
EFFECTIVE DOMINATION AND THE BOUNDED JUMP

KENG MENG NG AND HONGYUAN YU

Abstract. We study the relationship between effective domination properties

and the bounded jump. We answer two open questions about the bounded

jump: (1) We prove that the analogue of Sacks jump inversion fails for the
bounded jump and the wtt-reducibility. (2) We prove that no c.e. bounded

high set can be low by showing that they all have to be Turing complete. We

characterize the class of c.e. bounded high sets as being those sets computing
the Halting problem via a reduction with use bounded by an ω-c.e. function.

We define several notions of a c.e. set being effectively dominant, and show
that together with the bounded high sets they form a proper hierarchy.

1. Introduction

The purpose of this paper is to study the effects strong reducibilities have on
classical computability concepts. In this paper we look at a well-known classical
computability notion - domination. The goal of this paper is to study to what
extent strong reducibilities have on domination and related concepts.

There have been many results in the literature connecting the computational
strength of an oracle A to the complexity of the class of functions dominated by or
dominating A-computable functions. For instance, a hyperimmune-free degree can
be characterized as the Turing degree of an oracle A such that each A-computable
function is dominated by some computable function. The fact that a hyperimmune-
free oracle A is “computably dominated” suggests that A should be easy to guess
and that it should be computationally weak as an oracle. This intuition turns out to
be only somewhat true, and applies to properties where the computational difficulty
can be expressed as total A-computable functions. For instance, the difficulty of
computing A′ cannot be expressed in terms of the rate of growth of A-computable
functions (it can only be coded as partial A-computable functions). Indeed, it is
still open what exactly the jump of a hyperimmune-free degree is, although some
partial results are obtained in [10]. Nevertheless, it is easy to control the double
jump of a hyperimmune-free degree, since the double jump has to do with deciding
the totality of an A-computable procedure, and one can easily prove that double
jump inversion holds for the hyperimmune-free degrees. The hyperimmune-free
basis theorem for effectively closed sets also shows that hyperimmune-free degrees
are computationally feeble.

Another well-known interaction between the computational power of an oracle
and domination comes from the class of array computable degrees. This was in-
troduced by Downey, Jockusch and Stob to capture the computational strength
of an oracle required to carry out “multiple permitting” arguments (see [7]). A

Key words and phrases. wtt-degrees, dominant function, bounded jump, jump inversion, high
degrees.

The first author is partially supported by MOE2015-T2-2-055 and RG131/17.

1

2 NG AND YU

related notion is that of non-totally ω-c.e. (see Downey, Greenberg and Weber [6]).
These classes relate the computational power of an oracle A needed to carry out
certain constructions with the growth rates of A-computable functions. Recent
work of Ambos-Spies and Losert study these in greater detail. This is generalized
by Downey and Greenberg and they defined a hierarchy of Turing degrees by mea-
suring the amount of multiple permitting strength present; for this we refer the
reader to the monograph [5] or the survey paper [4].

Domination properties are also intimately related to the jump classes. Recall that
A (or its Turing degree) is lown if A(n) ≤T ∅(n), and is highn if A(n+1) ≥T ∅(n).
For a ∆0

2 set A this means that the degree of the nth jump of A is as low or as high
as it possibly can be; and the jump is one of the standard ways of measuring the
computational strength of an oracle. For instance, a ∆0

2 Turing degree a ≤ 0′ is
high if a′ = 0′′, that is, a′ is the greatest possible. This property implies that a high
degree is computationally complex, and that a carries a lot of information similar
to 0′. A high c.e. degree can be seen as being computationally complex in that
many different constructions can be carried out below it; indeed “high permitting”
allows one for instance to construct a minimal pair of c.e. degrees below a given
high c.e. degree. The idea of high permitting is that almost every request for a
permission to change the set built below the given high degree will be eventually
granted. This intuition is formalized by Martin, who showed that a Turing degree a
is high iff a is dominant, that is, a ≥ degT (f) for some function f which dominates
every total computable function. This means that when constructing a set B ≤T f ,
if we could formulate a sequence of “permissions” as a total computable function
ψ, then f being dominant means that its value f(x) on almost every input x has to
increase after the stage where ψ(x) is defined. Martin’s result has been generalized
by Harris [9] to give a characterization of non-lown degrees for all n < ω in terms
of domination properties.

Given the number of different results in the literature relating computational
strength with domination properties, it is natural to investigate what happens when
one considers variations on domination by imposing strict effective conditions. Our
goal here is to investigate and define effective versions of being dominant, and to
see if there are any notions of highness related to these effective versions of being
dominant, in a way similar to Martin’s theorem above. The smallest step one could
take to effectivize being dominant is to say that A ≥T f for some function f such
that for every e, if ϕe is total then ϕe(x) < f(x) for every x > g(e), where g is
∆0

2. That is, we place an effective bound on the input x = g(e) beyond which
domination must happen. Notice that if we allow g to be ∆0

3 or even g ≤T f , then
the resulting notion is simply equivalent to being the usual notion of high.

The notion above was defined and studied in [8], where the authors called it
strongly dominant. They proved that a ∆0

2 degree is strongly dominant if and only
if the degree is 0′, therefore giving rise to nothing new. Here we will consider several
other ways to vary the parameters.

Definition 1.1. We call a c.e. set A (≤r, C)-dominant if A ≥r f for some function
f such that for every e, if ϕe is total then ϕe(x) < f(x) for every x > g(e), where
g ∈ C.

We shall be interested in C = ∆0
2, ω-c.e. or ∆0

1, and only focus on c.e. sets A.
We prove that for ≤r=≤T , being (≤T , C)-dominant is equivalent to being Turing

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 3

complete for any of the three choices for C. This suggests that we should consider
≤r to be a reducibility stronger than ≤T .

Many natural Turing reductions have the property that the use of the oracle
is bounded by a computable function. We will refer to such reductions as weak
truth table reductions, and write A ≤wtt B. This is also commonly known in the
literature as bounded Turing (bT) reducibility. A truth-table reduction is a weak
truth table reduction that is total on all oracles, and we write A ≤tt B. Notice that
a truth table reduction Γ can be expressed as finite truth tables, one for each Γ(n),
where the input rows are the digits of the oracle while the outputs are the values
of the functional. A weak truth table reduction can be expressed as partial truth
tables, where not necessarily every row has an output value.

In this study we will consider ≤r=≤wtt, which means that we have to look at
various wtt-degrees within the complete Turing degree.

Recall that one of the goals of this investigation is to relate domination properties
with the computational strength of the oracle. Since we are now considering effec-
tive versions of being dominant and looking at wtt-degrees, one naturally wonders
if this has to do with the bounded jump, more specifically, being bounded high. Is
there an appropriate analogue of Martin’s theorem that allows us to express being
bounded high in terms of being (≤wtt, C)-dominant?

We will look at the bounded jump and bounded high wtt-degrees and clarify the
relationship between bounded high sets and the effective versions of being domi-
nant introduced above. Along the way we also provide the solutions to some open
questions in [1, 2]. The bounded jump was introduced by Anderson and Csima
[1] in order to define a jump operator for the wtt-degrees. They wanted the jump
operator to be bounded in the use of the oracle (much like how the wtt-reducibility
is defined), and all of the properties usually associated with the (Turing) jump
operator to hold as well.

Definition 1.2 (Anderson, Csima [1]). For any set A, the bounded jump of A,

denoted by Ab, is defined as
{
x| ∃ i < x

(
ϕi(x) ↓ & Φ

A�ϕi(x)
x (x) ↓

)}
.

They proved that the bounded jump operator is strictly increasing on the wtt-
degrees and that the sets wtt-below the nth-iterate of the bounded jump of ∅ are
exactly the ωn-c.e. sets. One of the reasons for looking at the bounded jump comes
from an earlier result of Downey, Csima and Ng [3], where they proved that the
analogue of Shoenfield jump inversion fails to hold for the wtt-degrees. Namely, they
showed that there is a Σ0

2 set C >tt ∅′ such that for every D ≤T ∅′, D′ 6≡wtt C.
However, this result of Downey, Csima and Ng exploits the fact that the Turing
jump is defined with respect to Turing (and not wtt-) reducibilities.

Indeed, by considering jump inversion for the bounded jump with the wtt-
reducibility, Anderson and Csima [1] were able to show that the analogue of Shoen-
field jump inversion did hold: They could show that if C is any set such that
∅b ≤wtt C ≤wtt ∅2b, there is a set A ≤wtt ∅b such that Ab ≡wtt C. Anderson
and Csima [1] asked if the analogue of Sacks jump inversion holds in this setting,
namely, if one could make A in their result c.e. In Theorem 2.1 we answer their
question by proving that this is impossible:

Theorem 2.1. There exists an ω + 1-c.e. set A such that for any c.e. set V , we
have either V b 6≤wtt A⊕ ∅′ or A 6≤wtt V b.

4 NG AND YU

Figure 1. The relationships between various properties, where A
is a c.e. set. Each implication is strict, while a crossed out arrow
indicates a non-implication.

The notion of a bounded high (and bounded low) set can be defined using the
bounded jump: A set A is bounded low if Ab ≤wtt ∅b and is bounded high if
Ab ≥wtt ∅2b. Anderson, Csima and Lange [2] showed that the information coded
in the bounded jump is quite different from the standard jump; for instance they
constructed a c.e. bounded low set that is high (in the standard sense). They also
constructed an ω-c.e. low set that is bounded high, and asked if it was possible for
a c.e. set to be low and bounded high at the same time.

We answer their question in the negative by showing that every c.e. bounded
high set must already be Turing complete. In fact, we were able to obtain a char-
acterization of the c.e. bounded high sets as being those sets which compute ∅2b
with an ω-c.e. bound on the use:

Theorem 3.2. The following are equivalent for a c.e. set A.

(i) A is bounded high, i.e. Ab ≥wtt ∅2b.
(ii) Ab ≥1 ∅2b.

(iii) A ≥ω-c.e.T ∅2b.

Here we say that A ≥ω-c.e.T B iff there is a Turing functional Φ and an ω-c.e.
function ϕ such that B = ΦA where the use is bounded by ϕ. (Note that this
relation is not transitive). As a corollary to Theorem 3.2 we obtain [2, Theorem
3.2] that the analogue of the jump theorem fails for the bounded jump.

Given that the bounded jump is a wtt-degree notion rather than a Turing degree
notion, it is natural to explore the possibility of bounded high as being the notion
that would capture the exact computational strength of an oracle which is (≤wtt, C)-
dominant. We show that being bounded high and c.e. lies strictly between being(
≤wtt,∆0

1

)
-dominant and being (≤wtt, ω-c.e.)-dominant. In Section 4 we will also

separate the various notions of effective domination. Our results in Section 4 are
summarized in Figure 1.

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 5

We expect these effective domination properties to be very useful in permitting
constructions. All the properties studied here are of c.e. sets and imply being Turing
complete, so we are essentially looking at sets with the complete Turing degree, but
possibly incomplete wtt-degree.

For standard notations and basic computability notions, we refer the reader to
[11].

1.1. Organization of the paper. The paper is organized as follows. In Section
2 we prove that the analogue of Sacks’ jump inversion fails for the bounded jump
and the wtt-reducibility. In Section 3 we give a characterization of the c.e. bounded
high sets. Finally in Section 4 we explore the effective domination notions in greater
detail. We first show that being (≤T , C)-dominant is the same as being simply
Turing complete for C = ∆0

2, ω-c.e. or ∆0
1. We next establish all the non-trivial

implications and non-implications in Figure 1.

2. Sacks’ Jump Inversion for bounded Turing degrees with the
bounded jump

We show that the analogue of Sacks’ jump inversion fails with respect to ≤wtt
and the bounded jump.

Theorem 2.1. There exists an ω + 1-c.e. set A such that for any c.e. set V , we
have either V b 6≤wtt A⊕ ∅′ or A 6≤wtt V b.

2.1. Requirements and notations. Let (∆e,Γe, δe, γe, Ve) be an effective listing
of all possible 5-tuples where ∆e and Γe are Turing functionals, δe and γe are partial
computable functions, Ve is a c.e. set. We assume that the use of ∆e is bounded
by δe and the use of Γe is bounded by γe. We want to construct a ω + 1-c.e. set A
and satisfy the following requirement for each e:

Re : V be 6= ∆A⊕∅′�δe
e or A 6= Γ

V be �γe
e

Then A ⊕ ∅′ will be the desired set. Note that the requirements automatically
ensure that A ⊕ ∅′ >wtt ∅′: If A ⊕ ∅′ ≡wtt ∅′ then when Ve = ∅ we are not able to
satisfy Re.

Let Mn = max
0≤i≤k<n

ϕi(k). Obviously n 7→ Mn is an ω-c.e function with the

obvious approximation Mn[s]; for each n, Mn[s] increases at most n2 times. For
each n, we define a sequence of functions {ψnk }k<n2 by the following. We set ψnk (z) =

the kth value in the approximation of Mn for every z. Let in0 < in1 < · · · < inn2−1 be

indices for the sequence, i.e. ϕink = ψnk , for all k < n2. These functions are either

constant or empty functions. In the sequel we will usually denote m = n2.
We now make a few definitions which are used in the proof.

Definition 2.2. σe,i is said to be currently free if V b (we,i) = 0. We write σ 4 σ′

if for all w, if σ(w) = 1, then σ′(w) = 1. We write σ ≺ σ′ if σ 4 σ′ and σ 6= σ′.

2.2. Strategy for a single Re. For the purpose of discussion, we drop the sub-
script e. The following are the steps for Re.

(1) Pick a fresh witness z > re, where re := max{ze−1, le}, and le :=
max{δe′(we′,i) | i < 2γe′ (ze′), e′ < e}. (The parameter we′,i will be de-
fined later).

6 NG AND YU

(2) Wait for γ(z) ↓. Then we consider the indices i
γ(z)
0 < i

γ(z)
1 < · · · < i

γ(z)
m .

There are 2γ(z) many possible versions of V b � γ(z). We assign a binary
string σ of length γ(z) to each version of V b � γ(z). We order these 2γ(z)

strings lexicographically; we denote the ith string by σe,i[s]. When the

context is clear we simply write σi, i < 2γ(z).
We pick fresh subwitnesses we,σe,0 , . . . , we,σe,2γ(z)−1

; in particular they are

all larger than i
γ(z)
m and all subwitnesses for all other requirements. (A wit-

ness z is used directly for diagonalization, the associated list of subwitnesses
we,σe,i are used to force changes in V). Each subwitness we,σe,i is associated
with the string σe,i.

We keep V b(wσ) = 0 when the current V b(w) = 0 for some w with
σ(w) = 1.

(3) We wait for δ
(
we,σe,i

)
↓ for all i < 2γ(z), then we intialize all lower piority

requirements.
(4a) Case a: If V b (wσc) = 0, where σc := V b[s] � γ(z) the current value of V b

up to γ(z), we wait for the following to be true for all i < 2γ(z):

V b
(
wσe,i

)
= ∆

(
(A⊕ ∅′) � δ

(
wσe,i

)
; wσe,i

)
and A(z) = Γ (σc; z) .

This is called a recovery for Re. If this happens, we are able to make
V b(wσc) = 1 by enumerating the computation Φwσc

(
V �Mγ(z); wσc

)
↓= 0.

Observe that wσc > i
γ(z)
m and so the use Mγ(z) is bounded by ϕi (wσc) for

some i < wσc .
(4b) Case b: If V b (wσc) = 1, we wait for a recovery for Re. Then we toggle z in

A, i.e. set As+1(z) = 1−As(z).
(5a) Case a: Suppose the strategy was last at Step (4a). Let τ be the value of

σc when we last acted in Step (4a). Wait for a recovery for Re.
(5a1) Suppose that V b(wτ) = 1 = ∆ ((A⊕ ∅′) � δ (wτ); wτ) i.e. the value

of ∆ ((A⊕ ∅′) � δ (wτ); wτ) has changed from 0 to 1. Note that this
can only happen under a (A⊕ ∅′) � δ (wτ)- change; in fact, if we were
careful about restraining A between Steps (4a) and (5a), we must have
a ∅′ � δ (wτ)-change.
In this case we look at the new current value of σc = V b[s] � γ(z). If
σc is free, we go to (4a). Otherwise, go to (4b). Notice that σc may or
may not be equal to τ .

(5a2) Suppose that V b(wτ) = 0 = ∆ ((A⊕ ∅′) � δ (wτ); wτ), i.e. V must have
changed to now cause V b(wτ) = 0. Again look at the current value of
σc = V b[s] � γ(z). If σc is free, we go to (4a). Otherwise, go to (4b).
Again note that σc may or may not be equal to τ , but an important
point is that if τ 64 σc then we can conclude that τ is now free. (See
Lemma 2.4).

(5b) Case b: Suppose the strategy was last at Step (4b) where we toggled z. Let
τ be the value of σc when we last acted in Step (4b). Wait for a recovery
for Re.

Now look at the current value of σc = V b[s] � γ(z). If σc is free, we go
to (4a). Otherwise, go to (4b).

2.3. Construction. We apply the Recursion Theorem to obtain an effective list of
indices of Turing functionals, and we will pick the subwitnesses wσ for the different

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 7

requirements in the construction from this list. Note that the indices ink do not
require the Recursion Theorem.
Re is said to require attention at stage s if one of the following situations happens:

(S1) s > e, Re−1 has already picked its witness ze−1 but Re hasn’t.
Action: Act as in (1) of the basic strategy.

(S2) The last time Re required attention in (S1) and γe,s(ze) ↓.
Action: Act as in (2) of the basic strategy.

(S3) The last time Re required attention in (S2), δe,s(we,σe,i) ↓ for all i < 2γe,s(ze)

and Re has recovered.
Action: If the current σc is free, go to (S4), otherwise go to (S5).

(S4) The last time Re required attention in (S4) or (S5), Re has recovered, and
V b (wσc) = 0.

Action: Act as in (4a) of the basic strategy.
(S5) The last time Re required attention in (S4) or (S5), Re has recovered, and

V b (wσc) = 1.
Action: Toggle z by setting As(z) = 1−As−1(z).

At stage s, act for the highest priority requirement requiring attention, and
initialize all lower priority requirements.

2.4. Verification. We now verify that the construction works. We let σec [s] be the
current value of V be � γe(ze)[s]. Where the context is clear we simply write σc.

Lemma 2.3. If s < s′ and σec [s] ≺ σec [s′] and σec [t] 6= σec [s
′] for all s ≤ t < s′, then

σec [s
′] is free at the beginning of stage s′.

Proof. Let τ = σec [s
′]. Since σec [s] ≺ τ , there exists w0 < γe(ze) such that τ(w0) = 1

and ΦV �M
w0

(w0)[s] ↑. We claim that τ is free at stage s: Otherwise V b(wτ)[s] = 1,
and must have received this definition under (4a) of the basic strategy at some
stage t < s such that σec [t] = τ . At that stage we must have ΦV �M

w0
(w0)[t] ↓. Note

that at stage t we set V b(wτ)[s] = 1 with use V �M [t]. However, between t and s,
V must change below M [t], which contradicts V b(wτ)[s] = 1. Therefore, τ must be
free at s.

Since σec [t] 6= τ for all s ≤ t < s′, this means that τ is free at stage s′. �

Lemma 2.4. If s < s′ and σec [s] 64 σec [s
′], then σec [s] is free at the beginning of

stage s′.

Proof. Since σec [s] 64 σec [s
′], there exists w0, such that σec [s](w0) = 1 and

ΦV �M
w0

(w0)[s′] ↑. We can argue that σec [s] is free at the beginning of s′ in the
same way as in Lemma 2.3. �

Lemma 2.5. The number of non-free σe,i between two consecutive togglings of ze
will decrease by 1 if there is no ∅′-change below max

{
δe
(
we,σe,i

)
| i < 2γe(ze)

}
.

Proof. Note that ze is only toggled under action (S5). Hence the only possible
transitions between recovery stages are either of the form (S5) → (S4) → · · · →
(S4) → (S5), or (S5) → (S5). We keep track of the number of non-free σe,i at the
beginning of each recovery stage. We go through each possible transition:

S(4) → S(4):: Suppose the strategy for Re acts under S(4) at stage s and
then under S(4) at the next recovery stage s′ > s. Note that σec [s] is
free at the beginning of stage s and becomes non-free after the action at

8 NG AND YU

s. However, between s and s′ we do not change A below δ
(
wσec [s]

)
. By

assumption there is also no ∅′ change, and so the only way for recovery to
take place at s′ is for σec [s] to become free again at the beginning of s′.
Thus the total number of non-free σe,i remains the same (or decreases).
Note that we are not claiming that σec [s] = σec [s

′], which might be false.
S(4) → S(5):: This case is the same as the previous. We still have that the

total number of non-free σe,i remains the same (or less).
S(5) → S(4):: Action (S5) does not turn any free σ into a non-free one, so

the number of non-free σe,i remains the same (or less).
S(5) → S(5):: Same as above.

Now let s < s′ be two consecutive stages where we toggle ze. The above shows
that the number of non-free σe,i at the beginning of stage s is no less than the
number at the beginning of s′. We need to show that it is in fact strictly less. Note
that Γσ

e
c [s](ze) 6= Γσ

e
c [s
′](ze) and so σec [s] 6= σec [s

′].
We first assume that σec [s] ≺ σec [s

′]. We know that σec [s
′] is not free at the

beginning of s′. Suppose that σec [s
′] is free at the beginning of t for some s ≤ t < s′.

This is impossible because only (S4) can cause σec [s
′] to become non-free, but then

at the next recovery stage it has to become free again. Therefore, σec [s
′] is non-free

at the beginning of every stage t, s ≤ t ≤ s′. But this means that there cannot
be a recovery stage t such that s ≤ t < s′ and σec [t] = σec [s

′], otherwise we will
toggle ze in between s and s′. By Lemma 2.3 σec [s

′] is free at the beginning of s′, a
contradiction.

This means that σec [s] 64 σec [s
′]. Since σec [s] is not free at the beginning of s, by

Lemma 2.4, the number of free strings must decrease. �

Lemma 2.6. Each Re can be initialized only finitely often and the number of times
ze is toggled is at most 2γe(ze)·me, where me = max

{
δe
(
we,σe,i

)
| i < 2γe(ze)

}
.

Proof. For e = 0, R0 can never be initialized. Now suppose for all e′ < e, Re′

can be initialized only finitely often, and the number of changes for ze′ is at most
2γe′ (ze′)·me′ . Note that Re is initialized only when for some e′ < e, Re′ acts. By
inductive hypothesis, we can conclude Re can be initialized by Re′ only finitely
often for each e′ < e: This is because if some Re′ requires attention infinitely often

then it must eventually be repeatedly attended to under (S4), but as V be′ and ∆A⊕∅′
e′

are ∆0
2 sets, there cannot be any more recovery stages after they are stable on the

parameters assigned to Re′ .
We now count the number of times ze can be toggled. We will toggle ze at a stage

s only under (S5) and when the current σec [s] is not free. By Lemma 2.5 we can only
toggle ze at most 2γe(ze) many times before every σe,i becomes free, after which the
only way we can toggle ze again is for there to be a ∅′ � me-change. Therefore, the
total number of times ze can be toggled is bounded by 2γe(ze)·me. �

Lemma 2.7. A is ω + 1 c.e.

Proof. Each number z is picked to be a follower ze of at most one requirement, and
toggling of z only starts when all parameters and uses of Re is found. Thereafter,
by Lemma 2.6, z is toggled at most 2γe(ze)·me times. Since this latter bound is
partial computable, this means that A is ω + 1-c.e. �

Lemma 2.8. All requirements Re are satisfied.

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 9

Proof. By Lemma 2.6, Re is initialized only finitely often. Now suppose Re is not
initialized any more after stage s > e. If the last time Re requires attention is under
(S1), then γe(ze) ↑ and Re is satisfied. If this is (S2) then δe(we,σe,i) ↑ for some i.
If the last time Re requires attention is in (S4) or (S5), then we never recover and

V b 6= ∆A⊕∅′ or A 6= ΓV
b

. �

3. Characterizing the c.e. bounded high sets

3.1. A useful lemma. Before we begin this section, we start by showing a very
useful fact which we will later use; we show that ∅2b is effectively 1-complete
amongst the ω2-c.e. sets. We say that 〈e, k〉 is a ω2-c.e. index if ϕe(x, s) and
ϕk(x, s) are total computable functions and provide an enumeration of a ω2-c.e.
set X. Recall this means that for every n, X(n) = lims ϕe(n, s) and for every s,
if ϕe(n, s) 6= ϕe(n, s + 1) then ϕk(n, s) >O ϕk(n, s + 1) where rng (ϕk) is a set of
strong ordinal notations for ordinals less than ω2.

This is essentially [1, Lemma 5.5], for completeness, we present a similar proof
below.

Proposition 3.1 (Anderson, Csima). There is a total computable function p such
that for every 〈e, k〉, if 〈e, k〉 is a ω2-c.e. index for the set X, then ϕp(〈e,k〉) is total

and witnesses X ≤1 ∅2b.
Proof. We first define a number of auxiliary functions to help us construct p. Let

N(e, n, s) =

{
#{t < s : ϕe(n, t+ 1) < ϕe(n, t)}, if ϕe(n, t) ↓ for all t ≤ s,
↑, otherwise.

Hence N(e, n, s) is partial computable. We also define the c.e. set

Wj(e,n) = rng (λs N(e, n, s)) .

Obviously j is given by the s-m-n Theorem. Wj(e,n) is an initial segment of ω and
records the number of changes in ϕe(n,−). Now define the (sequence of) partial
computable (either constant or nowhere defined) functions

ϕi(e,k,n,c) = λx 〈j(e, n), C + 2〉.
Here C = C(e, k, n, c) is the value obtained by the following procedure: Search for
the least s such that ϕk(n, t) ↓ for all t ≤ s and ϕk(n, s) + ω · c ≤ ϕk(n, 0), where
the last expression is interpreted as ordinals. The idea is that s is the least such
that ϕk(n, s) has decreased by at least c many limit ordinals compared to the start
ϕk(n, 0). Let C = ϕi(e,k,n,c−1)(0) + C ′ where C ′ ∈ ω and η is a limit ordinal such
that ϕk(n, s) = η + C ′. Intuitively, C is meant to capture the maximum number
of times ϕk(n,−) can change before it drops by more than c many limit ordinals.
Again, the function i is given by the s-m-n Theorem.

Here we give an example of how C,C ′ and s are defined. Suppose for some
e, k, n, the function ϕk(n, s) behaves as follows. ϕk(n, 0) = ω · 5 + 10, ϕk(n, 10) =
ω · 5 + 1, ϕk(n, 20) = ω · 5, ϕk(n, 30) = ω · 4 + 26, ϕk(n, 40) = ω · 4 + 15, ϕk(n, 50) =
ω · 4 + 2, ϕk(n, 60) = ω · 4, ϕk(n, 70) = ω · 3 + 1. The value of ϕk(n, t) retains
the previous value otherwise. Then for c = 0, the value of s is 0 and C ′ is 10.
Therefore, C(e, k, n, 0) is any upperbound for 10. We chose to let C(e, k, n, c) =
ϕi(e,k,n,c−1)(0) +C ′ rather than just C(e, k, n, c) = C(e, k, n, c− 1) +C ′ for purely
technical reasons. For c = 1, the value of s is 30 and the value of C ′ is 26, so
C(e, k, n, 1) ≥ 10 + 26. Finally, C(e, k, n, 2) ≥ 10 + 26 + 1.

10 NG AND YU

Finally, define the sequence of Turing functionals

Φr(e,n,d)

by the following. For each minimal string σ where σ (〈j(e, n), 0〉) = σ (〈j(e, n), 1〉) =
· · · = σ (〈j(e, n), z − 1〉) = 1 and σ (〈j(e, n), z〉) = 0 for some z, we search for the
least s such that N(e, n, s) = z − 1. Define Φσr(e,n,d)(x) ↓ for all x if ϕe(n, s) = 1;

the output is unimportant. Clearly Φ is a Turing functional, so we let r be a 1-1
computable function given by the s-m-n Theorem.

Finally define ϕp(〈e,k〉)(n) = r(e, n, d) where ϕk(n, 0) <O ω · d.
Now we verify that p has the desired properties. Fix e, k such that 〈e, k〉 is an

ω2-c.e. index for X. Then ϕp(〈e,k〉)(n) is total because ϕk(n, 0) ↓ for all n. Fix n.

Now we want to argue that X(n) = 1 iff r(e, n, d) ∈ ∅2b. This is equivalent to saying
that ΦKr(e,n,d) (r(e, n, d)) ↓ with use bounded by ϕi(r(e, n, d)) for some i < r(e, n, d).

First of all suppose that X(n) = 1. Let z − 1 be the number of times in total
that ϕe(n,−) changes. Therefore Wj(e,n) = [0, z − 1]. Now if we take σ = K �
〈j(e, n), z〉+ 1, the construction ensures that we define Φσr(e,n,d)(r(e, n, d)) ↓. Since

z−1 is the total number of changes in ϕe(n,−), it follows that 〈j(e, n), (z−1)+2〉 <
max{ϕi(e,k,n,0), ϕi(e,k,n,1), · · · , ϕi(e,k,n,d)}. (We do not specify the input to these
functions since they are either constant or everywhere undefined). By choosing d
large enough, 〈j(e, n), z + 1〉 < ϕi(r(e, n, d)) for some i < d < r(e, n, d). The use
of Φ is |σ| = 〈j(e, n), z〉 + 1 < 〈j(e, n), z + 1〉 < ϕi(r(e, n, d)), as required. Hence,
r(e, n, d) ∈ ∅2b.

Now suppose that X(n) = 0. Let z − 1 be the number of times in total
that ϕe(n,−) changes, and again we have Wj(e,n) = [0, z − 1]. This means
that K (〈j(e, n), 0〉) = K (〈j(e, n), 1〉) = · · · = K (〈j(e, n), z − 1〉) = 1 and
K (〈j(e, n), z〉) = 0. If ΦKr(e,n,d) (r(e, n, d)) ↓ then there is some minimal σ ⊂ K

that corresponds to the construction. This means that σ = K � 〈j(e, n), z〉+ 1, but
this is a contradiction because ϕe(n, s) = 0 for the least s where the value is stable.
So, ΦKr(e,n,d)(r(e, n, d)) ↑. �

3.2. The characterization. We characterize the c.e. bounded high sets as those
which compute ∅2b with an ω-c.e. bound on the use.

Theorem 3.2. The following are equivalent for a c.e. set A.

(i) A is bounded high, i.e. Ab ≥wtt ∅2b.
(ii) Ab ≥1 ∅2b.
(iii) A ≥ω-c.e.T ∅2b.

As a corollary, each c.e. bounded high set is Turing complete, and therefore
cannot be low. This answers a question in [2]. We first prove the easier direction
of Theorem 3.2.

Lemma 3.3. Let A be any set such that A ≥ω-c.e.T ∅2b. Then Ab ≥1 ∅2b.

Proof. Fix a Turing functional ∆ and an ω-c.e. function δ such that ∅2b = ∆A with
use bounded by δ. Suppose that δ[s] is a computable approximation of δ with the
number of mind changes bounded by the computable function h. As in Section 2.1,
we define the computable sequence of indices {ink} such that each ϕink is either a

total constant function, or the empty function, and such that ϕink (z) = the k + 1th

value in the approximation of δ(n)[s] for every z.

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 11

Define the computable function f such that f(n) is the index of a Turing func-
tional such that

ΦXf(n) (z) =

{
∆X(n), if ∆X(n) ↓= 1,

↑, otherwise.

We pick f(n) > ink for every k < h(n).
We claim that for each n, n ∈ ∅2b iff f(n) ∈ Ab. First suppose that ∅2b(n) = 1.

Then ∆A(n) = 1. This means that ΦAf(n)(f(n)) ↓, with use bounded by δ(n). But

δ(n) = ϕink (f(n)) for some k < h(n), which means that ink < f(n). Therefore

f(n) ∈ Ab. Now suppose that ∅2b(n) = 0. This means that ∆A(n) = 0 which
means that ΦAf(n)(f(n)) ↑. So f(n) 6∈ Ab. �

3.3. Proof of (i) ⇒ (iii).

3.3.1. Notations and conventions. The rest of Section 3.3 will be devoted to the
proof of (i) ⇒ (iii). Fix a c.e. set A such that A is bounded high. The construction
will define an ω2-c.e. set F , and by the Recursion Theorem we assume that we
are given the ω2-c.e. index for F in advance. Thus by Proposition 3.1 we can fix

a Turing functional Ψ and a computable function ψ such that F = ΨAb with use
bounded by ψ. Our goal is to define a Turing functional ∆ and an ω-c.e. function
δ such that ∅2b = ∆A with use bounded by δ. Since A is a c.e. set, we are going to
define ∆ implicitly by specifying a computable approximation δ[s] of δ. Whenever
A changes below the use δ(n)[s] we have the option to increase δ(n)[s]. Whether
or not we choose to increase δ(n) we will enumerate a new axiom for ∆A(n) using
the new value of A � δ(n), and obviously output the current value of ∅2b(n)[s]. At
the end we shall verify that we only increase δ computably bounded many times.

We shall adopt the convention that δ(x)[s] and ψ(x)[s] are increasing in the
variable x. As before we let Mn = max

0≤i≤k<n
ϕi(k). Obviously n 7→ Mn is an ω-

c.e function with the obvious approximation Mn[s]; for each n, Mn[s] increases at
most n2 times. Our goal is to keep δ(n)[s] ≥Mψ(n)[s] for every n and s. Of course
Mψ(n) can increase at any time, while we can only increase δ(n) if A � δ(n) changes.
Therefore, whenever A � δ(n) changes, we check to see if δ(n)[s] ≥Mψ(n)[s] is still
true; if so, we retain the current value of δ(n)[s] (and enumerate a new axiom for
∆A(n)). If no, we increase the value of δ(n) to make it larger than Mψ(n) (and

enumerate a new axiom for ∆A(n)). This will be the only reason we increase δ(n),
and therefore we will only increase δ computably bounded many times.

3.3.2. The construction of F and δ. By speeding up the enumerations of A and Ab,
we shall assume that whenever we toggle a number n in F , we immediately get a
recovery of F (n) = Ψ(Ab;n). This recovery can be one of two types; either we get
Ab[s] � ψ(n) ≺ Ab[s + 1] � ψ(n) (see Definition 2.2), or not. The former case we
call a bad recovery and the latter case is a good recovery. Note that in the case of
a good recovery we get an A-change below Mψ(n)[s].

At stage s = 0 we set F = ∅ and δ(n) = Mψ(n) for all n.
At stage s > 0 if Mψ(0) increases we initialize ∆ by clearing all axioms enumer-

ated in ∆ and resetting δ(n) = Mψ(n) for all n.
Next we pick the least n < s requiring attention: We say that n requires attention

if either ∅2b(n) 6= ∆A(n) or δ(n + 1) < Mψ(n+1) holds. For the least n requiring
attention at stage s, we toggle F (n).

12 NG AND YU

3.3.3. Verification. We now verify that the construction works.

Lemma 3.4. F is ω2-c.e.

Proof. We count the number of times F (n) is toggled. Suppose s < t are two
consecutive stages where F (n) is toggled. At stages s and t we have δ(0) = Mψ(0)

(otherwise we would initialize ∆ at the beginning of the stage). Therefore, by the
minimality of n at both s and t, we have δ(n) = Mψ(n).

First, if δ is initialized between s and t then Mψ(0) must have increased between
s and t. Suppose this does not happen, and suppose further that As � δ(n)[s] 6=
At � δ(n)[s].

We claim that in this case, either ∅2b(n)[s] 6= ∅2b(n)[t] or Mψ(n+1)[s] 6=
Mψ(n+1)[t]. Since n requires attention at stage t, we have either ∅2b(n)[t] 6= ∆A(n)[t]
or δ(n + 1)[t] < Mψ(n+1)[t] holds. If δ(n + 1)[t] < Mψ(n+1)[t] holds, and since the
change As � δ(n)[s] 6= At � δ(n)[s] always allows us to correct δ(n + 1), we can
conclude that Mψ(n+1)[s] 6= Mψ(n+1)[t] must hold. On the other hand suppose

at stage t we have ∅2b(n)[t] 6= ∆A(n)[t] instead. Again observe that the change
As � δ(n)[s] 6= At � δ(n)[s] will also allow us to correct ∆A(n)[s] (if necessary), this
means that ∅2b(n)[s] 6= ∅2b(n)[t] must hold. This proves the claim.

Now assume that δ is not initialized between s and t and that As � δ(n)[s] =
At � δ(n)[s]. Clearly we have Mψ(n)[s] = Mψ(n)[t], because otherwise Mψ(n)[t] >
Mψ(n)[s] = δ(n)[s] = δ(n)[t], which contradicts the minimality of n at stage t. At
stage s when we toggle F (n) we must obtain a bad recovery at s+ 1, in particular,
this means that Ab[s] � ψ(n) ≺ Ab[s + 1] � ψ(n). Since Mψ(n)[s] = Mψ(n)[t], this

means that Ab[s + 1] � ψ(n) 4 Ab[t] � ψ(n); otherwise we can find some k < ψ(n)
such that Ab(k)[s+ 1] = 1 and Ab(k)[t] = 0. That means that between stages s+ 1
and t, A has to change below Mψ(n)[s+ 1] = Mψ(n)[s] = δ(n)[s], a contradiction.

Putting together the facts in the previous paragraphs, we see that between stages
s and t, either Mψ(0) has increased (causing δ to be initialized), or ∅2b(n)[s] 6=
∅2b(n)[t], or Mψ(n+1)[s] 6= Mψ(n+1)[t], or Ab[s] � ψ(n) ≺ Ab[t] � ψ(n). The third

case can only happen at most ψ(n + 1)2 many times, and the last case can only
happen at most ψ(n) many times in a row. Therefore, an ω2-c.e. approximation
to F (n) can be obtained from an ω2-c.e. index for ∅2b. (The Recursion Theorem is
then applied to this approximation). �

Lemma 3.5. ∅2b ≤ω-c.e.T A.

Proof. Since ∆ is reset finitely often, we consider the final value of ∆. δ(n) is
increased only to match the changes in Mψ(n), and so δ is an ω-c.e. function. Fix

n and suppose that ∅2b(n) 6= ∆A(n), and fix a stage in the construction where this
disagreement is stable. But this means that n will require attention at every stage
after that. This means that at almost every stage, F (m) is toggled for some m ≤ n,
but this contradicts Lemma 3.4. �

This concludes the proof of (i) ⇒ (iii) and of Theorem 3.2.

4. Effectivizing domination properties

There are two natural ways to interpret the statement “f is reducible to A”,
where A ∈ 2ω and f ∈ ωω. The first is to say that f = ΦA for some r-functional,
where r = T,wtt or tt. This is the definition we adopt in this paper when we say

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 13

f ≤r A. The second way is to declare that Graph(f) ≤r A. If r = T then both
interpretations are equivalent. However if ≤r is a strong reducibility, we have to be
careful. In Theorem 4.1 we will show that the second interpretation gives nothing
new for Graph(f) ≤wtt A and Graph(f) ≤tt A. This justifies our use of the first
definition when defining the different variations on effective domination.

Theorem 4.1. Let A be a ∆0
2 set. The following are equivalent.

(i) A ≡T ∅′.
(ii) Graph(f) ≤wtt A for some strongly dominant f , i.e. f is dominant with a

∆0
2 g.

(iii) Graph(f) ≤tt A for some f where f is dominant with a computable g.
(iv) A is

(
≤T ,∆0

2

)
-dominant.

(v) A is (≤T , ω-c.e.)-dominant.
(vi) A is

(
≤T ,∆0

1

)
-dominant.

(vii) There is some f ≤T A and some g partial computable relative to ∅′ such that
for each total ϕe, we have g(e) ↓ and f(x) > ϕe(x) for every x > g(e).

Proof. (i) ⇔ (iv) is [8, Theorem 4.8]. (iii) ⇒ (ii) ⇒ (iv) are trivial.
(i) ⇒ (iii): Suppose that ∅′ = ΓA for some Turing functional Γ. Note that

ϕe(x) ↓ iff 〈e, x〉 ∈ ∅′. We will describe how to define the tt-reduction Φ. Fix a
string σ ∈ 2<ω, and x ∈ ω. We declare Φσ(〈x, |σ|〉) = 1 if the following conditions
hold:

• For every e < x, Γσ(〈e, x〉) ↓.
• For each e < x such that Γσ(〈e, x〉) = 1 we have ϕe,|σ|(x) ↓.
• We have not already declared Φτ (〈x, |τ |〉) = 1 for any τ ⊂ σ.

Otherwise we declare Φσ(〈x, |σ|〉) = 0. These conditions are computable in σ and
x, and thus we can phrase Φ as a Turing functional. It is clear that Φ is consistent,
as the output of ΦX(〈x, y〉) is determined solely by X � y. It is also obvious that Φ
is a tt-functional, since for every 〈e, x〉 and every σ ∈ 2x, Φσ(〈e, x〉) ↓.

Now we argue that ΦA = Graph(f) for some f ∈ ωω. For each x there can be at
most one y such that ΦA(〈x, y〉) = 1 because of the third condition. Since ΓA = ∅′,
for a long enough initial segment σ ⊂ A, the first two conditions above must be
met. Hence there must be exactly one y = f(x). Finally we argue that for every
e and x > e, if ϕe(x) ↓ then ϕe(x) < f(x). Since ΓA(〈e, x〉) = ∅′(〈e, x〉) = 1, this
means that ϕe,y(x) ↓. By the usual convention, ϕe,y(x) < y.

(i) ⇒ (vi): Since (iii) trivially implies (vi), we in fact have that (i) to (vi) are
equivalent.

(vii) ⇒ (iv): Fix f ≤T A and g partial computable in ∅′. Since we only really
need an upperbound on each g(e), we can assume that there is a computable func-
tion g(e, s) which is non-decreasing in variable s, and such that for every e, if g(e) ↓
then lims g(e, s) = g(e). Now define ĝ(e) = g(e, s) for the least s such that either
∀t > s, g(e, t) = g(e, s) or ϕe(s) ↑. Then ĝ is total because ϕe is total implies that
lims g(e, s) exists. Thus ĝ ≤T ∅′. Furthermore if ϕe is total then ĝ(e) = g(e). �

Proposition 4.2. Let A be a ∆0
2 set. Then A is

(
≤wtt,∆0

1

)
-dominant iff A ≥wtt ∅′.

Proof. Suppose that ∅′ = ΓA with computably bounded use. Define f(x) to be the
least s such that ϕe,s(x) ↓ for every e < x such that ΓA(〈e, x〉) = 1. Then f ≤T A is
total and has computably bounded use. Furthermore for every x > e, f(x) > ϕe(x)
if the latter is defined.

14 NG AND YU

Now assume that f = ΨA with a computable bound ψ on the use, and such that
for every total ϕe, f(x) > ϕe(x) for every x > g(e) where g is computable. Now
define the sequence of partial computable functions {ϕq(n)}n∈ω where q is total
computable, and for every n,

ϕq(n)(z) =

{
↑, if n 6∈ ∅′,
s, if n enters ∅′ at stage s.

Then it is clear that for every n, n ∈ ∅′ iff n ∈ ∅′ [f(g(q(n)) + 1)], which is of course
wtt-computable from A. �

In contrast to Proposition 4.2, we will later show (in Theorem 4.6) that we
can have a wtt-incomplete (≤wtt, ω-c.e.)-dominant set. Nevertheless, together with
c.e. (≤wtt, ω-c.e.)-dominance does imply a stronger property than being Turing
complete:

Proposition 4.3. Let A be a c.e. set which is (≤wtt, ω-c.e.)-dominant. Then
A ≥ω-c.e.T ∅′.

Proof. This proposition is an effective version of [8, Theorem 4.8]. However, due
to the fact that this proposition requires the computable bounds for the key steps
to be defined and verified, we will present a more direct approach than in the
proof given in [8]. Our proof here is also shorter and simpler. Fix a c.e. set A
and a wtt-functional Ψ and an ω-c.e. function g such that for every total ϕe, we
have ΨA(x) > ϕe(x) for every x > g(e). Assume the use of Ψ is bounded by a
computable function ψ. Fix an ω-c.e. approximation g(e)[s] of g(e), and assume
that g(e)[s] is non-decreasing in s.

Our goal is to describe a Turing functional ∆ such that ∅′ = ∆A with use bounded
by an ω-c.e. function δ. We first define a sequence of integers {I(x, n)} and a se-
quence of partial computable functions ϕq(x) for a computable function q, whose
index is given by the recursion theorem. For each x, I(x, n) will be increasing in n,
and will only be defined for finitely many n. We now describe how to define I(x, n)
for a fixed x. At stage 0, define I(x, 0) = g(q(x))[0] and set ϕq(x)(y) = 0 for all y ≤
I(x, 0). Now assume that I(x, n) ≥ g(q(x))[tn] is defined and ϕq(x)(y) are defined
for all y ≤ I(x, n) at stage tn. Wait for the first stage t > tn such that we have either
x ∈ ∅′[t]−∅′[t−1] or g(q(x+1))[t] 6= g(q(x+1))[t−1]. If t exists, we define ϕq(x)(y) =
t for y = I(x, n)+1, I(x, n)+2, · · · , one at at time, until we find some stage tn+1 > t
such that eitherA changes below ψ (max {I(x, n), g(q(x))[t]}+ 1) or g(q(x))[tn+1] 6=
g(q(x))[t]. Notice that if we find t and begin extending the domain of ϕq(x),
then tn+1 must exist: This is because ϕq(x) (max {I(x, n), g(q(x))[t]}+ 1) = t >

ΨA (max {I(x, n), g(q(x))[t]}+ 1) [t]. Once tn+1 is found we stop extending the do-
main of ϕq(x) and set I(x, n+ 1) = max dom

(
ϕq(x)

)
or g(q(x))[tn+1], whichever is

larger. If g(q(x))[tn+1] > max dom
(
ϕq(x)

)
we extend dom

(
ϕq(x)

)
to make them

equal.
First observe that for each x, I(x, n) is defined for at most 1 + # changes

in g(q(x + 1)) many n. Now define δ(x) = maxy≤x maxn ψ (I(y, n) + 1) +
maxy≤x maxs ψ (g(q(y))[s] + 1). Clearly δ is ω-c.e. We now argue that ∅′(x) can
be computed using δ(x) many bits of A. First fix a stage s after which g(q(0)) does
not change, and where As � δs(x) = A � δs(x). We first claim that δs(x) = δ(x).
Suppose not. Fix the least y ≤ x with some least n such that I(y, n+ 1) is defined
after stage s. (Of course, δs(x) might also increase due to a change in g(q(z)) for

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 15

some z after stage s, but if this is the case then z > 0 and the construction will
force a new definition of I(z − 1,m)).

The procedure to find tn+1 has started after stage s (more specifically, the cor-
responding t > s, otherwise we would have waited for the procedure to finish
and choose s larger), and either A changes below ψ (max {I(y, n), g(q(y))[t]}+ 1)
or g(q(y))[tn+1] 6= g(q(y))[t]. The latter is not possible, otherwise y > 0 and
the construction will force a new definition of I(y − 1,m) after stage t > s,
contradicting the minimality of y. Thus we may assume that A changes below
ψ (max {I(y, n), g(q(y))[t]}+ 1) after stage t. Again by the minimality of y, we have
g(q(y))[t] = g(q(y))[s]. This means that ψ (max {I(y, n), g(q(y))[t]}+ 1) ≤ δs(x),
and so it is impossible for A to change below this value after stage t > s, a final
contradiction.

Now as δs(x) = δ(x), it is clear that x cannot enter ∅′ after stage s, otherwise
the construction will force a new definition of I(x,m) after stage s. �

Theorem 4.4. There exists a c.e. set A such that A ≥ω-c.e.T ∅′ and A is not even(
≤wtt,∆0

2

)
-dominant.

Proof. We construct a c.e. set A and an ω-c.e. function δ. At the end we will
give a procedure to decide ∅′ using only δ many bits of A. We wish to meet the
requirements

Re : If ΨA
e is total and lim

s
ge(k, s) exists for every k then there is k such that

ϕk is total and ϕk(x) > ΨA
e (x) for some x > lim

s
ge(k, s).

Here ΨA
e is the eth possible wtt-functional with partial computable use function ψe.

We also assume that ge(k, s) is non-decreasing in variable s. We define a sequence
of partial computable functions ϕq(e) and assume that the index of the computable
function q is given by the recursion theorem. For convenience we let Ne,s be the
number of t < s such that ge(q(e), t) < ge(q(e), t+ 1), or e, whichever is larger.

At stage s = 〈e, s′〉 of the construction we first check if there is any x such that
x ∈ ∅′[s] − ∅′[s − 1], and if so, we enumerate the current value δs(x) into A and
lift δs+1(y) to a large fresh value for all y ≥ x. Next, we act for Re as follows,
depending on the first case which applies:

• If Ne has increased since the last time Re acted, or if Re has never acted
before, or if ΨA

e (ze) ≥ ϕq(e)(ze) are both defined, we abandon the previous
follower of Re, and pick a fresh follower ze, where ϕk(e)(ze) ↑ and ze >
ge(k(e), s).
• If ψe(ze) ↓ and δs(x) < ψe(ze) for some least x > Ne, we enumerate δs(x)

into A and lift δs+1(y) to a large fresh value for all y ≥ x.
• If ΨA

e (ze) ↓ and ϕq(e)(ze) ↑, then we set ϕq(e)(ze) = s; in particular ϕq(e)(ze)

is now larger than ΨA
e (ze)[s].

• Otherwise, we define ϕq(e)(m) for the least m not yet in the domain. The
output value is irrelevant.

We now check some properties satisfied by the construction. We claim that the
function δ is ω-c.e. Notice that δ(x) can only be increased when acting for some
Re while Ne < x, and hence e < x. (Another possibility is due to coding when
some y ≤ x enters ∅′, but this happens at most x times). If δ(x) is increased when
acting for Re, then the same Re can do this again only if either Ne increases, or

16 NG AND YU

if A changes below ψe(ze). In the latter case, this A change has to be due to the
enumeration of δ(y) for some y < x, and the former case can only apply at most x
times before Ne exceeds x. Hence a bound for the number of changes in δ(x) can
be computed recursively.

We now argue that ∅′(x) can be computed using at most δ(x) + 1 many bits
of A. Find a stage s such that As � δs(x) + 1 = A � δs(x) + 1. Notice that
δs(x) = δ(x) because any change in δs(x) after stage s is always accompanied by
the enumeration of some number ≤ δs(x). This means that x ∈ ∅′ iff x ∈ ∅′[s],
otherwise the construction will enumerate δs(x) into A. Hence A ≥ω-c.e.T ∅′.

Next we check that Re is satisfied for each e. Suppose that ΨA
e is total and

lims ge(q(e), s) exists. In particular, Ne,s is eventually stable. Since δ(x) will even-
tually settle for all x ≤ Ne, hence at almost every stage of the form s = 〈e, s′〉,
we must have ze stable and ϕq(e)(ze) > ΦAe (ze), and we act by the last item. This
means that ϕq(e) will be total. Moreover ze is always picked larger than ge(q(e)). �

We now investigate the relationship between being (≤wtt, ω-c.e.)-dominant and
being high with respect to the bounded jump. For c.e. sets, domination is a strictly
weaker property.

Theorem 4.5. Each bounded high c.e. set is (≤wtt, ω-c.e.)-dominant.

Proof. Let A be c.e. and bounded high. In Theorem 3.2 it was shown that this
is equivalent to ∅2b ≤ω-c.e.T A. Proposition 3.1 also shows that ∅2b is effectively
1-complete amongst the ω2-c.e. sets. In this proof we will build an ω2-c.e. set F ,
and by the Recursion Theorem we assume we know the ω2-c.e. index for F during
the construction. Hence, we may fix ∆ as a witness for F = ∆A with use bounded
by an ω-c.e. function δ. We assume an approximation of δ such that for every x
and s, δs+1(x) ≥ δs(x).

We describe how to define F . We begin with F0(〈e, x〉) = 0 for all e, x. We
assume, by speeding up the construction, that at the beginning of every stage s
we have F (〈e, x〉) = ∆A(〈e, x〉), and that if we toggle 〈e, x〉 in F at stage s (this
means that we set Fs+1 (〈e, x〉) = 1−Fs (〈e, x〉)), ∆A instantly corrects itself at the
beginning of the next stage. We do the following actions uniformly for each e. At
stage s, pick the least number x such that:

• ϕe(z) ↓ for every δ (〈e, x〉) < z ≤ δ (〈e, x+ 1〉), and
• either δs− (〈e, x+ 1〉) 6= δs (〈e, x+ 1〉) or s− does not exist.

Here s− is the previous stage where we toggled 〈e, x〉. If this least number x exists
at stage s, toggle 〈e, x〉.

Now observe that the number of times we toggle 〈e, x〉 is at most 1+ the number
of times δ (〈e, x+ 1〉) increases. Since δ is ω-c.e. this means that F is ω + 1-c.e.
and we can certainly convert the description above into an ω2-c.e. index for F : To
be explicit, we begin the ω2-c.e. approximation to F by setting the initial value
of the ordinal bounding function of F to be ω on every input. Then we wait for
the reduction from F ≤1 ∅2b to converge on more and more inputs until we have
enough information to compute the number of times we will need to toggle 〈e, x〉.
Then we can decrease the value of the ordinal bounding function on input 〈e, x〉 to
this number.

We point out a very subtle fact here. Even though F is ultimately ω-c.e. how-
ever, in the construction, we have to work with a ω2-c.e. index for F and apply
the Recursion Theorem with respect to the ω2-c.e. index for F . This is because we

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 17

have to wait for the 1-reduction from F ≤1 ∅2b to reveal itself to be total before we
can even compute an index for ∆ and δ and hence compute the number of times
we have to toggle each F (〈e, x〉). If we do not begin the construction by initially
starting the ordinal bounding function for F at the value ω, then the 1-reduction
from F ≤1 ∅2b will be partial, and we will not be able to compute the number of
times each F (〈e, x〉) is to be toggled.

Next we show how to define f ≤wtt A and an ω-c.e. function g witnessing the
(≤wtt, ω-c.e.)-dominance of A. Let f(x) output the first stage of the construction
where A � x is stable, and g(e) = δ (〈e, 0〉). Clearly f ≤wtt A and g is ω-c.e.
Fix e such that ϕe is total, and fix z > g(e) = δ (〈e, 0〉). We wish to show that
f(z) > ϕe(z). Let x be such that δ(〈e, x〉) < z ≤ δ(〈e, x+ 1〉) and let s0 be the first
stage in the construction where δ (〈e, x+ 1〉) does not increase anymore. Let s1 be
the first stage where ϕe(z) first converges. It suffices to show that A � z is not yet
stable at stage s1, because then f(z) > s1 > ϕe,s1(z). Suppose that s0 ≤ s1. It
is easy to verify that at or after stage s1 we must toggle 〈e, x〉 at least once more,
which means that A must change below δ (〈e, x〉) < z after stage s1. On the other
hand if s0 > s1 then it is also easy to see that we must toggle 〈e, x〉 at least one
more time after s0. In either case, A � z is not yet stable at stage s1. �

Theorem 4.6. There exists a (≤wtt, ω-c.e.)-dominant c.e. set which is not bounded
high.

Proof. We shall build the c.e. set A, ω2-c.e. set F , wtt-functional Φ and an ω-c.e.
function g satisfying the following requirements:

Ne : ρe is total ⇒ ΨA
e 6= F,

Pe : ϕe is total ⇒ ΦA(x) > ϕe(x) for all x > g(e).

Here, Ψe is the eth Turing functional with use bounded by ψe. We assume a
computable approximation of ψe such that the number of changes in ψe(x, s) is
bounded by the (partial) computable function ρe. As ∅2b is 1-complete amongst
the ω2-c.e. sets, the N -requirements ensure that A �ω-c.e.T ∅2b, and therefore A is
not bounded high.

Without loss of generality we assume that dom(ϕe) is an initial segment of ω at
every stage. We arrange the requirements N0 < P0 < N1 < · · · . At stage s > 0 we
define what it means for a requirement to require attention:

• Ne requires attention at stage s if ρe (e) ↓ and ΨA
e (e) [s] ↓= F (e).

• Pe requires attention at stage s if s > 2s−, max dom (ϕe) > s− and for every
k ≤ s− where Nk has acted before, we want max dom (ϕe) > ψk (k, s). Here
s− is the previous stage where Pe had acted, or the current value of g(e)+1,
whichever is larger.

We define the intervals Ix =
[
2x, 2x+1

)
for x ∈ ω. The functional ΦA will have

computable use max Ix, and every time we wish to change the value of ΦA(x) we
will enumerate the next element of Ix into A and redefine ΦA(x); of course we
have to ensure that we only request for at most 2x − 1 many changes to the value
of ΦA(x) during the construction.

Construction. At stage s = 0 of the construction we set g(e)[s] = e for ev-
ery e. Also define ΦA(x) = 0 for every x. Now suppose s > 0. We pick the
highest priority requirement which requires attention at stage s (and which

18 NG AND YU

can act), and act for it by doing the following. If the requirement is Ne, we
toggle F (e) by defining Fs+1(e) = 1 − Fs(e), and increase g(k)[s] = s for
every Pk such that k > max{ρe(e), e}. If the requirement is Pe, then for every
value of x such that g(e)[s] < x ≤ max dom (ϕe) and where ΦA(x) ≤ ϕe(x), we
increase the value of ΦA(x) to s (by first enumerating the next element of Ix into A).

Verification. We now verify that the construction works. We argue that Ne
is satisfied, and acts only finitely often. Suppose Ne is not satisfied, and that
ΨA
e = F with ρe total and bounds the number of changes in ψe. Hence Ne will

require attention at almost every stage of the construction. Since each Nk of
higher priority only acts finitely often (inductive hypothesis), and each Pk of higher
priority will only be allowed to act with an increasing delay, this means that Ne will
infinitely often be allowed to act. Let s0 be any stage where Ne is allowed to act.
We claim that before ψe(e, s) next increases, there are at most 2(max{ρe(e), e}+1)
many stages t > s0 such that we change A below ψe (e, s0). At stage s0 we increase
g(k) > ψe (e, s0) for every k > max{ρe(e), e}. Therefore at such a stage t > s0,
we must be acting for some Pk where k ≤ max{ρe(e), e} (noting that min Ix > x
for all x). But each such Pk can only contribute at most two different t > s0 -
the second time Pk acts after stage s0 we must see max dom(ϕk) > ψe (e, s0). The
third and subsequent time Pk acts after s0 (and before ψe(e, s) increases) will only
increase ΦA(x) for x > ψe (e, s0). Hence there are at most 2(max{ρe(e), e} + 1)
many such stages t. Since ψe(e, s) can increase at most ρe(e) many times, this
means that F (e) is toggled at most 2(max{ρe(e), e} + 1) (ρe(e) + 1) many times.
Hence Ne will act only finitely often, and F is clearly ω+ 1-c.e. Since Ne only acts
finitely often, it is clear that the final toggle by Ne must diagonalize without a
further ΨA

e (e) change, a contradiction.
We now verify that the P requirements succeed. First of all, g is ω-c.e. because

we only increase g(k) at most 2(max{ρe(e), e}+ 1) (ρe(e) + 1) many times for each
Ne such that k > max{ρe(e), e}. There are at most k many such Ne possible, and
for each e we will increase g(k) at most 2(max{ρe(e), e}+1) (ρe(e) + 1) < 2(k+1)2

many times. So the number of changes to g(k) is bounded by 2k(k+ 1)2. For each
x, we will request to increase the value of ΦA(x) at most once for each Pk where
k = g(k)[0] < x ≤ 2x−1. Thus, we will never run out of space in Ix. Now we fix Pe
and argue that it works. Suppose ϕe is total, and assume for a contradiction that
there are only finitely many stages we act for Pe. Let s1 be the last time we acted
for Pe or the stable value of g(e) + 1, whichever is larger. For all large enough s,
we have s− = s1, and it is clear that Pe will require attention at all large enough
s. This means that we must act for Pe after stage s1, a contradiction. Since Pe
acts infinitely often, it is clear by the construction that ΦA(x) > ϕe(x) for every
x > g(e). �

Given that Sacks’ Jump inversion fails for the bounded jump, we will next de-
scribe how to directly construct a c.e. set which is bounded high and wtt-incomplete.
As a corollary we obtain the failure of the analogue of the Jump Theorem for the
bounded jump (see [2]).

Proposition 4.7. There is a c.e. set A which is bounded high and A <wtt ∅′.

Proof. We wish to construct a c.e. set A and a Turing functional ∆ such that
∅2b = ∆A with use bounded by an ω-c.e. function δ. We have to satisfy the

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 19

requirements

Re : ψe is total ⇒ F 6= ΨA
e ,

where F is an ω-c.e. set we build and Ψe is a Turing functional whose use is bounded
by the partial computable function ψe.

We define the intervals Ix =
[
2x, 2x+1

)
for x ∈ ω. The functional ∆A will have

use max I〈x,y〉 for some y. For simplicity we denote the (current) use of ∆A(x) as

max I〈x,δ(x)〉. Every time we wish to change the value of ∆A(x) we will enumerate

the next element of I〈x,δ(x)〉 into A and redefine ∆A(x); of course we have to ensure

that we only request for at most 2〈x,δ(x)〉 − 1 many changes to the value of ΦA(x),
or we have to increase δ(x).

We fix an ω2-c.e. approximation of ∅2b. At stage s let k(x, s) and j(x, s) be such
that the ordinal bound in the ω2-c.e. approximation of ∅2b(x) is ω ·k(x, s) + j(x, s).
Without loss of generality we assume that k(x, 0) = x for every x.

Construction. At stage s = 0 we set δ(x) = x for every x. At stage s > 0, we do
the following:

(i) For each x < s such that k(x, s) 6= k(x, s− 1), enumerate the next element
of I〈x,δ(x)〉 into A and pick a new fresh value for δ(x), and redefine ∆A(x)
with the corresponding new use. Initialize each Re for e ≥ x by setting the
value of its follower ze undefined.

(ii) For each x < s such that j(x, s) 6= j(x, s− 1), enumerate the next element
of I〈x,δ(x)〉 into A and redefine ∆A(x) with a different value, if necessary.

(iii) Pick the least e such that Re requires attention: This means that either
the follower ze is not yet picked, or ψe(ze) ↓ and F (ze) = ΨA

e (ze). For the
least such e, we act for Re by doing the following. If ze ↑, we pick a fresh
value for ze. Otherwise if ψe(ze) ↓ and F (ze) = ΨA

e (ze) we toggle F (ze)
by setting Fs(ze) = 1− Fs−1(ze). If there are any x > e such that I〈x,δ(x)〉
contains an element less than ψe(ze), we enumerate the next element of
I〈x,δ(x)〉 into A and pick a new fresh value for δ(x), and redefine ∆A(x)
with the corresponding new use.

Verification. We now verify that the construction works. First of all, observe
that Re is initialized only when k(x) changes for some x ≤ e. Since we assumed
k(x, 0) = x and k(x,−) cannot increase, this means that Re is initialized at most
e(e+1)

2 many times. Next we count the number of times δ(x) can be increased, for
a fixed x. This can be increased in step (i) or (iii) of the construction. In step
(i) we must have a k(x) change, so this is at most x many times. In step (iii) it
must be due to some Re for e < x acting. Each such e can increase δ(x) at most
once unless Re is initialized and gets a new follower ze. Since each Re is initialized

at most e(e+1)
2 many times, we can certainly compute a bound for the number of

times δ(x) is increased. Hence δ is ω-c.e.
Next, we check that ∆A(x) is well defined with use bounded by max I〈x,δ(x)〉.

This is because each time we wish to update the value of ∆A(x) or increase the
value of δ(x) we always enumerate the next element of I〈x,δ(x)〉 into A. We need to
check that we do not run out of elements in I〈x,δ(x,s)〉 for each s. Only in step (ii)
do we use up an element of I〈x,δ(x)〉 without also increasing δ(x, s). Let t < s be the
stage where δ(x, s) was picked, and obviously k(x) cannot have changed between
t and s, otherwise step (i) would have increased δ(x). Therefore the total number
of elements we would use up from I〈x,δ(x)〉 is at most j(x, t) (since j(x) cannot

20 NG AND YU

increase unless k(x) decreases), plus possibly one more last time if we ever increase
δ(x). Since δ(x, s) is picked fresh at stage t, the size of I〈x,δ(x,s)〉 is large enough,

so we never use up all elements of I〈x,δ(x,s)〉. So indeed, ∆A(x) is well defined with

use bounded by max I〈x,δ(x)〉. Clearly ∆A(x) = ∅2b(x), because each change in the

approximation of ∅2b(x) is followed by a change in either k(x) or j(x), and either
step (i) or step (ii) will ensure we redefine ∆A(x).

Next we check that F is ω-c.e. Fix ze and we need to figure out how many times
we might toggle F (ze). Let u be the stage where ze is picked. The very first time
we act for Re with the follower ze after stage u we ensure that we move min I〈x,δ(x)〉
beyond ψe(ze) for all x > e. Therefore, the only reason we may have to toggle
F (ze) again must be due to ∆A(x) being redefined for some x ≤ e. We need to
count how many times this can happen for each x ≤ e. If ∆A(x) is redefined with
δ(x) increased, then as the new value of δ(x) is picked fresh, this same x cannot
again cause F (ze) to be toggled. If ∆A(x) is redefined with no increase in δ(x),
then this is due to step (ii) of the construction, and between stage u and this action,
k(x) cannot have changed, otherwise we would initialize Re. Therefore the number
of times this can happen is bounded by j(x, u). Since ze is picked fresh at stage
u, we have j(x, u) < ze. Thus the number of times F (ze) is toggled is at most
(e+ 1)(ze + 1). Hence F is ω-c.e.

Finally we verify that each Re is satisfied. Each R requirement is initialized

only finitely often (in fact, only e(e+1)
2 many times) and hence must settle on a

final follower z, and only toggle F (z) finitely many times. Fix e such that ψe is
total. Then ψe(ze) ↓ for the final follower ze of Re, and step (iii) of the construction
ensures that F (ze) 6= ΨA

e (ze). �

Corollary 4.8 (Anderson, Csima, Lange [2]). There are c.e. sets A and B such
that Ab ≤1 B

b and A �wtt B.

Proof. Take A to be ∅′ and B to be any wtt-incomplete c.e. set that is bounded
high from Proposition 4.7. By Theorem 3.2, Bb ≥1 A

b. �

Theorem 4.9. There exists a
(
≤wtt,∆0

2

)
-dominant c.e. set A such that A �ω-c.e.T

∅′.

Proof. The proof is very similar to the proof of Theorem 4.6. We follow the proof
of Theorem 4.6 closely. We shall build the c.e. set A, ω-c.e. set F , wtt-functional
Φ and a ∆0

2 function g satisfying the following requirements:

Ne : ρe is total ⇒ ΨA
e 6= F,

Pe : ϕe is total ⇒ ΦA(x) > ϕe(x) for all x > g(e).

Here, Ψe is the eth Turing functional with use bounded by ψe. We assume a
computable approximation of ψe such that the number of changes in ψe(x, s) is
bounded by the (partial) computable function ρe. We also require the convention

that ψe(x, s) < ψe(x + 1, s) for all e, x, s. As ∅′ is wtt-complete amongst the ω-

c.e. sets, the N -requirements ensure that A �ω-c.e.T ∅′ . Notice that the reducibility

≤ω-c.e.T is in general not transitive, however, A ≥ω-c.e.T ∅′ ≥wtt F does imply that
A ≥ω-c.e.T F .

In Theorem 4.6, the constructed set F is ω + 1-c.e. and g is ω-c.e. whereas in
the current proof, the set F is ω-c.e. while g is allowed to be merely ∆0

2. Now
we need some new ingredients. Instead of a single follower, Ne will require e + 1

EFFECTIVE DOMINATION AND THE BOUNDED JUMP 21

many followers. These will be 〈e, d0〉, 〈e, d1〉, · · · , 〈e, de〉, where d0 = 0 and di+1 =
ρe (〈e, di〉) for all i < e.

We arrange the requirements N0 < P0 < N1 < · · · . At stage s > 0 we define
what it means for a requirement to require attention:

• Ne requires attention at stage s if for all i ≤ e, ρe (〈e, di〉) ↓ and
ΨA
e (〈e, di〉) [s] ↓= F (〈e, di〉).

• Pe requires attention at stage s if s > 2s−, max dom (ϕe) > s− and for every
k ≤ s− where Nk has acted before, we want max dom (ϕe) > ψk (〈k, dk〉, s).
Here s− is the previous stage where Pe had acted, or the current value of
g(e) + 1, whichever is larger.

As before, we define the intervals Ix =
[
2x, 2x+1

)
for x ∈ ω. The functional ΦA

will have computable use max Ix, and every time we wish to change the value of
ΦA(x) we will enumerate the next element of Ix into A and redefine ΦA(x); of
course we have to ensure that we only request for at most 2x − 1 many changes to
the value of ΦA(x) during the construction.

Construction. At stage s = 0 of the construction we set g(e)[s] = e for ev-
ery e. Also define ΦA(x) = 0 for every x. Now suppose s > 0. We pick the highest
priority requirement which requires attention at stage s (and which can act), and
act for it by doing the following. If the requirement is Ne, we toggle F (〈e, di〉)
where i ≤ e is the least such that there are at most i many indices k < e with the
property that xk ≤ ψe (〈e, di〉) where xk is the least element to be enumerated the
next time Pk acts (see below). Note that i = e has the property so the least such i
must exist. Also we increase g(k)[s] = s for every Pk such that k ≥ e.

If the requirement is Pe, then for every value of x such that g(e)[s] < x ≤
max dom (ϕe) and where ΦA(x) ≤ ϕe(x), we increase the value of ΦA(x) to s (by
first enumerating the next element of Ix into A).

Verification. We now verify that the construction works. We first check
that F is ω-c.e. Fix e, and we shall examine the number of times where each
F (〈e, di〉) can be toggled during the construction. We claim that for 0 < i ≤ e,
between two successive toggles of F (〈e, di〉), ψe (〈e, di−1〉) must change. Fix
such an i, and assume that F (〈e, di〉) is toggled at stages s0 < s1. At stage s0,
there are at most i many indices k < e with the property that xk ≤ ψe (〈e, di〉).
But at stage s0 we also increase g(k) > ψe (〈e, di〉, s0) for every k ≥ e. This
means that between s0 and s1 we must have Pk acting for one of these i many
indices k < e. If ψe (〈e, di−1〉, s0) = ψe (〈e, di−1〉, s1) did not change between
s0 and s1, then at stage s1 there will be at most i − 1 many indices k left
with xk ≤ ψe (〈e, di−1〉, s0) = ψe (〈e, di−1〉, s1). So at stage s1 we would have
not have chosen to toggle F (〈e, di〉). For i = 0, we can only toggle F (〈e, d0〉)
if there are no xk smaller than the ψe-use, so F (〈e, d0〉) is toggled at most
once. Therefore, the number of times that F (〈e, di+1〉) is toggled is bounded by
ρe (〈e, di〉) = di+1 < 〈e, di+1〉. Thus, F is ω-c.e.

The fact that each N is satisfied and acts only finitely often is as before; basically
the final toggle on any follower of N must result in a permanent diagonalization.

We now verify that the P requirements succeed. First of all, g(k) is only increased
when Ne acts for some e ≤ k, and each Ne acts only finitely often. Hence g is ∆0

2.
For each x, we will request to increase the value of ΦA(x) at most once for each Pk

22 NG AND YU

where k = g(k)[0] < x ≤ 2x−1. Thus, we will never run out of space in Ix. Now we
fix Pe and argue that it works. Suppose ϕe is total, and assume for a contradiction
that there are only finitely many stages we act for Pe. Let s1 be the last time we
acted for Pe or the stable value of g(e)+1, whichever is larger. For all large enough
s, we have s− = s1, and it is clear that Pe will require attention at all large enough
s. This means that we must act for Pe after stage s1, a contradiction. Since Pe
acts infinitely often, it is clear by the construction that ΦA(x) > ϕe(x) for every
x > g(e). �

References

[1] B. Anderson and B. Csima. A bounded jump for the bounded Turing degrees. Notre Dame
Journal of Formal Logic, 55(2):245–264, 2014.

[2] B. Anderson, B. Csima, and K. Lange. Bounded low and high sets. Archive for Mathematical

Logic, 2017. To appear.
[3] B. Csima, R. Downey, and K.M. Ng. Limits on jump inversion for strong reducibilities.

Journal of Symbolic Logic, 76(4):1287–1296, 2011.
[4] R. Downey and N. Greenberg. A hierarchy of computably enumerable degrees. Submitted.

[5] R. Downey and N. Greenberg. A transfinite hierarchy of lowness notions in the computably

enumerable degrees, unifying classes, and natural definability. Submitted.
[6] R. Downey, N. Greenberg, and R. Weber. Totally ω-computably enumerable degrees and

bounding critical triples. Journal of Mathematical Logic, 7:145–171, 2007.

[7] R. Downey, C. Jockusch, and M. Stob. Array nonrecursive sets and multiple permitting
arguments. Recursion theory week (Oberwolfach, 1989), Lecture Notes in Math, 1432:141–

173, 1990.

[8] R. Downey, A. Melnikov, and K.M. Ng. Abelian p-groups and the Halting problem. Annals
of Pure and Applied Logic, 167(11):1123–1138, 2016.

[9] Kenneth Harris. PhD thesis, University of Chicago.

[10] K.M. Ng, F. Stephan, Y. Yang, and L. Yu. The computational aspects of hyperimmunefree
degrees. Proceedings of the 12th Asian Logic Conference, pages 271–284, 2012.

[11] R.I. Soare. Recursively enumerable sets and degrees : a study of computable functions and

computably generated sets. Perspectives in mathematical logic. Berlin ; New York : Springer-
Verlag, c1987., 1987.

(Ng, Yu) School of Physical and Mathematical Sciences, Nanyang Technological

University, Singapore 637371, Republic of Singapore

	1. Introduction
	1.1. Organization of the paper

	2. Sacks' Jump Inversion for bounded Turing degrees with the bounded jump
	2.1. Requirements and notations
	2.2. Strategy for a single Re
	2.3. Construction
	2.4. Verification

	3. Characterizing the c.e. bounded high sets
	3.1. A useful lemma
	3.2. The characterization
	3.3. Proof of (i) (iii)

	4. Effectivizing domination properties
	References

