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Abstract. In [3], Brodhead, Downey and Ng introduced some new
variations of the notions of being Martin-Löf random where the tests
are all clopen sets. We explore the lowness notions associated with
these randomness notions. While these bounded notions seem far from
classical notions with infinite tests like Martin-Löf and Demuth random-
ness, the lowness notions associated with bounded randomness turn out
to be intertwined with the lowness notions for these two concepts. In
fact, in one case, we get a new and likely very useful characterization of
K-triviality
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1. Introduction

The underlying idea behind algorithmic randomness is that randomness
can only be understood through computational considerations. This inter-
pretation of randomness means that the object in question avoids simpler
algorithmic descriptions, either through effective betting strategies, effective
regularities or effective compression.

This idea means that we avoid any idea that there is “true” randomness,
and work with the idea that we only have calibrations of randomness ac-
cording to the sensitivity of the measuring tool. That is, exactly what we
mean here by “effective” delineates notions of algorithmic randomness. A
major theme in the area of algorithmic randomness seeks to calibrate notions
of randomness by varying the notion of effectivity. For example, classical
Martin-Löf randomness1 uses tests, shrinking connections of c.e. open sets
whose measure have effective upper bounds, whereas Schnorr randomness is
defined using tests of precise effective measure. We then see that Schnorr
and Martin-Löf randomness are related but can have very different prop-
erties; for example outside the high degrees they coincide, but the lowness
concepts are completely disjoint.

Given that we define randomness via computation it is natural to as-
certain how randomness so defined relates to computational power. To do
this we relate algorithmic randomness to measures of relative computability,
such as the Turing degrees. The key question in this investigation is, if a
string is random, can it have high computational power? A classic result is
Stephan’s theorem [18] that if a Martin-Löf real is random and has enough
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computational power to be able to compute a {0, 1}-valued fixed-point-free
function, then it must already be Turing complete.

The goal of the present paper is to study some new variations of algorith-
mic randomness introduced by the authors and Paul Brodhead in [3] explor-
ing both of the themes above. In particular, we study what we call “bounded
variations” of the notion of Martin-Löf randomness where the tests are all
finite. These notions generalize the notion of Kurtz (or weak) randomness
but are incomparable with both Schnorr and computable randomness. As
more precisely defined in the next section, together with Brodhead we de-
fined what we called computably bounded (CB) and finitely bounded (FB)
notions of finite Martin-Löf randomness. The paper [3] showed that the
bounded notions of randomness we shall encounter in the next section were
strongly related to degree classes such as the totally ω-c.a. degrees, and
notions of initial segment complexity.

The goal of the present paper is to explore the associated lowness no-
tions. Aside from the intrinsic interest in this, one good reason for such
study is to give insight into other studied lowness and randomness notions.
Indeed our investigation reveals that this is indeed the case. In the case
of CB-randomness we show that there are continuum many reals low for
the concept, and discover that they are very closely related to the recently
discovered reals low for Demuth randomness (as per Bienvenu, Downey,
Greenberg, Nies and Turetsky [2]). We do this using an apparent extension
of what is called in [2], BLR-traceability. It remains an open question if our
lowness class coincides with lowness for Demuth randomness. In the case
of FB-randomness (which is defined simply by considering only finite ML-
tests) the lowness class coincides with K-triviality. In some sense, this last
result is somewhat unexpected, and somehow says something deep about
the nature of K-triviality. That is suggested by the fact that we can charac-
terize lowness for ML-randomness via a much weaker notion of randomness,
which is a very surprising discovery. In fact, we show that for characterizing
K-triviality, it suffices to consider FB-randomness together with genericity.

We give the basic definitions in Section 2 and review some elementary
properties from [3]. In Section 3 we include a proof of a basic result from
[3], as its proof and statement are of importance for the present paper. In
Section 4 we construct reals low for CB-randomness, and finally in Section
5 we show that lowness for FB-randomness and K-triviality coincide.

2. Notation

If W is a finite set then #W denotes the cardinality of W . |σ| denotes
the length of a finite string σ. We work in the Cantor space 2ω with the
usual clopen topology. The basic open sets are of the form [σ] where σ is a
finite string, and [σ] = {X ∈ 2ω | X ⊃ σ}. We fix some effective coding of
the set of finite strings, and we freely identify finite strings with their code
numbers. We denote [W ] = ∪{[σ] : σ ∈ W} as the Σ1 open set associated
with the c.e. set W . µ([W ]) denotes Lebesgue measure, and we write µ(W )
instead of µ([W ]). We let ∗ be the string concatenation symbol. We let
Dn be the nth canonical finite set. If W is an open set and σ ∈ 2<ω we let

µ(W | [σ]) = µ(W∩[σ])
µ([σ]) , i.e. the measure of W relative to [σ].
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Definition 2.1 (Brodhead, Downey and Ng [3]). (a) A Martin-Löf (ML)
test is a uniform c.e. sequence {Un}n∈ω of sets Un such that µ(Un) <
2−n.

(b) A Martin-Löf test {Un}n∈ω is finitely bounded (FB) if #Un < ∞
for every n.

(c) A Martin-Löf test {Un}n∈ω is computably bounded (CB) if there is
some total computable function f such that #Un ≤ f(n) for every
n.

(d) A real X ∈ 2ω passes a CB-test (FB-test) {Un}n∈ω if X 6∈
⋂
n[Un].

A real X ∈ 2ω is computably bounded random if X passes every CB-test.
X is finitely bounded random if it passes every FB-test. We always assume
that in any FB-test {Un}, each Un contains only pairwise incomparable
strings, since we can choose to enumerate long extensions of σ instead of σ
itself. Note that for a CB-test we are unable to make such a convention.

It is not hard to see that in the definition of a CB-test, it is equivalent
to require for a computable bound on the length of strings enumerated into
the test. These two notions of randomness are weaker than Martin-Löf ran-
domness, although they imply Kurtz randomness. The obvious implications
are:

- - -

PPPPPPPq ��
��

��
�1

ML-random FB-random CB-random Kurtz random

Schnorr random

In [3], with Brodhead we proved that no implications hold other than
those stated in the diagram. We did this as follows. First, we showed that
there is a ∆0

3 1-generic real which is FB-random while no Schnorr random
is weakly 1-generic. No incomplete c.e. degree can compute a FB-random
(Proposition 3.1(i)). However, some incomplete c.e. degree bounds a CB-
random since in [3] we prove the following.

Theorem 2.2 (Brodhead, Downey and Ng [3]). Suppose A is a c.e. real.
The following are equivalent.

(i) degT (A) is not totally ω-c.a.,
(ii) degT (A) contains a CB-random,
(iii) There is some c.e. real B ≤T A which is CB-random,
(iv) There is some B ≤T A which is CB-random.

Here, a degree a is called totally c.a. iff every function f ≤T a has a limit
lemma approximation f(x) = lims g(x, s) where there is a computable h with
|{s : g(x, s+1) 6= g(x, s)}| < h(x) for all x. (See Downey, Greenberg, Weber
[8], Downey and Greenberg [6, 7] and Barmpalias, Downey and Greenberg
[1]). It is known that there are low c.e. degrees that are not totally ω-c.a..

Finally in [3], we showed that

Proposition 2.3 (Brodhead, Downey and Ng [3]). Every CB-random is of
effective packing dimension 1.

Proof. For completeness we give a proof of Proposition 2.3 as it is quite
short. Suppose K(α �n) ≤ cn for all n ≥ N for some N ∈ N and c < 1 i s
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rational. Fix a computable increasing sequence of natural numbers {ni} al
l larger than N , such that ni >

i
1−c for all i. Now define a CB- test {Vi} by

the following: Vi := {σ ∈ 2ni | K(σ) ≤ cni}. Here we have #Vi ≤ 2cni . �

Lathrop and Lutz [16] showed that there is a computably random set X
such that for every order function g, K(X � n) ≤ K(n) + g(n) for almost
every n. Hence X cannot be CB-random, by Proposition 2.3. This gives
the last separation for the diagram.

As we noted in [3], these finite notions of randomness turn out to have
strong relationships with degrees classes hitherto unrelated to algorithmic
randomness. We will show that FB-randomness and Martin-Löf -randomness
coincide on the ∆0

2 sets but are distinct on the ∆0
3 sets (Theorem 3.1). There

is one other known restriction on such reals.

Proposition 2.4 (Brodhead, Downey and Ng [3]). No CB-random is c.e.
traceable.

Kurtz showed that every nonzero c.e. degree contains a Kurtz random real,
but (by Theorem 2.2 above) the degrees containing CB-random reals is a
subclass of the c.e. degrees : those that are not totally ω-c.a.. This is a class
of c.e. degrees introduced by Downey, Greenberg and Weber [8] to explain
certain “multiple permitting” phenomena in degree constructions such as
“critical triples” in the c.e. degrees, and a number of other constructions
as witnessed in the subsequent papers Barmpalias, Downey and Greenberg
[1] and Downey and Greenberg [7]. This class extends the notion of array
noncomputable reals, and correlates to the fact that all CB-random reals
have effective packing dimension 1 (Theorem 2.3). Downey and Greenberg
[6] have previously showed that the c.e. degrees containing reals of packing
dimension 1 are exactly the array noncomputable reals. Brodhead, Downey
and Ng [3] also show that if a c.e. degree a contains a CB-random then
every (not necessarily c.e.) degree above a contains a CB-random as well.
From all of this, we see that there remain a lot to understand for this class.

3. Basic results

One of the basic results shown in [3] is that the notion of FB-randomness
and Martin-Löf -randomness coincide on the ∆0

2 sets, and they differ on the
∆0

3 sets. Since the proof is relevant to this paper, we include it here.

Proposition 3.1 (Brodhead, Downey and Ng [3]). (i) Suppose Z ≤T
∅′. Then Z is ML-random iff Z is FB-random.

(ii) There is some Z ≤T ∅′′ such that Z is 1-generic, FB-random and
not ML-random.

Proof. (i): Given an approximation Zs of Z, and suppose {Ux} is the univer-
sal ML-test where Z ∈ ∩x[Ux]. Enumerate an FB-test {Vx} by the follow-
ing: at stage s, enumerate into Vx, the string Zs �n for the least n such that
Zs �n ∈ Ux[s]. Then, {Vx} is uniformly c.e., where µ(Vx) ≤ µ(Ux) < 2−x for
all x. Clearly Z ∈ [Vx] for all x. We know Z �n ∈ Ux for some least n, and
let s be a stage such that Zs �n is correct and Z �n has appeared in Ux[s].
Then, Z �n will be in Vx by stage s, and we will never enumerate again into
Vx after stage s.
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(ii): We build Z = ∪sσs by finite extension. Let {Ux} be the universal
ML-test, and {U ex}x be the eth ML-test. Assume we have defined σs, where
for all e < s, we have

• all infinite extensions of σs are in Ue,
• if #U ex < ∞ for all x, then ∃k such that no infinite extension of σs

can be in U ek .

Now we define σs+1 ⊃ σs. Firstly, find some τ ⊇ σs such that all infinite
extensions of τ are in Us; such τ exists because {Ue} is universal. Let k = |τ |.
Next, ask if #U sk <∞. If not, let σs+1 = τ ∗ 0 and we are done. If yes, then
figure out exactly the strings ρi such that [U sk ] = ∪{[ρ1], [ρ2], · · · , [ρn]}. We

cannot have [U sk ] ⊇ [τ ] since µ(U sk) < 2−k, so there has to be some σs+1 ⊃ τ
such that [σs+1] ∩ [U sk ] = ∅, by the finiteness of U sk . We can figure σs+1 out
effectively from ρ1, ρ2, · · · , ρn. Next extend σs+1 (if possible) to meet Ws.
Clearly the properties above continue to hold for σs+1. All questions asked
can be answered by the oracle ∅′′. �

A set A is ∆0
2-jump dominated if for every partial A-computable function

ΦA there is a g ≤T ∅′ such that g(x) > ΦA(x) for every x. This notion has
also been called “ weakly jump traceable”, and implies that the set is GL1.
The proof of (i) above also shows that ML- and FB-randomness coincides
over the reals which are ∆0

2-jump dominated.

Corollary 3.2. Suppose that A is ∆0
2-jump dominated. Then A is Martin-

Löf random iff A is FB-random.

There exists Martin-Löf randoms which are ∆0
2-jump dominated. For

example it is easy to see that each Demuth random is ∆0
2-jump dominated.

4. CB-lowness and traceability

We investigate the lowness notions associated with FB- and CB-randomness.
We call a real A low for FB-randomness if every FB-random real is FB-
random relative to A. A is low for FB-tests if for every A-relative FB-test
{UAx }x∈ω there is an FB-test {Ex}x∈ω such that ∩x[UAx ] ⊆ ∩x[Ex]. We can
make similar definitions for CB-randomness.

Recall that Cole and Simpson [4] defined a function f : ω 7→ ω to be
BLR(A) for an oracle A to mean that there exists g ≤T A and a computable
function h such that for every x, f(x) = lims→∞ g(x, s) and chgg(x) < h(x).
Here we denote chgg(x) = #{s | g(x, s) 6= g(x, s + 1)}, the mind change
function of g. Hence BLR(A) is the class of all functions which are ω-
c.e. relative to A, where the relativization is partial. Bienvenu, Downey,
Greenberg, Nies and Turetsky [2] then called a set A BLR-traceable if there
is a computable function h such that for every f ∈ BLR(A) there is an
ω-c.e. function k such that for every x, #Wk(x) < h(x) and f(x) ∈Wk(x).
BLR-traceability was shown in [2] to be crucial in understanding lowness

for Demuth randomness. Being BLR-traceable allows us to obtain a c.e.
trace (with few values) for the canonical index of a clopen Demuth test
relative to A. We can then use this to build a Demuth test covering a
given A-Demuth test. Unfortunately BLR-traceability appears too weak to
imply lowness for CB-randomness, because in order to approximate a given
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CB-test relative to A, we have to approximate the individual neighborhood
enumerated into the test. This calls for a strengthening of BLR-traceability
which we call faithfully BLR-traceable.

Definition 4.1. Given functions f, g : ω2 7→ ω such that lims→∞ f(x, s)
and lims→∞ g(x, s) both exist, we say that g is a faithful BLR witness for
f if for every x, lims→∞ f(x, s) = lims→∞ g(x, s) and ∪{f(x, s) | s ∈ ω} ⊇
∪{g(x, s) | s ∈ ω}. That is, g does not approximate f wastefully, and
introduces no noise into the approximation.

We say that A is faithfully BLR-traceable if for every computable order
h and every BLR(A)-approximation for a function f ∈ BLR(A), there is
an ω-c.e. function g and a function n : ω 7→ ω such that for every x,∑

y<x h(y) ≤ n(x) <
∑

y≤x h(y) and f has faithful BLR witness g(n).

Note that there are no requirement on the complexity of n. It is easy to
see that in the definition of faithful BLR-traceability we may replace “for
every computable order h” with “for some computable order h”.

Fact 4.2. Faithfully BLR-traceable implies BLR-traceable.

Being faithfully BLR-traceable means more than having an ω-c.e. trace
for f ∈ BLR(A) – it means that we can identify h(x) many distinct attempts
at approximating f(x) faithfully.

Fact 4.3. If A is faithfully BLR-traceable with respect to a constant function
h(x) = c then A is computable.

Proof. Assume c = 1. Define the A-computable function f(x, s) = A � x.
Fix the ω-c.e. function g which is a faithful BLR witness for f . For every
x, g(x, 0) = A�x and hence A is computable. If c > 1 we use g to construct
a Π0

1 class containing A with at most c many infinite paths. �

Lemma 4.4. If A is faithfully BLR-traceable and of hyperimmune-free de-
gree then A is low for CB-tests.

Proof. Fix a CB-test {UAx } relative to A. We may assume that µ(UAx ) <
2−2x for each x. Let f(x, s) approximate the canonical index for UAx . Since A
is hyperimmune-free, f ∈ BLR(A), with computable bound h on #UAx . Let
g and n be given such that g is ω-c.e. and g(n) is a faithful BLR-witness
for f with respect to the identity order function. For each x there are x
many possibilities for n(x) in Ix = {

∑
y<x y, · · · ,

∑
y≤x y − 1}. Build Tx by

copying, for each z ∈ Ix, the sets with canonical indices g(z, 0), g(z, 1), · · ·
until we find some s such that µ(∪t≤s[Dg(z,t)]) ≥ 2−2x, or # ∪t≤s Dg(z,t) >
h(x). Then Tx is clearly a CB-test, and since g(n) faithfully BLR-trace f ,
[Tx] ⊇ [UAx ]. �

Proposition 4.5. There is a perfect class of sets which are all low for CB-
randomness.

Proof. In [2] it was shown that there is a perfect Π0
1 class of sets which are

all BLR-traceable. It is easy to see that the same proof shows that there is a
perfect Π0

1 class of sets which are all faithfully BLR-traceable. We can then
take a perfect subclass of reals which are all of hyperimmune-free degree.
The proposition then follows from Lemma 4.4. �



LOWNESS FOR BOUNDED RANDOMNESS 7

Theorem 4.6. If A is low for CB-randomness then A is of hyperimmune-
free degree.

Proof. Suppose A is of hyperimmune degree. Fix a strictly increasing total
function f ≤T A such that f escapes domination by every computable func-
tion. We build Z ≤T A′ such that Z is CB-random but not CB-random
relative to A. The construction will be computable in A. We let {Ekx}x∈ω be
the kth possible CB-test with cardinality bound gk(x), where gk is a partial
computable function with domain an initial segment of ω. We assume that
for every k, x, µ(Ekx) < 2−x. We also assume that Ekx = ∅ if gk(x) has not
yet converged, and that #Ekx < gk(x) otherwise. The construction main-
tains global parameters {Ux}x∈ω, σi and ki. {Ux}x∈ω will be the CB-test
relative to A which Z fails, and σi ∈ 2<ω and ki ∈ ω are the parameters of
requirement Pi.

Requirement Pi will ensure that Z passes {Eix}x∈ω if the latter is a
CB-test. If E is a c.e. open set, τ is a string and s is a stage we let
Survivor(E, τ, s) be the lex-least string η ⊇ τ such that |η| = s and
[η] ∩ [Es] = ∅. We adopt the convention that Es only contains strings
of length < s, so Survivor(E, τ, s) is undefined iff [Es] ⊇ [τ ].

Construction of {Ux}: At stage s = 0 set σ0 = 00 and k0 = 0. At stage
s > 0 we say that Pi requires attention if Pi has been started and there is
some least j0 > 0 such that gi(|σi| + j0) ↓< f(ki + j0), and a new element
has entered Ei|σi|+j0 . If this is the first time we discover j0 then we also say

that Pi requires attention, regardless of the enumeration of Ei|σi|+j0 .

At stage s pick the least i < s such that Pi requires attention. If i exists
we act for Pi by doing the following. For each j < j0 enumerate σi ∗ 0j into
Uki+j . Initialize Pm for every m > i (meaning that we cancel the values
of σi, ki). Set σi+1 = Survivor(Ei|σi|+j0 , σi ∗ 0j0 , s) ∗ 0t where t is a fresh

number. Set ki+1 = ki + j0.
If no Pi requires attention find the largest i such that Pi is not yet started.

For this Pi, σi, ki ↓. Declare the requirement to be started. Set σi+1 = σi∗0t
for a fresh number t and ki+1 = ki + 1.

Finally for every Pi we put σi into Uki if these parameters are defined.
Verification: It is clear that every call for Survivor during the construc-

tion returns a value. We verify that {Ux} is an A-relative CB-test. The
sequence {Ux} is clearly uniformly c.e. in oracle f . Checking the construc-
tion reveals that at every stage |σi| > ki holds whenever these parameters
are defined. In fact every time Pi is initialized |σi| is picked to have a length
(never seen before by the construction) larger than ki. Now fix an x and
consider Ux. At every stage there is at most one Pi contributing to Ux. In
fact if Pi contributes to Ux then ki ≤ x < ki+1 and i ≤ x. Each requirement
Pi can contribute at most one string of the form σi ∗0j into Uki+j before it is
initialized. Since |σi| > ki this means that |σi ∗ 0j | > x. If Pi gets initialized

and later enumerates another string σ′i ∗0j
′

into Ux again then we must have

|σ′i ∗ 0j
′ | > |σ′i| > |σi ∗ 0j | > x, as lengths are always chosen fresh. The total

measure of Pi’s contribution is at most 2−x. Hence µ(Ux) ≤ (x+ 1)2−x.
Before we verify that #Ux is computably bounded in A, we need a tech-

nical lemma.
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Lemma 4.7. There is F (i, x) ≤T A such that for every x and every i, the
number of stages where Pi is initialized when ki ≤ x is at most F (i, x).

Proof. Fix x. We define F (i, x) recursively in i. Clearly F (0, x) = 0. Assume
F (0, x), · · · , F (i−1, x) has been defined. Fix j < i. If Pj initializes Pi when
ki ≤ x then kj < ki ≤ x. If Pj does this then Pj has required attention

which means that a new element has entered Ej|σj |+z where kj + z ≤ ki

(unless this is the first time Pj is receiving attention). Hence Pj can do this
at most 1 + gj(|σj |+ z) < 1 + f(kj + z) ≤ 1 + f(ki) ≤ 1 + f(x) times before
Pj itself is initialized. When Pj is finally initialized kj < x. So Pj initializes
Pi at most (1 +F (j, x))(1 + f(x)) many times. We can use this to compute
F (i, x). �

Next we verify that #Ux ≤ f(x). Now fix i ≤ x. How many times can Pi
contribute to Ux? Before Pi can contribute a second element to Ux it has
to be first initialized by Pj , j < i and at the point of initialization ki ≤ x.
By Lemma 4.7 #Ux ≤

∑
i≤x 1 + F (i, x), and so {Ux} is a CB-test relative

to A.
It is easy to check that every requirement is initialized finitely often, and

that for every i, σi+1 ⊃ σi holds at every stage. Each σi must eventually
get defined, so we let σ̃i be the limit value of σi. Let Z = ∪iσ̃i ≤T A′.

Clearly for each i, σ̃i+1 ⊃ σ̃i ∗ 0k̃i+1−k̃i , and that σ̃i ∗ 0j ∈ Uk̃i+j for every

j < k̃i+1 − k̃i. Thus Z ∈ ∩x[Ux]. Finally fix i such that gi is total. We
argue that Z 6∈

[
Ei|σ̃i|+k̃i+1−k̃i

]
. After Pi is never initialized, Pi must find j0,

because otherwise gi(|σ̃i|+ x) ≥ f(k̃i + x) holds for every x, contrary to the

hyperimmunity of A. Once this j0 = k̃i+1 − k̃i is found by Pi, it will ensure
that [σ̃i+1] ∩ [Ei|σ̃i|+j0 ] = ∅. Hence A is not low for CB-randomness. �

5. Lowness for FB-randomness and K-triviality coincide

We now turn to analyzing the class of reals which are low for FB-
randomness. Since Ω is a ∆0

2 real, by the relativized form of Theorem
3.1(i), each low for FB-randomness is low for Ω. We prove that in fact low-
ness for FB-randomness and several related lowness notions coincide with
K-triviality.

The equivalence of (i) through (iv) below is proved easily by using the
relativized form of Theorem 3.1(i). However this is somewhat unsatisfactory
because it can be argued that we are exploiting the indistinguishability of
ML- and FB-randomness at the ∆0

3 level. We discover that if we consider
the FB-random reals which are intrinsically not ML-random (i.e. generic),
we still get coincidence with K-triviality. This is statement (v) and Theorem
5.3 below.

Theorem 5.1. Let A be a real. The following are equivalent.

(i) A is K-trivial.
(ii) A is low for FB-tests.

(iii) A is low for FB-randomness.
(iv) Every Martin-Löf random is FB-random relative to A.
(v) Every FB- not ML-random is FB-random relative to A.
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Proof. (i)⇒ (ii): Suppose A is K-trivial, hence A is low for K and ∆0
2(A) =

∆0
2. Fix an A-relative FB-test {UAx }x∈ω. We show how to build {Vx}x∈ω

covering {UAx }. Let f(x) = lims fs(x) for a computable approximation {fs},
such that Df(x) = UAx for every x. Effectively in A, for each σ and x, if

we see σ ∈ UAx we issue a description of 〈σ, x〉 of length |σ|. Since the total
weight of all descriptions is less than 1, and since A is low for K, let d be a
constant such that K(〈σ, x〉) ≤ |σ|+ d for every σ ∈ UAx .

Now for each x, enumerate σ into Vx if we find a stage s such that σ ∈
Df(x,s) and for every y ≤ x there is τ ⊆ σ such that K(〈τ, y〉) ≤ |τ | + d.

Then #Vx is clearly finite. We argue that µ(Vx) < 2d

x . For each y ≤
x, let Ey = {τ : K(〈τ, y〉) ≤ |τ | + d and ∃σ ∈ Vx(τ ⊆ σ)}. Suppose

µ(Vx) ≥ 2d

x . Since each σ ∈ Vx is an extension of some string in Ey, we have∑
τ∈Ey 2−|τ | ≥

∑
σ∈Vx 2−|σ| ≥ 2d

x . Each τ ∈ Ey corresponds to a description

of length |τ | + d. These descriptions are all for different numbers so the

halting probability is at least
∑

y≤x
∑

τ∈Ey 2−|τ |−d ≥ 2d

x (x + 1)2−d > 1, a

contradiction. It is easy to check that ∩xUAx ⊆ ∩xVx. Hence {V2x+d} is our
required FB-test.

(ii) ⇒ (iii) ⇒ (iv) and (iii) ⇒ (v) are obvious.
(iv) ⇒ (i): Suppose every ML-random is FB-random relative to A. By

the Kučera-Gács theorem there exists a ML-random real Z such that A ≤T
Z ≤T A ⊕ ∅′ ≤T A′. Hence Z is FB-random relative to A. By Theorem
3.1(i) relativized to A, Z is ML-random relative to A. Hence A is a base
for ML-randomness.

(v) ⇒ (i) : This follows from Theorem 5.3. �

Lemma 5.2. The following are equivalent for a real A.

(i) A is not low for ML-randomness.
(ii) There is a uniform sequence of A-c.e. open sets {Qp | p ∈ ω} such

that for every p, µ(Qp) < 2−p and for each c.e. open set E such that
µ(E) < 1, we have Qp 6⊆ E.

(iii) There is a uniform sequence of A-c.e. open sets {Sσ,p | σ ∈ 2<ω, p ∈
ω} such that for every σ and p, µ(Sσ,p | [σ]) < 2−p, Sσ,p ⊆ [σ]
and for each c.e. open set E such that µ(E | [σ]) < 1, we have
Sσ,p 6⊆ E ∩ [σ].

Proof. We use the characterization of non-ML-randomness by Kjos-Hanssen
[15]. Thus we replace (i) by “there exists an A-c.e. open set G such that
µ(G) < 1 and for each c.e. open set E where µ(E) < 1, we have G 6⊆
E”. Clearly (iii) ⇒ (ii) ⇒ (i) are trivial. (ii) ⇒ (iii) is also trivial, by
letting Sσ,p = σ ∗ Qp. We now prove (i) ⇒ (ii). Fix G of measure at most
r ∈ Q ∩ (0, 1) where G is not covered by any c.e. open set of measure less

than 1. We construct an A-c.e. open set Q where µ(Q) ≤ r2+r
2 and which

avoids being covered by c.e. open sets of measure less than 1. Intuitively
Q is a slightly expanded version of G ∗ G. This construction is effective.

Since r > r2+r
2 >

(
r2+r

2

)2
+
(
r2+r

2

)
2 > · · · converges to 0, we can iterate this

construction to get the sequence {Qp}.
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We let {Ei} be the ith c.e. open set. Clearly the predicate “µ(Ei) > q” is
uniformly c.e. in i, q. For each i, σ we let Qi,σ = [σ]− (Ei,s ∩ [σ]) if a stage

s is found such that µ(Ei,s | [σ]) > 1− ε2−i−2|σ|, where ε = r−r2
2 . If no such

s is found we let Qi,σ = ∅. Let Q = (G ∗ G) ∪ {Qi,σ | i ∈ ω, σ ∈ G}. Since

µ(Qi,σ) ≤ ε2−i−2|σ|, this means that µ(Q) ≤ r2 + ε
∑

i,σ 2−i−2|σ| ≤ r2 + ε =
r+r2

2 .
Suppose that Q ⊆ Ei where µ(Ei) < 1. If σ ∈ G then µ(E | [σ]) = 1,

because otherwise {τ | σ ∗ τ ∈ E} is a c.e. open set of measure less than
1 covering G. Hence for all σ ∈ G and all i, Qi,σ = 2ω − Ei,s for some s.
Since Ei ⊇ Q ⊇ Qi,σ this means that [σ] ⊆ [Ei]. Hence G is covered by Ei,
a contradiction. �

Theorem 5.3. Suppose that A is not low for ML-randomness. Then there
is a FB-random real Z which is 1-generic relative to A and not FB-random
relative to A.

Proof. Assume that A is not low for ML-randomness. By Lemma 5.2(iii)
fix the sequence {Sσ,p}. Since [Sσ,p] ⊆ [σ], for ease of notation, we consider
{τ | σ ∗ τ ∈ Sσ,p} instead. Henceforth Sσ,p refers to this set of truncated
strings. We first describe a construction C which we will later use as a black
box to build Z. C takes in parameters η ∈ 2<ω, I, ε ∈ ω. It effectively
outputs a FB-test relative to A, {Ux}, where µ(Ux) < 2−(x+1)ε−x, and an
A-computable sequence {σs} of finite strings. The construction C(η, I, ε)
ensures that if {EIx} is a FB-test then σ = lims σs ⊃ η exists, [EIx] ∩ [σ] =
∅ for some x and [σ] ⊆ ∩k≤y[Uk], where y is the least stage such that

σy is stable. Here {EIx} is the Ith ML-test. Intuitively construction C
searches, relative to the input parameters, for a safe spot for lower priority
requirements to act.

Description of strategy : The construction C is an effective version of the
proof of Proposition 3.1(ii). η is the environment in which C is called to
work in, and is handed to us by higher priority requirements. For simplicity
we assume that η = ∅, and that we are trying to avoid some c.e. open
set E = Eix of measure less than 1. We build the approximation σs which
attempts to locate a neighbourhood from which Eix is disjoint. We know
this exists if E is finite, but since we have to diagonalize against every test,
we have to deal with the possibility of E being infinite.

Since σs will be an initial segment of our real Z (provided E is finite),
we have to enumerate σs into a FB-test {Ux} relative to A. The main
difficulty here is that we have to keep each Ux finite even when E is infinite.
We use the fact that A is not low for random. Let U0 copy S∅,p for some
sufficiently large p. More specifically we let σs be the first string enumerated
in S∅,p. We enumerate σs in U0. We wait until [E] ⊇ [σs], and we move on
to the second string enumerated in S∅,p, and so on. Clearly if U0 is infinite
then [E] ⊇ [S∅,p], which by the properties of S implies that µ(E) = 1, a
contradiction. However this naive plan does not work well for us because E
can cover extensions of each σ ∈ S∅,p without covering σ itself. We need to
find a safe spot lims σs for lower priority genericity requirements to work in,
and thus [lims σs] has to be disjoint from [E].
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Thus we need to iterate the above strategy. While we are waiting for [E]
to cover the current [σ0] in S∅,p, we need to consider Sσ0,p2 . For simplicity

we drop p2 from the notation, with the understanding that each iteration
of S is called with a sufficiently large pn. We take the first string σ1 ∈ Sσ0 ,
enumerate σ1 in U1 and wait for [E] to cover [σ1]. In the meantime we call on
Sσ1 and so on. If [E] does end up covering [σn] then by compactness we see
this at a finite stage, and we can set σn to be the next element enumerated
in Sσn−1 . We let σs be σn for the largest n where σn is defined at stage s.
Clearly if E is finite then [lims σ

s] can be chosen to be disjoint from [E].
The problem with this approach is when #E = ∞. In this case we may
return to σn infinitely often, i.e. [E] covers [σn] for every value of σn we
pick from Sσn−1 . In this case µ(E | [σn−1]) must be 1, but if [E] 6⊇ [σn−1]
we will never abandon σn−1 during the construction. This means that we
will end up copying the infinite set Sσn−1 in Un. However we are committed
to making {Ux} an FB-test relative to A, even when E is infinite.

The way around the problem above is to force [E] to cover [σn−1]. Above
each string σn−1 that we are currently guessing is an initial segment of Z,
we pick σn from the set Sσn−1 until µ(Es | [σn−1]) is very close to 1 (say
larger than 1−ε). When this happens, say at stage s, we switch and pick σn

from the clopen set [σn−1] − [Es]. This forces us to add a small amount of
additional measure to Un not accounted for by µ(Sσn−1), but we can choose
the threshold ε to be as small as we like to keep the measure of Un small.
Additionally we will be able to ensure that we consider only finitely many
different strings σn above each value for σn−1.

Clearly if #E < ∞ then lims σs exists and we will be able to choose
[lims σs] disjoint from [E]. We then allow a lower priority requirement to act
above [lims σs], by calling C above [lims σs]. On the other hand if #E =∞
then lim inf{n : σn is abandoned} must be ∞. To see this suppose that
the lim inf is some number n. Then µ(E | [σn−1]) = 1 and so we must
switch to pick σn from [σn−1] − [Es]. Hence [E] ⊇ [σn−1] and so σn−1

must be abandoned infinitely often, a contradiction. Since lim inf{n : σn is
abandoned} = ∞, this particular run of C contributes only finitely many
elements to each Ux. At each stage where the output σs changes we allow
the next requirement to call C above the node 0. Then Z ⊃ 0 and may
possibly be in [E], but it does not matter as #E =∞.

The formal proof is organized as follow. We first specify the working of
the basic module C(η, I, ε). The actual construction of Z is then carried out
on a priority tree. Each node on the priority tree is allowed to call C with
certain parameters. Z can then be read off the true path of the construction.

Construction C(η, I, ε): Let E = EI|η|. We define, for each σ, p, the set

Ŝσ,p to copy Sσ,p until the first stage s is found such that µ(Es | [σ]) >

1 − 2−ε−p. If this s is found we say that Ŝσ,p has switched, and we let

Ŝσ,p = Sσ,p,s ∪ ([σ] − Es). Otherwise we say that Ŝσ,p remains unswitched

and in this case Ŝσ,p = Sσ,p.
We fix a 1-1 enumeration of the infinite set Sσ,p. This gives rise in the

obvious way to a 1-1 (possibly finite) enumeration of Ŝσ,p. We define Ŝi

inductively on i: Set Ŝ0 = Ŝη,ε+1, and Ŝi+1 = {σ ∗ τ | σ ∈ Ŝi, τ ∈ Ŝσ,ε+i+2}.
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For each σ ∈ Ŝi, and τ ∈ Ŝσ,ε+i+2 we define α(σ∗τ) = α(σ)∗i where τ is the

i+ 1th element to be enumerated in Ŝσ,ε+i+2. In this way we associate each

σ ∈ ∪iŜi with α(σ). We order ω<ω first lexicographically then by length
(α ⊂ β means α < β).

We now define the sequence α0 ≤ α1 ≤ · · · . At stage s = 0 set αs = 0. At
stage s+1 we see if E has a new element. If so we set αs+1 to be the <-least
string of length s + 3 such that ∀i ≤ s ([αs+1 � i + 1] 6⊆ [Es+1]). Otherwise
let αs+1 = αs.

This produces an A-computable sequence of finite strings {αs}. It is easy
to verify that αs ≤ αs+1 for every s.

Claim 5.4. Each time we need to pick αs+1 we can do so.

Proof. Suppose we are unable to pick αs+1 at some stage s+ 1. This means
there is some least i + 1 and some β of length i + 1 such that [β] 6⊆ [Es+1]
but for every j, [β ∗ j] ⊆ [Es+1]. (If i = −1 then β is associated with the
string η, where it is clear that [E] = [EI|η|] 6⊇ [η]).

If Ŝβ,ε+i+2 is never switched, then we must be able to avoid the finite

set Es+1, since Sβ,ε+i+2 must be dense above β. Therefore Ŝβ,ε+i+2 must
switched at some stage t. If t > s + 1 then [β] − [Et] must be disjoint
from [Es+1] and so we can pick β ∗ j appropriately. On the other hand if

t ≤ s + 1 and if [Es+1] ⊇ [Ŝβ,ε+i+2] then this means that [Es+1] ⊇ [β], a
contradiction. �

Claim 5.5. If #E =∞ then for each i, lims αs(i) exists.

Proof. Suppose that β = 〈αs(j)〉j<i+1 is constant for all large enough s.

Hence by compactness [E] 6⊇ [β]. If Ŝβ,ε+i+2 is ever switched then we are

done, because lims αs(i+1) is one of finitely many choices. Suppose Ŝβ,ε+i+2

is never switched. This means that µ(E | [β]) < 1 and so [β ∗ Ŝβ,ε+i+2] =

[β ∗Sβ,ε+i+2] 6⊆ [E]. Thus there exists some τ ∈ Ŝβ,ε+i+2 such that [β ∗ τ ] 6⊆
[E]. �

Claim 5.6. For each i, µ(Ŝi) < 2−εi−i.

Proof. If i = 0 then µ(Ŝ0) = µ(Ŝη,ε+1) ≤ µ(Sη,ε+1)+2−2ε−1 < 1. If i+1 > 0
then similarly

µ(Ŝi+1)

=
∑{

2−|σ|−|τ | | σ ∈ Ŝi, τ ∈ Ŝσ,ε+i+2

}
=

∑
σ∈Ŝi

2−|σ|
∑

τ∈Ŝσ,ε+i+2

2−|τ |

<
∑
σ∈Ŝi

2−|σ| (µ(Sσ,ε+i+2) + conditional measure added due to a switch)

≤
∑
σ∈Ŝi

2−|σ|(2−ε−i−2 + 2−ε−i−2) ≤ 2−ε(i+1)−(i+1). �

Finally let Uk = {αs � k + 2 | s ∈ ω}. If #E < ∞ then αs is eventually
stable, and so #Uk < ∞. If #E = ∞ then by Claim 5.5 #Uk < ∞. Since
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[Uk] ⊆ [Ŝk+1], by Claim 5.6 this means that µ(Uk) ≤ µ(Ŝk+1) < 2−(k+1)ε−k.
Set σs = string coded by αs. If #E < ∞ then clearly η ⊂ lims σs exists.
Let α = lims αs. Then for each 2 ≤ i ≤ |α|, α � i ∈ Ui−2, where |α| − 2 is
the least stage where αs is stable. Clearly [E] ∩ [α] = ∅, since for every t,
Et contains no string of length longer than t.

Now we use C as a procedure to build Z. We define the priority tree to be
the full binary tree, with labels ∞ instead of 0 and f in place of 1. η <L γ
denotes the usual left to right lexicographic ordering. If η ⊂ γ then we say
η <L γ. Each node is assigned parameters head(η) ∈ 2<ω and m(η) ∈ ω. As
usual all parameters retain their assigned values until they are initialized or
reassigned. A node η of length i will attempt to diagonalize against {Eix}
and meet the ith genericity requirement.

At stage s = 0 we set head(∅) = ∅, and do nothing else. At stage s we
define δs of length s, the stage s approximation to the true path. Assume
that η = δs � i and head(η) have been defined. We now act for η. If m(η) ↑
or if head(η) has changed since the last visit to η, we pick a fresh number for
m(η). Run construction C(head(η), |η|,m(η)) for one more step, say step t.
If the output of this construction, σt, does not change (i.e. σt = σt−1) then
let δs(i) = f , otherwise let δs(i) = ∞. We now update head(η ∗ δs(i)). If

δs(i) =∞ let head(η ∗∞) be the first string τ ⊇ head(η) ∗ 0m(η) found such

that τ ∈ WA
|η|,s. If no such τ exists let head(η ∗∞) = head(η) ∗ 0m(η). If

δs(i) = f let head(η ∗ f) be the first string τ ⊇ σt found such that τ ∈WA
|η|,s.

If no such τ exists let head(η ∗ f) = σt. Finally initialize every node to the
right of η ∗ δs(i).

Now let TP = lim infs δs be the true path of construction. Clearly if
i < j < s then head(δs � i) ⊂ head(δs �j). It is easy to verify that the
following claim holds.

Claim 5.7. For every i, head(TP � i) and m(TP � i) are eventually stable.

Now let Z = ∪i lims head(TP � i).

Claim 5.8. Z is FB-random.

Proof. Fix i such that {Eix} is a FB-test, and let η = TP � i. Let h and
m be the final values of head(η) and m(η) respectively. At almost every
visit to η we will run C(h, i,m). By properties of C we have limt σt exists,
so η ∗ f ⊂ TP . This means that Z ⊃ lims head(η ∗ f) ⊃ limt σt and so
Z 6∈ ∩x[Eix]. �

Claim 5.9. Z is 1-generic relative to A.

Proof. Fix i and look at η = TP � i+ 1. We have Z ⊃ lims head(η). By the
construction either head(η) ∈ WA

|η|−1 or else no extension of head(η) is in

WA
|η|−1. �

Claim 5.10. Z fails to be FB-random relative to A.

Proof. The construction is effective in oracle A. Let t(∅, s) = 0. For each
node η and each stage s we let t(η, s) ↑ if δs 6⊃ η. Otherwise η is visited at
stage s. If η(|η| − 1) =∞ let t(η, s) = t(η−, s) + 1. Otherwise η(|η| − 1) = f
and we let t(η, s) = t(η−, s) + 1+ the largest w ≤ t such that the output σw
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of the construction C called by η− (with the current parameters) at stage s
has changed. Here t is the number of steps C (with the current parameters)
has been run by η−. For instance each time C(head(∅), 0, 1) changes its
output σw we increase t(f, s) to match w.

We define the following FB-test {Vx} relative to A. For every node η and
every s in which η is visited, we look at the output {Ux} of C run by η at s.
For each x ∈ ω add Ux to Vx+t(η,s). If η ∗∞ is visited at s add head(η ∗∞)
to Vt(η,s). We verify that {Vx} is an FB-test relative to A.

First observe that t(η, s) < t(γ, s) for every η ⊂ γ. It is also easy to see
that m(η) > t(η) whenever η is visited. Fix an x. Only a node η of length
≤ x can contribute to Vx. Each time the parameters of η is changed or t(η)
is changed we will pick a fresh value for m(η). At each visit to η we add Uy
to Vy+t(η,s), and possibly a string of length at least m(η) to Vt(η,s). Since

µ(Uy) < 2−(y+1)m(η)−y ≤ 2−m(η)2−t(η,s)−y, it follows that the sum total of
all contributions is at most 2−x. Hence µ(Vx) < 2−x+2.

Now let us argue that η enumerates only finitely many elements into Vx.
If η is to the left of TP then η is visited only finitely often, so we only add
finitely many different versions of its output {Uy}. If η is on TP then the
parameters of η and t(η) are eventually stable, so η too, adds finitely many
different versions of its output {Uy}. Assume η >L TP . Let γ = TP ∩ η. It
is easy to see that lims t(γ ∗ f, s) =∞. Since t(η) ≥ t(γ ∗ f) at every stage,
this means that η will eventually stop adding elements to Vx. Hence {Vx}
is an FB-test relative to A.

Finally we show that Z ∈ [Vx] for every x. Fix η on TP . If η has true
outcome f , let t0 be the last step in C where the output σt0 changes. Then
Z ⊃ lims head(η ∗ f) ⊇ σt0 and by the properties of C, [σt0 ] ⊆ ∩w≤t0 [Uw].
Since lims t(η ∗ f, s) = lims t(η, s) + t0 + 1, we copy {Uw} in Vw+lims t(η,s), it

follows that Z ∈
[
Vlims t(η,s)

]
∩ · · · ∩

[
Vlims t(η∗f,s)−1

]
.

On the other hand if η has true outcome ∞ then Z ⊃ lims head(η ∗ ∞).
Since lims t(η ∗∞, s) = lims t(η, s) + 1 and lims head(η ∗∞) ∈ Vlims t(η,s), it

follows similarly that Z ∈
[
Vlims t(η,s)

]
∩ · · · ∩

[
Vlims t(η∗f,s)−1

]
. �

This ends the proof of Theorem 5.3. �

References

[1] Barmpalias, G., Downey, R., and Greenberg, N., Working with strong reducibilities
above totally ω-c.e. degrees, Transactions of the American Mathematical Society, Vol.
362 (2010), 777-813.

[2] Bienvenu, L., Downey, R., Greenberg, N., A. Nies and D. Turetsky, Lowness for
Demuth randomness, in preparation.

[3] Brodhead, P., Downey, R., and Ng, K.M., Bounded randomness, Proceedings of In-
ternational Workshop on Theoretical Computer Science 2011, to appear.

[4] Cole, J., and Simpson, S., Mass problems and hyperarithmeticity, Journal of Mathe-
matical Logic Vol. 7 No. 2 (2007), 125-143.

[5] Downey, R. On Π0
1 classes and their ranked points, Notre Dame Journal of Formal

Logic Vol. 32 No. 4 (1991), 499-512.
[6] Downey, R. and N. Greenberg, Turing degrees of reals of positive effective packing

dimension, Information Processing Letters, Vol. 108 (2008), 298-303.
[7] Downey, R. and N. Greenberg, A Hierarchy of computably enumerable degrees, uni-

fying classes and natural definability, in preparation.



LOWNESS FOR BOUNDED RANDOMNESS 15

[8] Downey, R., N. Greenberg, and R. Weber, Totally < ω computably enumerable
degrees and bounding critical triples, Journal of Mathematical Logic, Vol. 7 (2007),
145 - 171.

[9] Downey, R. and Hirschfeldt, D., Algorithmic Randomness and Complexity, Springer-
Verlag, Berlin, 2010.

[10] Downey, R., Hirschfeldt, D., Nies, A. and Terwijn, S., Calibrating randomness, Bul-
letin of Symbolic Logic, Vol. 3 (2006), 411–491.

[11] Downey, R., C. Jockusch, and M. Stob, Array nonrecursive sets and multiple per-
mitting arguments, in Recursion Theory Week (Ambos-Spies, Muller, Sacks, eds.)
Lecture Notes in Mathematics 1432, Springer-Verlag, Heidelberg, 1990, 141–174.

[12] Downey, R., C. Jockusch, and M. Stob, Array nonrecursive degrees and genericity, in
Computability, Enumerability, Unsolvability (Cooper, Slaman, Wainer, eds.), London
Mathematical Society Lecture Notes Series 224, Cambridge University Press (1996),
93–105.

[13] Ershov, Y., A hierarchy of sets, Part 1, Algebra i Logika, Vol. 7 (1968), 47-73.
[14] Ershov, Y., A hierarchy of sets, Part 2, Algebra i Logika, Vol. 7 (1968), 15-47.
[15] Kjos-Hanssen, B., Low for random reals and positive-measure domination, Proc.

Amer. Math. Soc., Vol. 135(11) (2007), 3703-3709.
[16] Lathrop, J., and Lutz, J., Recursive computational depth, in Information and compu-

tation, Vol. 153 (1999) 139-172.
[17] Nies, A., Computability and Randomness, Oxford University Press, in preparation.
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