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Abstract. Strong jump traceability has been studied by various authors. In

this paper we study a variant of strong jump traceability by looking at a
partial relativization of strong jump traceability. We discover a new subclass

H of the c.e. K-trivials with some interesting properties. These sets are

computationally very weak, but yet contain a cuppable member. Surprisingly
they cannot be constructed directly using cost functions, and is the first known

example of a subclass of the K-trivials which does not contain any promptly

simple member. Furthermore there is a single c.e. set which caps every member
of H, demonstrating that they are in fact very far away from being promptly

simple.

1. Introduction

The last few years have seen an extraordinarily fruitful interaction between the
areas of algorithmic information theory and computability theory. A highlight in
the programme of trying to understand algorithmic information has been the work
on various notions of lowness. A notion of lowness is one indicating weakness as
an oracle. Intuitively, a notion of lowness means that a set does not give any extra
power to certain operations when it is used as an oracle; it’s role as an oracle can
be dispensed with. The classical example is where operation is the Turing jump,
where a set A is low if A′ ≡T ∅′. That is, a low set A is indistinguishable from the
empty set as far as the jump operator is concerned. We would of course expect that
low sets resemble computable sets, and there have been many results in literature
demonstrating this, especially amongst the computably enumerable sets. We refer
to Soare [19], Chapter XI for many illustrations of the use of lowness for the Turing
jump.

The notion of lowness can be considered for many other concepts where rela-
tivization makes sense. A beautiful example is the paper of Slaman and Solovay
[17] who studied the notion of lowness for computational learning theory. They
showed that for a certain notion of learning, called EX learning, low for EX learn-
ing coincides with being low and 1-generic. It is not important for this paper what
EX learning is, but the point here is that we have a remarkable coincidence between
a lowness notion for learning theory and notions from classical computability.

The present paper was motivated by the beautiful interactions of lowness and
simplicity in Kolmogorov complexity with concepts from classical computability.
The work of Terwijn and Zambella [21], Kjös-Hanssen, Nies and Stephan [10],
Bedregal and Nies [2] showed that the notion of being low for Schnorr randomness1

coincided with a natural combinatorial notion: being computably traceable. Here
A being computably traceable means that A is “uniformly hyperimmune-free” in
that there is a computable function h such that for each f ≤T A, there exists a
computable sequence of canonical finite sets Dg(x) with |Dg(x)| = h(x), and such
that f(x) ∈ Dg(x) for all x.
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The most well-known work on lowness relative to Kolmogorov complexity is the
work of Nies [13, 15] showing the coincidence of the K-trivial reals, the low for K
reals2, and the reals low for Martin-Löf randomness3.

The class of K-trivial reals was first introduced in [20]. They are the reals α
such that for some constant c, K(α�n) ≤ K(n) + c for every n4. That is, every
initial segment of a K-trivial real contains no more information than just its own
length. Solovay [20] was the first to show that there are non-computable reals which
are K-trivial. This construction has been simplified and is now known as a cost
function construction. The K-trivials have aroused great interest in recent years,
and are related to various other classes defined independently. Subsequently, more
characterizations of the K-trivial reals were found, such as the bases of Martin-Löf
randomness [8], and the reals low for weak 2-randomness.

These characterizations show that the notion of ML-lowness is a very robust one.
It is very natural to ask if the class relates to notions from classical computability
in any meaningful way. For example, is there a computability-theoretical charac-
terization like the one for EX-lowness? Is there a combinatorial characterization
in terms of classical computability like the one for Schnorr lowness?

In [6], Downey, Hirschfeldt, Nies and Stephan showed that the K-trivial reals
are natural solutions to Post’s problem in the sense that they have incomplete
Turing degrees. This is by the Decanter method, whose fanciful name is derived
from the fact that we amplify small mistakes made by the opponent. For a good
description of this method, we refer the reader to [5]. Again, this method is based
on the fact that K-trivial sets resemble ∅; we can ask for certification that a certain
initial segment does not change. Nies [14, 15] then showed that every c.e. K-
trivial was superlow (A is superlow, if A′ ≡tt ∅′). Thus K-triviality is essentially
an enumerable phenomenon. This connects K-triviality (as a notion of lowness in
terms of randomness) with the traditional notion of lowness (in terms of Turing
jump operators). These results go some way towards understanding ML-lowness
in classical terms.

Efforts towards a combinatorial classification came from the results above. Nies’
proof that K-trivial sets are superlow actually showed that their jump has a tracing
property similar to computable traceability. An order function h is one which is
total computable, non-decreasing and unbounded. A set A is said to be jump
traceable with respect to an order h, if there is a computable g, such that for all x,
|Wg(x)| ≤ h(x), and JA(x) ∈Wg(x). Here, JA(x) denotes the value of the universal
function {x}A(x) partial computable inA. A is jump traceable if it is jump traceable
with respect to some order h. This is a variation of the concepts of computable
traceability (Terwijn and Zambella [21]), and c.e. traceability (Ishmukhametov
[9]). The class of jump traceable sets was introduced by Nies [14] initially to study
lowness properties relating to K. He showed that in the c.e. case, jump traceability
and superlowness were the same, but were different outside of the c.e. sets. In
[14, 15], Nies showed that every K-trivial real was jump traceable with an order
function of growth rate ∼ h(n) = n log n.

Nies’ results suggested that perhaps K-triviality is related to the growth rate of
orders for jump tracing. This insight lead to Figueira, Nies and Stephan [7] studying
the notion of strong jump traceability. We say that A is strongly jump traceable,
if it is jump traceable with respect to all (computable) order functions. Figueira,
Nies and Stephan used a cost function construction to construct a non-computable
strongly jump traceable c.e. set. Figueira, Nies and Stephan characterized the

2A is low for K if ∃c∀σ(K(σ) ≤ KA(σ) + c).
3A is ML-low, if every A-random set is already 1-random.
4K(σ) is the prefix-free Kolmogorov complexity of the string σ.
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c.e. strongly jump traceable sets via the notion of well approximability: a set X is
well approximable, if for every order function h, X can be effectively approximated
with less than h(x) many changes at each input x. Figueira, Nies and Stephan
showed that if A is c.e., then A is strongly jump traceable if and only if A′ is
well approximable. Hence, one can view c.e. strong jump traceability as a natural
strengthening of lowness or even of superlowness. Perhaps this was the hoped for
characterization of K-triviality in classical and also combinatorial terms, a question
explicitly asked in Miller and Nies [11].

In recent work, Cholak, Downey and Greenberg [4] showed that the c.e. strongly
jump traceable sets form a proper subclass of the K-trivials. In fact, they proved
that if A is c.e. and jump traceable at order ∼ h(n) =

√
log n, then A is K-trivial.

This is the first example of a combinatorial property which implies K-triviality.
They showed that like the K-trivials, the c.e. strongly jump traceable sets are also
closed under ⊕, and constructed a K-trivial c.e. real which is not jump traceable
with respect to a bound of size ∼ h(n) = log log n. Thus, for the first time we have
a combinatorial notion, generated by a cost function construction, giving a proper
subclass of the ideal of K-trivials.

Many questions suggest themselves. How does this idea relate to other notions
from Kolmogorov complexity such as ML-cuppability and the like? Is this the
limit of the cost function construction? Are there any natural proper subclasses
of this ideal? Two possible characterizations have been suggested here: Green-
berg suggested that A is K-trivial iff A is jump traceable for all orders h with∑
n∈ω

1
h(n) < ∞. Cholak, Downey and Greenberg suggested that this should be∑

n∈ω 2−h(n) < ∞. Is there some combinatorial characterization of the class of
K-trivials in terms of orders between the Nies’ bound and the Cholak-Downey-
Greenberg bound? What else can be said about the class of strongly jump traceable
reals, as they seem a very interesting class in their own right.

This paper and an earlier one [12] are devoted to the constellation of questions
above. In [12], Ng showed that the index set {e ∈ N : We is strongly jump traceable}
is Π0

4-complete. It was also shown that there is no minimal bound for jump trace-
ability, that is, there is no single order function such that strong jump traceability
is the same as jump traceability for that order. This is different in the case of c.e.
traceability or computable traceability. Nies observed that the K-trivial reals form
a natural nontrivial Σ0

3 ideal in the c.e. Turing degrees. Therefore in terms of the
complexity of the classes, the strongly jump traceable sets are as complex as they
could be, and in fact differ from the K-trivials as much as they possibly can.

In Section 2 we show that not every c.e. set jump traceable at identity is K-
trivial, disproving one of the conjectures towards a combinatorial characterization
of ML-lowness. We do this by constructing two c.e. sets which are both jump
traceable at identity, but whose join has complete Turing degree. This result shows
that any hope of giving a combinatorial characterization of K-triviality in terms of
jump traceability, must include at least some functions which grow slower than the
identity.

Another goal of the present paper is to introduce a proper subclass of the strongly
jump traceable reals. This class has a number of very interesting properties and is
the first class constructed by a cost function type construction which cannot, for
instance, be promptly simple, nor can it be carried out below any c.e. degree. We
believe its study may have significant implications in classical computability.

We will study a variant of strong jump traceability by relativizing (partially) the
concept of traceability. In Section 3, we define what it means for a c.e. set A to be
strongly jump traceable by another set X, denoted by the relation “A ∈ SJT (X)”.
We study this binary relation, keeping in mind the interactions with computational
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lowness. The main result in Section 3 is Theorem 3.5, where we construct two c.e.
sets A and B which are both strongly jump traceable, but A 6∈ SJT (B). This is
somewhat contrary to intuition, since if B is computationally very weak, we would
expect that SJT (B) is exactly the class of strongly jump traceable c.e. sets.

Theorem 3.5 provides us with the encouragement that we need to take this study
further. We define a new class of c.e. sets H :=

⋂
{SJT (W ) | W is c.e.}, and call

these sets hyper jump traceable. These sets are all strongly jump traceable, with an
even more marked resemblance to the computable sets. In Section 4 we construct
a non-computable hyper jump traceable c.e. set, by using a ∅′′′-priority argument.
We also show that such sets can be cuppable. Thus, there is a fundamental property
which separates them from the computable sets. In Section 5 we show that no hyper
jump traceable c.e. set can be low cuppable, and this implies that the hyper jump
traceable c.e. sets cannot be constructed using a single cost function. This forms
the first known example of a subclass of the K-trivials free of promptly simple
sets. Moreover, they form the first class of sets which are constructed without
any cupping notions in mind, but which can be cuppable, yet cannot be promptly
simple.

In Section 6 we show that no c.e. set A is strongly jump traceable relative to all
∆0

2 sets, apart from the computable sets. Therefore in some sense, such a variation
of strong jump traceability is the best possible amongst the c.e. sets. In Section 7
we show that not only is every hyper jump traceable c.e. set cappable, but there is
also a single capping companion for the entire class H. Hence, H is far away from
being promptly simple.

Our notation is fairly standard, and follow Soare [19]. Unless otherwise stated,
{T ex}x∈N is the eth c.e. trace in some effective enumeration of all c.e. traces. For
an oracle X ⊆ N and n ∈ N where JX(n) ↓, we write jX(n) to denote the use. We
append [s] to long expressions to refer to the value of that expression as evaluated
at stage s.

2. Not every c.e. set jump traceable at identity is K-trivial

It is known that the K-trivial reals form an extremely robust class, having dif-
ferent characterizations. Existing results tell us that in the c.e. case, we have
A is jump traceable at order

√
log n ⇒ A is K-trivial ⇒ A is jump traceable at

order n log2 n. This suggests that the K-trivials might have a combinatorial char-
acterization using order functions having growth rates somewhere between the two
extremes (e.g. the identity function). Greenberg, as well as Cholak, Downey and
Greenberg put forward the conjectures:

Conjecture 2.1. A is K-trivial if and only if A is jump traceable at all order
functions h such that

∑∞
n=1 h(n)−1 <∞.

Conjecture 2.2. A is K-trivial if and only if A is jump traceable at all order
functions h such that

∑∞
n=1 2−h(n) <∞.

We show that not every c.e. set jump traceable at identity is K-trivial, hence
giving a negative answer to Conjecture 2.1. We do this by constructing a pair of
c.e. sets which are both jump traceable at identity, and whose join has complete
Turing degree. Since the K-trivial sets are closed under ⊕, at least one of the two
constructed sets is not K-trivial. This result says that any class of order functions
characterizing the K-trivials must contain a member which does not dominate the
identity function, and hence Conjecture 2.2 is still open.

Bickford and Mills introduced the concept of superlowness, and in [3] constructed
a pair of c.e. superlow sets which joins to ∅′. A calculation of the underlying order
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function yields a growth rate of around ∼ n2; in the following theorem we will
improve this to the identity function.

Theorem 2.3. There are c.e. sets A0 and A1 which are both jump traceable at
identity, such that ∅′ ≤T A0 ⊕A1.

Proof. We construct traces {T ix}x>0 for JAi , i = 0, 1, as well as a Turing functional
Γ ensuring that ∅′ = ΓA0⊕A1 . The stage s use of this computation is recorded by
γ(x, s), which we think of as a moving marker pointing at a particular number not
yet in A0 ∪A1[s]. To move the marker γ(x), we would have to remove the Γ-axiom
we had previously set; to do this we have to put5 γ(x) into either A0 or A1. If γ(x)
is not enumerated then it is not allowed to move. We fix an enumeration ∅′[s] of
the halting problem, such that at most one number is enumerated per stage. When
we pick a fresh number at stage s, we mean a number > s and > any number used
so far. The construction involves a careful monitoring of box sizes. We think of
each T ix as being made up of locations, or “boxes”, which we will fill with current
values of JAi(x)[s]. As more elements enter T ix, the “box size” (i.e. the number
of available free slots) goes down. This box intuition is convenient, and references
of this sort will be made throughout this paper. This concept also appears in [4],
where the box promotion method was used to prove several results.

In order to avoid ambiguity, we assume that if Jρ(x)[s] ↓ for any string ρ and x, s,
then this fact can be seen at the beginning of stage s. Also, we want to distinguish
between the two computations Jρ(x) and Jρ

′
(x) which may have the same value

but have different use ρ 6= ρ′. Therefore, instead of enumerating potential values of
JAi(x) into T ix, we will enumerate the use of these potential computations (as finite
strings) into T ix. As long as we ensure that Jρ(x) ↓ for some ρ ⊂ Ai ⇒ ρ ∈ T ix, then
Ai would be jump traceable via some suitable transformation of {T ix}. This feature
is not necessary, but useful as it allows us to avoid considering different cases. We
say that a computation Jρ(x) ↓ has been i-traced if ρ has been enumerated in T ix.

2.1. Description of strategy. We think of each T ix as a collection of x many
“slots”, which we will each fill with potential jump computations. Each of these
slots is also called a “box”. Initially T ix starts off as having box size of x − 1; we
also say it is a (x − 1)-box. x − 1 represents the fact that T ix has not yet been
injured, and hence can take x− 1 many more injuries. Each time a potential jump
computation is enumerated in T ix and subsequently destroyed, we decrease the box
size by one. To ensure jump traceability, all we need to do is to ensure that at all
times, no box of size 0 is injured on either side.

To make this compatible with coding requirements, we pick a number forbid(e)
for each marker γ(e), and then ensure that every time we see γ(e) < jAi(w) for
some w of small T iw-box size ≤ forbid(e) on the Ai-side, we move γ(e) out of the
way. We do this by enumerating γ(e) on the other side, into A1−i, and then pick a
fresh marker location for γ(e) > jAi(w). If small box sizes appear on both sides A0

and A1, we pick any of the two sides to injure; this does not matter as both of these
computations must have newly converged, and we would not have traced either of
these computations yet (we arrange for computations to be traced at the end of
each stage, so that only the surviving computations are traced). If we ensure that
at all times, 0 < forbid(1) < forbid(2) < · · · , then no traced 0-boxes can ever be
injured. This ensures jump traceability of both A0 and A1.

The above plan is general enough to work for all orders h, and yet we know that
if h is sufficiently slow-growing, we cannot code ∅′ into the join of two sets jump
traceable at order h. We want to show that the identity h(n) = n grows quickly

5Hence the use of ΓA0⊕A1 (x) is really 2γ(x). γ(x) marks the part of A0 and A1 which is
accessed by the computation.
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enough to allow coding. The problem we have clearly not yet considered, is the fact
that γ(e) might not settle. Let us consider γ(1), and suppose that forbid(1) = F
(which never changes since γ(1) is of the highest priority). Now γ(1) might be put
into A0 because some box of size ≤ F has been filled with a convergent computation
with use above γ(1) on the A1-side. Our strategy ensured that there was no box
which is already traced, and of size ≤ F converging above γ(1) on the A0-side.
However, there might be boxes of size F + 1 with convergent computations above
γ(1) on the A0-side, which have already been traced. Thus, in trying to avoid boxes
of small size on the A1-side, we might create more boxes of size F on the A0 side.
These new small-sized boxes we created on the A0 side might come back and force
us to create more boxes of size F on the A1-side, and so on. Hence γ(1) never
settles since it spends all of its time avoiding these small boxes.

This obstacle cannot be overcome if h is sufficiently slow growing. The intuition
is that if h grows very slowly, then every time we avoid a single box on one side,
we will create a lot of new F -boxes on the other side. However, if h is the identity,
then the creation of new F -boxes is controlled; avoiding a single box on one side
creates (more or less) just a single extra F -box on the other side. We make this
more precise: we want to argue that at identity h(n) = n, the marker γ(1) is only
moved finitely often. γ(1) moves only to avoid an F -box T iw, and once γ(1) moves
to its new location the same box T iw is never a problem again on the Ai side, since
the computation will be preserved forever. We wait until we have done this F + 1
times on each side, at some stage s. We can ensure that at each stage t we only
make traces into T ix for x < t, hence at stage s, T is is empty and hence must be an
(s− 1)-box for both i (this is where we make use of the fact that h is identity). In
future, how many times may T 0

s be injured? As described above, each time T 0
s is

injured, we brush aside some T 1
w, of current size ≤ F . We may assume that w < s,

otherwise T 1
s will become an F -box before T 0

s does, in which case we argue with T 1
s

in place of T 0
s . Each of these T 1

w only blocks γ(1) once, and there are altogether only
s−1− (F +1) many of these boxes to consider, since at stage s we had already had
F + 1 many of these boxes converging below γ(1). Therefore, T 0

s can be reduced to
at most a (F+1)-box, hence neither of T 0

s nor T 1
s can become an F -box. Hence this

process stops, and γ(1) eventually settles. An inductive argument can be applied
for γ(e).

Note this observation works just as well if h(n) = n− c for any constant c, but
no longer works if h is unbounded away from the identity, e.g. h(n) = n

2 . Any
attempt to improve Theorem 2.3 will have to address the issue of amplification.
That is, the opponent might pursue some sort of strategy along the lines of the
Decanter or box promotion methods, and amplify small errors repeatedly. In this
construction, we stop the opponent from doing this by isolating his actions on each
of our requirements. We do so by setting up barriers; if the opponent has caused
us to make an error on γ(x) then we isolate his actions on γ(x + 1), γ(x + 2), · · · ,
so that errors we make on these cannot be amplified to cause us grief on γ(x).
The identity function grows just fast enough to permit us to do that. The formal
construction and verification fills in the rest of the details.

2.2. Notations. We record the size of T ik by the parameter sizei(k, s), where k > 0.
This is initially set to sizei(k, 0) = k − 1 for all k ∈ N− {0} and i = 0, 1. At times
we decrease sizei(k) when T ik is injured, and when sizei(k) reaches 0 then the use
of JAi(k) must be preserved when the computation next converges. We ensure
sizei(0, s) ≤ sizei(1, s) ≤ sizei(2, s) ≤ · · · for each i, s. Thus when a T ix box is
injured we will have to decrease sizei(k) for all k such that sizei(k) = sizei(x); we
pretend that all these boxes are injured as well. Formally, during the construction,
before we enumerate a number x into Ai at stage s, we will update the box size by
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doing the following: let X = {k < s : JAi(k)[s] ↓ with use > x, and has already
been i-traced}. For every k′ such that sizei(k′) = sizei(k) for some k ∈ X, we
decrease sizei(k′) by 1. That is, if we decrease sizei(k) for k ∈ X, we will also
decrease sizei(k′) for all k′ in the “same block” as k. We have a variable forbid(x, s)
which represents the region forbidden to γ(x) - i.e. the largest number w such that
γ(x) is not allowed to be below the use of JAi(y) for i = 0, 1 and any T iy with box
size ≤ w.

2.3. The construction. At stage 0 initialize the parameters according to the fol-
lowing. Set sizei(k) = k − 1 for all k > 0 and i = 0, 1. Set forbid(x) = x for
all x, and do nothing else. Suppose now that s > 0. There are three parts to the
construction:

(1) First, check if any corrections to Γ is necessary: if there is some x ∈ ∅′[s]−
∅′[s − 1], we update the box size and enumerate γ(x) (if defined) into A0.
If no corrections to Γ is necessary, we extend the definition of Γ by setting
ΓA0⊕A1(x)[s] ↓= ∅′(x)[s] for the least x < s where no axioms currently
apply; do this with a fresh γ(x)-use.

(2) Pick the least x < s such that γ(x, s) ↓ and γ(x, s) < jAi(w, s) for some
i and w such that sizei(w) ≤ forbid(x, s), and coding is not yet done
(i.e. x 6∈ ∅′[s]). Note that the JAi(w)[s] computation currently blocking
γ(x) might not have been i-traced, but we will need to take action for it
anyway. Update the relevant box size, and enumerate γ(x, s) into A1−i
(choose the smaller i, if we have a choice) where the above holds. Set
forbid(y) = s+ y − x for all y > x.

(3) For each i = 0, 1, and each k < s such that JAi(k)[s] ↓, such that Ai had
not changed below the use due to (1) and (2) above, we enumerate the use
into T ik. Note that at stage s we only trace jump values JAi(k) for k < s.

2.4. Verification. It is clear that for each i = 0, 1, and x > 0, if JAi(x) ↓, then
Ai�jAi (x)∈ T ix. Suppose that for some i, x, we have |T ix| > x. There are strings
ρ0, ρ1, · · · , ρx which have been enumerated into T ix in that order. By the use prin-
ciple, for each j < x, there must be a change in Ai�|ρj | between the enumerations of
ρj and ρj+1. The first such change would cause sizei(x) to be decreased by 1, and
therefore when ρx−1 is enumerated, we must already have sizei(x) ≤ 0. Suppose
ρx−1 is traced under step 3 of the construction, at some stage t. Hence Ai�|ρx−1| was
unchanged throughout stage t. If γ(0) was defined and below |ρx−1|, then we would
have enumerated γ(0) under step (2); in any case at the end of stage t, γ(0) must
be undefined, so there can be no markers below Ai�|ρx−1| (which have not yet been
coded). This is a contradiction as there cannot be any change below Ai�|ρx−1| after
stage t. Hence, A0 and A1 are both jump traceable with respect to the identity
function.

Next, we have to establish the crucial fact: for each e, γ(e) eventually settles.
Suppose the result holds for all e′ < e. Hence F = lims forbid(x, s) exists. Let
s0 be a stage where forbid(x) has settled. For each s ≥ s0, we let Θi[s] = {x :
sizei(x, s) ≤ F} (this is an initial segment of N, since we keep size non-decreasing),
and let Θ̄i[s] = {x < s : sizei(x, s) > F} be the rest. We further split Θi[s] into
two parts: Θ−i [s] = {x ∈ Θi[s] : JAi(x)[s] ↓ and has been i-traced}, and the rest
goes in Θ+

i [s] = Θi[s] − Θ−i [s]. Basically, Θ−i contains all those boxes with high
e-priority, which no longer need to be considered by γ(e), while Θ+

i contains all
those high priority boxes which might act and block γ(e) at any time in the future.

Suppose for a contradiction, that γ(e) moves infinitely often after s0. Hence
e 6∈ ∅′. Define the function gapi(s) = |Θ−i [s]|, where the expression is evaluated
at the end of stage s. A contradiction is derived using the following lemmas. The
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first lemma says that each time a marker γ(e) is moved, we never promote a box
forbidden to it:

Lemma 2.4. Let s be a stage, such that γ(r) was enumerated in Ai at stage s. If
sizei(k) was decreased from a+ 1→ a in the corresponding update of box size, then
necessarily a ≥ forbid(r).

Proof. Suppose the lemma holds for all stages s′ < s. We prove the case for stage
s. There must be some k′ such that JAi(k′)[s] ↓ with use > γ(r), which has
already been i-traced. That use must have been i-traced in some stage t < s, which
means that Ai had not changed below that use in the entire stage t. We must have
γ(r)[s] = γ(r)[t], which means that sizei(k′)[t] > forbid(r, t) = forbid(r, s), lest
γ(r) be moved at stage t. If sizei(k′)[t] = a+ 1 then we are done, so assume that
sizei(k′) is decreased from a+ 2 to a+ 1 between stages t and s, and this has got
to be due to some γ(r′) being moved, for some r′ > r. By induction hypothesis, we
have a+ 1 ≥ forbid(r′) > forbid(r, s). �

Lemma 2.5. There is s1 > s0 such that gapi(s1) > F for both i = 0, 1.

Proof. Note that for all s > s0, we have gapi(s + 1) ≥ gapi(s) for both i (by
Lemma 2.4). Furthermore each time the marker γ(e) was put in A1−i, it must be
under step 2, so each enumeration corresponds to an increase in gapi. If gap1(·) is
bounded, then only finitely many enumerations are made into A0. Hence no box of
current size ≤ F + 1 can ever be promoted once enumeration of γ(e) into A0 stops,
by Lemma 2.4, since only markers γ(e + 1) and above can be enumerated on the
A0-side. This means that Θ0[s] reaches a limit, say θ. Since obviously gap0(s) ≤ θ,
it follows that gap0(·) is bounded as well, contradicting the fact that γ(e) is moved
infinitely often. Hence, neither gap0 nor gap1 can be bounded. �

Lemma 2.6. For all t ≥ s1 and both i, we have sizei(s1, t) > F .

Proof. Note that sizei(s1, s1) = s1 − 1. Suppose on the contrary, that at some
stage s2 > s1 and some i, we update box size causing sizei(s1) to become =
F . Since box sizes are updated on only one side each time, we assume that we
still have size1−i(s1, s2) > F . Each time sizei(s1) is decreased between s1 and
s2, it has to be due to γ(e) being enumerated into Ai, as we may assume that
forbid(e′) > s1 at the end of stage s1 for all e′ > e. Each time γ(e) enters Ai,
we must also have a corresponding decrease in |Θ+

1−i|. That is, there is some
number which drops out of Θ+

1−i (and goes into Θ−1−i), and this has to be one of
the numbers in the set Θ+

1−i[s1] ∪ Θ̄1−i[s1]. Hence, sizei(s1) can be decreased at
most |Θ+

1−i[s1] ∪ Θ̄1−i[s1]| = s − 1 − |Θ−1−i[s1]| = s − 1 − gap1−i(s1) < s − 1 − F
times during the interval from s1 to s2. Since sizei(s1, s1) = s1−1, a contradiction
follows. �

The above lemmas show that for both i, Θi is of bounded size. We get a contra-
diction to the fact that γ(e) is moved infinitely often. Lastly, it is not hard to see
that Γ is total, and gives a correct reduction. �

As mentioned at the beginning of this section, the search for a combinatorial
characterization for the K-trivials remains open. Our result raises a number of
interesting questions. How slowly can we allow h to grow, such that there are c.e.
sets A and B which are both jump traceable at order h, but A⊕B is of complete
Turing degree? We know from Cholak, Downey and Greenberg [4] that h cannot
be arbitrarily slow growing. On the other hand our strategy is rather specific, and
does not even work for the order 1

2n.
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We know that not every c.e. set jump traceable at identity is K-trivial, but is
it true that every c.e. set which is K-trivial is jump traceable at identity? An
analysis of the Decanter method in Downey [5] shows that if A is K-trivial, then
A is jump traceable at all orders h such that

∑∞
n=1 h(n)−1 < ∞ (see Barmpalias,

Downey and Greenberg [1], Theorem 1.3). We do not know if our method adapts
to the case of h(n) = n. We also mention that Barmpalias, Downey and Greenberg
[1] have refuted Conjecture 2.1 by a direct construction:

Theorem 2.7 (Barmpalias, Downey and Greenberg [1]). There is a c.e. set A
which is not K-trivial, but for every order h such that limn

h(n)
n =∞ and for every

e, the function ΦAe is traceable at bound h.

In fact, our result implies Theorem 2.7. To see this, note that we can code
{ΦAe (x)}e,x∈N efficiently into a single partial A-computable function Ψ, by letting
ΨA(n) = ΦAe (x) where 2e(2x + 1) = n. It is clear that this coding of pairs (e, x)
is injective. Hence we apply the proof above to produce a non-K-trivial c.e. set A
where ΨA is traced at identity. We can then uniformly obtain, for each e, a trace
for ΦAe with bound 2e(2x + 1). Any order h has to dominate this function lest
lim inf h(n)

n is bounded above by 2e+1.

3. The first glimpse of hyper jump traceability

Part of the motivation of this paper is to study variations of strong jump trace-
ability, by looking at relativizations. We are interested in studying these notions in
conjunction with the lowness properties of a set A. These motivations give rise to
the following definition.

Definition 3.1. We say that A is strongly jump traceable by X, if for every X-
computable order hX , there is a total computable function g, such that for all x,
we have |WX

g(x)| ≤ h
X(x) and JA(x) ∈WX

g(x).

We let SJT (X) denote the class of c.e. sets strongly jump traceable by X.
Note that this is not a true relativization, which would call for JA⊕X to be traced
instead of just JA. There is no difference if X = ∅; in both cases we have the class
of strongly jump traceable c.e. sets. However things behave a little differently if
we consider an arbitrary X >T ∅. Having X as an oracle helps us in the sense
that we have more traces at our disposal (now we have all X-c.e. traces instead of
just c.e. traces). However, we also suffer a drawback because we now have to trace
JA respecting more order functions (we have to respect all X-computable orders
instead of just computable orders). Therefore it is not immediately clear that if
A is strongly jump traceable, then it must also be strongly jump traceable by all
sets X. Some sets X might produce very slow growing X-order functions which
we cannot trace using only X-c.e. traces. The only thing we are sure of is that
A ≤T X ⇒ A ∈ SJT (X). In fact, in Theorem 3.5 we produce a strongly jump
traceable c.e. set A such that A 6∈ SJT (X) for some c.e. X.

The first indication that we can further extend the notion of strong jump trace-
ability in a meaningful way, comes from the investigation of the transitivity of the
binary relation “A ∈ SJT (X)”.

Lemma 3.2. Suppose that g(x) is a total computable function. Then, there is a
total computable function α(x, n), such that for all numbers x and n, and for any
set A,

JA(α(x, n)) =


nth value in the if |WA

g(x)| ≥ n,
enumeration of WA

g(x),
↑, if |WA

g(x)| < n.
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Proof. By the s-m-n Theorem. �

Suppose we wanted to show that the relation A ∈ SJT (X) is transitive. We
might make a first attempt at proving transitivity below ∅, and then try and rela-
tivize the proof. That is, we can try first of all to show that if A is strongly jump
traceable in X, and X is strongly jump traceable, then A is also strongly jump
traceable. While this is true (Corollary 3.4), the proof does not actually relativize
to give transitivity in the general setting. The following Theorem 3.3 gives the
correct relativization:

Theorem 3.3. Suppose that A ∈ SJT (B) and B ∈ SJT (C), such that C ≤T B.
Then, A ∈ SJT (C).

Proof. Let h be a C-order. Define

p(x) =
√
h(x) (rounded down).

Then, p is a B-computable order, and so there is some total computable g, such
that for all x,

(i) |WB
g(x)| ≤ p(x), and

(ii) JA(x) ∈WB
g(x).

Let α be the function from Lemma 3.2. Define the C-computable function q by :
q(z) =

√
h(x), where x is the least number such that z ≤ α(x, i) for some i ≤ p(x).

Then, q is a C-order, and so there is some total computable g′, such that for all x,
(i) |WC

g′(x)| ≤ q(x), and
(ii) JB(x) ∈WC

g′(x).

Finally, we define the uniformly C-c.e. sequence {Vx}x∈N, by letting

Vx =
p(x)⋃
i=1

WC
g′(α(x,i))

We can easily see that for all x,
(i) |Vx| ≤ p(x)q(x) ≤ h(x), and

(ii) JA(x) ∈ Vx,
thus giving a trace for JA from C. �

Corollary 3.4. If A ∈ SJT (B), and B is strongly jump traceable, then A is
strongly jump traceable.

We need the extra condition of C ≤T B to ensure that we do not get more order
functions as we pass from one side to the other of the binary relation. Corollary
3.4 is interesting on its own, in that it says that any set which is “extremely low”
over another which is extremely low, must itself be also extremely low. This brings
us back to the question as to whether we can remove the assumption “C ≤T B” in
Theorem 3.3. We provide a negative answer to this:

Theorem 3.5. There are strongly jump traceable c.e. sets A and B, such that
A 6∈ SJT (B).

This theorem has a few interesting consequences. Firstly it shows that “A ∈
SJT (X)” is not a transitive relation, and so this relation cannot be used to generate
a degree structure in the usual way. It also answers a question regarding the
relationship of SJT with upper and lower Turing cones. In particular, while every
set is strongly jump traceable by any set which computes it, it is however not true
that every set is strongly jump traceable by a set which it computes. This is not
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even true for sets which join to it, i.e. if A ≡T A0 ⊕ A1 then A ∈ SJT (A0) is not
true in general.

Thirdly, one might expect that if a set B is very low in terms of its power when
serving as an oracle, then every set which is strongly jump traceable is also strongly
jump traceable by B. This is not the case. Lastly and perhaps most importantly,
this theorem shows that the class of strongly jump traceable c.e. sets and the class
H :=

⋂
{SJT (W ) |W is c.e.} are different. This suggests that we can look to H as

a possible candidate for an even stronger version of computational lowness. This
will be taken further in the next section, and will form the central theme for the
rest of the paper. For now, let us return to the proof of Theorem 3.5.

3.1. Requirements. We build the c.e. sets A and B, and a Turing functional Ψ
to meet the requirements :

Ne : If he is an order, make A⊕B jump traceable relative to he.
Pe : Defeat the eth trace. That is, for some x, either

|T ex | ≥ ΨB(x), or else JA(x) 6∈ T ex .

Here, we let {T ex}x∈N be the eth c.e. B-trace, in some effective listing of all traces
computing with an oracle. For simplicity we drop the oracle B from the notations.
We let JX(e)[s] be the value of the universal jump function {e}X(e)[s] at stage s.
The use of JX(e)[s] (if convergent) is jX(e, s). We also let {he}e∈N be an effective
list of all partial computable functions.

When we say that we pick a fresh number x at stage s, we mean that we choose
x to be the least number x > s, and x > 1+any number used or mentioned so far.
We drop the stage number from the notations if the context is clear.

3.2. Discussion of a related result. The proof of this theorem uses the ideas
in [12] closely. We will describe the combinatorics involved in the discussion that
follows. We begin by looking at the strategy used to prove the following:

Proposition 3.6 (Ng [12]). For any given order function h, there is a c.e. set A
and an order function h̃, such that A is jump traceable via h, but not jump traceable
via h̃.

We build a trace {Vx}x∈N to trace JA with respect to h. This strategy cor-
responds to negative action on A (it wants to preserve A), handled by negative
requirement Ne which wants to impose some amount of restraint on A each time
it sees a computation JA(e)[s] ↓. On the other hand we are also building an order
function h̃, and we have to try and diagonalize against the eth trace with respect
to h̃. This action is positive on A (it wants to change A), and will be handled by
the positive requirement Pe, which makes enumerations into A to force T ex to fill
up for some x.

Initially Vx starts off as an original (h(e) − 1)-box. Every time the restraint
that Vx is holding is injured by some positive action, we say that Vx receives a
promotion in size, i.e. it now has a smaller box size. By the time Ne becomes
a 0-box (corresponding to |Vx[s]| = h(e)), we will have to ensure that no positive
action in future can destroy the current JA(e)[s] computation. This ensures that
the negative requirements are satisfied.

Let us now turn our attention to the positive requirement Pe. We first describe
how to meet such a requirement in isolation. Pe would attempt to defeat the eth

trace by doing the following. It will control the value of the universal jump function
JA(x) of A at some location x. The Recursion Theorem supplies us with an infinite
computable list of indices x, for which we are allowed to enumerate axioms for
JX(x) on any oracle X ⊂ N. Pe will pick one of these x and enumerate (possible)
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axioms for JA(x) with use u(e, s) on A. Each time the value JA(x)[s] shows up
in the trace T ex , we would put the use u(e, s) into A to cancel all the previous
axioms, and enumerate a new axiom 〈x, y,As �u(e,s+1)〉 for JA(x) (with fresh y
and u(e, s + 1)). After doing this at most e times, we would be able to meet the
requirement Pe: recall that we have to build an order function h̃ globally, and all
we have to do is to ensure that we define h̃(x) = e.

On the other hand, the negative requirements would be imposing various re-
straints on Pe, as described previously, for the sake of making A superlow. At
times we would have to initialize Pe due to these restraints. For instance, if some
Nk is in a state of being a 0-box (these boxes have the highest priority), with re-
straint larger than u(e, s), then we would have to make Pe abandon the current
index, and begin to enumerate a new functional with a new index x′. To ensure the
success of Pe, we would have to make sure that it is initialized only finitely often.
In fact, to guarantee that h̃ is computable, we have to know in advance a bound for
the number of times that Pe will need to be initialized. This is because we could
then know how many different indices to set aside for Pe, and hence define h̃ = e
on these indices.

The construction will only require finite injury, with dynamic assignment of
priority amongst the requirements. As we will see, the main obstacle we are facing
is in having to arrange priority between the positive and negative requirements,
such that we can limit the number of initializations to each Pe to an amount
that can be pre-determined. Let us consider the case when the given h satisfies
h(0) = h(1) = h(2) = h(3) = 1 and h(4) = 3. Note that in general, if the given
h grows very slowly, then it becomes much harder for numbers to enter A because
there are more small-sized boxes to consider. Consider a requirement P that wants
to diagonalize against some trace by enumerating into A twice. Suppose we arrange
the requirements in the order:

N0(h = 1) < N1(h = 1) < N2(h = 1) < N3(h = 1) < P < N4(h = 3).

For P to succeed at a particular index x, its cycle for that x has to be:

Phase 1 : Set JA(x)[s1] ↓. Wait for the corresponding value to show up in
the trace. If it does, put the use into A to reset JA(x).
Phase 2 : Set JA(x)[s2] ↓ again and wait for the value to show up in the
trace. When it does, put the use into A to reset JA(x), set a new axiom
for JA(x), and we are done.

If P gets blocked in phase 2, it will be initialized and will have to start with a new
index x′ in phase 1. Why is this a problem in the above example? When P is in
phase 1, it will have a follower appointed pointing at A, which it will put in A when
realized. But in the meantime we might have N4 imposing an A-restraint above the
P-follower. This is due to the fact that N4 has seen JA(4) converge with a large
A-use, and N4 has put that value into the trace we are building for JA(4).

Suppose next, the P-follower gets realized. It will then enumerate the P-follower
it has appointed and enter phase 2, injuring N4 in the process. Remember that N4

is allowed 2 mistakes (i.e. it is an original 2-box), and now it has used up one of
them. Therefore, in future it is only allowed 1 more mistake (i.e. it has now been
promoted to a 1-box).
P is now waiting in phase 2 for its follower to be realized. It might be the case

that N0 now imposes A-restraint larger than P’s follower, forcing P to be initialized
and start again in phase 1. This looks bad, because the process could be repeated
with N1 in the same manner, and N4 can be promoted yet again, now to a 0-box.
When N4 next imposes A-restraint, being a 0-box, its restraint has to be obeyed
by everyone, including P above it. Again we could create any number of 0-boxes
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in this way, and in turn use them to produce even more 0-boxes further down the
list of requirements, and we are faced with the same problem.

The solution is to arrange priority between P and the negative requirements
dynamically. This priority ordering depends on whether P is in first phase, or in
second phase. If P is in the first phase, we place P above (stronger priority than)
all Ne which are currently at least 2-boxes, and place P below (weaker priority
than) all Ne which are currently 0 or 1-boxes. If P is in the second phase then we
place it above all Ne, other than those that are currently 0-boxes. At the beginning
of the construction, before anything is done, we have the ordering:

N < · · ·︸ ︷︷ ︸
0-boxes,h=1

< N < · · ·︸ ︷︷ ︸
1-boxes,h=2

< P (phase 1) < N < · · ·︸ ︷︷ ︸
2-boxes,h=3

< N < · · ·︸ ︷︷ ︸
3-boxes,h=4

< · · ·

When P enters phase 2, the situation becomes

N < · · ·︸ ︷︷ ︸
0-boxes,h=1

< P (phase 2) < N < · · ·︸ ︷︷ ︸
1-boxes,h=2

< N < · · ·︸ ︷︷ ︸
1-boxes,h=3

< N < · · ·︸ ︷︷ ︸
2-boxes,h=3

< N < · · ·︸ ︷︷ ︸
2-boxes,h=4

< N < · · ·︸ ︷︷ ︸
3-boxes,h=4

< · · ·

If P gets initialized while in phase 2 due to one of the 0-boxes, the ordering becomes

N < · · ·︸ ︷︷ ︸
0-boxes,h=1

< N < · · ·︸ ︷︷ ︸
1-boxes,h=2

< N < · · ·︸ ︷︷ ︸
1-boxes,h=3

< P (phase 1) < N < · · ·︸ ︷︷ ︸
2-boxes,h=3

< N < · · ·︸ ︷︷ ︸
2-boxes,h=4

< N < · · ·︸ ︷︷ ︸
3-boxes,h=4

< · · ·

We claim that this solves the problem, namely that we can count the number of
times P is forced to be initialized. The ability to perform this counting is essential
for h̃ to be computable. Firstly, note that no new 0-boxes are ever created, unless
P is permanently satisfied at the same time. That is, the only 0-boxes present are
those original ones - namely, those N with h = 1.

The counting of injuries to P: whilst in the second phase, P can only by initial-
ized by a 0-box, we have already observed that these must be original 0-boxes. In
the first phase, P would be initialized

(1) either by some N with h = 1 or 2 (i.e. the original 0 and 1-boxes), or
(2) a promoted 1-box.

Suppose case 2 happens at stage s. The only reason why a 2-box is promoted to
a 1-box, is because it was injured by P and P moved from the first phase to the
second phase, at some previous stage t < s. But now at stage s, P is back in the
first phase, which means that at some time between t and s, P must have been
initialized while in phase 2. This can only be done by some N with h = 1, i.e. one
of the original 0-boxes, since these are the only requirements stronger than P in
phase two. This means that the largest k such that some N with h = k+1 (original
k-box), is ever promoted to a 1-box, is at most S := 2 + h−1(1), where h−1(i) = #
of y such that h(y) = i. That is, if k > S then no N which is originally a k-box,
can ever get promoted to a box size of 1. Therefore, the number of times that P
can be injured, has bounds of h−1(1) from phase 2, and

∑
i≤S+1 h

−1(i) while in
phase 1.

We now describe the strategy in the general setting. The requirement Pe will
need to enumerate e many times without being initialized; its action will be divided
into e many phases. In the discussion above, the P being considered is just P2. In
the example above we had the three numbers C1

0 = 0, C2
0 = 1 and C2

1 = S, which are
called thresholds. These are the critical numbers which we use to determine priority
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between P2 and the negative requirements. In phase 1, P2 would be injured by C2
0 -

boxes (and smaller ones). In phase 2, P2 would be injured by C1
0 -boxes. To prevent

the different positive requirements from interfering with each other, we ensure that
no new C2

1 -boxes are ever created by the actions of P3,P4, · · · . Thus, P3 would be
injured by C3

1 -boxes in phase 1, by C3
0 -boxes in phase 2, and by C2

1 -boxes in phase
3. The values C3

0 , C
3
1 , C

3
2 are defined inductively.

Each time Pe is initialized, its threshold would be reset to Cee−2. With each enu-
meration that Pe makes, we will decrease the threshold accordingly (from Cee−3, · · ·
down to Ce0 and Ce−1

e−2 ). When moving from phase 1 to 2, a (Cee−2 + 1)-box can be
promoted to a Cee−2-box but this newly promoted box cannot initialize Pe while in
phase 2 or higher, for its threshold has now decreased to Cee−3 or less. The only way
to initialize Pe after it has made m enumerations, would be through a Cee−2−m-box
(or less). So as long as we keep the critical thresholds values Ce−1

e−2 , C
e
0 , · · · , Cee−2

sufficiently spaced out, we will be alright.
The crucial point is that these threshold values can be determined in advance,

and depend only on the given h. These thresholds are used in the definition of h̃.
Hence there is a general procedure Λ, such that given an order function h, Λ(h)
outputs the order h̃ satisfying the statement of Proposition 3.6. This procedure Λ
is used as an atomic strategy in the proof of:

Proposition 3.7 (Ng [12]). The set {e ∈ N : We is strongly jump traceable} is
Π0

4-complete.

We will need to make use of the procedure Λ, to calculate the relevant threshold
values in Section 3.6. We will describe how this is done in the next section.

3.3. Description of strategy. We now return to the proof of Theorem 3.5. How
are we going to make use of the strategy described above in Section 3.2? It is
impossible to make A strongly jump traceable, yet at the same time make A not
jump traceable relative to a computable order function h̃. However if we allow
h̃ to be computable in a c.e. oracle, we can combine the positive and negative
requirements stated in Section 3.1. We describe how to do this. To make A and B
strongly jump traceable, we make A⊕B strongly jump traceable.

We describe exactly how we intend to carry out the strategy for a single Ne.
We need to make A ⊕ B jump traceable respecting he. Suppose α is a node on
the construction tree which is assigned the requirement Ne. It splits its task into
infinitely many substrategies ST0, ST1, · · · . For each k ∈ N, the kth substrategy STk
works by the following: it waits for he(k) ↓, and when JA⊕B(k)[s] next converges,
we would enumerate the value into V αk (the sequence {V αx }x∈N is built at α), and
restraint A ⊕ B on the use. At this point in time, we set sizeαk = he(k) − 1
(where sizeαk denotes the corresponding α-box size). When sizeαk = 0, V αk is
totally filled and any restraint α imposes for it must be permanent. If we arrange
for each substrategy STk to be assigned to an entire level below α, we immediately
meet with a technical obstacle. Recall that in the discussion in Section 3.2, the
positive requirements had priority (relative to some STk), which was determined
dynamically. This would not be easy to arrange on a tree of strategies.

Note that we could however, arrange for all of the α substrategies to be carried
out at α itself. This means that α could impose an ever increasing restraint on
the positive strategies below it, even though each substrategy STk contributes a
finite amount. To get around this problem, we arrange for there to be infinitely
many restraint functions r0, r1, · · · , where rk is the restraint function for STk, and
let different positive strategies below α, be restrained by a different rk. Suppose
each positive strategy below α only wants to enumerate once. We could then
let the first positive strategy obey restraint r0, the second positive strategy obey
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restraints max{r0, r1}, and so on. This works in the case when h is the identity
order function (otherwise we just make suitable adjustments). For more details on
this, see Theorem 7.3 of [5].

Now we describe the positive requirements. We first consider (the weaker case
of) only making A strongly jump traceable. We also make A not jump traceable
relative to B via the order h̃ = ΨB . They work in almost the same way as described
above in Section 3.2, with two main differences (due to the fact that we now have
an oracle B):

(1) To defeat the eth trace, we want it to fill up with trash. We can stimulate
responses from T ex by emulating the computation JA(x) at some x. How-
ever, when some number enters T ex , it will have a corresponding B-use. To
keep the number in T ex , we have to now preserve B on this use. This gives
the positive node an extra responsibility - holding B on some use. This
extra restraint is finitary and can be very easily made compatible with the
rest of the construction.

(2) h̃ is now build globally. Suppose a positive node σ needs to make the
statement of Pe true at some x, with h̃(x) = ΨB(x) = 2. Now we have
the ability to change ΨB whenever we want. σ might start off by picking
a follower x and setting ΨB(x)[s] = 2. At a later stage σ might be blocked
by an increased A-restraint and hence cannot proceed with diagonalization
with x anymore. It will then pick a fresh x′ > x and clear all ΨB(y) axioms
for y > x which may have been set by other positive nodes in the meantime.
σ can do this by enumerating ψ(x) into B, and redefine ΨB(y) = 2 for all
x ≤ y ≤ x′, and proceed with diagonalization with new follower x′. It is
not hard to arrange things so that the A-restraint on σ is finite, so that
this injury only happens finitely often.

We have no problems putting together the positive and negative requirements, if
we only needed to make A strongly jump traceable, because each time σ needs
a new follower for diagonalization, we simply change B to create more followers
for σ. The problem now is that to make A ⊕ B strongly jump traceable, the
negative requirement Ne also needs to set up restraints to protect B. The following
summarizes the actions of the positive and negative nodes:

Pe Puts numbers into A and B.
Prevents numbers from entering B.

Ne Prevents numbers from entering A and B.

Each enumeration into B made by σ will now cause boxes above σ to be promoted
as well. Thus, in the process of trying to create more followers for diagonalization,
σ will further promote boxes which will return and block σ when it starts the next
round of diagonalization.

To take a first step towards solving this problem, we will first ensure that σ makes
less enumerations into B. Enumerations into B will have to obey restraints from
above, since we have boxes tracing JA⊕B . To cut down on the number of enumera-
tions made into B, σ will have to do a little more work. Before σ begins any diago-
nalization attempt, it will first compute the relevant thresholds Cn,−1, · · · , Cn,n−1

for some selected n. These thresholds will be computed based on the procedure
Λ(min{he0 , · · · , hek}), where σ believes that he0 , · · · , hek are orders. Of course
these values will not return if the hei are not true orders, but we get to change our
mind on ΨB , so we can carry on with the rest of the construction while waiting
for these values to return. If and when these values return, σ will then adjust
ΨB accordingly by changing B once, and setting aside enough followers x with
ΨB(x) = n. This ensures that σ only changes B once.
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Note that σ will not be able to change B whenever it wants, because we might
have boxes of small size blocking B. On the other hand, we have to be careful
when we allow σ to change B, because whenever σ changes B, it will promote some
boxes above σ (remember these are boxes tracing JA⊕B). If we are not careful, σ
will promote boxes to take on very small sizes and affect the other positive nodes
above σ.

In view of these considerations, we will arrange for σ to have a separate threshold
value, called setter(σ), which is to be used only when σ is in the preliminary stage
of setting the parameters needed for diagonalization. This number is chosen to be
large, so that σ does not interfere with the positive requirements above σ (i.e. σ
does not promote any boxes to have size < setter(σ)). When σ is computing the
thresholds it needs for diagonalization, it will monitor all boxes currently of size
≤ setter(σ). Once any of them imposes an A ⊕ B restraint above ψ(x), σ will
have to abandon its current set of parameters, and pick new n′ > n and x′ > x.
So long as no new setter(σ)-boxes are created, σ will eventually be able to begin
diagonalization.

A final technical point to consider: σ makes an enumeration into B before it
actually begins diagonalization. Therefore, boxes are already promoted by σ before
σ begins its Λ-strategy. Fortunately, this sort of promotion due to changes in B
only happens once, so when σ actually begins diagonalization, it knows that a
current b-box it encounters was actually a (b+ 1)-box. The threshold values can be
pre-chosen to take this into account.

3.4. Construction tree layout. The construction takes place on a subtree of
the full binary tree. Nodes of length 2e are assigned the requirement Ne, with
outcomes ∞ <left f . This stands respectively for the Π0

2 (Σ0
2) fact that he is (is

not) an order function. The positive requirements have to act based on guesses to
these outcomes, and have to deal with increased (A⊕B)-restraint. Nodes of length
2e + 1 are assigned the requirement Pe, with a single outcome 0; these nodes are
each involved in only finitely much action.

Let α <left β denote that α is strictly to the left of β, i.e. there is some
i < min{|α|, |β|} such that α�i= β�i and α(i) <left β(i). We say that α is a Q-node
if α is assigned the requirement Q. Ne nodes are negative nodes wanting to impose
restraint on A⊕B, while Pe-nodes are positive nodes wanting to put things into A
and B. Note that even though we consider a Pe-node to have primarily a positive
role, there will be times when it will want to preserve a segment of B. This happens
when thrash gets filled up in the B-trace, and we want to keep it filled. There will
only be however, a finite amount of B-restraint due to this.

3.5. Notations used in the formal construction. At each Ne-node α, we build
a u.c.e. sequence {V αx }x∈N; the purpose is to trace JA⊕B in the event that he turns
out to be an order. We define the length of convergence for he at stage s, to be:

l(e, s) = max{y < s | (∀x ≤ y) (he,s(x) ↓ ∧ he(x) ≥ he(x− 1))

∧ he(y) > he(y − 1)}.

Sometimes we will write l(α, s) in place of l(e, s), and hα in place of he. Since he
is (partial) computable, hence it is clear that l(e, s) is non-decreasing over time,
and l(e, s) → ∞ iff he is an order. We let sizeαk [s] denote the size of the V αk -
box at stage s. It records the number of injuries the V αk -box can still take. At
the beginning, sizeαk is set to he(k) − 1, and will be reduced by 1 each time a
JA⊕B(k)-computation is injured after being traced in V αk . When sizeαk reaches 0,
the restraint that α imposes for A⊕B must be obeyed by all.
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Each Pe-node α is in charge of diagonalizing the eth B-trace. We do this by
enumerating a functional ∆A

α with index x for some x, which simulates the value
of JA(x). If at any point in time we want give up all axioms enumerated into ∆A

α ,
we have to pick a new index x′ > x and work on JA(x′). There are a few other
parameters associated with α:

• We let x(α, s) denote the index of the functional which α is enumerating
at stage s, with A-use δ(α, s). These indices are chosen from an infinite list
of indices supplied by the Recursion Theorem.

• region(α, s) denotes the number n, such that α will define ΨB(x) = n for
every index x that it uses after stage s. In other words, this represents the
number of elements α has to enumerate into A, and is also the amount of
unwanted thrash that α has to fill T ex up with, at some x.

• We record the number of elements that α has managed to force into T ex(e) by
the parameter attempt(α, s). When this parameter value reaches region(α),
then α’s work would be done and is permanently satisfied.

• setter(α, s) denotes the smallest number q, such that α is allowed to pro-
mote (q + 1)-boxes while setting the axioms for ΨB .

The stage s B-use of the functional ΨB(x) that we are enumerating is denoted
by ψ(x, s). To ensure that ΨB is total and non-decreasing, we adopt the following
convention: when we define ΨB(x)[s] ↓= y with use u at a particular stage s,
we mean that we enumerate the axioms 〈x′, y, Bs�u+1〉 for all x′ ≤ x, where no
other axioms currently apply with input x′. Also set ψ(x′, s) = u for all such x′.
Note that ΨB is maintained globally, so this ensures that its axioms are consistent
regardless of which portion of the construction tree we visit.

If α is a negative node, then for each n, s ∈ N, we let

S(α, n)[s] =
n∑
r=1

r · |{k < l(α, s) : sizeαk [s] = r − 1}|.

For a positive node σ, we let

S(σ, n)[s] =
∑

β∈Z−(σ)

S(β, n)[s],

where Z−(σ) := {β ⊂ σ | β is negative, and β_∞ ⊆ σ}; these are all the negative
nodes β ⊂ σ which have to trace JA⊕B at a certain order. Informally, the value
S(α, n)[s] denotes the maximum number of different values jA⊕B(k, s) can take, for
the set of k’s such that sizeαk [s] < n. The number S(σ, n)[s] is used to provide a
bound on the number of times σ can be blocked by some current (n−1)-box (or less)
of some negative β ⊂ σ. The combinatorics here is similar to that which is used in
[12]; we have attempted to retain the notations and terminologies from [12] as much
as we can in order not to confuse the reader, and for more information we refer
the reader to [12]. The threshold values will be computed during the construction
itself, and their values will depend on the current observed situation.

The parameters {Cn,k | n > 0 ∧ k < n} and {In | n > 0} helps us keep
track of the threshold values, and as mentioned above, will only be computed
during the construction. These parameters are all set to ↑ initially. The order
function ΨB will have domain divided into intervals which we call regions. The
nth region will consist of all the numbers x such that ΨB(x) = n; this is related
to the parameter region(α, s) mentioned above in the following way: the values
Cn,−1, Cn,0, · · · , Cn,n−1, and In are associated with the nth region, and will get
their values evaluated and assigned by the positive node α such that region(α) = n.
Once α sets these parameter values, it will use them to define ΨB = n on the
nth region. Informally, Cn,k represents the critical threshold value of α, when
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attempt(α) = n − 2 − k. In represents a bound on the number of indices that α
needs to use for the nth region.

We describe the use of indices in some detail: there will be infinitely many
indices ν0 < ν1 < · · · set aside for use by the positive nodes. If α is a positive
node then x(α) is always chosen from this list. Once α finishes computing all of
the threshold values it needs, it will set ΨB to a constant value over each interval
{x ∈ N | νi−1 < x ≤ νi}, for all νi in the region(α)th region. Thus, whenever we
refer to x(α) or ΨB , we are referring to the values modulo the intervals partitioned
by the νi’s. That is, ΨB(i) will refer to the (common) value of ΨB(x) for all
νi−1 < x ≤ νi, and we write x(α) = i instead of x(α) = νi.

For a positive node α and stage s, we define threshold(α, s) by

threshold(α, s) = Cr,r−2−a,

where r = region(α, s) and a = attempt(α, s). This represents the current thresh-
old value that α has to obey, based on its progress in its atomic strategy.

When we initialize a negative node α at stage s, we set V αx = ∅ for all x, and set
sizeαx [s] = hα(x) − 1 for all x < l(α, s). As for a positive node α, there are three
ways in which the atomic strategy of α may be restarted.

(1) A (full) initialization to α: we set region(α), x(α), setter(α) and δ(α) all
↑, and set attempt(α) = 0. In this case, α has to restart its strategy due to
reasons that it had not foreseen, for example due to an incorrect guess, or
some positive node acting above α. All parameter values are canceled.

(2) A self-imposed initialization: we set region(α), x(α) and δ(α) all ↑, and set
attempt(α) = 0. This happens if the following scenario takes place. While
α is waiting to compute its threshold values, some higher priority box of
size ≤ setter(α) imposes a restraint on A ⊕ B, above ψ(x(α)). Since α
always has to respect boxes of size at most setter(α) when setting its ΨB-
axioms, this means that the current position of x(α) is too small. So, we
have to abandon the current x(α) value, as well as the current region(α)
value, since α is no longer able to effect changes in ΨB below the current
region(α)th-region.

Such initializations will be performed only when α is visited. We want
to distinguish between full and self-imposed initializations because we have
to be careful about when we cancel the setter(α) parameter.

(3) A reset of α: the third way to disrupt the atomic strategy of α, is through
the activity of some node in Z−(α). α is fully prepared for injury of this
sort, and would have reserved enough indices in the region(α)th region for
this. In this case we do the following. If attempt(α, s) = region(α, s) (i.e.
α is permanently satisfied) or x(α) = region(α, s) + Iregion(α,s) (i.e. α has
run out of indices), do nothing. Otherwise increase x(α) by 1, set δ(α) =↑,
and set attempt(α) = 0.

If σ is a positive node and k ∈ N, we define the k-restraint function on σ at stage
s to be

r(σ, k, s) = max{jA⊕B(p, s) | JA⊕B(p)[s] ↓ for some β ∈ Z−(σ) ∧

p < l(β, s) ∧ sizeβp [s] ↓≤ k}.

That is, r(σ, k) represents the total amount of restraint on A ⊕ B imposed on σ,
by some current k-box (or less) above σ.

We say that a positive Pe-node α requires attention at stage s, if attempt(α, s) <
region(α, s) provided they are defined, and one of the following (A0)-(A4) holds:

(A0) region(α) ↑.
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(A1) region(α) ↓= n for some n, and one of Cn,−1, Cn,0, · · · , Cn,n−1, or In
has not yet received an assignment.
(A2) There is no computation in ∆A

α which currently apply.
(A3) There is a computation in ∆A

α which currently apply with use δ(α, s),
such that δ(α, s) < r(α, threshold(α))[s].
(A4) There is a computation in ∆A

α which currently apply with use δ(α, s)
and value r = ∆A

α (x(α))[s], such that r has shown up in the trace T ex(α,s).

(A0)-(A4) can be thought of to be the state of the atomic strategy of α. When α
has just been initialized, (A0) holds and we will pick a fresh value for region(α).
Once that has been done, (A1) will now apply and we will have to wait for all
the relevant parameters to be defined. α will next move on to (A2) and begin
diagonalization with ∆A

α . After that, α will move to either (A3) or (A4); if (A3)
holds then the restraint on α from above has increased beyond δ(α, s) - there is
some high priority box blocking the strategy of α and we have to reset α. If (A4)
holds then the opponent has responded by filling T ex(α) up. We can now turn the
contents of T ex(α) into thrash by enumerating δ(α, s) into A.

Let α be a positive node, and p, s ∈ N. We make α promote all boxes with use p
at stage s by doing the following: for each k such that there is some β ∈ Z−(α) and
k < l(β, s), such that JA⊕B(k)[s] ↓ with use jA⊕B(k, s) > p, we decrease sizeβk [s]
by 1. That is, this action adjusts the size of all boxes with use larger than p, because
an enumeration of p into A or B is imminent.

3.6. The Construction. At each stage s of the construction, we will define the
approximation to the true path of the construction, δs of length < s. We say that
α is visited at stage s, and equivalently that s is an α-stage, if δs ⊃ α. The nodes
along δs will get to act at stage s. At stage s = 0, initialize all nodes and set
δs = 〈〉.

Suppose s > 0, and assume that α = δs�d has been defined for d < s. We first
consider the case where α is an Ne-node. If

• l(α, s−) < l(α, s) where s− is the previous α-stage, and
• he(l(α, s)) > Cn,r for every n, r ∈ N such that Cn,r ↓ and n = region(σ)

for some σ ⊇ α_∞,
then we say that stage s is α-expansionary, otherwise it is non-α-expansionary. If
stage s is α-expansionary, do the following: for all k < l(α, s) such that JA(k)[s] ↓,
we enumerate the value JA(k)[s] into V αk . For all k < l(α, s) such that sizeαk has
not yet been assigned a value, we update the size and set sizeαk = he(k) − 1. Set
δs(d) = ∞. On the other hand if stage s is non-α-expansionary, we set δs(d) = f ,
and do nothing else.

Now assume that α is a Pe-node. Let δs(d) = 0. If α does not require positive
attention, we do nothing. Otherwise, initialize all nodes β ⊃ α, take the appropriate
action listed below, and declare that α has received attention at stage s. Let x be
the least such that (Ax) holds.

• x = 0: Pick a fresh number n for region(α), and set x(α) = n. Also
set Cn,−1 = n and Cn,0 = n + 3. Set ΨB(n)[s] ↓= n with fresh ψ-use.
Furthermore if setter(α) is undefined, assign setter(α) = n.

• x = 1: go down the following list, pick the first that applies, and perform
the action stated.

– If ψ(x(α), s) < r(α, setter(α))[s], do a self-imposed initialization of α.
– If there is a smallest q < n = region(α) such that Cn,q ↑, set Cn,q =
Cn,q−1 + 3 + n+ nS(α,Cn,q−1)[s].

– Otherwise if Cn,q ↓ for all q < n, set In = S(α,Cn,n−1)[s]. Adjust
the size of boxes by making α promote all boxes with use ψ(x(α), s).
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Additionally, we put ψ(x(α), s) into B to clear the definition of ΨB(x′)
for all x′ ≥ x(α). Set ΨB(n+ In)[s] ↓= n with fresh ψ-use.

• x = 2: we enumerate a computation ∆A
α (x(α))[s] ↓= s with fresh use

δ(α, s).
• x = 3: reset α.
• x = 4: adjust the size of boxes by making α promote all boxes with use
δ(α, s). Enumerate δ(α, s) into A, and increase attempt(α, s) by 1.

This concludes the definition of δs. Finally, we initialize all nodes β >left α, and
proceed to the next stage. The true path of the construction is defined as usual to
be the leftmost path visited infinitely often during the construction. If α is visited
and receives attention under (A0) or (A1), we say that α is setting its parameters.
That is, α is computing the initial values of various parameters it needs to start
its atomic strategy. When α finishes setting its parameters, it will mark the end
of the process with an enumeration into B, to adjust ΨB . Thereafter, α will begin
diagonalization under (A2)-(A4), and never return to (A0)-(A1) again unless it is
initialized.

3.7. Verification. The main bulk of the verification will focus on showing that
various counting arguments work. Again we follow [12] closely. In the following
lemma we are going to count the number of different strings ρ, such that Jρ can
be traced by a negative node. This affects the combinatorics used by the positive
nodes. In (i) below, we show that the maximum number of different restraints that
a current b-box can put up is at most b+1. Part (ii) says that the maximum number
of different restraints held by any current b-box for b < n of stronger σ-priority, is
at most S(σ, n). Because the part of the oracle accessed during computations can
be different while possibly having the same length at different stages, we focus on
strings ρ for Jρ, rather than the length of the use jA⊕B .

Lemma 3.8. (i) Let β be a negative node on the true path with true outcome
∞. Let k ∈ N, and t0 be a stage after which β is never initialized6, such
that sizeβk [t0] ↓. Then,

|{(A⊕B)�j(k) [s] : JA⊕B(k)[s] ↓ ∧ δs ⊃ β_∞ ∧ s ≥ t0}| ≤ 1 + sizeβk [t0].

(ii) Let σ be a positive node on the true path, n ∈ N, and t1 be a stage after
which σ is never initialized. Then, the number of pairs 〈(A⊕B)�j(k) [s], k〉
for which
(a) JA⊕B(k)[s] ↓,
(b) for some β ∈ Z−(σ), we have sizeβk [t1] < n,
(c) δs ⊃ σ and s ≥ t1,

is at most S(σ, n)[t1].

Proof. This is the same as Lemma 3.6 of [12], we include the proof here for the
benefit of the reader.

(i): this should be easy to see, because informally the statement says that if we
currently have a b-box, then there can only be at most b+1 many possible observed
versions ρ of the use for Jρ, since we can have a different observed use only if the
box is promoted.

Formally, we suppose for a contradiction, that there are stages t0 ≤ s0 < s1 <
· · · < sm such that (A ⊕ B)�j(k) [si] 6= (A ⊕ B)�j(k) [si+1] for all i = 0, · · · ,m − 1
(where m = 1 + sizeβk [t0]). For each i, the change (A⊕ B)�j(k) [si] 6= (A⊕ B)�j(k)
[si+1] must have been caused by some positive node β′ ⊇ β_∞ receiving attention
at some stage t where si ≤ t < si+1. Hence β′ must have promoted the box V βk and

6We have not yet shown that such a stage must exist. For this lemma we assume its existence.
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decreased sizeβk while it is receiving attention at stage t. This means that by the
time we reach stage sm−1, we have sizeβk = 0. Hence at all stages t ≥ sm−1 including
sm−1 itself, no node β′ extending β_∞ is allowed to make an enumeration into A
or B below j(k, sm−1), since r(β′, y, t) ≥ j(k, sm−1) for all y ∈ N, a contradiction.

(ii): Using part (i). �

Lemma 3.9. Let σ be a positive node, receiving attention at some stage s, and let
N be the largest parameter value of σ at stage s. Suppose β ∈ Z−(σ) and k ∈ N.
Then, the V βk -box cannot be promoted to become an N ′-box after stage s (for all
N ′ ≤ N) by a node either extending σ, or to the right of σ.

The statement of the lemma is rather long, but is really quite intuitive. What
it says is the following. Take σ to be a positive node receiving attention at stage
s, where it sets one of its parameter values = N at stage s. Consider the V βk -boxes
(these have higher priority than σ). It would be bad if a lot of new boxes of this type
are promoted to have a small box size ≤ N , since this messes up the combinatorics
set up by σ. The lemma says that any such promotion cannot be due to nodes of
lower priority than σ. Therefore, once σ asserts control during the construction,
any such promotion which creates boxes of small size have to be due to σ’s actions
alone; this isolates the effects of the other positive nodes.

Proof of Lemma 3.9. Let σ′ be a possible counterexample for the promotion of V βk .
Since σ′ is initialized at stage s, this means that setter(σ′) and threshold(σ′) must
be larger than N whenever they are defined after stage s. This makes promotion
of the type mentioned impossible, because r(σ′, N + 1) will have to be obeyed. �

Next, we will argue inductively that along the true path, all requirements are
satisfied. We prove the following simultaneously by induction on |α|, where α is on
the true path:

(I1) if α is a Q-node, then the statement of Q is satisfied,
(I2) if α is positive then it requires attention finitely often.

Suppose (I1) and (I2) holds for all β ⊂ α, and α is on the true path. Firstly,
suppose that α is an Ne-node, and that he is an order. By induction hypothesis,
α is initialized only finitely often, so we can consider the true version of {V αk }.
Fix a k ∈ N. If JA(k) ↓, then clearly it will be enumerated into V αk at a large
enough α-expansionary stage. Each distinct value in V αk corresponds to a string
(A⊕B)�j(k)[s] (i.e. the use) in the statement of Lemma 3.8(i), with t0 = least stage
after which α is never initialized. Hence, it follows that |V αk | ≤ he(k).

Now suppose that α is a Pe-node. Let s0 be the least α-stage after which α is
never initialized, and q = setter(α, s0) be the final value.

Lemma 3.10. There are only finitely many self-imposed initializations to α.

Proof. Note that once α finishes setting its parameters after s0, then (A0) and
(A1) will never apply to α again, so the lemma is clearly true. So, we may assume
for the sake of argument, that α never finishes setting its parameters, hence never
enumerates anything (into B). We argue that r(α, q) eventually settles, for a con-
tradiction. We first claim that for each β ∈ Z−(α), and each p > l(β, s+0 ) such that
s+0 is a stage after s0 with hβ(l(β, s+0 )) > q + 1, we have sizeβp > q whenever it is
defined: when sizeβp first gets defined, it is certainly larger than q. If the V βp box is
to be promoted after stage s+0 , it has to be due to some positive node σ. Clearly σ
cannot be on top or to the left of α, lest α is initialized. Also σ 6= α by assumption.
Thus we have σ ⊃ α or σ >left α. Applying Lemma 3.9, it follows that sizeβp > q
always holds. Hence only finitely many boxes contribute to r(α, q), and by Lemma
3.8(ii) this means that r(α, q) is bounded, a contradiction. �
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Hence, α will eventually finish setting its parameters, with the final value for
n = lim region(α). By Lemma 3.9 boxes can be promoted to small sizes only by α
itself. We now argue that amongst the different threshold values Cn,−1, Cn,0, · · · ,
box sizes are also kept disjoint. That is, once Cn,r[t0] has been defined, then no
box of a current size at least Cn,r[t0] can be promoted to size Cn,r−1[t0].

Lemma 3.11. (i) For each 0 ≤ r ≤ n − 1, β ∈ Z−(α), each stage t0 such
that Cn,r[t0] ↓, and k such that sizeβk [t0] ↓≥ Cn,r, we have ∀t(t ≥ t0 ⇒
sizeβk [t] > Cn,r−1).

(ii) The total number of times which α can be reset after it sets its parameters,
is bounded by In.

Proof. (i): This follows Lemma 3.7 of [12] closely. We proceed by induction on
r. Suppose the results hold for all r′ < r. Suppose the statement fails for some
β ∈ Z−(α), t0 and k. Let s > t0 such that sizeβk [s] ≤ Cn,r−1, and we may as
well assume that sizeβk [t0] = Cn,r. Since Cn,r[t0] ↓, it follows there is some α-stage
t̄0 ≤ t0, such that Cn,r receives its definition.

Suppose t ≥ t0 is a stage where some σ promotes V βk . It is clear from Lemma
3.9 that σ has to be α. We want to count the number of such stages t where α
promotes V βk . At stage t, promotion happens because α needs to enumerate into A
or B. The latter case only happens once after stage s0. In order for promotion to
take place at stage t due to enumeration into A, we must have Cn,r ≥ sizeβk [t] >
threshold(α, t) = Cn,n−2−attempt(α,t), which means that attempt(α, t) > n− 2− r.
We split the counting into the possible cases z for n− 1− r ≤ z ≤ n− 1:

Case z: t is a stage where α promotes V βk , and attempt(α, t) = z.
If z = n−1, then attempt(α) will be increased to n and α never enumerates
again. So, suppose that z < n − 1 (and hence r > 0). In order for Case
z to apply again, α has to be reset at some (least) α-stage t′ > t, where
attempt(α, t′) ≥ z+1 > n−1−r. This must be due to some small box size
blocking α. That is for some β′ ∈ Z−(α) and k′, we have JA⊕B(k′)[t′] ↓
and sizeβ

′

k′ [t
′] ≤ threshold(α, t′) ≤ Cn,r−2.

We claim that sizeβ
′

k′ [t̄0] ↓. Suppose not. Since r > 0, it follows
that hβ′(l(β′, t̄0)) > Cn,r−1 being a β′-expansionary stage, and therefore
hβ′(k′) > Cn,r−1. Applying induction hypothesis (on r− 1) gives us a con-
tradiction. The above not only shows that at stage t̄0, sizeβ

′

k′ [t̄0] must be
defined, but in fact that sizeβ

′

k′ [t̄0] < Cn,r−1. Applying Lemma 3.8(ii), there
can be at most 1 +S(α,Cn,r−1)[t̄0] many stages t where Case z applies (by
associating each t with the string (A⊕B)�j(k′) [t′]).

Totalling the effects from all the different cases, we see that the smallest value
sizeβk can take, is Cn,r − 1− 1 > Cn,r−1, if r = 0. On the other hand if r > 0, the
smallest value sizeβk can be reduced to, is Cn,r − 1− n(1 + S(α,Cn,r−1)[t̄0])− 1 =
Cn,r−1 + 1 > Cn,r−1.

(ii): this follows by a similar counting argument as (i). �

By Lemma 3.11(ii), α never runs out of indices after it is done setting parameters,
so let x = limx(α). After a large enough amount of time has passed, the only reason
why α requires attention will be under (A2) or (A4). When attempt(α) reaches n,
α will no longer require attention, so (I2) is true. We now show (I1) holds. Clearly
ΨB(x) ↓= n. Suppose that JA(x) ↓= w and w ∈ T ex . Let s1 > s0 be large enough
so that w ∈ T ex [s1], and that ∆A

α (x)[s1] ↓= w. Observe that it must be the case
that attempt(α, s1) = n, otherwise we would destroy the correct axiom in ∆A

α at
the next α-stage. Hence there are n many different stages t ≤ s1 and attempt(α, t)
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is increased by 1. After each such stage t we also enumerate a new value for ∆A
α (x),

and wait for it to be traced. Thus we have |T ex | ≥ n, since each time α sees a new
value appearing in T ex , it initializes all nodes of lower priority. So, (I1) is true. This
completes the induction.

The last thing we have to do, is to argue that ΨB is a B-order, in the sense that
it is total, non-decreasing and unbounded. This follows from the fact that for every
positive node α on the true path, we have ΨB(limx(α)) ↓= lim region(α). This
ends the proof of Theorem 3.5.

4. A cuppable hyper jump traceable c.e. set

Theorem 3.5 raises a fundamental issue. Can there possibly be (non-computable)
sets A which resemble the computable sets so strongly, such that given any set X
not computing A, we are able to make A strongly jump traceable by X? As we
have seen, it is generally harder to jump trace a set A by a non-computable oracle
X, compared to simply jump tracing A with no oracle, because we have to deal
with more (slow-growing) X-orders.

Theorem 3.5 shows that such behaviour has to be at least distinct from strong
jump traceability. To what extremes can this concept be taken? Is it reasonable to
require that A is strongly jump traceable by all sets?

Definition 4.1. We say that a c.e. set A is hyper jump traceable, if A is strongly
jump traceable by every c.e. set W .

That is, H is the class of all hyper jump traceable c.e. sets. This defines a
class with very strong similarities to ∅: not only can we approximate JA with
respect to all computable order functions, but also for all c.e. sets W , we can W -
approximate JA with respect to all W -computable order functions. It is clear that
every hyper jump traceable c.e. set is strongly jump traceable, and the class H is
closed downwards.

The rest of this paper will be devoted to studying H. In Theorem 4.2, we first
give a sketch of the construction of a non-computable c.e. set which is hyper jump
traceable. Hence H is a new subclass of the strongly jump traceable and K-trivial
sets. We then construct a hyper jump traceable set which is cuppable. Thus,
whilst the c.e. hyper jump traceable sets resemble ∅ very closely, there is at least a
fundamental property which separates them from the computable sets. In Theorem
5.1 we show that no construction of a c.e hyper jump traceable set is compatible
with making it low cuppable. In Section 6, we show that no c.e. set A can be
strongly jump traceable relative to all ∆0

2 sets, apart from the computable sets. In
Section 7 we show that there is a single capping companion for the entire class H.

Theorem 4.2. There is a c.e. hyper jump traceable set A >T ∅.

Sketch of the construction. There are two categories of requirements to be consid-
ered here. We have the positive requirements making A non-computable, as well
as the negative requirements of the form

N : If hW is an order, build a trace {TWx }x∈N for JA respecting hW .

The standard strategy for building a non-computable strongly jump traceable set
(without considering oracles) is the following. Suppose the opponent shows us
h∅(x)[s] ↓= 2 for some x. We could then safely trace JA(x)[s] into Tx (the trace we
build), and then impose the A-restraint j(x, s). This is alright because in future,
we can still allow one positive requirement to act below the restraint j(x, s), so
this restraint is not absolute. The main trouble now is that hW might not be
computable; the opponent has much more freedom now in the sense that he could
show us an (incorrect) segment hW �n, and then later on changes his mind on
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that segment. In particular, we might first be shown hW (x)[s] ↓= 2 for some x,
and when we decide to trace JA(x)[s], the opponent would then tell us that in fact,
hW (x) = 1. In that case, the A-restraint j(x, s) now becomes of the highest priority,
and no positive action below it is allowed. If the opponent tricks us infinitely often
in this way, we would not be able to get anything into A.

However, just like the opponent, we are also gifted with some degree of freedom
to change our mind on whatever we are building. We could “wrap” our trace TWx
axioms around the opponent’s axioms for h. In particular, when the opponent
first shows us hW (x)[s] ↓= 2, we would enumerate JA(x)[s] into TWx with W -
use u(x)[s] = use of hW (x)[s]. When he changes his mind and later on shows us
hW (x)[s] ↓= 1, he has to change W�u(x)[s]; the same W -change would also remove
the value JA(x)[s] from our trace TWx . This allows us to open up a gap by dropping
A-restraint momentarily before tracing JA(x)[t] the next time. When the opponent
next shows us hW�n+1 [s′] = 1n2 (for some n > x), we would set our TWx -use to be
the same as u(n)[s′]. In this way, if the opponent tries to show us initial segments
of hW of the form 1m2 for infinitely many m’s, we would also have ensured that
infinitely many gaps are open, in which positive requirements can act.

The above obstacle can be turned into a construction of a noncomputable order
g, such that no c.e. set (other than the computable sets) can be jump traced
respecting g using only a plain sequence {Tx}. Therefore if we consider jump
traceability via non-computable orders, we will need a suitable oracle to help us
build the trace. The above describes a basic module of N . The requirement N
now has to be split into infinitely many subrequirements, and each subrequirement
will run several of these basic modules. For each y (corresponding to a basic N -
module), we need to guess whether or not there are infinitely many n’s such that the
opponent shows us an initial hW -segment of the form σyn(y+ 1) for some string σ.
The infinitary outcome of a subrequirement corresponds to infinitely many A-gaps
open (i.e. lim inf of the restraint is 0), while the finitary outcome means that the
restraint on A eventually settles down.

We can arrange these requirements on a tree of strategies, in the style of a de-
generate ∅′′′-priority argument. The reader is assumed to be familiar with standard
tree arguments, and a good exposition on this topic can be found in [18]. Deci-
phering the outcome of an N -requirement requires a ∅′′′-oracle, because “hW is an
order” is a Π0

3 fact, and our N -strategies depend crucially on this fact. The full
construction is given in Theorem 4.3.

On a side note we remark that this strategy will meet with fatal problems if W
is a ∆0

2 set. This is because the opponent could challenge us as above, and wait for
us to enumerate JA(x)[s] into TWx at stage s. Suppose the next thing he does is to
change W , hence emptying TWx for us, and we would follow up by opening up an
A-gap below j(x, s), according to the plan. At the next stage the opponent could
recover W back to the configuration at stage s, i.e. restore W back to the state
before the A-gap was opened. We would be in trouble, because TWx now contains
the JA(x)[s] (having been brought back by the opponent), and the opponent could
now make JA(x) 6= JA(x)[s]. Since A is c.e. there is no way for us to get the
correct JA(x) into our trace, unless we increase the size of TWx illegally. In Section
6, we show that this obstacle cannot be overcome - no c.e. set is strongly jump
traceable by every ∆0

2 set. It is not known however, if we can build an A ≤T ∅′,
such that A is strongly jump traceable by every ∆0

2 set. �

Theorem 4.3. There is a c.e hyper jump traceable set A, and an incomplete c.e.
set C, such that ∅′ ≤T A⊕ C.
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4.1. Requirements. We code ∅′ into A⊕C by building the reduction ∅′ = ΓA⊕C ,
and act for it globally, i.e. outside of the construction tree. There are two types
of requirements with conflicting interests, namely the ones making A hyper jump
traceable:

Ne : If hWe
e is an order, then build a trace {TWe

x }x∈N for JA

respecting hWe
e ,

and the ones making C incomplete, by building an auxiliary c.e. set D:

Re : ΦCe 6= D.

Here, 〈We,Φe, he〉e∈N is an effective list of all triples such that We is a c.e. set,
and Φe, he are Turing functionals. Also let JA(x) = {x}A(x). The stage s use
of the computations JA(x),ΦCe (x) and hWe

e (x) are denoted by j(x, s), ϕe(x, s) and
ue(x, s) respectively.

Since we are concerned only with the functions hWe
e that are total, it does no

harm for us to assume that for x < y, we have ue(x, s) < ue(y, s) whenever they are
both defined. When we say that we pick a fresh number x at stage s, we mean that
we choose x to be the least number x > s, and x > any number used or mentioned
so far. We will also drop the stage number from the notations if the context is clear.
All parameters will retain their assigned values until initialized or reassigned. We
append [s] to an expression to mean the value of the expression as evaluated at
stage s.

At each requirement Ne, we will build a u.c.e. trace {TWe
x }x∈N such that for all

x ∈ N, we have (if hWe
e is an order)

(i) |TWe
x | ≤ hWe

e (x), and
(ii) JA(x) ↓⇒ JA(x) ∈ TWe

x .
As discussed in Theorem 4.2, we divide the requirementNe into the subrequirements
Ne,0,Ne,1, · · · , whereNe,i is responsible for tracing JA(x) for all x such that mi+1

e <

hWe
e (x) ≤ mi+2

e , where mi
e = 22〈e,i〉+2. This number is chosen based on technical

reasons, which will become clear later.

4.2. Description of strategy. In this construction we replace the non-computable
requirements with the (stronger) cupping requirements. This consists of two parts
- the coding of ∅′ into A ⊕ C, as well as the incompleteness strategies R. The
coding of the Turing complete set is done outside the tree, and is not affected by
the movement of the accessible string δs (the accessible string determines which
nodes get to act during stage s of the construction). This involves maintaining a
set of markers γ(0) < γ(1) < · · · , where the current values of γ(n), γ(n + 1), · · ·
are dumped into the set C whenever some n enters ∅′. New values will be chosen
for these markers, and we say that these markers are moved. More details will be
given in Section 4.4; at this stage the reader will only need to note that the coding
strategy can only move markers by dumping them into C.

The second part to cupping involves building a set D not computable in C. The
atomic strategy for an R-requirement is the standard Friedberg strategy: it picks
a number z not yet in D, and waits for ΦC(z)[s] ↓= 0. When that happens, we
enumerate z into D and preserve C; at this point we say that we believe in the
ΦC-computation. In order for the strategy to succeed, we have to ensure that R
believes in only finitely many wrong ΦC-computations. To limit the number of
times a believed computation may be injured and hence become incorrect, R will
first pick a number b, and then only believe in a ΦC-computation if ϕ(z, s) < γ(b, s);
to do this it may have to enumerate γ(b, s) into A to move the marker γ(b) above
ϕ(z, s).
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Let us consider an R-strategy below a subrequirement Ne,0 of Ne. Suppose that
Ne,0 is assigned to the node α, and is responsible for tracing JA(x) for all the x
such that hWe

e (x) = 1. The locations in {TWe
x } which traces these values are called

1-boxes, and once these 1-boxes are filled with a value, the restraint Ne,0 imposes
for it has to be respected everywhere. At all times Ne,0 is in charge of a certain
number of 1-boxes; however since hWe

e may not be computable, the number of 1-
boxes it is responsible for may increase with time. Recall that Ne,0 will have two
outcomes, the infinitary ∞ outcome which opens a gap each time Ne,0 is entrusted
with more 1-boxes to trace, and the finitary outcome f which Ne,0 will take if the
situation in hWe

e is stable.
There will be two corresponding versions of the R strategy assigned to the nodes

β0 = α_∞ and β1 = α_f below α. These two use a different set of parameters,
i.e. bβ0 , zβ0 for β0 and bβ1 , zβ1 for β1. How may β1 be affected by α? Each time
α increases A-restraint due to activity in one of its 1-boxes (remember these boxes
are of the highest priority), we would have to move the marker γ(bβ1) above the
A-restraint, by dumping into C. However β1 might encounter infinitely many 1-box
restraints, but if that is the case then β0 will be visited infinitely often, and hence
be the one to meet R. To ensure that γ(bβ1) settles, we have to pick a new value for
bβ1 each time α opens a gap and is shown with even more 1-boxes to trace. Hence,
β1 (or β0, depending on the true outcome of α) will eventually settle on some final
value for bβ1 , and receive a finite amount of restraint from α above (in the case of
β0 there is no restraint from above). We want to see that it succeeds in meeting R
with some z.

It is possible for β1 to believe in a false computation, if some marker γ(k) for
k < bβ1 is dumped into C after we believe. Thus, it is possible for β1 to make
more than one enumeration into A. Each A-enumeration that β1 makes has to
respect the restraint from 1-boxes above it (i.e. from α), but ignores the restraints
imposed by boxes below it. In particular, Ne,1 might occupy a level below β1, and
be in charge of a number of 2-boxes, which all get promoted7 to 1-boxes due to the
positive actions of β1. When these locations next get traced, their restraints have
to be obeyed even by β1 above, because Ne,1 while of a lower local priority, actually
has a higher global priority than β1. Therefore, the blockages on A that β1 has to
consider become slightly more complicated; in particular β1 has to search through
the entire sequence {TWe

x } to see which boxes have been promoted and must now
be obeyed.

This brings up another problem. Notice that there might be many levels below
β1, which are assigned some other incompleteness requirement R′, say at some
σ ⊃ β1. When σ acts, it may in turn promote {TWe

x }-boxes living below it, causing
these boxes to become 1-boxes. Hence, infinitely many 1-boxes may be promoted
in this way down the tree; β1 now has to deal with all these boxes, which is bad
because β1 is on the true path and there is no other backup strategy for R.

Before we proceed further, let us pause for a moment and think why this does not
happen in Theorem 4.2. The positive requirements were simple - each level on the
tree assigned a positive requirement only needed to make at most one enumeration
into A, for the sake of making A non-computable. Therefore, we could use this
fact to help us assign the Ne,i-strategies on the tree. For instance, we could do the
following assignment of strategies in Theorem 4.2:

7That is, a location TWey with hWee (y) = 2 is now filled with a single wrong value, reducing

the size of the tracing location.
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level of the construction tree strategy assigned
0 handle 1-boxes
1 non-computable strategy
2 handle 2-boxes
3 non-computable strategy
4 handle 3-boxes

For instance, the 3-boxes can be handled safely at level 4 because each level (levels
1 and 3) above it running the positive strategy can make at most one enumeration
each. Hence the 3-boxes are at most promoted to a 1-box, after which levels 1 and
3 no longer need to act.

We can use this idea to help us out in this current construction. Even though
the nodes assigned the incompleteness strategies enumerate more than once into
A, we can make them behave just like a non-computable strategy relative to each
Ne,i. To illustrate this, we arrange the strategies in this manner:

level of the construction tree strategy assigned
0 handle 1-boxes
1 incompleteness strategy
2 handle 2-boxes
3 incompleteness strategy
4 handle 3-boxes

If the incompleteness strategy at level 3 enumerates into A, promoting boxes at level
4 in its current run, we make sure that at its next run when it has to enumerate
into A again, it will not promote any boxes at level 4 which it has promoted before.
Hence levels 1 and 3 will look like they are running a non-computable strategy
when viewed by level 4, even though they are making many enumerations into A.
Thus, level 3 can promote boxes at levels 4, 6, 8,etc but this has no effect on level
1.

To help us implement this idea, for each node σ assigned to an incompleteness
strategy, we keep track of the injury number of σ. This represents the largest
number x such that σ has previously injured a box location TWe

x , and helps σ
remember which boxes not to promote in its next run. Note that the injury number
does not need to increase until σ makes the next enumeration into A, hence lifting
γ(b) above the ϕ-use, and believing the ΦC-computation and ending its current
run. Therefore, in its current run, there is only finitely much restraint it has to
obey from below (due to those boxes it has previously promoted), before it is next
allowed to believe in a ΦC-computation. Note also that in this construction, we
are exploiting the fact that C need not be low (in fact, cannot be low): we dump
markers into C until all blockages on A have been overcome.

4.3. Construction tree layout. The construction takes place on a subtree of
the full binary tree. Nodes of even length |α| = 2e are assigned the requirement
Re with the single outcome 0. Nodes of length |α| = 2〈e, i〉 + 1 are assigned the
requirement Ne if i = 0, and the subrequirement Ne,i−1 if i > 0. Nodes assigned
the requirement Ne have only one outcome 0. The subrequirement Ne,i of Ne has
the two outcomes∞ <left f . The infinitary outcome represent phases when Ne,i is
imposing no restraint (during A-gaps), while the finitary outcome means that Ne,i
is holding some A-restraint.

Let α <left β denote that α is strictly to the left of β (i.e. there is some
i < min{|α|, |β|} such that α�i= β�i and α(i) <left β(i)). We say that α is a
Q-node, if α is assigned the requirement Q. α is an incompleteness node, if α is an
Re-node for some e. We say that α is a top node, if α is an Ne-node for some e, and
that α is an i-bottom node of τ if α is an Ne,i-node for some e, and τ ⊂ α where τ
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is an Ne-node. If α is a bottom node, then τ(α) denotes its top node. α and β are
sibling nodes if for some i, they are both i-bottom nodes of the same top. If τ is
an Ne-node, denote Coneτi := {β : β ⊃ τ ∧ |β| ≤ 2〈e, i+ 1〉}, that is, all the nodes
lying strictly in between τ and its i-bottom nodes.

Each top Ne-node τ does not really make any guesses as to whether or not hWe
e is

an order. Rather, this is done at each layer below τ . We distribute the A-restraints
amongst its bottom nodes, and τ ’s role is to coordinate the actions of its bottom
nodes.

4.4. Notations. The functional Γ reducing ∅′ from A⊕C will be build globally. If
a ΓA⊕C(x) axiom is set at stage s, it will have use denoted by 2γ(x, s), so that the
first γ(x, s) many bits of both A and C are involved. We ensure that at all times,
if x < y and both axioms are set, then γ(x, s) < γ(y, s). To ensure this, we always
enumerate markers by dumping. That is, each time during the construction when
we say that we enumerate γ(x, s) into A or C, we mean to say that we enumerate
γ(y, s) into A or C, for every y ≥ x for which the Γ-axioms have been set. We fix
an enumeration {∅′s}s∈N of the halting problem, in which at most one element is
enumerated at each stage.

If σ is an Re-node, it will pick a number zσ and attempt to make ΦCe (zσ) 6=
D(zσ). It does this by picking a number bσ, and then it will enumerate zσ into D
at a stage s only after it succeeds in ensuring that γ(bσ, s) > ϕe(zσ, s). At each top
Ne-node τ , we measure the length of convergence of hWe

e at stage s by

lτ (s) = max{y < s | (∀x ≤ y) hWe
e (x)[s] ↓≥ hWe

e (x− 1)[s]

∧ hWe
e (y)[s] > hWe

e (y − 1)[s]}.
We will build a uniformly c.e. sequence of sets {T τx }x∈N at τ . For simplicity we drop
the oracle We from the notation. At times a bottom node α of τ will enumerate
a number r into T τx for some x, with a We-use denoted by tτx(s). In future if We

doesn’t change below this use tτx, then the number r stays in T τx . On the other hand
if for some t > s, we have We,t�tτx(s) 6= We,s�tτx(s), then the number r is removed from
T τx , i.e. r 6∈ T τx [t].

We let rτi record the restraint imposed on A by τ , for the sake of its i-bottom
nodes. That is, a single restraint function is used for each entire level. For each
incompleteness node σ ⊃ τ , we let Iτσ denote the injury number that σ has to
respect when considering which side (A or C) to enumerate into. That is, σ cannot
make any enumeration into A�j(i) for any i < Iτσ , for the sake of limiting injuries to
T τi . If α is an i-bottom node of τ , define the parameter

markerα(s) = least y < lτ (s) such that hWe
e (y)[s] ≥ mi+2

e + 1.

This marks out the first place y such that hWe
e (y)[s] ≥ mi+2

e + 1, and hWe
e �y+1 [s]

looks like an order. If no such y exists, let markerα(s) ↑. The purpose of this
definition is to let α wrap its trace axioms around the value ue(markerα)[s]. If β
is a sibling node of α, then for all s, markerα(s) = markerβ(s). We also write
markere,i(s) in place of markerα(s), and let markere,−1 = 0. If We has settled on
the part which is accessed by α, we would be able to run the strategy at level |α|
without interruption. Such a stage s is said to be α-fixed, or (e, i)-fixed. That is,
we have markere,i[s] ↓, and We,s�u= We�u, where u = ue(markere,i)[s].

When we initialize an incompleteness node σ, we set zσ, bσ ↑. When we initialize
a top node τ , we clear the sequence {T τx }x∈N of all axioms, and start building it
again from scratch. Set rτi = 0 for all i, and set Iτσ = 0 for each incompleteness
node σ ⊃ τ . During the construction, when we increase (or decrease) a parameter
value P to x, we mean that we set P = x, unless P is already larger (or smaller)
than x, in which case we do nothing.
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4.5. The construction. At stage s = 0, initialize all nodes, and do nothing.
Let s > 0. We build the stage s approximation to the true path, δs of length s
inductively. We say that α is visited at stage s, if δs � α; equivalently we say that
s is an α-stage. Assume that α = δs�d has been defined for d < s. There are three
possibilities for α.

(1) α is an Re-node : let δs(d) = 0. Pick the first case from the list that
applies, and act for α accordingly:
(a) if bα and zα are undefined, pick fresh values for them,
(b) if D(zα) 6= ΦCe (zα)[s], do nothing,
(c) if zα ∈ D, pick a fresh value and reassign zα,
(d) all the above fails, i.e. ΦCe (zα)[s] ↓= 0 = D(zα). If γ(bα, s) ↓, we now

have to decide which side (A or C) to enumerate γ(bα, s) into. If
• γ(bα, s) > max{rτi | τ ⊂ β_f ⊆ α for some top node τ , and

some i-bottom node β of τ}, and
• γ(bα, s) > max{j(x, s) | x < Iτα for some top node τ ⊂ α},

both holds, then we enumerate zα into D, and for each top node τ ⊂ α,
we increase the injury number Iτα to be 1+ the largest n such that
JA(n)[s] ↓∈ T τn , with use j(n, s) > γ(bα, s) (if no such n exists, do
nothing). Enumerate γ(bα, s) into A. Otherwise if one of the above
does not hold, i.e. γ(bα, s) is blocked on the A side, then we enumerate
γ(bα, s) into C, and do nothing else.

(2) α is an Ne-node : let δs(d) = 0, and s− be the previous α-stage (if this
is the first α-stage, do nothing). Check if there is a least i such that
markere,i(s−) ↓, and We,s−�ue(markere,i)[s−] 6= We,s�ue(markere,i)[s−]. If no
such i exists, do nothing. Otherwise consider the least such i - we know that
all work previously done at level Ne,i and below have now been undone. So,
we can decrease Iασ to markere,i−1 for every incompleteness node σ ⊃ α.

(3) α is an Ne,i-node : let s− be the previous α-stage. Look at :
(a) s− exists, i.e. we have visited α before.
(b) markerα(s−) and markerα(s) are both defined and equal.
(c) We,s−�ue(markerα)[s−]= We,s�ue(markerα)[s−].

If one of the above 3(a), 3(b) or 3(c) fails, then hWe
e has not yet stabilized

on the part which is required for α; we have not reached an α-fixed stage.
In this case drop A-restraint by letting δs(d) =∞, and do nothing else.

Otherwise if all of 3(a)-(c) holds, then let δs(d) = f , and do the following.
For each x such that JA(x)[s] ↓ and markere,i−1(s) ≤ x < markerα(s),
we enumerate the value JA(x)[s] into T τ(α)

x (unless the value is already in
there), with We-use tτ(α)

x (s) = ue(markerα)[s]. Increase the restraint rτ(α)
i

to j(x, s).

This ends the definition of δs. At the end of stage s, we initialize all nodes β >left δs.
We take actions for coding. If there is some x ∈ ∅′s−∅′s−1, such that Γ(x)[s]-axioms
currently apply, we enumerate γ(x, s) into C. Otherwise, pick the least x for which
no Γ(x)[s]-axioms apply. Set ΓA⊕C(x)[s] ↓= ∅′s(x) with fresh use 2γ(x, s). Go to
the next stage.

4.6. Verification. The true path of the construction is defined as usual to be the
leftmost path visited infinitely often. If τ is a top node and σ is an incompleteness
node and x ∈ N, we say that σ injures T τx at stage s, if at stage s, σ enumerates
into A below the use of a convergent computation JA(x)[s] ↓= n, where n ∈ T τx .
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We first show that if τ is on the true path, then each location T τx is injured from
above8 only finitely often:

Lemma 4.4. Let τ be an Ne-node on the true path, and i ∈ N. Suppose s is
an (e, i)-fixed stage such that τ is never initialized after stage s. Then for each
x < markere,i, and each σ ∈ Coneτi , σ is allowed to injure T τx at most once after
stage s.

Proof. If σ injures T τx at some stage t ≥ s, the same action also sets Iτσ > x. The
only way for σ to injure T τx again, is for Iτσ to drop to ≤ x. Since τ is never
initialized this must be due to τ decreasing the injury number T τσ under step 2 of
the construction. Since t is a τ -stage, this can only happen if We,t�u 6= We�u, which
is impossible. �

Lemma 4.5. ΓA⊕C is total and equals ∅′. In particular for each x, γ(x, s) even-
tually settles.

Proof. We prove the above by induction on x. Fix an x, and let s0 be a stage
after which γ(x− 1) is never moved. The only interesting case to consider is when
some σ on the true path has picked bσ = x. We assume that σ is never initialized
after s0, and that no σ′ ⊂ σ enumerates after stage s0, since bσ′ < bσ. If it is the
case that σ enumerates γ(x) into A after s0, then we are done. We assume that
no enumeration is ever made into A by σ, and that step 1(d) of the construction
applies at infinitely many σ-stages. We want to argue that the two conditions in
step 1(d) are eventually satisfied, for a contradiction.

The first condition: fix a top node τ , and an i-bottom β of τ such that τ ⊂
β_f ⊆ σ. We argue that lims→∞ rτi [s] < ∞. Since β has true outcome f , hence
there is a β-fixed stage, so eventually at every τ -stage t large enough, we have
δt(|β|) = f . Once we reach such a stage in the construction, the restraint rτi can
only be destroyed by some node σ′ ∈ Coneτi . However rτi only increases if j(w, t)
gives a new value for some w, and there are only finitely many w to consider at
level |β|. By Lemma 4.4, each of these T τw-boxes are injured only finitely often, so
the restraint function rτi is bounded.

Now we look at the second condition: fix a top Ne-node τ ⊂ σ. Since σ never
enumerates into A, the injury number Iτσ does not increase. Hence, Iτσ settles down
at a smallest value, say p at some stage t0. Fix some w < p, and we want to show
that j(w, t) has only a finite effect on σ. In particular we want to show that the set
{j(w, t) | t is a σ-stage where step 1(d) applies} is bounded. If t is a σ-stage such
that JA(w)[t] ↓ and step 1(d) applies, we would enumerate γ(x, t) into C to move
γ(x) above j(w, t). Since all smaller markers have already settled, it follows that A
will never change below j(w, t) after stage t.

Hence the two conditions in step 1(d) will eventually be satisfied, and σ will
eventually find no reason to enumerate γ(x) into C - it will have to enumerate γ(x)
into A instead, a contradiction. �

We next show that A is hyper jump traceable. Fix an Ne-node τ on the true
path, such that hWe

e is an order. If α is a τ -bottom node on the true path, then α
has true outcome f , as there will be an α-fixed stage. Let s0 be the stage where τ is
initialized for the last time, hence the true version of {T τx }x∈N is built after s0. Fix
an x, and let i be such that mi+1

e < hWe
e (x) ≤ mi+2

e ; this can be done for almost all
x, and our task is to show that |T τx | ≤ mi+1

e , and if JA(x) ↓, then JA(x) ∈ T τx . Let
x+ = least such that hWe

e (x+) > mi+2
e , i.e. x+ = limsmarkere,i[s]. Let α be the

i-bottom node of τ on the true path. Let s1 be the least stage α-fixed stage > s0.

8We think of the location T τx as being built at the level of the i-bottom nodes, where x <
markere,i.
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It is not hard to see that T τx = ∅ at the beginning of stage s1: if not then some
j-bottom node of τ had made a trace at some stage t, with s0 < t < s1, with use
ue(markere,j)[t]. If We changes below ue(markere,j)[t] after stage t, the trace value
would be removed. But if We did not change then we must have j = i to match
the situation at stage s1, but this means that t < s1 is (e, i)-fixed, a contradiction.
So, T τx = ∅ at the beginning of s1. Anything that we put in T τx during or after
stage s1, will be put in with We-use ue(x+), and thus will stay in T τx forever. If
JA(x) ↓, then its value will clearly be placed into T τx after stage s1, so we certainly
have JA(x) ∈ T τx . Now we argue that:

Lemma 4.6. |T τx | ≤ mi+1
e .

Proof. Firstly, observe that there are at most 2|α| many τ -stages t ≥ s1 such that
δt(|α|) = ∞, because each sibling node of α can be visited with outcome ∞ at
most once, on or after the α-fixed stage s1. Let t ≥ s1 be a stage where JA(x)[t]
is traced into T τx , by some i-bottom node of τ . The same action also increases
rτi beyond j(x, t). Which incompleteness node σ can enumerate into A�j(x,t) after
stage t? Obviously σ 6<left τ , and every node to the right of τ has to obey rτi . If
σ ⊂ τ then by Lemma 4.5 it only makes finitely many enumerations into A, so we
may assume x is large enough so as not to be affected by σ. This leaves the case
when σ ⊃ τ ; hence either σ ∈ Coneτi , or else |σ| > |α|. In the former case there
can only be a total of |Coneτi | many injuries to rτi by Lemma 4.4, while the latter
case contributes at most 2|α| many injuries since rτi is obeyed at δt(|α|)_f -stages.
Hence there are at most 1 + 2|α|+ |Coneτi | = mi+1

e many different values in T τx . �

We show that C is Turing incomplete. Let σ be an Re-node on the true path,
and let b = lim bσ. By Lemma 4.5 there is a stage s0 after which 1(d) never applies
at σ-stages. After s0 the parameter zσ can get reassigned at most once since 1(d)
never applies, so let z = lim zσ. Observe that D(z) 6= ΦCe (z). Hence, A is cuppable,
and this concludes the proof of Theorem 4.3.

5. No c.e. hyper jump traceable set can be promptly simple.

In this section, we show that no c.e. hyper jump traceable set can be promptly
simple. Thus, while there can be cuppable hyper jump traceable c.e. sets, none
of them can be low cuppable. The construction of a non-computable c.e. hyper
jump traceable set in Section 4 was by using a 0′′′-priority argument, and does not
seem to allow prompt enumeration for the positive requirements. In the following
theorem we show that this must indeed be the case.

A non-computable member of H was constructed without using direct cost func-
tions. H is therefore the first known example of a subclass of the c.e. K-trivials,
which is completely free of the promptly simple sets. Other known subclasses of
the c.e. K-trivials, such as the strongly jump traceable, ML-non-cuppable, ML-
coverable sets, and C� for certain Σ0

3-null classes C, are all shown to be non-trivial
by constructing a promptly simple member using cost functions (see Chapter 8 of
[16]).

Therefore H forms a subclass of the cappable c.e. sets. In Theorem 7.1 we will
extend this result to show that there is a single capping companion for the entire
class H.

Theorem 5.1. Suppose A is c.e. and promptly simple. Then, there is a c.e. set
C, such that A 6∈ SJT (C).
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5.1. Requirements. We build the c.e. set C, and a Turing functional Ψ to meet
the requirements :

Re : Defeat the eth C-trace. That is, for some x, either
|T ex | ≥ ΨC(x), or else JA(x) 6∈ T ex .

Here, we let {T ex}x∈N be the eth C-trace, in some effective listing of all traces
computing with an oracle. For ease of notations we suppress all mention of C in
T ex .

5.2. Description of strategy. The strategy for this theorem is based on the
fact that we could force A to change “promptly”, otherwise known as prompt
permitting. Suppose we were only given A non-computable, and we wanted to
build a c.e. set C such that A 6∈ SJT (C). The false proof would go something like
this. We want to build a C-order ΨC , and defeat every possible C-trace {TCx }x∈N
via ΨC . We take control of JA(x) for some x, and start by setting ΨC(x) = 1, and
enumerate JA(x)[s0] ↓= s0 with use u. Once s0 shows up in TCx , we record the
string As0�u. If A changes in future below u, we could set JA(x) different and be
done. There is no guarantee that A will ever change below u, of course, so while
waiting for the (potential) change to happen, we have to pick a larger x′ > x and
repeat. Of course other requirements might have already defined ΨC(y) = 2, say,
for some x < y < x′, so we have to enumerate ψ(x) into C to kill the axiom and
set ΨC�[x,x′]= 1. Eventually A has to change below one of the use u since it is
non-computable, and when it does so we would be done.

Since we know that there is a non-computable hyper jump traceable set, which
part of the above goes wrong? The opponent plays the non-computable A, which
means that he has to change A�u below one of the uses we specify, but he doesn’t
have to do so promptly. In particular, he could put JA(x)[s0] into TCx with a C-use
larger than that of ψ(x), i.e. he wraps his axioms around ours. The opponent then
waits for us to pick x′ > x and for us to put ψ(x) into C. We needed to do that to
ensure that ΨC is an order, but we have also unwittingly helped the opponent to
clear TCx temporarily. The opponent could now seize the opportunity and change
A�u, and we would be left stranded.

However, if the opponent was put in charge of a promptly simple set A instead,
we could force him to change A�u promptly. Only when the opponent fails to
respond promptly, do we choose a new x′ > x, and put ψ(x) into C to clear our ΨC

axioms (as well as the TCx axioms). This is alright because eventually the opponent
has to respond with an A-change before we clear the C-axioms.

5.3. The construction. We arrange our requirements in the orderR0 ≺ R1 ≺ · · · .
At each requirement Re, we will enumerate auxiliary c.e. sets Ue,0, Ue,1, · · · to try
and force A to change. By a slowdown lemma and the Recursion Theorem, we may
assume that if we put numbers x0 < x1 < · · · into an auxiliary set U at stages
s0 < s1 < · · · respectively, then A has to promptly permit one of them; namely
there is some i such that Asi�xi 6= Asi+1�xi . We may in fact assume that A has to
promptly permit infinitely many of the xi’s.

By the Recursion Theorem again, we have an infinite list of indices of functionals
we will enumerate during the construction. Let x(e, s) denote the index that Re is
using at stage s, with use u(e, s). At times Re will be initialized; in that case it
abandons this index and use and picks a fresh one from the list (not used before).
We will let region(e, s) record the number n, such that Re wants ΨC(x(e)) = n.
This also represents the number of elements Re wants to force into T ex(e), before it
is satisfied. We let attempt(e, s) keep track of the number of elements Re has suc-
ceeded in forcing into T ex(e); when attempt(e) = region(e), its work is done. During
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the construction we will also enumerate axioms into ΨC , maintained globally; again
we denote the stage s use of ΨC(x)[s] by ψ(x, s).

At stage s of the construction, we pick the least e < s such that Re requires
attention, i.e. one of the following applies:

(A1) region(e, s) is currently unassigned.
(A2) region(e, s) ↓, but no axioms in JA(x(e, s))[s] currently apply.
(A3) JA(x(e, s))[s] ↓= r, and r ∈ T ex(e,s)[s] and attempt(e, s) < region(e, s).

There are three cases:

• If (A1) applies, we pick a fresh number for region(e), pick a fresh unused
index x(e), and set u(e) = s and attempt(e) = 0. Set ΨC(x(e, s))[s] ↓=
region(e, s) with a fresh use ψ(x(e, s), s). In fact, to ensure the totality
of ΨC , we also enumerate axioms with the same C-use for all y < x(e, s)
where no axioms currently apply for y. Go to the next stage.
• If (A1) fails but (A2) applies, then we set JA(x(e, s)) ↓= s with use u(e, s).

Go to the next stage.
• If (A1) and (A2) fails but (A3) holds then we enumerate u(e, s) into Ue,attempt(e,s),

and set region(e′) ↑ for all e′ > e.
Check if A promptly permits u(e, s). If yes, increment attempt(e) by 1, and
move on to stage s+ 2. If not, we enumerate ψ(x(e), s) into C to clear the
definition of ΨC(x′) for all x′ ≥ x(e), and choose a fresh unused index x(e)
and set u(e) = s and attempt(e) = 0. Also, for all the relevant x′ ≤ the
new x(e), set ΨC(x′)[s] ↓= region(e, s) with fresh ψ(x′, s) use. Go to stage
s+ 2.

At the start of the construction all region parameters are unassigned, so this guar-
antees that Rs−1 requires attention at stage s.

5.4. Verification.

Lemma 5.2. For each e, region(e, s) eventually settles.

Proof. Suppose that r = region(e− 1, s0) has settled. The only way for region(e)
to be reset after stage s0, is when Re−1 receives attention, and ¬(A1)∧¬(A2)∧(A3)
holds for it. Suppose this happens at infinitely many stages after stage s0. At
each such stage, a number will be enumerated into one of Ue−1,0, · · · , Ue−1,r−1,
and has to be new to the set. Choose the largest r′ < r such that Ue−1,r′ is
infinite. Since A promptly permits infinitely many of the numbers in Ue−1,r′ , even-
tually A promptly permits some number u(e − 1, s′) enumerated into Ue−1,r′ at
stage s′, where the construction will make no further enumeration into any of
Ue−1,r′+1, · · · , Ue−1,r−1. Clearly r′ < r − 1, in fact when Re−1 next receives at-
tention under ¬(A1)∧¬(A2)∧(A3) at some stage s′′ > s′, we must have r′ + 1 ≤
attempt(e − 1, s′′) ≤ r − 1. This is not possible since we would then enumerate
u(e− 1, s′′) into Ue−1,attempt(e−1,s′′). �

Lemma 5.3. All requirements are satisfied, and A 6∈ SJT (C).

Proof. Firstly, note that ΨC is total, non-decreasing and unbounded (by Lemma
5.2), and we never add inconsistent ΨC axioms. Next, fix an e ∈ N and let r =
lims→∞ region(e, s) and x = lims→∞ x(e, s). Since we never change the parameter
u(e) until A fails to promptly permit it, hence JA(x) ↓= y with a permanent axiom
say, after stage s0. We clearly have ΨC(x) = r, and if y ∈ T ex then attempt(e) = r
must be true when y finally shows up in T ex . This corresponds to r different numbers
forced into T ex ; each time a number shows up in T ex , the C part of the use that puts
it in T ex is preserved forever. �
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This ends the proof of Theorem 5.1. How close to ∅ (in terms of computational
power) can we make the set C in Theorem 5.1? Since each Re enumerates into C
only finitely often, it is easy to see that the construction can be easily modified to
make C low. On the other hand it is not possible to compute an upperbound for
the number of C-enumerations for each Re, because the opponent could refuse to
give us his prompt permission for as many times as he wishes. Thus it is not clear if
we can make C strongly jump traceable, or even just superlow. We conjecture that
H =

⋂
{SJT (W ) |W is c.e. and low}. Note that both classes contain no promptly

simple members.

6. No c.e. set is strongly jump traceable by every ∆0
2 set

In this section, we will show that the only c.e. sets which are strongly jump
traceable by every ∆0

2 set, are the computable ones. This property is one which is
exclusive to the computable sets - the only way we can jump trace A in this way,
is for JA to be traceable via a constant bound.

Theorem 6.1. For any c.e. set W >T ∅, there is a set A ≤T ∅′ such that W 6∈
SJT (A).

6.1. Requirements. We build a ∆0
2 set A by full approximation, and an A-order

ΨA. A tree T is a total function from finite binary strings to finite binary strings,
such that for all σ, T (σ_0) and T (σ_1) are incompatible extensions of T (σ). At
each stage s of the construction we define the sequence of trees T0[s] ⊇ T1[s] ⊇
· · · ⊇ Ts[s], and ensure that for each e, Te := lims→∞ Te[s] exists pointwise. In fact,
we will ensure that Te[s] = Te for some s. To make notations more consistent, for
each e, s, σ, we write Te(σ)[s] instead of Te[s](σ) - the value of Te[s] applied to σ.

For each s, we define the finite string As = Ts(∅)[s]. Hence by the above,
lims→∞As(x) exists for all x, so that by the Limit Lemma, A ≤T ∅′. We want to
ensure that the following requirements are met:

Re : Defeat the eth A-trace. That is, for some x, either
|V Ae,x| ≥ ΨA(x), or else JW (x) 6∈ V Ae,x.

We let {V Xe,x}x∈N be the eth trace computing with an oracle, in some effective
enumeration. We append [s] to all parameters to denote the value of the parameter
at stage s. To choose a fresh number x at stage s, means that we choose x > s and
larger than any number previously used or mentioned. We write 1n to denote the
finite string of n many 1’s

6.2. Description of strategy. We remind the reader of the standard strategy in
making W 6∈ SJT (A). We have to define a single order ΨA, and defeat each A-trace
{V Ax }x∈N by meeting the requirements above. Let us consider the things we have
to do to defeat a single trace. We pick a follower ξ, and enumerate JW (ξ)[s] ↓= s
with use u, and wait for s to be traced in V Aξ . When s enters V Aξ [s], we want
W to change so that we can define JW (ξ) on a new value. Recall from Theorem
5.1 that if W is promptly simple, then we can easily build A to be c.e. and low.
Therefore, if the opponent wants to make things difficult for us, he has to make W
(which is non-computable) respond very slowly. In particular, the opponent would
do the following. He would trace s into V Aξ with an A-use larger than ψ(ξ) (i.e. he
wraps his axioms around ours), say at stage t. He knows that he has to change W
below u eventually to ensure that W is non-computable, but he could wait until we
enumerate ψ(ξ) into A. He knows that we have to do that, because we have to pick
a new ξ′ > ξ and start the process above again with ξ′. Only after we enumerate
ψ(ξ) into A, would he then change W�u.



BEYOND STRONG JUMP TRACEABILITY 35

Note that as discussed in Theorem 4.2, if we had to make A c.e., we would not
be able to succeed. However, we are allowed to make A ∈ ∆0

2, so we could actually
restore A-traces back to the state which they were at previously. If the opponent
does change W�u eventually, we could restore A back to what it was, At, at stage
t. Doing so would put s back into the trace V Aξ .

The formal construction is given below. Trees are used to keep track of nodes
which we might have to return to, if the opponent changes W at a later stage.

6.3. Notations. Each requirement Re will make several attempts at defeating the
eth A-trace, which we call attacks. The Recursion Theorem gives us a list of indices
i0, i1, · · · for which we can use to control JW (in). When Re begins its ith attack,
it will pick an index from the list, which we denote by ξei . Re will then control
JW (ξei ), with W -use uei . Each of the parameters ξe1, ξ

e
2, · · · represent a separate

attack of Re. Basically, the construction visits Te(0) if Re is performing the first
attack, and visits Te(1) when it is waiting for a W�ue1-change, i.e. the appropriate
numbers have entered the trace V σe,ξe1 for some σ � Te(0). When that happens,
we would set Te(0) = σ, and the construction will visit Te(10) to start the second
attack, and when the opponent responds again, we will go to Te(110) to begin the
third attack, and so on. Eventually W �uei has to change for some i, and when
that happens we can go back to Te(1i−10) and enumerate a new computation for
JW (ξei ). Each time Re requires attention, we will move Tr(∅) for all r > e above
some branch of Te, so that the requirements Rr for r > e can start their attacks
anew, above the branch of Te we want restored.

Each requirement Re will pick a number region(e), which denotes the number
r such that we want to try and make |V σe,ξei | ≥ r (provided that numbers are
always traced). Obviously this means that Re will have to enumerate the axiom
Ψσ(ξei ) ↓= r for each ith attack it begins. Care has to be taken to ensure that no
incompatible Ψ-axioms are enumerated, and that ΨA eventually turns out to be
an order. Hence Re will enumerate Ψ-axioms for the path Te(1i−10), when it is
beginning the ith attack. Other requirements Rk for k > e starts above Te(1i−10),
and enumerates their own Ψ-axioms above Te(1i−10). When Re needs to begin
a new jth attack, it has to start on a new branch Te(1j−10), incompatible with
Te(1i−10).

We build a Turing functional Ψ, which we think of as a c.e. set of axioms. The
axioms are of the form 〈x, y, σ〉, which means “given input x, output the number
y if σ ⊂ X”, where X is the oracle. At stage s of the construction, when we say
that we set Ψ(x)[s] ↓= y with use σ, we mean that we enumerate the following
Ψ-axioms: for each x′ ≤ x, enumerate the axiom 〈x′, y, σ〉, if for every Ψ-axiom
〈x′, y′, σ′〉 already present, we have σ′ incompatible with σ. This ensures that new
axioms are always compatible with existing ones, and that along any path X ∈ 2ω,
the function ΨX will be non-decreasing whenever it is defined.

For each e, i, when Re begins its ith attack, we would pick a fresh index for ξei ,
and set Ψ(ξei )[s] ↓= region(e), with use Te(1i−10). It will then carry out its ith

attack by setting JW (ξei ) ↓, and then wait for the value to be traced. Each time
a new value appears in the trace (on some use extending Te(1i−10)), we increment
the counter attempt(e, i) by 1. When the counter attempt(e, i) reaches region(e)
for any attack i, then Re is permanently satisfied, and need not be considered any
further (unless it is later initialized).

We say that an attack of Re is e-pending if it is waiting for some number to enter
the appropriate trace; at any time at most one attack of Re is pending, and any e-
pending attack will have priority over all the other attacks of the same requirement.
When we initialize a requirement Rk, we set region(k), ξki , u

k
i undefined for all i,
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set attempt(k, i) = 0 for all i, and remove all k-pending status from the attacks of
Rk. We let Full(σ) be the full tree above σ, i.e. Full(σ)(ν) = σ_ν for all ν. All
parameters retain their assigned values until reassigned or initialized.

6.4. The construction. At stage s = 0, we make all parameters undefined, and
set T0[0] = Id. At stage s > 0 we define the trees T0[s] ⊇ · · · ⊇ Ts[s]. For each
e ≤ s, we do the following. If there is some i such that attempt(e, i) ≥ region(e),
i.e. the ith attack has succeeded, then let Te[s] = Te[s − 1], and go to the next e.
Otherwise, do the following:

(1) If region(e) is currently undefined, pick a fresh follower for it.
(2) If there is currently no e-pending attack, we set Te[s] = Te[s − 1] and

begin a new attack by doing the following. Pick the least i such that ξei ↑,
and start the ith attack. We pick fresh followers for ξei and uei , and set
Ψ(ξei )[s] ↓= region(e) with use Te(1i−10)[s]. We initialize Rk, and set
Tk[s] = Full(Te(1i−10)[s]) for all e < k ≤ s. Declare i to be the attack of
Re that is now e-pending. Go to next stage.

(3) If there is a currently e-pending attack i, pick the action which applies:
(a) JW (ξei )[s] ↑: we set JW (ξei ) ↓= s with use uei , and set Te[s] = Te[s−1].

We initialize Rk and set Tk[s] = Full(Te(1i−10)[s]) for e < k ≤ s. Go
to the next stage.

(b) JW (ξei )[s] ↓, but for some σ ⊃ Te(1i−10)[s − 1], we have |V σe,ξei [s]| >
attempt(e, i). (All searches and computations are limited to a use and
a search time of s): hence there is some extension σ which gives us an
increase in the size of the trace. Do the following.
• Set Te(1i−10_ν)[s] = σ_ν for all ν, and Te(η)[s] = Te(η)[s− 1]

everywhere else.
• Increase the value of attempt(e, i) to |V σe,ξei [s]|.
• If attempt(e, i) is now at least as big as region(e), we initialize
Rk and set Tk[s] = Full(Te(1i−10)[s]) for all e < k ≤ s, and go
to the next stage. Otherwise we have to decide which attack is
going to be e-pending next: firstly, remove the e-pending status
from i. Next, pick the least j, if there is one, such that ξej ↓ and
JW (ξej ) ↑, and declare j to be e-pending.

(c) Neither (a) nor (b) holds: Do nothing, let Te[s] = Te[s− 1], and go to
the next e.

6.5. Verification. It follows directly from the steps in the construction that at each
stage s, the trees T0[s] ⊇ · · · ⊇ Ts[s] are all defined. Let A = lims→∞ Ts(∅)[s] ≤T ∅′
(by Lemma 6.2). It is obvious that if an attack i of Re is e-pending, then it remains
e-pending until either Re is initialized, or attempt(e, i) increases. This is the reason
why we have the “pending” status - to hold the construction through Te(1i−10) until
we are able to find a node extending Te(1i−10), with a larger trace size. We will
first show that all trees Te[s] will eventually stop changing:

Lemma 6.2. For each e, Re is initialized only finitely often, and Te[s] = Te for
some s.

Proof. We prove the above simultaneously by induction on e. Assume that s0 is a
stage where the statement holds for e′ < e. After s0, Re can only be initialized when
we are taking actions forRe−1. Since Te−1[s0] = Te−1, it follows thatRe−1 does not
begin any new attack after s0. Let u = max{ue−1

i [s0] : attack i of Re−1 eventually
begins}, and wait until Ws1�u= W�u. After stage s1, Re is never initialized.

Next, we argue that Te exists. Since Re is initialized only finitely often, let
r = lim region(e). Since every change in Te[s] corresponds to an increase in



BEYOND STRONG JUMP TRACEABILITY 37

attempt(e, i) for some attack i, it follows that if Te does not exist, then no at-
tack remains e-pending forever, and that all attacks of Re are eventually started.
We assume, contrary to the statement of the lemma, that this is the case. We let
x = lim supi∈N attempt(e, i), and we may also assume x < r (in fact, no attack i
ever attains attempt(e, i) = r), otherwise Re will be permanently satisfied. Then,
we claim that W is computable, for a contradiction. For each i, we can compute
W �uei as follow: run the construction, and wait until the first j ≥ i such that
attempt(e, j) = x, say at stage s2(i).

We claim thatWs2(i)�uei= W�uei is correct for almost all i: suppose thatWs2(i)�uei 6=
W�uei . Therefore JW (ξej )[t] ↑ for some t > s2(i) after the change in W . This means
that attack j must become e-pending eventually, and since no attack can be forever
e-pending, we must have attempt(e, j) > x. By the definition of x, the procedure
above to compute W can fail for only finitely many i’s. Hence W is computable,
and this contradiction shows that Te must exist. �

Fix a requirement Re. There is some attack i such that either attempt(e, i) ≥
lim region(e), or i is forever e-pending. Let i(e) denote this i. Note that i(e) denotes
the attack that has a successful run, i.e. either V Ae,ξe

i(e)
fails to trace JW (ξei(e)), or

has size larger than region(e). The following facts are not hard to verify:
(1) For every e, ξei(e) < ξe+1

i(e+1), since the former is always chosen before the
latter.

(2) For every e, A ⊃ Te(1i(e)−10).
(3) For each attack i of Re that is eventually started, we have ΨTe(1

i−10)(ξei ) =
r, where r = lim region(e).

Lemma 6.3. ΨA is an order, i.e. total, non-decreasing, unbounded.

Proof. From the facts above, we have for every e, ΨA(ξei(e)) = lim region(e). This
clearly means that ΨA is total, and unbounded. Next, we want to see that ΨX is
non-decreasing along any path X ∈ 2ω. Suppose Re enumerates the axiom 〈x, y, σ〉
at stage s; note that this only happens when Re is starting a new attack i, hence
Te(1i−10)[s] = σ ⊂ X.

SupposeRk enumerates a Ψ-axiom 〈x′, y′, σ′〉 at some stage t > s, where σ′ ⊂ X.
Since σ and σ′ are compatible this means that x′ > x. The only thing we have
to ensure, is that y′ ≥ y. If Rk was initialized between s and t, then y′ > y so
there is no problem. We may therefore assume that Rk was not initialized. Hence,
k ≯ e, and if k = e then σ′ ⊃ Te(1i)[t] = Te(1i)[s] has to be incompatible with σ
so that is impossible (because we start a new attack of Re at stage t). Lastly, if
k < e then because Te is always restarted above a branch of Tk which is k-pending,
we must have σ ⊃ Tk(1j−10)[s] for some pending j-attack of Rk at stage s. Since
a new attack of Rk is started at stage t, we must have σ′ ⊃ Tk(1j)[t] = Te(1j)[s]
incompatible with σ, again impossible. �

Lemma 6.4. All requirements are met.

Proof. Fix an e, and consider the i(e)th attack of Re. Let x = ξei(e), and r =

lim region(e) = ΨA(x). Note that |V Ae,x| ≥ |V
Te(1

i(e)−10)
e,x |, so if attempt(e, i(e)) ≥ r,

then |V Ae,x| ≥ r and we are done. Suppose not, i.e. i(e) is forever e-pending. We
must have JW (x) ↓ and receives the definition at a stage s, when i(e) is finally

e-pending. Hence JW (x) = s 6∈ V Te(1
i(e)−10)

e,x [t], where we have |V Te(1
i(e)−10)

e,x [t]| =
attempt(e, i(e))[s] at the previous stage t < s, where we increased attempt(e, i(e)).
Since A ⊃ Te(1i(e)−10), hence if s ∈ V Ae,x, then some σ where Te(1i(e)−10) ⊂ σ ⊂ A,
will return a successful search under step 3b in the construction at a later stage
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past s, which will again increase attempt(e, i(e)). This is not possible since i(e)
never loses its e-pending status after stage s. �

7. The degrees containing hyper jump traceable sets are not
downwards dense

In this section, we demonstrate yet another strange behaviour exhibited by the
degrees containing hyper jump traceable sets. One might expect that if a class
of degrees contains very little information, then every non-computable c.e. degree
would bound a member of that class. For instance, every non-computable c.e.
degree bounds a strongly jump traceable set A >T ∅. However, this is not true for
the hyper jump traceable sets - they are not downwards dense despite their strong
resemblance to the computable sets.

This is due to the fact that we have to consider non-computable functions, which
are slightly more tricky to deal with because they may change their mind in their
approximation. Such functions might in reality be eventually constant, but infin-
itely often will try and fool us into thinking that they are unbounded. An example
is the following function f with the approximation fs:

x = 0 1 2 3 4 5
f0(x) 1 2 3 4 5 6
f1(x) 1 1 2 3 4 5
f2(x) 1 1 1 2 3 4
f3(x) 1 1 1 1 2 3

Informally, a hyper jump traceable set A imposes a lot of negative restraint, so it
is difficult to get elements into the set. In this respect, A is very close to being
computable. Even though this is the case, the manner in which A allows numbers
to enter is a little bit more complicated than the other low sets such as K-trivials or
strongly jump traceable sets (both of these constructions can be described using cost
functions). Roughly speaking, elements can only enter A at certain “gap phases”
in which restraints on A are temporarily taken down; these windows of opportunity
are synchronized with changes in the approximation to functions such as f above.

As we have already seen, the construction of a non-computable hyper jump
traceable set (Theorem 4.3) is not compatible with making it promptly simple
(Theorem 5.1), because of this reason. Such a construction also does not seem to
be compatible with permitting below a given c.e. set B >T ∅, again due to the
same reason : when permission is given to us by B to change A, we might not be
able to do so because some function hW is currently telling us that it is a true order
function (hence imposing a large amount of A-restraint). There is no way for us to
figure out if it is lying or not, and when the opportunity for us to effect changes on
A passes, the opponent will then reveal the true form of hW . The resulting A-gap
which is opened is of no use to us for B-permission, though we could still use it to
make A non-computable. The failure of this strategy can be turned into a proof of
the following theorem.

Theorem 7.1. There is a c.e. set A >T ∅ such that for any set X, if ∅ <T X ≤T A,
then X is not hyper jump traceable.

An immediate corollary to this theorem, is that there is a single c.e. set which
forms a minimal pair with every hyper jump traceable set:

Corollary 7.2. There is a c.e. set A >T ∅, such that if X is hyper jump traceable,
then A and X forms a minimal pair.

Therefore, the hyper jump traceable c.e. sets are far away from being promptly
simple, in the sense that they can all be capped by a single c.e. set.
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7.1. Requirements. We build a coinfinite c.e. set A, and ensure that it is non-
computable via the usual simple requirements.

Pe : |We| =∞⇒ A ∩We 6= ∅,
Ne : If ΦAe is total, then either ΦAe = Xe is computable, or else Xe is not

hyper jump traceable.

Here, Φe denotes the eth Turing reduction. The stage s use of the computation
ΦAe (x) is denoted by ϕe(x, s). At each requirement Ne, we will build a c.e. set
C and a Turing functional h, for the sake of demonstrating that Xe is not hyper
jump traceable. We ensure that hC is non-decreasing, and will ultimately be to-
tal and unbounded unless Xe is computable. Consider an effective enumeration
{T0,x}x∈N, {T1,x}x∈N, · · · of all possible traces with an oracle. We split Ne into
the subrequirements Ne,0,Ne,1, where Ne,i will try and diagonalize against the ith

trace:

Ne,i : if Xe >T ∅, then for some x, either |TCi,x| ≥ hC(x), or JXe(x) ↓6∈ TCi,x.

7.2. Description of strategy. We first outline the basic strategy used to satisfy
a single Ne,i requirement, which has to diagonalize the ith trace {TCi,x}. Suppose
Ne,i wants to try and make |TCi,x| ≥ 2 for some x, where C is built at the main
requirement Ne. The naive try would be to do the following. We pick some x0,
and set JXe(x0) ↓= s with Xe-use j0, and wait for the value s to be traced in
TCi,x0

. When s shows up in TCi,x0
, we would then define R�j0= Xe�j0 where R is the

procedure we are building to compute Xe. We would then repeat the above with a
larger j1 > j0 and a different x1 > x0. At the end of the day if Xe�jn never changes
after R�jn is set, then R correctly computes Xe; on the other hand if Xe�jn changes
on some jn we could go back and define JXe(xn) ↓= a new value, and we would be
able to meet Ne,i.

The above strategy works well when considering Ne,i in isolation, but cannot
possibly work when combined with other Ne,j ’s. This is because we had not made
use of the fact that Xe ≤T A - indeed we are trying to show that there can be no
hyper jump traceable set. The problem shows up when the opponent takes a long
time to trace JXe(x0) into TCi,x0

; in fact the opponent can delay responding until
we define hC(y) ↓= 3 for some y > x0, say with C-use u(y). He would then trace
JXe(x0) into TCi,x0

with a C-use larger than u(y). When we pick a new x1 > y and
j1 and repeat the above, we would have to define hC(x1) = 2; in order to do that
we have to enumerate u(y) into C and clear the opponent’s trace TCi,x0

at the same
time. Thus even if Xe changes below j0 in future, we will not be able to benefit
from it.

The fortunate thing is that we do not need to consider arbitrary Xe, only those
Xe below A. When we set R�jn we could actually freeze A�ϕe(jn) at the same time,
so that Xe�jn will not change. However we need to arrange for the A-restraint to
be dropped infinitely often, since the restraint might →∞ in the case when Xe is
computable. The following are the steps for doing this, at the nth cycle:
Step 1: set JXe(xn) ↓ with use jn, and wait for the trace to appear in TCi,xn . When

it appears, we open up a gap by dropping all A-restraint. Go to step 2.
Step 2: we close the gap by doing the following. Check if Xe�jn has changed during

the gap open phase. If yes, then success is achieved for Ne,i. If not, we
compute R�jn= Xe�jn , and re-impose A-restraint. Start the n + 1th cycle
from step 1 with a larger jn+1, xn+1.

Thus if only finitely many gaps are opened, then when the last gap is closed we
have the desired Xe-change. If infinitely many gaps are opened and closed, then
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R computes Xe correctly. On a construction tree, we can arrange things so that
restraint is dropped at infinitely many stages. Note the similarity between this
strategy, and the one used in Theorem 5.1. In both cases we wait for the opponent
to respond with a trace on an index xn. When that happens, we challenge the
opponent to change Xe. If the opponent refuses to respond with a Xe-change we
will abandon this index xn and never return to it. In Theorem 5.1 we never need to
return to an abandoned index since a prompt change in Xe is guaranteed. In our
case here, we can impose restraint and force Xe to change only during gap phases -
even though the indices which were abandoned previously cannot benefit from this
change, we make sure that the one which is currently active can benefit from the
change.

We now describe the strategy in the general case. Assume first of all that Xe is
c.e.. We start by picking a number k and x0, and set hC(x0) ↓= k. We now need
to have k many consecutive gap phases in which Xe changes. Each run of attempts
is called a cycle. We will need to have k many attempts R1, · · · , Rk at computing
Xe, and have restraint functions r1, · · · , rk for each of these procedures.

We start a new cycle by picking a fresh follower x. This follower is used through-
out the current cycle, and will only be abandoned when the current cycle is ended
and a new one begins. We start by running the basic strategy and waiting for it
to return. That is, we wait for JXe(x) to show up in TCi,x. When that happens, we
open up a 1-gap by dropping restraint r1. At the next expansionary stage, we close
the 1-gap by the following: if there had been no Xe change below the use, then we
extend the procedure R1 and re-impose the r1-restraint. We end the current cycle
and start a new one. If there had been a change then we run the basic strategy
again with r2, R2 in place of r1, R1, since we are now able to set a new JXe(x)
axiom. This continues on until either we get k consecutive gap phases in this cur-
rent cycle (and hence |TCi,x| ≥ k), or else some k′-gap is closed with no Xe-change,
ending the cycle.

If a single subrequirement Ne,i of Ne opens and closes infinitely many gaps, then
Xe would be computable. If k′ is the largest number such that infinitely many
k′-gaps are opened and closed, then Rk′ is total and computes Xe correctly. In
this case Ne,i actually abandons infinitely many indices making hC into a constant
function. This is how we exploit such order functions to our advantage - infinitely
often it will appear to the opponent that it is a real order.

Now let us consider the general situation when Xe is ∆0
2. For simplicity we will

only describe what goes on in cycles which only require two consecutive gap phases
in which Xe changes. We will construct procedures R1, R2, and restraints r1, r2
just as in the c.e. case. Each time a 1-gap is closed, we have the two cases (as
before): either no Xe-change (in which case we extend R1, r1 and end the cycle),
or else there is an Xe-change (in which case we carry on with a 2-gap). However,
when a 2-gap is closed, the opponent has one extra option. He could now recover
Xe back to the use of the computation enumerated earlier before the 1-gap opened.
Thus, the follower x would now be useless, since we are unable to enumerate a new
(third) computation for JXe(x).

The important point to note is that should this happen (say at stage t), then we
will have Xe,t ⊃ R1 again. We could then end the current cycle, and we would have
made progress because R1 is currently correct. Also, R2 is never extended unless
a 2-gap is closed with no Xe-change. Hence R2[t] ⊆ R1[t] ⊂ Xe,t is correct as well.
Hence if infinitely many cycles are ended with R2 being extended, then R2 is total
and computes Xe correctly. On the other hand if lim |R2| < ∞, then almost all
cycles will be ended with a recovery of Xe back to a previous configuration. In this
case, R1 will be total and computes Xe correctly.
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We illustrate the above with an example. Suppose at stage s1, we have R2[s1] =
σ ⊂ R1[s1] = ρ. We have currently started a new cycle with a computation with
use η1 ⊃ ρ. Suppose this computation shows up in the trace, and we then open a
1-gap. When the 1-gap is closed, we found that Xe has changed. We then challenge
the opponent with a new computation with use η2. Note that at this stage we had
only opened a 1-gap but not a 2-gap so that η2 and ρ are incompatible extensions
of σ:

R2[s1]

σ

R1[s1]

ρ
η1aaaaaaaaaa η2

When the opponent returns by tracing the new computation, we will open up a
2-gap. Note that during the 2-gap, Xe can change even below σ. When the 2-gap
is closed at stage s2, there are three possibilities:

(1) No Xe-change, that is Xe,s2 ⊃ η2. Then, we extend R2[s2] = η2, and
restart R1 above η2. End the cycle.

(2) Xe returns to the previous use, i.e. Xe,s2 ⊃ η1. Then, we extend R1[s1] =
η1. End the cycle. Note that R2 is unchanged by this action.

(3) Otherwise. Then, Xe,s2 is new and we can enumerate a new computa-
tion with that use. The node can now stop acting, having completed the
diagonalization successfully.

Note that R1 and R2 are always built by extension (unless R1 is restarted due to
R2 injuring it). Hence one of the two will be total computable, and computes Xe

correctly. In general, if n-gaps are opened infinitely often, then one of R1, · · · , Rn
will be total and computes Xe correctly.

7.3. Construction tree layout. The construction takes place on an infinite branch-
ing tree. Nodes of even length |α| = 2e are assigned the requirement Pe with a
single outcome 0. Nodes of length |α| = 2〈e, i〉+ 1 are assigned the requirement Ne
if i = 0, and the subrequirement Ne,i−1 if i > 0. Nodes assigned the requirement
Ne have two outcomes ∞ <left f . They stand respectively for infinitely many, and
finitely many expansionary stages. The subrequirement Ne,i of Ne has infinitely
many outcomes f >left 1 >left 2 >left · · · , with order type ω∗. The rightmost
outcome f represents the fact that Xe is non-computable and hence diagonaliza-
tion will have to succeed, while the outcome n to the left of f represents the fact
that Xe is computable via one of the attempts R1, R2, · · · , Rn at computing it.
The reason why we label the outcomes as such is because during the construction,
Ne,i will make a few attempts at computing Xe; each time it plays outcome n we
make progress on one of the attempts R1, R2, · · · , Rn. Note that we also identify
outcome f with the natural number 0, so as to keep the notations consistent.

We order nodes on the tree lexicographically: denote α <left β to mean that α
is strictly to the left of β (i.e. there is some i < min{|α|, |β|} such that α�i= β�i
and α(i) <left β(i)). We say that α is a Q-node if α is assigned the requirement
Q. α is a positive node, if α is a Pe-node for some e. We say that α is a top node, if
α is an Ne-node for some e, and that α is an i-bottom node of τ if α is an Ne,i-node
for some e, i, and τ ⊂ α where τ is an Ne-node. If α is a bottom node, then τ(α)
denotes the (unique) top node τ such that α is a bottom node of τ . Note that in
order to keep the labeling of nodes simple, we had actually allowed some nodes to
be given a label for which it never needs to act. Therefore, we need to specify when
a bottom node α is an active node: if α ⊃ τ(α)_∞, and for every τ(α)-bottom
node β such that β ⊂ α, we also have β_f ⊂ α. Bottom nodes which are not
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active does nothing in the construction, and will always play the outcome f when
visited.

7.4. Notations. Let α be an active Ne,i-node, and τ = τ(α). We measure the
length of convergence at the mother node τ :

lτ [s] := max{y < s | (∀x < y)ΦAe (x)[s] ↓}.

α will act each time lτ [s] gets long enough, at τ -expansionary stages. At the node
τ we build a c.e. set Cτ and a Turing functional hτ 9. The Cτ -use of an enumerated
hτ (x)-axiom (if it still applies at stage s) is denoted by uτ (x, s).
α works by first picking a number regionα. It will also pick a number xα, and

then set hCττ (xα) ↓= regionα. In this current run, α will attempt to diagonalize
against the ith trace by focussing on TCτi,xα . xα is picked from an infinite list of
indices, given by the Recursion Theorem, which we will use to control JXe(xα).
α will also pick a number jα, which denotes the length of Xe such that α will
enumerate JXe(xα)-computations with that much use. The parameter attemptα
will record how successful α is in diagonalization - this keeps track of at least
how many elements are currently in TCτi,xα . At the same time, α will be trying
to build several effective procedures to compute Xe. More specifically, it will be
simultaneously building at any one time, regionα many procedures to compute Xe,
and imposing various restraints for each of these procedures. These procedures are
denoted by Rα,1, Rα,2, · · · , which should be viewed as finite strings. Let rα,n denote
the A-restraint function imposed for the nth procedure Rα,n. Finally, we let Fα
denote the state of α’s strategy. This may be 0 (which means that α has not yet
started on its strategy), 1 (which means that α is waiting for a number to appear
in the trace), or 2 (which signifies that α has opened a certain A-gap).

A stage s is τ -expansionary, if either s = 0, or else
(1) τ is visited at stage s of the construction,
(2) lτ [s] > lτ [s−] where s− is the previous τ -expansionary stage, and
(3) lτ [s] > jβ for every active τ -bottom node β.

When we initialize a bottom node α, we set regionα, attemptα, xα and jα undefined,
and set Fα = 0, rα,n = 0 and Rα,n = ∅ for all n. When we initialize a top node τ ,
we set Cτ = ∅, remove all axioms in hτ , and initialize all τ -bottom nodes. During
the construction, we will enumerate axioms for JXe(x). The index x is chosen from
an infinite list of indices given to us by the Recursion Theorem. When we say at
a certain stage s, that JXe(x)[s] ↓, we mean that there is an axiom (previously
enumerated), that currently apply at stage s.

7.5. The construction. At stage s = 0, initialize all nodes, and do nothing.
Let s > 0. We build the stage s approximation to the true path, δs of length s
inductively. Assume that α = δs�d has been defined for d < s. There are three
possibilities for α.

(1) α is a Pe-node: let δs(d) = 0, and if We,s ∩As 6= ∅ do nothing. Otherwise,
check if there is some x ∈We,s, where x > 2e, x > max{t < s | δt <left α},
and for each bottom node β ⊂ α, we have x > max{rβ,n | n <left α(|β|)}.
If such an x exists, enumerate the least such into A and initialize all nodes
β ⊃ α.

(2) α is an Ne-node: if s is α-expansionary, let δs(d) = ∞. Otherwise let
δs(d) = f .

9We use lowercase hτ even though it is a Turing functional; this is to respect the fact that hCττ
is intended to be an order function.
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(3) α is an Ne,i node: let τ = τ(α). If attemptα = regionα or α is not active,
then we do nothing. Otherwise, take the relevant action below based on
Fα:
(a) Fα = 0: pick fresh numbers for regionα, xα and jα. Set attemptα =

0. For all x′ ≤ xα for which no hCττ -axioms currently apply, set
hCττ (x′)[s] ↓= regionα with a fresh use uτ (x′, s). Also set Fα = 1.

(b) Fα = 1: there are three possibilities.
(i) JXe(xα)[s] ↑: we set JXe(xα)[s] ↓= attemptα + 1 with use σ,

where σ = Xe,s�jα . Set rα,attemptα+1 = ϕe(jα, s).
(ii) JXe(xα)[s] ↓ and appears in TCτi,xα : set Fα = 2, and open up an

A-gap by letting δs(d) = attemptα + 1. We also call this action
opening a k-gap, where k = attemptα + 1.

(iii) otherwise: do nothing since we are waiting for JXe(xα) to get
traced.

(c) Fα = 2: let s− be the previous visit to α. Close the A-gap, and take
the appropriate actions listed below. There are three possibilities.

(i) Xe,s�jα= Xe,s−�jα : (i.e. Xe recovers). We now have to abandon
the current value of xα. To do that, we first enumerate uτ (xα, s)
into Cτ to clear all relevant axioms, and then pick a fresh value
for xα. For all x′ ≤ the newly chosen xα for which no hCττ -
axioms currently apply, set hCττ (x′)[s] ↓= regionα with a fresh
use uτ (x′, s).
Next, set rα,attemptα+1 = ϕe(jα, s), and set Rα,attemptα+1 =
Xe,s�jα . Reset attemptα = 0, pick a fresh value for jα, and set
Fα = 1.

(ii) JXe(xα)[s] ↓ : (i.e. Xe goes back to a previous configuration).
Pick a fresh xα and adjust hCττ as in 3(c)(i) above. Extend
Rα,k = Xe,s�jα , where k = JXe(xα)[s]. Also set rα,k′ = ϕe(jα, s)
for all k′ such that k ≤ k′ ≤ attemptα + 1, since such a k′-gap
has been recently opened, and the restraint has to be updated.
Reset attemptα = 0, pick a fresh value for jα, and set Fα = 1.

(iii) otherwise: set rα,attemptα+1 = ϕe(jα, s). Increase attemptα by
1, and set Fα = 1. Pick a fresh value for jα.

In all cases other than 3(b)(ii), the outcome played is f , where all restraints
rα,n will be held.

This ends the definition for δs. At the end of stage s, initialize all nodes β >left δs.
This completes the construction.

7.6. Verification. Define the true path of the construction TP , by the following:
for all n, TP�n is visited infinitely often, and δt <left TP�n only finitely often. Note
that TP exists: this is because if α is an active bottom node, then the only outcomes
it can play when visited at a stage s must be one of {f, 1, 2, · · · , regionα[s]}, and
regionα is reassigned only if α is initialized. Also, it is obvious that every node α
on TP is initialized only finitely often, so we let true(α) be the least stage t such
that α is visited at stage t, and α is never initialized after stage t.

Lemma 7.3. A is non-computable.

Proof. Firstly observe that if β is a bottom node on TP , then it can increase rβ,n
at a stage s either under step 3(b)(i), or under step 3(c) of the construction. In
the latter case it must be that some outcome ≤left n was played at the previous
visit to β. In the former case, if s > true(β), then nothing happens until the next
A-gap is opened by β, where outcome n will be played. Thus each positive node α
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on the true path has to obey only a finite amount of restraint on A, and so A is
non-computable. �

The next fact to establish, is that for all e, requirement Ne is satisfied. Let τ be
an Ne-node on TP , and suppose that ΦAe = Xe is non-computable. There must be
infinitely many τ -expansionary stages because all τ -bottom nodes ⊃ τ_f are not
active. Hence τ has true outcome ∞. We show that every τ -bottom node α on TP
must have true outcome f :

Lemma 7.4. Suppose α is a τ -bottom node on TP , with true outcome o <left f .
Then, Xe is computable (contrary to assumption).

Proof. Let s0 = true(α_o). Firstly, observe that after stage s0, we must always
have attemptα < o. Suppose not - then at some stage when an o-gap is closed,
we increase attemptα to the value o under step 3(c)(iii) of the construction. Since
outcome o + 1 cannot be played after stage s0, it follows that Fα stays forever at
1 and thus outcome o is never played again - a contradiction. Thus, attemptα is
always < o.

At each stage s > s0 such that outcome o is played, we have an opening of an
o-gap. At the next visit to α, the o-gap opened at stage s will be closed. Thus, we
have jα →∞. Furthermore each o-gap can only be closed under step 3(c)(i) or (ii).
Hence, there is some largest n ≤ o such that |Rα,n[t]| → ∞. We may thus assume
that s0 is large enough so that no Rα,m is reassigned after s0, for all m > n.

Claim 7.5. Suppose that s1 > s0 is a stage in which Rα,n is assigned the value σ.
Then, σ ⊂ Xe.

Proof of claim. Suppose s1 and σ are as above. We show by an induction, that if
an n-gap is opened at any stage s2 > s1, then we must have

(I1) Xe,s2 ⊃ σ, and
(I2) any axioms of the form Jρ(xα)[s2] = k enumerated by stage s2, must satisfy

k ≤ n and ρ ⊃ σ.
This is enough to guarantee that σ ⊂ Xe by (I1), since ΦAe is total. At stage s1

when Rα,n is assigned, it must also be that a “cycle” is ended, i.e. attemptα is set
to 0. Thus when the next n-gap is opened, we must have Xe,t ⊃ σ, which proves
the base case for (I1). As for (I2), note that Xe,s1�|σ| is preserved from s1 until the
next n-gap is opened, and hence any computation set in the meantime must have
use ρ ⊃ σ.

Now consider an arbitrary s2 > s1 such that an n-gap is opened at stage s2, and
assume (I1) and (I2) holds. Let s3 > s2 be the next time an n-gap is opened, our
task is to show firstly that σ ⊂ Xe,s3 .

This current cycle must end at some stage t, where s2 < t < s3, with the
closing of a k′-gap, for some k′ ≥ n and attemptα reset to 0. Consider the action
taken when the cycle ends. Either step 3(c)(i) or (ii) applies to close the k′-gap. If
3(c)(i) applies, then k′ = n because Rα,n+1, Rα,n+2, · · · are not reassigned anymore.
But then the restraint rα,n is updated and protects Xe,t�|σ| until the next n-gap
is opened at s3, and hence σ ⊂ Xe,s3 . Suppose that 3(c)(ii) applies at stage
t. Thus we return to a previous configuration, and Jρ(xα)[t] ↓= k where ρ ⊂
Xe,t. Clearly k ≤ n because again, Rα,n+1, Rα,n+2, · · · are not reassigned anymore.
Hence Jρ(xα)[s2] = Jρ(xα)[t] = k must have been enumerated before stage s2, and
from (I2), we know that ρ ⊃ σ. The restraint rα,n is updated at the end of the
cycle at stage t, which preserves Xe,t ⊃ σ until stage s3. In either case we have
σ ⊂ Xe,s3 .

Next, we have to show (I2). Note that any such computation has to be set at
some stage between t and s3, where the corresponding use ρ must be the current
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approximation of Xe. However after stage t, the segment Xe,t�|σ| is protected until
s3, so clearly ρ ⊃ σ. �

To compute Xe(p), wait until the least stage t > s0 such that |Rα,n[t]| > p.
Then, Rα,n(p)[t] = Xe(p). �

Lemma 7.6. hCττ is total, non-decreasing and unbounded, and for each τ -bottom
node α on TP , hCττ (limxα) ↓= lim regionα.

Proof. For each τ -bottom node α on TP , we have xα and regionα eventually settles
at some values x and r respectively. It is clear also that hCττ (x) ↓= r, because after
α sets the hCττ (x)-axiom, no other τ -bottom node β ⊂ α can enumerate below uτ (x)
lest β opens some gap in future, which would cause α to be initialized. Also β 6⊃ α
and β 6>left α because otherwise β will set its Cτ -use uτ (xβ) after α does. Lastly
β 6= α since xα has settled.

No inconsistent hτ -axioms are ever enumerated. hCττ is total because there are in-
finitely many active τ -bottom nodes along TP , by Lemma 7.4. It is non-decreasing
because axioms set under 3(a) are done so with a fresh region-value, while in 3(c)(i)
and (ii), old axioms are first canceled before new ones replace them. �

Lemma 7.7. Xe is not hyper jump traceable.

Proof. Let α be an Ne,i-node on TP , and let x = limxα and r = lim regionα. Let
a = lim attemptα, which also has to settle since only finitely many gaps are opened
by α. We can easily see that |TCτi,x | ≥ a because each time we increase attemptα
after true(α) we must have a new value appearing in TCτi,xα , whose axiom will never
be removed after it shows up (unless removed by α itself). Hence if a = r, then we
are done, so suppose that a < r. After α increases attemptα for the last time it
will be put back to state Fα = 1. It is clear that JXe(x) ↓, since Xe�jα is forever
preserved. It also follows that JXe(x) 6∈ TCτi,x since the value a has already been
attained by attemptα. �

Many questions regarding the class H remain open. For instance, it is not known
if H forms an ideal. Since the relation SJT is not a true relativization, one cannot
directly relativize the proof that the strongly jump traceable c.e. sets are closed
under ⊕. A more direct approach is needed, and we expect that the box promotion
methods in Cholak, Downey and Greenberg [4] would be useful. It is also not known
if every hyper jump traceable set is bounded by a c.e. one, or if there is a c.e. hyper
jump traceable set which is low2 cuppable. In a different vein, we can also ask if H
can be characterized in terms of a randomness-theoretic property. For instance, is
there a class of sets C such that H is exactly the class of c.e. sets which are below
every Martin-Löf member of C?
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