that (2) ⇒ (1). We prove (1) ⇒ (2). Recall that χfinE
is Σ0

2, and there are infinitely many infinite classes by Convention 2.5. To see why (1) ⇒
(2), note that every computable equivalence structure E has a computable copy in which
# ≤T ∅′. To produce such a copy, start with infinitely many infinite classes. Adjoin to these
infinitely many infinite classes an equivalence structure defined by the following procedure.

Set #[i]s =∞ if χfinE tells us that the class [i] has to be changed. Then introduce a new class
with the appropriate finite size representing [i], and repeat. Note that we can always ask ∅′ if
#[i] =∞. Now, if the structure is ∆0

2-categorical, then we can use the ∆0
2 isomorphism from

the “regular” copy described above onto any copy to introduce the desired ∅′-procedure. �

Note that we could replace (2) of Proposition 2.6 above by (2′): For every computable copy
of E, there exists a ∅′-procedure for deciding if a given class is finite.

Convention 2.7. The proof of Proposition 2.6 above shows that every computable equivalence
structure has a presentation in which # is computable in ∅′. We will call this special copy
regular or standard.
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3. From multisets to sets

In this section we prove that repetitions of finite classes do not effect ∆0
2-categoricity. We

first prove a useful lemma which is interesting on its own right.

Lemma 3.1. Suppose X ⊆ Y are infinite Σ0
2 sets. If Y is categorical then so is X.

Proof. Given any computable presentation {Cn}n∈ω of E(X), we construct a computable
copy {Dn}n∈ω of E(Y ) and an isomorphic ∆0

2-embedding g of {Cn}n∈ω into {Dn}n∈ω. By
our assumption, E(Y ) is ∆0

2-categorical, and thus there is a ∆0
2-function predicting the sizes

of Dn correctly (see Proposition 2.6). We will use the isomorphic embedding g to define a
∆0

2 size-function for {Cn}n∈ω. Proposition 2.6 and the arbitrary choice of {Cn}n∈ω will imply
that X is categorical.

We assume #Cn,s 6= #Cm,s for every n,m < s, and that Cn,s 6= ∅ for all n < s. We also
choose a Σ0

2-approximation (Ys)s∈ω of Y so that at every stage s and every n,m < s we have
#Cn,s ∈ Ys. We build a computable equivalence structure {Dn}n∈ω, a total ∆0

2 function g,
and for every y, n meet

Ry : y ∈ Y if and only if ∃!j #Dj = y,

and
Pn : ∃s∀t ≥ s g(n)[t] ↓= g(n)[s] and #Cn = #Dg(n)[s].

Strategy for Ry. If y ∈ Ys and there is no Dk,s of size y, then pick i fresh and define Di,s to
be a class of size y. Say that Di,s is a witness for Ry. If Ry already has a witness Di,s and
y /∈ Ys, then declare #Di,s =∞ and say that Ry has no witness.

Strategy for Pn. If first initialized at stage s, define g(n) = k such that #Dk,s = #Cn,s
(recall that #Cn,s ∈ Ys). Otherwise, if g(n) was already previously defined, wait for #Cn,s >
#Cn,s−1. Consider the cases:

Case 1. #Cn,s+1 < n. Suppose #Cn,s+1 = #Dk,s+1 for some Dk,s serving as a witness for Ry
with y < n. Then declare Dg(n),s infinite and reset g(n) to be equal to k.

Case 2. #Cn,s+1 ≥ n. Whenever #Cn,s+1 = #Dk,s+1 for some Dk,s serving as a witness for
Ry with y > n, declare Dk infinite and initialize Ry by setting its witness undefined.

Construction. At stage 0, do nothing. At stage s, let Ry- and Pn-strategies with y, n < s act
according to their instructions.

Verification. Observe that at a stage s, if y ∈ Ys then either Ry has a witness or #Dg(n),s = y
for some n < s. Go to a stage s so large that either #Cn,s > y or has already reached its finite
limit. Then either #Dg(n),t = y for all t > s or Ry has a stable witness. In both cases we have
exactly one class of size y. We conclude that Ry is met. For Pn, go to a stage s so that either
#Cn,s > n or Cn never changes after s. In both cases g(n) is defined and will never be reset
to a new value. We conclude that Pn is met as well. �

Recall that πR stands for the set of sizes of finite classes that occur in R. Recall also
that we restrict ourselves to the case when there are infinitely many infinite classes, and the
sizes of finite classes are unbounded. Note that the set πR is Σ0

2 relative to R. Thus, if R is

computable, then so is E(πR). For notational convenience, we denote E(πR) by R̂ and call it
the condensation of R.

We next turn to an important question: If an equivalence structure R is ∆0
2-categorical,

must its condensation R̂ be ∆0
2-categorical? What about conversely? In other words, does

the repetition of finite equivalence classes affect ∆0
2-categoricity? We prove that the answer is

no. Thus we may restict the study of ∆0
2-categoricity of equivalence structures to only those

structures in which every finite class appears at most once.
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The rest of this section is devoted to the proof of Theorem 3.2.

Theorem 3.2. A computable equivalence structure R is ∆0
2-categorical if and only if its

condensation R̂ is ∆0
2-categorical.

First we swiftly dispose of the easy direction.

Lemma 3.3. If a computable equivalence structure R is ∆0
2-categorical, then its condensation

R̂ is ∆0
2-categorical as well.

Proof. Consider the Σ0
2 set {〈m, k-1〉 : k > 1, 〈m, k〉 ∈ χfinR }. It corresponds to an equivalence

structure having a computable copy V . Given a computable copy X of R̂, take a disjoint
union Y of X and V . The resulting computable structure is a computable copy of R, and
has a ∅′-computable function guessing sizes in Y correctly. Since the operation of taking the
disjoint union is effective, we can restrict this function to the domain of X. �

We devote the rest of this section to the proof of the converse of Lemma 3.3. This direction
turns out to be surprisingly combinatorially involved.

For the rest of this proof, we fix a computable listing {Me}e∈ω of all uniformly c.e. sequences.
Me = {M e

i }i∈ω is viewed as the eth equivalence structure (with possible repetition of finite

classes). Given an equivalence structure Me, we say that Φ∅
′

j with range in {f,∞} is a guessing

function for Me if for every i, Φ∅
′

j (i) = f iff #M e
i <∞.

Lemma 3.4. Predicate IND(i, e) � “Φ∅
′
e is a guessing function for Mi” is Π0

3.

Proof. IND(i, e) holds if and only if

Φ∅
′
e is total and ∀j∀z

(
Φ∅

′
e (j) ↓= z ⇒

(
z = f ⇔ #M i

j <∞
))

This can be easily checked to be Π0
3. �

It is not difficult to show that IND(i, e) is Π0
3-complete. Indeed, given any Π0

3-predicate P and
a pair (i, j), we can uniformly construct a guessing function Ψi,j and a computable structure
Ei,j such that Ψi,j = #Ei,j iff (i, j) ∈ P. We can make Ψi,j =∞ on even and f on odd inputs.
In Ei,j we will have #[2k] =∞. We can make sure #[2k+1] will be infinite for some k exactly
if P fails on (i, j). Based on this observation, we conjecture that our complicated guessing
procedure is necessary for the proof that will follow.

For the rest of this proof we now fix a computable equivalence structure R = {Ri}i∈ω where

finite classes may be repeated any number of times. We assume that the condensation R̂ is
∆0

2-categorical. We fix a computable enumeration of the classes {Ri[s]}i∈ω and assume that
at every stage s there is at most one i < s such that Ri[s] 6= Ri[s− 1] and in the case where
i exists we have #Ri[s] = #Ri[s− 1] + 1. Our goal is to produce (not uniformly in an index
for R) a guessing function for R.

During the construction we build a computable structure M = {Mi} and appeal to the
Recursion Theorem to give us an index for M in advance (say index c).

3.1. Tree of strategies. Our tree of strategies is a version of the Baire space where the
outcomes of each node is labeled 0 < 1 < · · · . Each node on the lth level is devoted to
measuring if IND(c, l) holds. Since this predicate is Π0

3 there is an obvious way to computably
approximate this using the outcomes of each node σ. We let {V l

k}l,k∈ω be a computable

collection of c.e. sets such that IND(c, l) holds iff #V l
k < ∞ for every k. Thus we naturally

associate each outcome k of σ with the Σ0
3 outcome where #V l

k = ∞. The Π0
3 outcome of

σ where IND(c, |σ|) holds corresponds to the situation where every outcome of σ is visited
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finitely often. Since this latter outcome is a global outcome we will not need to place a
corresponding σ-outcome for it.

We have a global commitment to make M a copy of the condensation (by Theorem 3.1 it is
sufficient to make M a structure on a subset of the condensation). Since we are given an index
for M in advance we know that there will be a true node σtrue of the construction. Namely
σtrue is the leftmost node visited infinitely often such that each σ ∗ i is visited finitely often
(the true node will later be formally defined). We will then use Φ∅

′

|σ| to help build a guessing

function for R. Since we have to guess at the true node we have to allow each node on the
priority tree to have its own opinion about how the guessing function for R is to be defined.
This will be maintained via cliques and links.

3.2. Cliques and links. A clique C is a collection of at least one class (possibly more) of R
and will always have an associated link `(C). This link points to a single M class. Intuitively
every R-class of a clique is collectively associated with the M -class M`(C). A link for a clique
will be fixed (will never be reassigned to another member of M) until the clique is removed.
A clique may grow when more R-classes join the clique but will never reduce in members.
When a clique is removed the associated link is also removed.

Sometimes an R-class Ri which is not currently in a clique will also be linked to a class
in M . We denote this link as `(i). Again this means that Ri is associated with the M -class
M`(i). Like a link for a clique, this link (for the class Ri) will be fixed until it is removed.
This link will be removed if the class Ri joins a clique, or if a higher priority node acts. An
R-class Ri for which `(i) is defined is simply said to be linked. The intuitive idea is that a
link denotes that we believe an R-class is finite and hence the linked element in M should also
be the same. A clique denotes that we believe a collection of R-classes will all be infinite and
that the linked element in M will also grow to infinity.

Each node σ on the tree of strategies will have its own separate version of cliques and links.
For this reason we will often use the term σ cliques and σ links. If C is a clique we write
min C to be the index of the smallest member of C, i.e. min C = min {i | Ri ∈ C}. We write
size C[s] = min {#Rm[s] | m ∈ C}, i.e. the size of the smallest class in C.

3.3. Description of the proof. Since the proof of Theorem 3.2 is somewhat combinatorially
involved, we will describe the main ideas behind the proof here. Most of the steps in the
construction and verification are technical and are included simply to make the combinatorics
work. Nevertheless there are several key ideas which will form the skeleton of the proof.

3.3.1. The simple case: We first assume the simple case when the condensation R̂ of R is
effectively ∆0

2-categorical ([12, Definition 1.2]). This means there exists a computable proce-

dure which, given an index of a computable copy of R̂, returns a ∆0
2-index for # in that copy.

It is not hard to show ([12, Theorem 2.5]) that R is effectively ∆0
2-categorical. We sketch a

different proof here, along the lines of the proof of Theorem 3.2.

We shall build a computable presentation M = {Mn}n∈ω of R̂. Since R̂ is effectively
categorical, by applying the Recursion Theorem, we have during the construction of M a
computable approximation g(n, s) where for every n, lims g(n, s) exists and equals f iff #Mn <
∞ and equal ∞ iff #Mn =∞.

The basic plan is straightforward. We monitor each class Ri and associate with it some class
Mn. To help organize this we declare Ri to be “linked” to class Mn, and we write `(i) = n.
Naively we want to keep #M`(i) = #Ri and use g(`(i)) to predict #Ri. Unfortunately we
may have #Ri = #Rj for some i 6= j but we are committed to making M a structure on the

condensation R̂. Thus we have to redirect at least one of the two links `(i), `(j) when we find
that #Ri = #Rj . We want to ensure that each link `(i) is redirected only finitely often. If
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this can be done then it is ∅′-computable to figure out the final stable object for each Ri and
to read off lims g(`(i), s).

Hence during the construction when we see #Ri = #Rj , for i < j we will immediately
grow M`(j) to infinity, dissolve the link `(j) and set up a new link `(j) = `(i). What can
happen next is that one of the two classes Ri, Rj grows. Suppose #Ri > #Rj = #M`(i). In
this case it is no good to keep #M`(i) = #Rj because otherwise the link `(i) will point at a
potentially finite class M`(i) even though #Ri can be∞, and so the link `(i) is of no use to us
in deciding #Ri. Therefore we should grow #M`(i) to match #Ri whenever Ri grows, which
means that `(j) should be reassigned elsewhere because it is now pointing at the class M`(i)

where #M`(i) > #Rj , and thus #M`(j) = #M`(i) > #Rj will again tell us nothing about
#Rj . So if Ri grows before Rj we will be forced to reassigned either `(i) or `(j). If instead
the class Rj grows first before Ri, we face a similar dilemma.

For general priority reasons, to resolve this situation, we should choose to keep `(i), reassign
`(j) and grow #M`(i) = #Ri. The issue now is that Rj may clash infinitely often with Ri,
i < j this way, and each time `(j) is sacrificed by being reassigned to a fresh M -class, and in
the end there is no stable link on j. This is bad because ∅′ is unable to determine if the class
Rj is finite; even though #Rj is necessarily infinite if `(j) is reassigned infinitely often, but
this latter fact is not decidable using only a ∅′ oracle.

The reader should realise that we have not yet made use of the function g; this function
must obviously be used in an essential way. The idea is to introduce two kinds of objects in
the construction; a link `(i) and a clique C with pointer `(C). A link `(i) is a pointer associated
with a single class Ri, while a clique is a collection of classes {Ri : i ∈ C} which collectively
point at the class M`(C) (see Section 3.2).

These two objects pursue essentially opposing strategies. If i is linked to M`(i) then we will
keep #M`(i) = #Ri; whenever Ri grows, we must grow M`(i) accordingly. On the other hand
a clique C will keep #M`(C) = size C = min {#Ri | i ∈ C}, i.e. the size of the smallest class in
C. The decision as to whether we should have a link or a clique on a class Ri is determined
by g(`(i), s).

More specifically, for each Ri, we initially start off with a link `(i) on i. We keep #M`(i) =
#Ri. When we find g(`(i), s) = ∞, we form a clique C = {i} with pointer `(C) = `(i),
and remove `(i). (This is step (2.1) of the construction). While g(`(C), s) = ∞ we keep
#M`(C) = size C and grow the clique by adding j > i to C whenever #Rj ≥ size C. (This is
step (2.2) of the construction). If ever we see that g(`(C), s) changes its mind and takes value
f , we will dissolve the clique C by removing `(C) and restoring the link `(i) = `(C).

Since we must make M a structure on the condensation R̂, we have to sort out any conflict
in sizes. For instance, when we find #M`0 = #M`1 where `0 and `1 are objects pointing at
different M -classes, we will retain the M -class associated with an object of the highest priority
(say M`0) and declare #M`1 = ∞, and reassign `1 to now point at M`0 . (This is Phase 4 of
the construction). Priority amongst objects is determined by the value of the indices, i.e. the
priority of `(i) is i while the priority of `(C) is min C, see “σ = τ” under Section 3.3.3.

We now see that the problem described above is solved, and each i will eventually be
involved in a stable link or clique. Suppose a class Rj has an object removed infinitely often
because it conflicts with some Ri, for some least i < j. Assume that Ri already has a stable
object `. Now if #M` <∞ then Rj cannot clash with Ri infinitely often, because eventually
#M`(j) > #M`. Hence we must have #M` = ∞. Since M is always a substructure of the

condensation R̂, we know that lims g(`, s) has to be correct, hence g(`,−) will eventually take
on the stable value∞, we see that both i and j will eventually be involved in a clique C. If Ri
and Rj are both members of the same clique C then they both point at the same M -class and
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there are no further interactions between these two classes. So each Ri is eventually involved
in a stable link or clique.

We now show that #Ri < ∞ iff #M` < ∞ where ` is the stable object involving i: Since
we always have #M` ≤ #Ri (equality must hold when ` is a link), hence #Ri < ∞ implies
that #M` <∞. On the other hand suppose that #Ri =∞. Then the stable object ` cannot
be a link because otherwise M` is always grown to match the size of Ri, and so #M` =∞ and
we must have lims g(`, s) =∞, which in turn means that a clique containing i will be formed
eventually. Thus the stable object ` must instead be a clique, and so we have #M` =∞ (else
#M` < ∞ and so lims g(`, s) = f and we would eventually dissolve the clique C). Since the
strategy for a clique always maintains #M` = size C, we see that #Rj =∞ for every member
j ∈ C.

Now to figure out if each class Ri is finite we may use ∅′ to first search for a stable object `
involving i, and then computing lims g(`, s). Since lims g is never wrong, its value will decide
#M` and hence #Ri.

3.3.2. Introducing injury. We now describe the problems caused by considering “injury” in
the formal construction. We illustrate this in a simplified setting. We now relax the condition

that “R̂ is effectively ∆0
2-categorical” to one that assumes that the procedure which returns

a ∆0
2-index for # in a computable copy of R̂ is ∅′′-computable (instead of computable in the

previous discussion). That is, there is a function F ≤T ∅′′ such that for every e, Φ∅
′

F (e) gives

the size function # in the computable copy M of R̂ if M has index e. (Note that F ≤T ∅′ is
equivalent to being effectively ∆0

2-categorical.)
It is easy to see that the condition F ≤T ∅′′ is equivalent to the existence of a computable

function H such that for every e, given a computable copy M = {Mx}x∈ω of R̂ with index e,

the function Φ∅
′

H(e)(x) is equal to the size function # of M on almost every class Mx. Under

this assumption we describe how to prove that R is ∆0
2-categorical.

We use the same setup as before. In this case we may have that lims g(x, s) is incorrect
for finitely many x. Suppose x0 is such that #Mx0 = ∞ but lims g(x0, s) = f , and Ri0 has
a stable link `(i0) pointing at Mx0 . Carrying out the strategy above, we see that it is now
possible for there to be infinitely many j > i0 such that Rj gets an object reassigned infinitely
often (due to conflicts with Ri0). In fact, since g(x0,−) is eventually stable with value f ,
no clique will be formed to point at Mx0 . This is bad because there are now infinitely many
classes Rj with no stable link or clique (even though lims g(x, s) is wrong on only finitely many
x), and thus our argument above does not directly apply to show that R is ∆0

2-categorical.
This construction in fact does work with a slight modification. A more ingenious argument

must be applied to show that R is ∆0
2-categorical. Notice that for each such x0, we should

have #Mx0 =∞ 6= lims g(x0, s). This is because if #Mx0 = f 6= lims g(x0, s), then every class
Rj is affected by Mx0 only finitely often, and so the incorrect prediction of g on such a class
Mx0 has no long term effect on the stability of an Rj object. Hence if some class Rj enters
the clique associated with Mx0 and if Rj later grows larger than #Mx0 we can reassign Rj to
point to a different M -class. For each j the link on Rj is redirected by Mx0 only finitely often.

Now for each x0 such that #Mx0 =∞ 6= lims g(x0, s) assume that i0 is the least such that
Ri0 has a stable link pointing at Mx0 ; hence #Ri0 =∞ as well. For each s, define the c.e. set
Ξ(s) to contain all indices j > i0 such that #Rj [t] ≥ #Ri0 [t] for some t > s. (We refer the
reader to Definition 3.5 for the formal definition of Ξ; the actual definition is somewhat more
complicated due to various technicalities, but is similar in spirit to the one given here).

Now if it is the case that for every s there is some js ∈ Ξ(s) such that #Rjs <∞ then we
could define a limitwise monotonic function f by letting f(x) follow the size of the smallest
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class currently in Ξ(x). In that case it is easy to check that the range of f gives an infinite

limitwise monotonic subset of the finite sizes of R̂, which is impossible because we assumed that

R̂ is ∆0
2-categorical by applying Theorems 4.1(i) and 3.12. (Theorem 4.1(i) has an elementary

and self-contained proof. Although it appears later in the paper, it does not introduce any
circularity to our exposition.)

Thus it must be the case that there exists some s so that for every j ∈ Ξ(s), #Rj = ∞.
This means that if Rj conflicts with Ri0 infinitely often then j ∈ Ξ(s) and thus we can also
conclude that #Rj = ∞. Since there are only finitely many different i0 and x0, we can fix
non-uniformly an s larger than all the associated values for all the i0, x0 (we call these classes
“finite junk”). We can then argue that for almost every i, either Ri is involved in a stable
link or clique, or else i is injured infinitely often by finite junk in which case i is a member of
Ξ(s). (See Lemma 3.22). In this way ∅′ can decide the ultimate fate of each Ri.

3.3.3. Priority ordering. The nodes on the strategy tree are ordered lexicographically from
left to right. If σ is to the left of τ then we may think of σ as having higher priority than τ .
If σ and τ are comparable then we do not formally order σ and τ ; the interactions between σ
and τ are more intricate in this case.

We will instead define a priority ordering among links and cliques. This will be the key
driving force of the construction and is used to regulate when cliques and links are formed
and when they are allowed to get destroyed. The cases to consider are the following:

• σ is to the left of τ : In this case every σ link and σ clique is declared to be of higher
priority than every τ link and τ clique.
• σ = τ : A σ link `σ(i) is of higher priority than another `σ(i′) iff i < i′. In the

construction we will ensure that i = i′, i.e. we never have two different σ links on the
same class simultaneously existing. A σ clique C is of higher priority than another σ
clique C′ iff min C < min C′; again in the construction we ensure that we never have
two σ cliques with the same min simultaneously in existence. In fact, σ cliques are
always pairwise disjoint. Finally a σ link `σ(i) is of higher priority than a σ clique C
iff i < min C. In the construction we ensure i 6= min C; in fact i 6∈ C.
• σ ⊃ τ : Let k be such that σ ⊇ τ ∗ k. Every τ clique C and every τ link `τ (i) with

min C < min Iτk (or i < min Iτk ) is of higher priority than every σ clique and every σ
link. Every τ clique C and every τ link `τ (i) with min C ≥ min Iτk (or i ≥ min Iτk ) is of
lower priority than every σ clique and every σ link. (The notation Iτk will be defined
in Section 3.3.4, intuitively Iτk is the interval of influence of the τ -strategy).

For instance if i < j are both in Iτk then `τ (i) is of lower priority than `σ(j), even
though the former is a link on a class with a smaller index.

It is a straightforward but somewhat tedious exercise to check that this gives rise to a linear
ordering of all links and cliques in existence at any instance during the construction.

Intuitively the priority ordering is best described by the following. If σ is to the left of τ
then each σ object is of higher priority than each τ object. If σ ∗k ⊆ τ then the priority of a σ
object `σ(i) or `(C) with i = min C (we call this a (σ, i) object) depends on which interval Iσm
the class i is in. Every (σ, i) object for i ∈ ∪m<kIσm is of higher priority than every τ object.
Every (σ, i) object for i ∈ ∪m≥kIσm is of lower priority than every τ object. In other words we
allow τ objects to have higher priority over certain σ objects, even though σ ⊂ τ .

2In this discussion of the basic case we will in fact need to apply the uniform version of Theorem 3.1. That
is, the index witnessing the categoricity of X can be obtained effectively in a Σ0

2 index for Y and an index
witnessing the categoricity of Y .
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3.3.4. Notations. We let gl(x, s) be a computable sequence of total functions with range in

{∞, f} so that lims gl(x, s) = Φ∅
′

l (x) if the latter converges, and where lims gl(x, s) does not
exist otherwise. Given a node σ and a stage s where σ is visited, we write gσ(x)[s] to mean
g|σ|(x, s

′) where s′ is the number of times where σ has been visited up to stage s. That is, we
only update the approximation to g|σ|(x,−) whenever σ is visited.

Each node σ of the construction is associated with a finite sequence of finite intervals
Iσ0 , I

σ
1 , · · · of ω. Intuitively, the interval Iσk grows when outcome σ ∗ k is visited. We always

have max Iσk + 1 = min Iσk+1 and Iσ∗jk ⊂ Iσj . The true node σtrue will be the only node to have

every interval Iσtruek stable (i.e., its definition will never be changed at a later stage), finite
and non-empty.

To initialize a node σ means to remove all σ cliques and remove all σ links, and set Iσk = ∅
for every k.

The following definition keeps track of the effect of the “finite junk” arising in the construc-
tion. It will be used during the construction. Lemma 3.14 will make it clear why Definition
3.5 is necessary.

Definition 3.5. Let i be an index and s be a stage. Define the c.e. set Ξ(i, s) by specifying
the following computable enumeration of Ξ(i, s). Let Ξ(i, s)[t] = {i} for every t ≤ s. At stage
t+ 1 > s enumerate j into Ξ(i, s) if j 6∈ Ξ(i, s)[t] and one of the following holds:

• #Rj [t + 1] ≥ #Rk[t + 1] for some k such that #Rk[t + 1] > j where k is already in
Ξ(i, s), or
• #Rj [t + 1] ≥ #Rk[t + 1] for some k which was previously enumerated in Ξ(i, s) at

stage t′ ≤ t and #Rk[t
′] < #Rk[t+ 1].

In other words we enumerate j in Ξ(i, s) at a stage t+1 if the size of Rj currently exceeds (or
is equal to) the size of another class Rk which was previously enumerated in Ξ(i, s) but where
the size of Rk has since grown. If #Rk[t + 1] > j then we can ignore the growth restriction
on #Rk.

As is customary in a priority construction, we use stage s not only to refer to a particular
stage of the construction, but also to refer to a particular instance or a particular step of the
construction within stage s. Some authors prefer to use the distinct term “sub-stage” instead.

3.3.5. Putting the construction on a tree. Finally we consider the general case when R̂ is ∆0
2-

categorical. Now guessing for the index of the size function of M is Π0
3, so we carry out the

construction on the priority tree defined in Section 3.1. Roughly speaking each node σ is given
an interval ∪nIσn to work in, and will carry out its own version of the basic strategy within
its assigned interval. At the true node σtrue, the guessing function gσtrue is equal to the size
function # of M . Each successor of σtrue is visited finitely often.

Now we need to distinguish between the parameters of different nodes. Hence, instead of
links and cliques we shall have σ links and σ cliques. The priority ordering between different
objects was defined in Section 3.3.3.

Now we fix σ = σtrue and let i0 = min Iσ0 . That is, the true node σ is assigned the interval

[i0,∞) to work in. Let’s try and briefly describe why for each i ≥ i0 we have that either i ∈ Ξ̂
or i is eventually involved in a stable σ link or a stable σ clique. Here we do not wish to

encumber the reader with the precise definition of Ξ̂ (we refer the reader to Definition 3.16);

it suffices at this point to say that Ξ̂ is more or less the union of Ξ(s) for all infinite classes
Ri, i < i0 for a large enough s.

A key difference between this and the previously discussed cases is that due to the con-
struction being carried out on a tree, the true strategy working for σ will not be able to act
at every stage, only at infinitely many stages. This means that we have to ensure that at
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stages where σ is not active, the construction still respects the needs of every σ object. For
instance if σ is active and finds #M` > #Ri then M` is no longer helpful in deciding #Ri.
Hence we should ensure that whenever there is a (σ, i) object ` we must at every stage keep
#M` ≤ #Ri, unless a higher priority object demands otherwise, in which case ` should be
removed. Note that in the case ` = `σ(i) is a link then the strategy σ only needs to grow
#M` to be equal to #Ri whenever σ is visited; at non-σ-stages it is only important to keep
#M` ≤ #Ri (and not necessarily equal).

Let’s assume that i is never part of a stable σ link or a stable σ clique. We explain why

i should be in Ξ̂. By examining the priority between objects, there are only finitely many
pairs (τ, k) such that a (σ, i) object ` can be removed by a conflict with a (τ, k) object `′ (of
higher priority). The key to this analysis is to fix a large stage s∗ (how large s∗ needs to be is
explained carefully in the verification; for now we assume it is large enough so that all higher
priority activities are stable). We consider two cases: when `′ is formed before s∗ and when it
is formed after s∗.

If `′ is formed after s∗ then necessarily we should have τ ⊆ σ (as all other nodes are either
stable or of lower priority). In this case if τ = σ then we use the induction hypothesis, and if

τ ⊂ σ then we must have k < i0 and so i ∈ Ξ̂. From σ’s point of view (τ, k) belongs to the
“finite junk” which σ must accept as a finite parameter given non-uniformly, so we can build

(τ, k) into the definition of Ξ̂.
Now if `′ is formed before s∗ (there are only finitely many such objects) then we will see

that the target class M`′ must eventually be infinite. In that case gσ(`′) must eventually take
on value ∞ and consequently ` must be a σ clique. In that case the strategy of ` strategy
will switch to a negative strategy, and will never again request for M`′ to increase. If `′ is a
historical object associated with some τ which is never again active then there is no need for
` to be removed; neither ` nor `′ will request for M`′ to be increased and so both objects can
co-exist.

This forms the main ideas behind the machinery of the construction. The formal con-
struction and verification will address the multiple technical complications which arise in the
implementation of these ideas.

3.4. Construction. At stage 0 initialize every node and do nothing else. Suppose we are at
stage s > 0. The construction splits into phases:

Phase 1, Defining δs and initialization.

(1.1) We define the stage s approximation δs to the true node. We will have |δs| = s and
this is defined inductively as follows. If δs � l has been defined we let δs(l) be the least
k < s such that #V l

k has increased since the last visit to δs � l (we let δs(l) = s if no
k < s is found).

(1.2) We initialize every node σ to the right of δs. For each node σ ⊂ δs we remove every σ
clique and every σ link which has lower priority than δs.

(1.3) Next we update Iσk for each σ ⊂ δs. This is again done inductively as follows. Suppose
that the intervals for σ have been updated. We update the intervals for the node
σ ∗ k ⊂ δs. If Iσk = ∅ then we must also have Iσ∗km = ∅ for every m, in which case we
do nothing here for σ ∗ k. Otherwise assume that Iσk 6= ∅ (in which case max Iσk = s.)

Now let m be such that σ ∗ k ∗m ⊆ δs. Set Iσ∗kn = ∅ for every n > m. If Iσ∗km 6= ∅ we
increase the right end-point of Iσ∗km to s. Otherwise if Iσ∗km = ∅ we let m′ ≤ m be the
least such that Iσ∗km′ = ∅, and in this case set Iσ∗km′ = (max Iσ∗km′−1, s]. Finally if m′ = 0

we set Iσ∗k0 = Iσk .
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Phase 2, Acting for each σ ⊂ δs. For each node σ ⊂ δs where σ ∗ k ⊆ δs we do the following
(unless Iσ0 = ∅, in which case we do nothing for σ).

(2.1) Forming new σ cliques. For each j ∈ ∪nIσn we say that j is currently eligible for (2.1)
if j is not a member of any σ clique, `σ(j) exists, gσ(`σ(j))[s] = ∞ and #Rj has
grown since the last time j was eligible for (2.1) with respect to σ and the class M`σ(j).

Find the least eligible j ∈ ∪nIσn such that the current stage is the qth time j has been
determined to be eligible for (2.1) with respect to σ and the class M`σ(j), where q is
even.

We form a new σ clique consisting of all j ≤ j′ < #M`σ(j)[s] such that j′ is not
currently a member of any σ clique and #Rj′ [s] ≥ #Rj [s] and j′ ∈ ∪nIσn and `σ(j) =
`σ(j′). Set `(C) = `σ(j). Remove each σ link `σ(j′).

Repeat with the next j1 > j and j1 ∈ ∪nIσn in place of j, forming a new σ clique with
j1 as the least element in the same way. Continue this way until all eligible elements
(with even q) of ∪nIσn have been exhausted.

(2.2) Growing existing σ cliques. For each σ clique C in existence and each min C < j <
#M`(C)[s] such that j is not currently a member of any σ clique and #Rj [s] ≥ size C[s]
and j ∈ ∪nIσn and `(C) = `σ(j) we add j to C. Remove each `σ(j).

(2.3) Dissolving σ cliques due to a gσ change. For each σ clique C in existence such that
gσ(`(C))[s] = f we do the following: Restore the σ link to min C by setting `σ(min C) =
`(C) and remove C.

(2.4) Updating obsolete σ links. Go through each σ linked class Ri, starting with the smallest
i, and for each such class we do the following.

(i) For every i′ > i such that Ri′ is σ linked and `σ(i′) = `σ(i) and #Ri′ [s] 6= #Ri[s]
we remove the link `σ(i′).

(ii) See if there exists i′ and τ such that Ri′ is τ linked, `τ (i′) = `σ(i), `τ (i′) has higher
priority than `σ(i) and #Ri′ [s] < #Ri[s]. If i′ and τ exists we remove the link
`σ(i).

(iii) See if there exists a τ clique C such that `(C) = `σ(i), C has higher priority than
`σ(i) and size C[s] < #Ri[s]. If τ and C exists we remove the link `σ(i).

(iv) Finally if `σ(i) has not been removed by (ii) or (iii), we will remove every lower
priority clique or link which disagrees with `σ(i). This is achieved by the following.
For each i′ and τ such that Ri′ is τ linked, `τ (i′) = `σ(i), `τ (i′) has lower priority
than `σ(i) and #Ri′ [s] < #Ri[s], we remove the link `τ (i′). For each τ clique C
such that `(C) = `σ(i), C has lower priority than `σ(i) and size C[s] < #Ri[s], we
remove the clique C.

Phase 3, Growing classes in M . For each finite class Mn of M we grow Mn (if necessary) to
have the same size as min{#Ri[s] | `σ(i) = n for some σ or `(C) = n for some clique C where
i ∈ C}. If Mn has no link or clique pointing at it we declare #Mn =∞.

Phase 4, Resolving conflicts in M . For each x look at the collection of M classes Mn0 , · · · ,Mnj

such that #Mn0 = · · · = #Mnj = x. Pick m ≤ j so that there is a clique or a link pointing at
Mnm which is of the highest priority (amongst all objects pointing at one of Mn0 , · · · ,Mnj ).

Declare #Mn = ∞ for every n ∈ {n0, · · · , nj} − {nm}. We need to reassign the links
which were pointing at one of these classes Mn that we have just declared to be infinite:
If `σ(i) = n ∈ {n0, · · · , nj} − {nm} we remove `σ(i) and form a new link `σ(i) = nm. If
`(C) = n ∈ {n0, · · · , nj} − {nm} where C is a σ clique, we form the link `σ(min C) = nm and
remove the clique C.
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Phase 5, Establishing new σ links for each σ ⊂ δs. For each σ ⊂ δs and each i ∈ ∪nIσn where
i is not a member of any σ clique, i is not σ linked and #Ri > i we will place a link `σ(i).
If there is already an M -class Mn such that #Mn = #Ri we declare `σ(i) = n, otherwise we
introduce a new M -class (by picking the least n such that Mn has not been used and setting
#Mn = #Ri) and declare `σ(i) = n.

Note that ∅′ can tell, for any given class Ri, whether #Ri ≤ i; if so then no link will be
formed for Ri but in this case we know that #Ri is finite.

3.5. Verification.

Lemma 3.6. At each point in the construction, for each σ and i, there can be either a unique
σ link on Ri, or a unique σ clique containing Ri, possibly neither, but never both.

Proof. Straightforward examination of the construction. �

Lemma 3.7. If a link or a clique `0 is of higher priority than another `1, then this stays true
until one of the two is cancelled.

Proof. Suppose that `0 is associated with σ and `1 with τ . The only non-trivial case to check
is when σ ⊇ τ ∗ k for some k (or vice versa). In either case `0 remains of higher priority
than `1 unless min Iτk changes. Under (1.3) of the construction, min Iτk changes only if the
construction visits left of τ ∗ k, which means that σ would be initialized. �

Lemma 3.8. Suppose at some stage s, Ri is σ linked where ` = `σ(i), or Ri is part of a σ
clique C where ` = `(C). Then #M`[s] > i.

Proof. Fix i and σ. We argue by induction on s. By Lemma 3.6 at each point of the construc-
tion we only need to consider either a σ link on Ri or a σ clique C on Ri.

A σ link ` = `σ(i) can be formed under Phase (2.3), 4 or 5. When a σ link ` = `σ(i) is
first formed under Phase 5 we certainly have #M` = #Ri > i. If it is formed under Phase 4
then the new target M -class has the same size as the old. Lastly if ` is formed under (2.3) we
apply the induction hypothesis.

Class Ri will join a σ clique C under (2.1) or (2.2); we can simply check each case (we apply
the induction hypothesis for (2.1)). Note that `(C) is never retargetted until C is removed. �

Lemma 3.9. Suppose that Mn is a non-empty class. Then at the end of every stage, Mn is
finite iff there is at least one link or clique pointing at Mn.

Proof. If Mn is declared infinite under Phase 3 or 4 then all links and cliques pointing at Mn

are removed immediately. No link or clique can afterwards be made to point at the infinite
class Mn (the only action which creates a new link is in Phase 5, which only targets finite
classes).

Now conversely if there are no links or cliques pointing at Mn we would declare #Mn =∞
in the same stage under Phase 3. �

Lemma 3.10. At every point of the construction where Mn 6= ∅ we have #Mn ≤ #Ri for
every i which is involved in a link or a clique pointing at Mn.

Proof. By Lemma 3.9 we can assume that Mn is finite. When Mn is first used under Phase 5
it was set equal in size to the only R class pointing at it. Thereafter if a new link or clique
is formed pointing at Mn (2.1) or (2.3) we apply the induction hypothesis. If a clique picks
up a new element Rj under (2.2) then we also apply induction hypothesis. Under Phase 3 we
never grow Mn beyond the minimum size. Under Phase 4 we apply the induction hypothesis.
Phase 5 is obvious by construction. �
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Lemma 3.11. Suppose at stage s of the construction a node τ is visited. If a τ link `τ (i)
exists after Phase 3 is done, then #M`τ (i) = #Ri.

Proof. In Phase 2 of the construction at stage s we act for τ . In particular under (2.4) we ensure
that any object `τ ′(i

′) or `(C) also pointing at M`τ (i) has got #Ri′ ≥ #Ri or size C ≥ #Ri. �

Lemma 3.12. M is an equivalence structure on a subset of the condensation R̂.

Proof. We may assume that M has infinitely many infinite classes. There are two things to
check. First, we need to verify that no two finite classes of M are equal in size. This is
explicitly ensured by Phase 4 of the construction.

Second, we need to check that if #Mn < ∞ then there is some R-class with the same
size. Assume that #Mn = x. Consider a stage s large enough so that the classes Mn and
R0, · · · , Rx−1 are all stable. This means that for i < x, if Ri is finite then it does not increase
in size after stage s and if Ri is infinite then #Ri[s] > x. By the construction Phase 3, Lemmas
3.9 and 3.10 we would have that x = #Mn = #Ri for some class Ri currently pointing at
Mn. By Lemma 3.8, i < x, and since #Ri[s] is stable at stage s, we conclude that Ri has size
x. �

Lemma 3.12 together with Theorem 3.1 tells us that there is some l such that lims gl(x, s)
is a guessing function for structure M . (Note that Theorem 3.1 applies even if M has only
finitely many finite sizes; hence there is no need to explicitly ensure during the construction
that M has infinitely many finite sizes.)

We define the true node of construction, σtrue, to be the leftmost node with the property
that:

• σtrue is visited infinitely often, and
• for every k, σtrue ∗ k is visited finitely often.

This node σtrue exists because some lims gl(x, s) is a guessing function for the structure M3.

Lemma 3.13. There are only finitely many stages such that the construction visits left of
σtrue.

Proof. Note that every node τ where |τ | = |σtrue| must have Π0
3-outcome (if τ is visited

infinitely often). Thus the set of all nodes which are visited infinitely often is a well-founded
tree. Hence if there are infinitely many stages s where δs moves left of σtrue then this would
contradict the choice of σtrue. �

Lemma 3.14. Suppose that #Ri =∞. Then there is an s such that for every j ∈ Ξ(i, s), the
class Rj is infinite.

Proof. Suppose the contrary that for every s there is a number js ∈ Ξ(i, s) such that #Rjs <
∞. Pick js ∈ Ξ(i, s) such that #Rjs is least. Define the function f(s, t) = 0 if t < s and
equal to min {#Rk[t] | k ∈ Ξ(i, s)[t]} if t ≥ s. It is easy to check that f(s, t) is computable

and witnesses that the function f̂(s) = limt f(s, t) is limitwise monotonic. (The fact that

f̂(s) is defined follows from the fact that f(s, t) ≤ #Rjs [t] at every stage t after which js is
enumerated in Ξ(i, s)).

Fix s and let t0 be a stage after which f(s, t) is stable, say with value c.

Claim 3.15. There is some k ∈ Ξ(i, s) such that #Rk = c.

3The Recursion Theorem is used here to provide an index for M ; its use can be avoided by directly monitoring
each index l and comparing it against the partially built structure M (this still involves a similar Π0

3 guessing
procedure and a similar setup). However this latter approach is more cumbersome.
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Proof of claim. Let t1 > t0 be a stage where for every k ∈ Ξ(i, s)[t0], we have #Rk[t1] > c.
(If t1 does not exist then we are done). Now let t2 > t1 be such that for every k ∈ Ξ(i, s)[t1],
we have #Rk[t2] > c. We also require that for every j < c, we have #Rj [t2] > c or Rj finally
has size < c. Clearly if t2 does not exist we are done, so we assume for a contradiction that
t2 exists.

We argue that if a class Rj is added to Ξ(i, s) at some stage u between t1 and t2 then either
j < c or #Rj [u] > c. Suppose this is false as witnessed by Rj and a least u. At stage u
we must have #Rj [u] = #Rk[u] = c for some k already in Ξ(i, s). Since j ≥ #Rk[u] we see
that #Rk must have grown since k was enumerated in Ξ(i, s). This means that k cannot have
been enumerated into Ξ(i, s) after t0 (because f(i,−) = c after t0). But if k was enumerated
into Ξ(i, s) before t0 then we have #Rk[u] > c by the choice of t1. In either case we get a
contradiction. Thus we conclude that if a class Rj is added to Ξ(i, s) at some stage u between
t1 and t2 then either j < c or #Rj [u] > c.

Now at stage t2 we have f(s, t2) = min {#Rk[t2] | k ∈ Ξ(i, s)[t2]} = c. Let j be such that
#Rj [t2] = c. Then clearly j must have been enumerated in Ξ(i, s) at some stage u where
t1 < u ≤ t2. By the preceding paragraph we have that either j < c or #Rj [u] > c. Both
alternatives are clearly impossible (the first alternative contradicts the choice of t2). This
contradiction shows that t2 cannot exist and so the claim is proved. �

Claim 3.15 says that for every s, f̂(s) is a size of a finite class of the condensation R̂.
Furthermore by the definition of Ξ(i, s), for every k 6= i, k ∈ Ξ(i, s), we must have that the
final size of #Rk is no smaller than #Ri[s]. By the assumption that #Ri = ∞, the range of

f̂ is an infinite subset of the finite sizes of the condensation R̂. Since we assumed that R̂ is
categorical we obtain a contradiction by applying Theorems 4.1(i) and 3.1. �

Fix a stage strue large enough so that after stage s the construction never visits left of σtrue.
We also assume that for every j < min Iσtrue0 such that #Rj <∞, the class Rj is stable after
strue. We also assume that strue is large enough so that for every j < min Iσtrue0 such that
#Rj =∞, the stage strue is larger than the s given in Lemma 3.14, and that Rj 6= ∅.

Definition 3.16. Let

Ĵ = {j : j < min Iσtrue0 such that #Rj =∞} ,

Ξ̂ =
⋃{

Ξ(j, strue) : j ∈ Ĵ
}
,

X0 = max {#Rj | j < min Iσtrue0 such that #Rj <∞} .

It is easy to check that Ξ(j, s) ⊇ Ξ(j, s+ 1) for every j, s, and hence for every k ∈ Ξ̂, the class
Rk is infinite. We call ` a (τ, j) object if ` = `τ (j) or if ` = `(C) where C is a τ clique such
that min C = j. If a link is replaced by a new one in a single step (for instance, under (2.1),
(2.3) or Phase 4) we consider it to be a different object.

Given a (τ, j) object ` existing at stage s, we define the origin of ` to be the greatest stage
s′ < s such that a (τ, j) object `′ is formed under Phase 5 at s′.

Lemma 3.17. Fix τ, j. If `0 is a (τ, j) object existing at stage s0 and `1 is a (τ, j) object
existing at stage s1 > s0 with the same origin, then #M`0 [s0] ≤ #M`1 [s1]. In particular, if `0
has origin s then #M`0 [s0] ≥ #Rj [s].

Proof. Each (τ, j) object ` can be traced back to the stage when it was formed. This has to
be under steps (2.1), (2.3), Phase 4 or Phase 5 of the construction. In the first three cases we
are not yet at the origin, and can continue with another `′ with the same origin as `. In the
first two cases (2.1), (2.2) we in fact have ` = `′ while in the third case (Phase 4) we also have
#M` = #M`′ .
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The last statement in the lemma follows easily from the previous, by following `0 to its
origin. �

Lemma 3.18. Let ` be a (τ, j) object existing at stage t0 > strue, where τ, j is any pair.

Suppose that at stage t0, every i0 pointing at (or linked to) M` is in Ξ̂. Then for every i, if
i is involved in an object made to point at M` after stage t0 (before ` is killed), we will also

have i ∈ Ξ̂.

Proof. i is made to point at M` when a new (τ ′, i) object `′ involving i is formed such that
M` = M`′ , or when i joins a clique. Let’s consider each case separately.

The new link `′ can only be formed under Phase 4 or Phase 5 of the construction. Note that
steps (2.1) and (2.3) are not possible since no object involving i was pointing at M` at t0. So
suppose `′ was formed under Phase 4 or 5 at stage t > strue. By Phase 3 of the construction,
there is some class i0 pointing atM` such that #Ri0 = #M`. Thus #Ri[t] ≥ #M`[t] = #Ri0 [t],

and by Lemma 3.8 we have that #Ri0 [t] > i. Since i0 is already a member of Ξ̂ at stage t, we

conclude by Definition 3.5 that i ∈ Ξ̂.
Next we assume that i joins a clique C pointing at M` at stage t > strue under (2.1) or

(2.2). This means that #Ri[t] ≥ #Ri0 [t] for some class i0 already pointing at M`. Now by
the construction and by Lemma 3.10 we see that i < #M`[t] ≤ #Ri0 [t]. Since i0 is already a

member of Ξ̂ at stage t, we conclude that i ∈ Ξ̂. �

Lemma 3.19. Let `0 be a (τ, j) object existing at stage t0 > strue, and `1 be a (τ, j) object
formed after `0 with the same origin as `0, where τ, j is any pair. Suppose that at stage t0,

every i0 pointing at M`0 is in Ξ̂. Then between the time when `1 is formed until the time when

`1 is killed, if i is pointing at M`1 then i ∈ Ξ̂.

Proof. We fix `0 and apply induction on the formation of `1. `1 is formed under (2.1), (2.3)
or Phase 4. In the first two cases (2.1), (2.3) it is easy to see that Lemma 3.19 follows by
applying a combination of the induction hypothesis, Lemma 3.18 and Definition 3.5.

Let’s assume that `1 is formed after `0 via Phase 4. Now `1 must have been redirected
from another (τ, j) object `′1, where `′1 was replaced by `1 (note that `′1 could have been a τ
clique). Let k0 be pointing at M`′1

and such that #Rk0 = #M`′1
. By induction hypothesis

for `′1 we have k0 ∈ Ξ̂. However in order for Phase 4 to apply and produce `1 we must have
#M`1 = #M`′1

which means that for every i pointing at M`1 we have #Ri ≥ #Rk0 . (Note
that this includes all the classes pointing at some Mn, where #Mn = #M`1 and which is

redirected to point at M`1). By Lemma 3.8, i < #Rk0 and so we have i is in Ξ̂. So every class

i pointing at M`1 is in Ξ̂. �

Lemma 3.20. Let j ∈ Ξ̂ and τ ⊆ σtrue. For almost every (τ, j) object ` we have that i ∈ Ξ̂ if
i is also (involved in a link or clique) pointing at M` at the same time as `.

Proof. Fix τ and j as in the statement of the lemma. For ease of notation we assume that at

stage strue, j has entered Ξ̂ and Rj has grown in size since it entered Ξ̂. We let ` range over all
(τ, j) objects. We assume that there are infinitely many (τ, j) objects (otherwise it is trivial).
Suppose `0 is a (τ, j) object formed at t > strue under Phase 5. Then #Rj [t] = #M`0 [t] and

by Definition 3.5 and Lemma 3.10 any i also pointing at M`0 at t will be enumerated in Ξ̂ at
t. Now if some `1 is formed after strue under Phase 5, then almost every ` formed after strue
has the same origin as an `1 formed under Phase 5, and in this case we apply Lemma 3.19 to
obtain Lemma 3.20.

Suppose that at the end of Phase 3 at some stage t > strue in which τ is visited, we have
a τ link `0 = `τ (j) in existence. By Lemma 3.11 we have #M`0 = #Rj . This means that at
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the end of Phase 3, any class i pointing at M`0 must be in Ξ̂. Applying Lemma 3.19, we also
obtain Lemma 3.20.

So finally we only need to consider the situation where:

• No ` is formed under Phase 5 after strue.
• At the end of Phase 3 during a stage t > strue in which τ is visited, we have a (τ, j)

object in existence which must be a τ clique.

We show that this situation is impossible. These two assumptions imply that no (τ, j) object
`0 can be formed under (2.3) at t > strue: Otherwise this `0 must remain after its formation
until the end of Phase 3 in the same stage t, which contradicts the second assumption above.
This means that the (τ, j) objects formed after strue are formed alternately by (2.1) and Phase
4.

Notice that (2.1) must be applied infinitely often, because otherwise the only (τ, j) objects
which can eventually exist are τ links, and since τ is visited infinitely often we get a contradic-
tion to the second assumption. We claim that there is no stage t > strue in which τ is visited
and j is determined to be eligible for (2.1) with respect to τ and M`τ (j)[t] for the qth time for
some odd q: If there is such a stage t then the link `τ (j) must remain until the end of Phase 3
of stage t, contradicting the second assumption above. Since no such stage t exists, each time
j is determined to be eligible for (2.1) after stage strue, it has to be with respect to some M`τ (j)

which was first determined eligible before stage strue. Since there are only finitely many such
M -classes, one of them has to be applied to (2.1) infinitely often, which means that it has to
be determined eligible an odd number of times after strue, contradicting an earlier statement
in this paragraph. This final contradiction ends the proof of Lemma 3.20. �

Lemma 3.21. Given any x, j and τ ⊆ σtrue such that #Rj > x, there are only finitely many
(τ, j) objects ` such that when ` is formed, #M` ≤ x.

Proof. Suppose there are infinitely many (τ, j) objects ` with #M` ≤ x. Only steps (2.1),
(2.3), Phase 4 and 5 of the construction will cause a new (τ, j) object ` to be formed, so
infinitely many ` with #M` ≤ x will have to be formed at one of these steps. We say that
(2.1), (2.3), Phase 4 or Phase 5 applies at stage s if this is the situation under which a ` is
formed at a stage s.

First observe that only finitely many ` can be formed at Phase 5 (i.e. Phase 5 applies
finitely often), because otherwise for every ` formed late enough under Phase 5, we have
#M` = #Rj > x, and we can apply Lemma 3.17. So we may now assume that every (τ, j)
object formed after strue have the same origin.

We proceed similarly as in the proof of Lemma 3.20. Suppose that at the end of Phase 3 at
some stage t > strue in which τ is visited, we have a τ link `0 = `τ (j) in existence. By Lemma
3.11 we have #M`0 = #Rj > x, and we can again apply Lemma 3.17. Thus we will only need
to consider the situation where:

• No ` is formed under Phase 5 after strue.
• At the end of Phase 3 at each stage t > strue in which τ is visited, we have a (τ, j)

object in existence which is a τ clique.

The rest of the proof follows exactly the proof of Lemma 3.20. �

Lemma 3.22. For every i ≥ min Iσtrue0 such that max{i,X0} < #Ri, one of the following
holds:

• i ∈ Ξ̂.
• There is a stable σtrue link `σtrue(i).
• There is a stable σtrue clique C containing i.
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Proof. We proceed by induction on i ≥ min Iσtrue0 . Assume the statement of the lemma holds
for every k < i. We consider a stage s∗ > strue large enough so that for each k such that

min Iσtrue0 ≤ k < i and #Rk > k,X0, if k ∈ Ξ̂ then Rk has grown in size since k was enumerated

in Ξ̂, and if k 6∈ Ξ̂ it is already involved in a stable link or clique. Suppose that there is no

stable σtrue link and no stable σtrue clique C containing i. We argue that i ∈ Ξ̂.
Since #Ri > i there are infinitely many stages where i is involved in a σtrue object. Suppose

that there are infinitely many stages where i is made to join a σtrue clique under (2.1) or (2.2)
where k = min C < i. By Lemmas 3.8 and 3.10, #Rk > k. Since these cliques have to be
removed after i joins (else i is permanently part of a σtrue clique), we have that infinitely
many (σtrue, k) cliques are formed under (2.1). In that case it is straightforward to verify that
#Rk = ∞ > X0 and we may apply the induction hypothesis for k. By the choice of s∗, we

have that k ∈ Ξ̂. Since there are necessarily infinitely many (σtrue, k) cliques, by Lemma 3.20

we will also have i ∈ Ξ̂.
So we may now assume it is the case that almost every σtrue object which i is involved in is

a (σtrue, i) object. Since every outcome of σtrue is visited finitely often, (1.2) can only apply
finitely often to remove a (σtrue, i) object. So each (σtrue, i) object will have to be removed
under (2.1), (2.3), (2.4) or Phase 4.

Case (2.4). We first consider (2.4). Suppose (2.4) applies infinitely often to remove a (σtrue, i)
object. Each time (2.4) applies there is a (τ, k) object `′ and a (σtrue, i) object ` such that
M`′ = M` and `′ is of higher priority. Let’s begin by fixing a (τ, k) object `′ which is never
removed, and suppose there are infinitely many stages such that M` = M`′ , where ` is a
(σtrue, i) object of lower priority, and where (2.4) applies to remove `.

Suppose that #M`′ = x < ∞. By Lemmas 3.10 and 3.21, #Ri = x. This means that
(2.4)(ii) and (2.4)(iii) cannot apply. If (2.4)(i) were to apply then we would have k < i and
τ = σtrue and `′ = `σtrue(k), such that #Rk > x. By Lemma 3.11 this link `σtrue(k) must be
killed at every such stage where (2.4)(i) applies. So (2.4)(i) cannot apply infinitely often for
`′.

Finally we consider (2.4)(iv). If this were to apply then `′ = `τ (k) is a link and #Rk > x.
This follows from the fact that #Ri = x and if C is a (σtrue, i) clique pointing at M`′ then
size C = x. Again by Lemma 3.11 this link `′ = `τ (k) must be killed at every such stage where
(2.4)(iv) applies (since τ is visited at each such stage). Hence (2.4)(iv) cannot apply infinitely
often for `′ as well. So the case M`′ <∞ is impossible.

Claim 3.23. Fix a class My such that #My =∞, and assume that there are infinitely many
stages such that My = M` for some (σtrue, i) object `. If infinitely many of these objects ` are

removed under (2.4)(iv) then i ∈ Ξ̂.

Proof of claim. Suppose that (2.4)(iv) is applied infinitely often in which some (τ ′, k′) link
`τ ′(k

′) kills some ` where M` = My. Since τ ′ has to be visited infinitely often and be of higher
priority, there are only finitely many possibilities for τ ′, namely, τ ′ ⊆ σtrue, so we fix a τ ′

which is infinitely often responsible.
If τ ′ = σtrue then we must have k′ < i such that M`τ ′ (k

′) = M` = My infinitely often. Hence

#Rk′ =∞ > k′, X0 and so we can apply the induction hypothesis for k′, to obtain that either

k′ ∈ Ξ̂ or that k′ is already involved in a stable σtrue link or clique. Since gτ ′(y) = gσtrue(y) is
eventually a stable ∞, therefore, if k′ is already involved in a stable σtrue link or clique at s∗

then this stable object must be a σtrue clique, which means that the link `τ ′(k
′) cannot exist

to kill ` infinitely often. Hence, we see that k′ cannot be involved in a stable object at s∗,
which means, by the choice of s∗, that infinitely many (σtrue, k

′) objects must exist during the

construction and that k′ ∈ Ξ̂. By Lemma 3.20 we will also have i ∈ Ξ̂.
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On the other hand suppose that τ ′ ⊂ σtrue, then k′ < min Iσtrue0 . Since #Rk′ ≥ #M`τ ′ (k
′) =

∞, hence k′ ∈ Ĵ and so k′ ∈ Ξ̂. We would like to apply Lemma 3.20 to conclude that i ∈ Ξ̂,
unfortunately this cannot be done unless we know that there are infinitely many different
(τ ′, k′) objects. Suppose this is not the case; so there is a final stable link `τ ′(k

′) which is
never removed. By Lemma 3.11, and since τ ′ is visited infinitely often, we see that at some

large stage t0 > s∗, we have that every i0 pointing at M`τ ′ (k) is also in Ξ̂. By Lemma 3.18 we

conclude that i ∈ Ξ̂. �

Now we suppose that #M`′ = ∞. Since σtrue is the true node, we must eventually have
the stable value gσtrue(`

′) =∞. By assumption there are infinitely many stages such that the
(τ, k) object `′ kills some (σtrue, i) object under (2.4). If infinitely many of these steps are

under (2.4)(iv) then we apply Claim 3.23 to get i ∈ Ξ̂. Suppose only finitely many of these are
under (2.4)(iv). This means that `′ will infinitely often remove some ` under (2.4)(i), (ii) or
(iii). We claim that there are infinitely many stages in which a (σtrue, i) clique `(C) is pointing
at M`′ : Suppose not. Since `′ will infinitely often remove some ` under (2.4)(i) (ii) or (iii), this
means that there are infinitely many stages in which σtrue is visited and some link `σtrue(i)
exists and is pointing at M`′ (note that this link `σtrue(i) cannot be formed at step (2.3) of
the same stage, because gσtrue(`

′) = ∞). By the assumption that almost every σtrue object
that i is involved in is a (σtrue, i) object, we see that i never joins a σtrue clique with least
element < i. Hence eventually we must apply (2.1) to get a (σtrue, i) clique C such that `(C)
is pointing at M`′ , a contradiction.

Thus there must be infinitely many stages in which a (σtrue, i) clique `(C) is pointing at M`′ .
Each clique has to be removed after it is formed, since i is never part of a stable link or clique;
how can each such clique be removed? It is easy to see that out of the possibilities (2.1), (2.3),
(2.4) or Phase 4, only (2.4)(iv) is possible. (Phase 4 is not possible because otherwise `′ is

destroyed along with `(C)). In this case we apply Claim 3.23 to get i ∈ Ξ̂.
We now conclude that if there exists some (τ, k) object `′ which is never removed, and

which infinitely often removes some (σtrue, i) object under (2.4), we have that i ∈ Ξ̂. Since
there are only finitely many `′ formed before stage s∗, we may henceforth assume that each `′

responsible for killing some ` under (2.4) is formed after s∗.
Let Y be such that i ∈ IσtrueY . Since there are only finitely many pairs (τ, k), τ to the left of

σtrue ∗ (Y + 1), where a (τ, k) object is formed during the construction, we now assume that
s∗ is large enough so that after s∗:

• If some (τ, k) object is formed after s∗, where τ is to the left of σtrue ∗ (Y + 1), then
there are infinitely many different (τ, k) objects formed during the construction.
• No (τ, k) object τ to the left of σtrue ∗ (Y + 1) is removed under (2.4) after s∗. (This

is because τ is never again visited and so if enough (τ, k) objects are removed under
(2.4) there will be no further (τ, k) objects).

Claim 3.24. No (τ, k) object is formed after s∗, where τ is to the left of σtrue ∗ (Y + 1) and
k is any number.

Proof of claim. We say that (τ, k) is a stable pair if either τ is to the left of σtrue ∗ (Y + 1) or
τ ⊆ σtrue and k < min IτY0 where τ ∗Y0 ⊆ σtrue∗Y . By examining the proof of Lemma 3.13, we
see that since we never visit left of a stable pair, the priority ordering between (τ, k) objects
(for stable pairs (τ, k)) is completely determined by the pair (τ, k) at stage s∗. Furthermore it
is straightforward (though tedious) to check that if there is a (τ ′′, k′′) object of higher priority
than a (τ, k) object for a stable pair (τ, k), then (τ ′′, k′′) is also a stable pair.

For a contradiction let’s fix a pair (τ, k) where τ is left of σtrue ∗ (Y + 1) with an object
formed after s∗. By the choice of s∗, there are infinitely many (τ, k) objects formed after s∗.
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Each (τ, k) object must be formed under Phase 4 (all other actions require τ to be visited by
the construction). Let s∗ < t0 < t1 < · · · be the stages where this happens, and let Mni be
the class which the new (τ, k) object formed at stage ti is made to point at. Note that at every
stage strictly in between ti and ti+1, there is a (τ, k) object pointing at Mni , and at stage ti+1

this (τ, k) object ` will get replaced by a new one pointing at Mni+1 . Each time this happens
there is a (τ ′, k′) object `′ which was already pointing at Mni+1 before the action at ti+1. Let
us refer to this scenario as `′ injuring ` at ti+1.

Since (τ, k) is a stable pair, by the first paragraph above, (τ ′, k′) must also be a stable
pair. It is straightforward to check that there are only finitely many stable pairs which has
an associated object during the construction. So, let’s fix a stable pair (τ ′, k′) infinitely often
responsible for injuring some `. Since the priority of stable objects are determined by the pair,
we fix a (τ ′, k′) of the highest priority amongst the stable pairs infinitely often injuring some
`.

We begin by supposing that τ ′ is to the left of σtrue ∗ (Y + 1), and consider that the
(τ ′, k′) object `′ injures some ` at ti. Since τ ′ is never again visited, observe that `′ cannot
be removed strictly in between ti and ti+1: It cannot be removed by (2.4) by the assumptions
on s∗, and it cannot be removed by Phase 4 because otherwise ` will be removed before ti+1.
Thus at stage ti+1 a new `τ ′(k

′) will be formed pointing at Mni+1 . Continuing this way, we
see that at every stage after ti there is a (τ, k) object ` and a (τ ′, k′) object `′ such that
M` = M`′ = Mnj for some j. This is a contradiction because some (τ ′, k′) object `′ must after
stage ti injure some `, and the two cannot point at the same M -class before the injury.

Thus we must have τ ′ ⊆ σtrue, and we again consider that a (τ ′, k′) object `′ injures some
` at ti. By the argument in the preceding paragraph, there must exist infinitely many j > i
such that a (τ ′, k′) object `′ is removed strictly between tj and tj+1.

This case is a bit trickier because τ ′ can now be visited by the construction infinitely often.
Let’s examine the possibilities for `′ to be removed strictly between tj and tj+1. Phase 4 is
again not possible because otherwise ` will be removed before tj+1. (2.3) is possible but we
immediately replace `′ with another (τ ′, k′) object pointing at the same M -class. If (2.1),
(2.2) or (2.4) removes `′ then `′ is replaced by another higher priority object pointing at the
same M -class. So we see that at each such j there is a (τ ′′, k′′) object `′′ (of equal or of higher
priority than `′) such that M`′′ = M`′ = M` = Mnj .

Since `′′ has higher priority than `, we see that (τ ′′, k′′) must also be a stable pair. Now
if `′′ itself was to be removed before stage tj+1 then we would have yet another stable pair
(τ ′′′, k′′′) with an object pointing at Mnj of the same or of higher priority than `′′. In any
case we must have the situation that just before the action Phase 4 at tj+1, there is an object̂̀ pointing at Mnj where ̂̀ is of equal or of higher priority than (τ ′, k′). This means that in
order for Mnj to be killed by Mnj+1 there must already be an object pointing at Mnj+1 of

higher priority than ̂̀ (and higher than (τ ′, k′) as well) injuring some `. Since this happens
for infinitely many j, we get a contradiction to the assumption that (τ ′, k′) has the highest
priority amongst all stable pairs which infinitely often injures some `. �

Claim 3.25. For each τ, k and i, suppose there are infinitely many stages such that M` = M`′,
where ` is a (σtrue, i) object and `′ is a (τ, k) object of higher priority formed after s∗, and

τ ⊆ σtrue. Then i ∈ Ξ̂.

Proof of claim. We fix a τ ⊆ σtrue and a k such that there are infinitely many stages where a
(τ, k) object `′ points at the same class as a `.

If τ = σtrue then we must have k < i such that M`′ = M` infinitely often. If #Rk = y <∞
then we claim that #Ri ≤ y: If not then #Ri > y, and by Lemma 3.21 we see that only
finitely many ` can have #M` ≤ y. However since there are infinitely many different (σtrue, i)
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objects `, we get a contradiction by applying Lemma 3.10 to get #M` = #M`′ ≤ y. Hence we
see that #Rk > X0, k (since #Ri > X0, i by assumption). Thus we may apply the induction
hypothesis for k. Since `′ is formed after s∗, by the choice of s∗ there are infinitely many (τ, k)

objects and k ∈ Ξ̂. Hence by Lemma 3.20 we will have i ∈ Ξ̂.

On the other hand if τ ⊂ σtrue then k < min Iσtrue0 . If #Rk = ∞ then k ∈ Ĵ and k ∈ Ξ̂.
Since strue is large enough, we may assume that since some (τ, k) object is formed after strue,
there will be infinitely many different (τ, k) objects during the construction. Then by Lemma

3.20 we have i ∈ Ξ̂. So we must instead have #Rk = y <∞. Again by Lemmas 3.10 and 3.21
we see that #Ri ≤ y = #Rk. But this is impossible since #Ri > X0. �

By Claim 3.25 we may assume that almost every `′ responsible for killing some ` under
(2.4) is a τ object for some τ to the left of σtrue ∗ (Y + 1). Even though there are infinitely
many nodes to the left of σtrue ∗ (Y + 1), only finitely many of them are ever visited by the
construction, so we fix a τ to the left of σtrue ∗ (Y + 1) infinitely often responsible for killing
` under (2.4), and fix an associated k. Since any object responsible for killing ` under (2.4) is
assumed to be formed after s∗, we get a contradiction by applying Claim 3.24.

This ends the analysis for case (2.4). Let’s assume that (2.4) applies finitely often and we
now consider the remaining cases (2.1), (2.3), Phase 4.

Case 4. Suppose Phase 4 applies infinitely often to remove a (σtrue, i) object `. Between two
consecutive stages t0 < t1 where Phase 4 is applied, we note that only (2.1) and (2.3) can be
applied to remove `. Both of these actions leave the target M -class unchanged. Hence the
(σtrue, i) object formed by Phase 4 at t0 and the (σtrue, i) object being removed at t1 will both
point at the same M -class. Since there are only finitely many objects `′ which are formed
before stage s∗, this means that at almost every instance where Phase 4 applies to remove
some `, we have M` = M`′ , where ` is a (σtrue, i) object and `′ is a (τ, j) object of higher
priority formed after s∗. If infinitely many `′ are associated with a τ ⊆ σtrue then we apply

Claim 3.25 to see that i ∈ Ξ̂. Since Phase 4 applies infinitely often we assume that infinitely
many `′ are (τ, j) objects for some τ to the left of σtrue ∗ (Y + 1). Since `′ is formed after s∗

we get a contradiction to Claim 3.24.

Case (2.1), (2.3). Now we assume that (2.4) and Phase 4 apply finitely often. Hence with
finitely many exceptions every (σtrue, i) object is pointing at the same M -class My. Since
gσtrue(y) is eventually stable, it is also impossible for either (2.1) or (2.3) to apply infinitely
often.

This final contradiction shows that either (2.4) or Phase 4 must apply infinitely often, and

hence i ∈ Ξ̂. This concludes the proof of Lemma 3.22. �

Finally we will demonstrate that R = {Ri}i∈ω is ∆0
2-categorical. Given any class Ri where

i > min Iσtrue0 we use ∅′ to first check if #Ri > max{i,X0}. Note that X0 is a fixed constant

with respect to i. If so we proceed to check if i ∈ Ξ̂ or if there is a stable σtrue link or clique
involving i. At least one of the two alternatives is guaranteed to hold by Lemma 3.22. Note

that Ξ̂ is a fixed c.e. set. If i ∈ Ξ̂ then #Ri =∞. Otherwise we apply the following:

Lemma 3.26. If i is involved in a stable σtrue link or σtrue clique with pointer `, then #Ri <∞
if and only if gσtrue(`) = f .

Proof. Since σtrue is the true node, gσtrue(`) = f iff #M` < ∞. Thus if gσtrue(`) = f then i
must be involved in a stable σtrue link ` = `σtrue(i). By Lemma 3.11 and the fact that σtrue is
visited infinitely often, we see that #Ri <∞.

On the other hand if gσtrue(`) = ∞ then #M` = ∞. By Lemma 3.10 we see that #Ri =
∞. �
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4. Categoricity of sets

Recall that an infinite Σ0
2-set X is categorical if E(X) is ∆0

2-categorical. Fact 2.2 implies
that E(X) has a computable copy if and only if X is Σ0

2. We follow Convention 2.5 and
consider only infinite Σ0

2 sets. By Proposition 2.6, a Σ0
2 set X is categorical if and only if for

every computable presentation of X there is some g ≤T ∅′ telling the sizes of classes in this
copy.

4.1. Comparing categoricity to other known properties. As we have seen, categorical
sets are closed downwards under ⊆ amongst Σ0

2 sets. Since ω is limitwise monotonic (hence,
is not categorical), categorical sets are not closed upwards under ⊆, by Theorem 4.1 below.
The second half of the theorem shows that, however, limitwise monotonicity fails to describe
categorical sets in general. The simple result below is based on ideas contained in [7] and [21].

Theorem 4.1.

(1) If an infinite Σ0
2 set X is limitwise monotonic then X is not categorical.

(2) There exists an infinite ∆0
2 set which is not categorical and not limitwise monotonic.

Proof. (1) Recall that an infinite limitwise monotonic set is the range of some injective lim-
itwise monotonic function. Suppose X is infinite and limitwise monotonic, and let f be an
injective l.m.f. such that range(f) = X. By Proposition 2.6 it is sufficient to build a com-
putable copy of E(X) in which the size of the classes (the function #) is not dominated by
any ∅′ -computable function. We use the limit lemma to fix an effective listing (ge)e∈ω of all
approximations to partial ∅′ functions. We construct a copy M of E(X) which satisfies the
requirements:

Ry : ∃![x] ∈M(#[x] = f(y));

Qe : ge(3e) ↓⇒ ge(3e) < #[3e] <∞].

There is also a global requirement which says M ∼= E(X).

The strategy for Qe is to monitor ge(3e). If ge(3e) ↓ and is greater or equal to the current
size of the class [3e], then we increase the size of [3e] using a fresh z so that fs(z) is greater
than the sizes of all equivalence classes introduced so far. More specifically, from this stage
on we promise #[3e] = f(z).

The strategy for Ry introduces, if needed, a new class and declares its size to be f(y). In
the construction, if Ry is active for the first time, Ry picks a new fresh class of the form [3j].
At a later stage, Ry can be injured by Qj . If this happens, Ry picks a new fresh x = 3k + 1
and declares #[3k + 1] = f(y).

In the construction, we build E(X) by stages. We make [3k + 2] infinite for every k, and
we also let the strategies act according to their instructions. The verification is not difficult
and is left to the reader.

(2) As in the proof of (1), we fix an effective listing (ge)e∈ω of approximations to partial ∆0
2

functions. We construct a computable representation of an equivalence relation of the form
E(X) and satisfy:

Pe : λx supz ϕe(x, z) is total and range(supz ϕe(x, z)) is infinite ⇒ (∃y) supz ϕe(y, z) /∈ X;

Qi : gi is total → (∃x) gi(x) < #[x] <∞;

Rk : X contains at least k elements.

The strategy for Pe picks y such that supz ϕe(y, z), if it exists, is larger than 2e (we will need
more when we put the strategies together, see below). Notice that if range (supz ϕe(x, z))
is infinite, then the strategy will eventually pick such a y. At stage s, the strategy keeps
supz ϕe(y, z)[s] outside X increasing the size of [x] to a larger finite value for every x ≤ s such
that #[x]s = supz ϕe(y, z)[s].
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The Q-strategy is similar to the one in the first part of the theorem. The witness does not
have to be 3e and is picked by a strategy when it is initialized. The strategy for Qi picks
a fresh large x and makes #[x] > 2e. The strategy increases #[x] to be a larger number if
necessary (we do not have a l.m.f. to find a safe spot, as in (1)).

The strategy for Rk introduces a class of size k, if this size is not restrained by P -strategies
and is not currently among the sizes in the equivalence structure we are building.

The P and Q strategies have outcomes {∞, fin}. We put the P and Q strategies onto
a tree of strategies. In the construction, every strategy acts according to the outcomes of
the strategies above it. If there is a Pe-strategy with outcome ∞ above a Qi-strategy, then
the Qi -strategy waits for supz ϕe(x, z) to grow much larger than gi,s(z) (notice that Qi may
wait forever in the case when gi(z) tends to infinity or diverges, but this is fine). Every P -
strategy will impose its restraint larger than the sizes of classes controlled by Q-strategies
with finitary outcomes above it, and will impose its restraint to be less than the sizes of the
classes controlled by higher priority Q-strategies above it having infinitary outcomes. �

Downey and Melnikov [13] showed that semi-lowness captures ∆0
2-categoricity of completely

decomposable groups. In the next result we use limitwise monotonicity and Theorem 4.1 to
find an interesting relation between categorical sets and semi-low1.5 sets. Recall that a set
S is semi-low1.5 if {x : Wx ∩ S finite} ≤1 ∅′′. We can equivalently replace ∅′′ by Fin = {e :
dom(ϕe) finite}.

Theorem 4.2.
(1) Each infinite d.c.e. semi-low1.5 set is not categorical.
(2) Some infinite superlow (hence semi-low1.5) set is categorical.

Comments on the proof. We prove the first part of the theorem by showing that each d.c.e.
semi-low1.5 set is limitwise monotonic, this fact is of an independent interest for us. The second
half of the theorem is done by a direct construction which uses the usual lowness requirements.

Proof. (1). For the first half of the theorem, fix a d.c.e. semi-low1.5 set S and a total computable
p such that We ∩ S is finite if and only if dom(ϕp(e)) is finite. We are building a limitwise
monotonic function f(x) using a c.e. set Wg(x) whose index g(x) is given by the recursion
theorem. At stage s we will have fs(x), and then we will set f(x) = lims fs(x).

Suppose fs(y) has already been defined for each y < x. In the following, we suppose that
fs(y) has already reached their final values for every y < x (we restart the procedure below,
otherwise).

Consider the infinite d.c.e. set

Sx = {v ∈ S : v > fs(x− 1)} = Ux − Vx,
where Ux and Vx are some c.e. sets. Do the following:

(1) Start by enumerating all elements of Ux into Wg(x) and wait for dom(ϕpg(x)) to grow.
(2) As soon as dom(ϕpg(x)) increases at a stage t, stop enumerating elements from Ux

into Wg(x) and set ft(x) = minSx,t which is the least z ∈ Ux,t that has not been yet
enumerated into Vx,t. (Without loss of generality, we may assume such a z exists,
otherwise wait until it shows up.)

(3) If the current value of f enters Vx (thus leaves S permanently), pick the next largest
z′ currently in Wg(x),t which has not yet entered Vx and set ft′(x) = z′. Then repeat
the same with the next largest z′′ if z′ leaves S, etc.

(4) If at some stage all elements from Wg(x),t leave S, return to 1 above and repeat.

Notice that we can not infinitely loop through (1) for in this case Wg(x) ∩ S is finite but
dom(ϕpg(x)) is infinite. Thus, there exists a stage s0 and an element c ∈ S such that fs0(x)
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will be permanently set equal to c at stage s0. Also, notice that s ≤ t implies fs(x) ≤ ft(x),
and thus the function f = lims fs is total and limitwise monotonic. Finally, the construction
guarantees f(x) < f(x+ 1), for every x, and therefore f is injective. (Note that a Σ0

2-set that
contains an infinite limitwise monotonic subset is limitwise monotonic, see e.g. [22].)

(2). Let (Zi)i∈ω be the effective listing of all partial computable models in the language of
one binary predicate symbol. We are constructing an infinite ∆0

2 set X so that the following
requirements are met:

Le : ∃∞sΦX
e (e)[s]↓⇒ ΦX

e (e)↓;
Rj : Zj represents E(X) ⇒ ∃ total gj ≤T ∅′ representing # in Zj .

We split Rj further into sub-strategies, Rj,k :

Rj,k : gj guesses #[k] in Zj correctly.

Remark: The construction will not be using a tree of strategies, for if we were using many
versions of Rj,k, we would not be able to define gj without an oracle for ∅′′. In fact, it will
be a finite injury construction. We also note that the lowness requirements Le will ensure
super-lowness if we can bound the number of injuries to each Le by a computable function.

The strategy for Rj,k:

• Set a threshold for (the size of) [k], a large and fresh number ≥ (〈j, k〉+ 1)2 never seen
in the construction before;
• At a stage t, keep gj,t(k) = #t[k] in Zj unless [k] passes its threshold, in the latter

case set gj,t(k) =∞;
• If [k] has passed its threshold at stage t, and currently #t[k] ∈ Xt, then extract x from
X.

The strategy for Le is a modification of the standard lowness strategy. More specifically, Le
attempts to preserve the computation ΦX

e (e)[s] by restraining X on the use of Φe(e)[s]. It
can also put elements back to X, for the sake of restoring a computation of Φe which was
previously seen but then was destroyed due to actions of higher priority R-substrategies. It
does so unless this action injures higher priority strategies. Once the computation is restored,
the strategy preserves that restored computation.

Construction. At stage 0, we set X0 = ω. At stage s, we let the strategies act according to
their instructions.

Verification. By induction, we show that every Le is met. In fact, we show that there exists a
stage, after which ΦX

e (e)[s]↓ implies ΦX
e (e)↓. There are only finitely many R-substrategies that

can potentially injure a computation of ΦX
e (e). Suppose that after stage s all higher priority

R-substrategies that correspond to finite witnesses are never active again, and suppose also
that all higher priority L-strategies already passed their respective stages of stable evidence.
If there is no t ≥ s at which ΦX

e (e)[t] ↓, then there is nothing to prove. Otherwise, suppose
ΦX
e (e)[t] ↓ for t ≥ s. There exists a stage t′ ≥ t at which all higher priority R-strategies

having infinitary behavior (i.e., having infinite classes as their witnesses) have their respective
witnesses of sizes greater than the use of ΦX

e (e)[t] ↓. The strategy for Le then restores the
computation by returning missing elements into X. This computation will never be injured
again. It is also easy to see that a bound for the number of injuries to each Le can be computed
in advance.

It is now straightforward to verify that Re,j is met, for every e, j. Since the strategy extracts
elements from X, the respective structure Zj must demonstrate it is isomorphic to E(X) by
growing the class. It is important that the substrategy can lift its threshold only finitely many
times. Consequently, it eventually defines a astable threshold, and thus the whole process is
∆0

2. Thus, gj ≤ ∅′, as desired. It is also clear that the set is infinite. �
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Remark 4.3. It is not difficult to show that some d.c.e. set is categorical. We can modify
the R-strategy so that whenever it extracts x from X it immediately puts (x-1) back to
X. The number x will never be put into X again. It is now sufficient to split ω into large
enough intervals, and let “labels” move downwards within the intervals. We conclude that
both conditions (being d.c.e. and being semi-low1.5) are essential in Theorem 4.2 (1).

Remark 4.4 (Cholak). In Theorem 4.2 (1), semi-low1.5 can be replaced by the “semilow2

and the outer-splitting property”, with essentially the same proof.

4.2. Degrees bounding categoricity. Although Theorem 4.1 (2) implies that limitwise
monotonicity fails to describe categorical sets, we would like to compare limitwise monotonic
sets and categorical sets further. It is possible to describe c.e. degrees bounding infinite sets
which are not limitwise monotonic:

Theorem 4.5 (Downey, Kach, and Turetsky [11]). A c.e. degree a computes an infinite set
which is not limitwise monotonic if and only if a is high.

Since ω is limitwise monotonic, S⊕ω is not categorical for a categorical set S. Thus, similarly
to limitwise monotonicity, being categorical is not a degree-invariant property. Note that
the property of being not categorical is, like being a limitwise monotonic set, closed upwards
under ⊆. There are more similarities of technical nature which occur when dealing with non-
categorical sets. Our intuition is that non-categoricity is a non-uniform version of limitwise
monotonicity. The intuition is: E(X) is not ∆0

2-categorical if (and only if) we can eventually
provide each diagonalization substrategy with a sufficiently large class which will monotonically
grow to a size v ∈ X. If X is limitwise monotonic, then it can be done with all uniformity and
at once, but in general it does not have to be like that. This difference between non-categoricity
and limitwise monotonicity is so subtle that c.e. degrees can not distinguish them:

Theorem 4.6. For a c.e. degree a, the following are equivalent:

(1) a is high.
(2) There is some function f ≤T a such that for every computable sequence of total

computable functions {pe}, there is a computable function g such that for each e, we
have f(x) > pe(x) for every x > g(e).

(3) There exists some infinite set X ≤T a such that X is categorical.

Proof. (3) ⇒ (1): Every infinite set computable from a non-high c.e. degree is limitwise
monotonic and thus non-categorical, see Theorems 4.1 and 4.5.

(1) ⇒ (2): Let {pe} be a computable sequence of total computable functions. Let P (x) =∑
e≤x pe(x), where P is total computable. Then any dominant function computable from

a must dominate P and hence pe for every e. Fix (non-uniformly) a number x0 such that
f(x) > P (x) for every x > x0. Let g(e) = max{x0, e}.

(2) ⇒ (3): Fix a Turing functional Φ and a c.e. set A such that f = ΦA, where f satisfies
(2). Fix an enumeration {As} of A as well as an enumeration {Cin}i,n∈ω of all uniformly c.e.
sets. (Hence each computable equivalence relation is identified with some member of this
sequence). We may assume that at every stage s, ΦA[s] converges on all inputs up to s.

We define an increasing sequence of markers {zi} by specifying an approximation zi[s] of
zi. We ensure that this approximation is increasing in i and s. Let Bi be the ith block, i.e.,
Bi = [zi, zi + 2i2], and Bi[s] be the stage s approximation to Bi, i.e. Bi[s] = [zi[s], zi[s] + 2i2].
Within the ith block we identify a unique element xi[s] ∈ Bi[s]. At the end we take X =
{lims xi[s] | i ∈ ω}.
Construction of {zi[s]} and {xi[s]}. To initialize Bi at stage s means to move zi to a fresh
number larger than s and beyond the boundaries of B0, · · · , Bi−1, and set xi = maxBi. At
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stage 0 initialize every Bi. Now assume we are at stage s+ 1. Let k be the least such that A
has changed at stage s+ 1 below the use of ΦA(k)[s] (if As+1 = As then we do nothing). Let i
be the least such that k ≤ maxBi. We initialize Bj for every j > i. Suppose k ≤ xi and there

is some i′, j′ < i such that #Ci
′
j′ = xi currently. We decrease xi by one, otherwise do nothing

else in this stage. Now take X = {lims xi[s] | i ∈ ω}.
It is easy to see that for every i and every s, the blocks Bi[s] are pairwise disjoint and

increasing in i. Furthermore each block is initialized finitely often and A can compute a stage
where each zi and Bi are stable. Each xi must stay within the block Bi, because it initially
starts off as maxBi, and is decreased each time we find some #Ci

′
j′ = xi, where i′, j′ < i.

Since the size of each class #Ci
′
j′ is non-decreasing, and the size of the block Bi is 2i2 + 1, xi

will never leave the block. Since each initialization to a block moves it to a fresh location, it
is easy to see that X ≤T A (knowing the function f allows us to compute where the blocks
are), and that X is infinite. Let Xs = {xi[s] | i < s}.

We now claim that X is ∆0
2-categorical. Fix {Cn} = {CIn} and assume that {Cn} is an

equivalence structure presenting E(X). Define {pn} by the following. Run the approximation
for {Xs} and Cn[s], and suppose we have defined pn(x) at stage sx. We search for a stage
sx+1 > sx such that either (i) #Cn[sx+1] ∈ Xsx+1 , or (ii) Xsx+1 ∩ (#Cn[sx],#Cn[sx+1]] 6= ∅.
When sx+1 is found we define pn(x+ 1) to be larger than the current value of f(x+ 1).

Claim 4.7. pn is total for every n.

Proof. If pn is not total then there is some least sx+1 which we fail to find. Since (i) does not
hold after stage sx, we can conclude that Cn is infinite (Cn cannot be finite because {Ck} is
assumed to be an equivalence structure presenting E(X)). Since X is infinite we must have
(ii) holds at some large stage after sx, a contradiction. �

Now fix a computable function g such that for each n, we have f(x) > pn(x) for every
x > g(n). Now fix n. Let t be first stage such that #Cn[t] > max{n, I, g(n)}, and such that
Bi+1 is initialized at stage t where i is the largest such that maxBi < #Cn[t] at stage t. If t
exists we define h(n) = ∞, otherwise we define h(n) = f . Clearly h ≤T ∅′; in fact there is a
computable approximation to h(n) which changes at most once on each input n.

If t does not exist, we argue that Cn is finite. Otherwise for almost every i, at the first
stage where #Cn grows larger than maxBi, we can conclude that A is stable below the use
for ΦA � maxBi + 1. This allows us to compute A, which is impossible since A is high.

Now finally assume that t exists. We argue that Cn is infinite. Let sx0 > t be the least stage
of this form. We claim that there are infinitely many x > x0 such that #Cn[sx] ≥ x. Note that
#Cn[sx0 ] ≥ x0, because at stage t we would have ensured that the interval [#Cn[t], t]∩Xt = ∅,
and by construction of X we in fact have [#Cn[t], t] ∩ Xt′ = ∅ for every t′ ≥ t. Since
pn(x0 − 1)[t] ↓ we have that x0 ≤ t. Clearly at stage sx0 we must have #Cn[sx0 ] > t ≥ x0.

Now suppose that there are only finitely many x ≥ x0 such that #Cn[sx] ≥ x. Since x0

is such a stage, we assume that x is the largest such that #Cn[sx] ≥ x. By maximality of x
we have #Cn[sx] = x, and in fact we must have #Cn[sx+1] = x. We have x = #Cn[sx] ≥
#Cn[t] > g(n). Since f dominates pn and pn(x) > ΦA(x)[sx], this means that A has to change
below the use of ΦA � x+ 1 after stage sx.

Claim 4.8. At stage sx, there is some j such that x ∈ Bj [sx], where we have xj [sx] ≤ x.

Proof. Suppose that x is not in any block. Then (ii) must hold at stage sx. Let j′ be the
largest block such that maxBj′ < x. Obviously maxBj′ > #Cn[sx−1]. Clearly at the previous
stage sx−1 the block Bj′ was still in the same position, and thus xj′ [sx−1] ≥ xj′ [sx], which
would contradict the choice of sx. Hence there is some j such that x ∈ Bj [sx].
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At stage sx if (i) holds then #Cn[sx] ∈ Xsx and the claim certainly holds. Otherwise (ii)
holds which means we have a new element xj′ [sx] such that Cn[sx−1] < xj′ [sx] ≤ Cn[sx].
Clearly j′ = j because otherwise j′ < j and a contradiction can be derived as above. �

Now by Claim 4.8 we can conclude that when A next changes, say at stage u > sx, below the
use of ΦA � x+ 1, we must have the interval [#Cn[u], u]∩Xu = ∅. In fact, by the construction
we have [#Cn[u], u] ∩ X = ∅. Let y > x be the least such that sy > u; since sy−1 ≤ u, in
particular we have y ≤ u. Furthermore at stage sy we must have #Cn[sy] ≥ u ≥ y, since the
whole interval [#Cn[u], u] is disjoint from X. This contradicts the maximality of x. �

5. A short conclusion

We leave open the following:

Question 5.1 ([7]). Which computable equivalence structures are ∆0
2-categorical?

It may very well happen that no classical notion of computability theory (nor any reasonable
combination of such properties) captures categoricity of a set. In this case we would like to
know more about such sets.

We hope that our techniques can be used to attack the following problem:

Question 5.2. Describe ∆0
2-categorical linear orders.

We would also like to know more about ∆0
2-degrees of categoricity of computable equivalence

structures:

Question 5.3 (Csima). Is every ∆0
2 degree of categoricity of a computable equivalence struc-

ture either complete or computable?
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