
1

Autonomous Deployment for Load Balancing
k-Surface Coverage in Sensor Networks∗

Feng Li, Jun Luo, Wenping Wang, and Ying He

Abstract—Although the problem of k-area coverage has
been intensively investigated for dense wireless sensor networks
(WSNs), how to arrive at a k-coverage sensor deployment
that optimizes certain objectives in relatively sparse WSNs
still faces both theoretical and practical difficulties. Moreover,
only a handful of centralized algorithms have been proposed
to elevate 2D area coverage to 3D surface coverage. In this
paper, we present a practical algorithm APOLLO (Autonomous
dePlOyment for Load baLancing k-surface cOverage) to move
sensor nodes toward k-surface coverage, aiming at minimizing
the maximum sensing range required by the nodes. APOLLO
enables purely autonomous node deployment as it only entails
localized computations. We prove the termination of the algo-
rithm, as well as the (local) optimality of the output. We also
show that our optimization objective is closely related to other
frequently considered objectives for 2D area coverage. Therefore,
our practical algorithm design also contributes to the theoretical
understanding of the 2D k-area coverage problem. Finally, we
use extensive simulation results to both confirm our theoretical
claims and demonstrate the efficacy of APOLLO.

Index Terms—Wireless sensor networks, autonomous deploy-
ment, k-area/surface coverage, load balancing.

I. INTRODUCTION

One of the major functions of wireless sensor networks
(WSNs) is to monitor a certain area in terms of whatever
physical quantities demanded by applications [2]. In achieving
this goal, a basic requirement imposed onto WSNs is their
area/surface coverage:1 it indicates the monitoring quality
of WSNs. Whereas many research proposals focus on either
analyzing the performance of static sensor deployments (e.g.,
[5], [25]) or scheduling sensor activity to retain the coverage of
given deployments (e.g., [33], [45]), there exists an unfailing
trend in seeking autonomous deployments assisted by mobile
sensor nodes to arrive at certain predefined objectives (e.g.,
[6], [34]). Our proposal in this paper falls into this later trend.

Due to the vulnerability of sensor nodes, multiple-coverage
(k-coverage) is often applied to enhance the fault tolerance

The preliminary conference version of this paper has been published by
IEEE ICDCS 2012 [28], where our focus was only on 2D k-area coverage.
In this paper, we generalize [28] to 3D k-surface coverage. This work is
supported in part by AcRF Tier 2 Grant ARC15/11.

Feng Li, Jun Luo, and Ying He are with School of Computer Engi-
neering, Nanyang Technological University, Singapore. E-mail: {fli3, junluo,
yhe}@ntu.edu.sg

Wenping Wang is with Department of Computer Science, The University
of Hong Kong, China. E-mail: wenping@cs.hku.hk

1For WSNs deployed on 2D planes, we only focus on approaches concern-
ing area coverage (e.g., [5], [25]), as opposed to the point coverage (e.g., [8],
[14], [44]). Surface coverage is an elevation of area coverage from 2D planes
to 3D surfaces (terrains), making the deployment more useful in practice (e.g.,
for monitoring volcanos).

in face of node failures (e.g., [5], [45]). In addition, k-
coverage may yield higher sensing accuracy through data
fusion [13]. Existing approaches in achieving k-coverage rely
on either randomized (e.g., [15], [25]) or regular (e.g., [3],
[5]) deployments. Whereas randomized deployments require a
substantially denser network (e.g., [15], [25]), regular deploy-
ments serve only as theoretical guidelines [3], [5] as they often
require centralized coordinations and may not accommodate
irregular network regions. Also, if the physical phenomena
under surveillance change, the cost for re-deployment can
be huge. Therefore, autonomous deployments, when movable
nodes [10] are available, are good complements to the ran-
domized or regular deployments: they may achieve a density
comparable to that of regular deployments, while being more
adaptive to irregularity and variations of the network regions.

However, existing techniques for autonomous deployments
may only handle 1-coverage, and extending them to k-
coverage is highly nontrivial. First of all, autonomous de-
ployments through (node) motion control require each node
to compute its coverage in a localized manner (i.e., relying
as much as possible on close-by nodes). Although quite a
few localized algorithms have been proposed to perform such
computations for 1-coverage (e.g., [7], [34]), no algorithm,
to the best of our knowledge, exists for localized k-coverage
computations. Secondly, even if the k-coverage computations
can be performed locally, there is no guarantee whether a
motion control strategy may converge, due to the significant
difference between 1-coverage and k-coverage. Thirdly, ex-
isting approaches are almost heuristics that offer no provable
guarantee on the quality of the eventual deployment. Finally,
as indicated in [43], extending 2D area coverage to 3D surface
coverage for WSNs deployed on 3D terrains may incur new
challenges even for 1-coverage. By far, only a handful of
proposals employ (partially) centralized algorithms to handle
the deployment for 1-surface coverage [18], [43]; no pure
autonomous deployment mechanism has ever been proposed.
These are exactly the problems we want to tackle in our paper.

In this paper, we consider the problem of moving sensor
nodes towards k-coverage. In particular, we assume that n-
odes have tunable sensing ranges and are randomly deployed
initially. Our goal is to cover a certain monitored area or
surface to the extent that every point in this area/surface is
at least monitored by k sensor nodes and that the maximum
sensing range used by the nodes is minimized. As a larger
sensing range implies a larger energy consumption of a node,
our APOLLO (Autonomous dePlOyment for Load baLancing
k-surface cOverage) approach aims at balancing the sensing
load (thus prolonging network lifetime) while guaranteeing

2

k-coverage, with the help of mobile nodes. The main contri-
butions we are making in this paper are:

• We design the APOLLO algorithm such that it executes
in a localized manner, i.e., relying only on information
from close-by nodes.

• We prove the termination of APOLLO as well as the
(local) optimality of its output.

• We discuss the relation between APOLLO and other com-
monly used optimization objectives for 2D area coverage,
which provides a better understanding of optimal k-
coverage deployments whose theoretical characterizations
are hard to obtain under general settings.

• We show that, by using geodesic distance [9] to replace
the conventional Euclidean metric, APOLLO can be
naturally extended to handle autonomous deployments on
3D surfaces.

• Since motion and communication cost cannot be neglect-
ed, our algorithm allows for a tradeoff between the two
factors. Through extensive simulations driven by realistic
power consumption data, we show that the existing hard-
ware platform can afford the energy consumption of our
algorithm in terms of motion and communication.

To the best of our knowledge, we are the first to tackle the
problem of k-coverage autonomous deployment, for both 2D
areas and 3D surfaces.

The remaining of our paper is organized as follows. We
briefly survey the closely related literature in Sec. II. We
formally define our model and problem in Sec. III, in which
we also review the basic mathematical tools we need in our
later algorithm design. In Sec. IV, we present our APOLLO
algorithm for 2D k-area coverage and analyze its performance,
we also interpret our solution with respect to other optimiza-
tion frameworks. We then extend APOLLO to handle 3D k-
surface coverage in Sec. V. The efficacy of APOLLO is further
confirmed by extensive simulation results reported in Sec. VI.
We finally conclude our paper in Sec. VII.

II. RELATED WORK

Before surveying the proposals related to area/surface cov-
erage and mobile assisted autonomous deployment, we first
review another interesting topics, point (or target) coverage
and area coverage with random deployments, from which we
may gain some hints for our proposal. Point coverage problem
has been extensively studied in the past decade. Besides
providing coverage service, their another concern is the limited
energy supply of sensor nodes. Given a random deployment
with static sensor nodes, they either divide the nodes into
multiple sets and schedule the duties of these set (e.g. [8],
[11], [44]), or minimize the number of the active sensor nodes
(e.g., [14]), to guarantee the network lifetime. The energy
limitation is also taken into account in area coverage with
random deployments, e.g. [21], [25], [38], [41], [45]. Inspired
by them, maximizing the network lifetime is also one of the
main objectives of our proposal but in a quite different way.

The static and deterministic area coverage problem is es-
sentially a geometry problem; the results for 1-coverage with
a minimum number of nodes can be directly taken from

pure mathematical research [22]. In later research proposals
for WSN coverage, the focus is more on minimum node
1-coverage with certain connectivity requirement (e.g., [4],
[5], [19]). While it is known that a 1-covered WSN is also
connected if the transmission range Rt and the sensing range
Rs satisfy Rt ≥

√
3Rs, a strip-based deployment strategy is

proposed in [19] for other values of Rt, which is proven to
be asymptotically optimal in [4]. In fact, more strips allows
higher degree of connectivity (or k-connectivity).

Compared with k-connectivity, the progress on k-coverage
appears to be relatively slower. A few 3-coverage heuristics
that aim at bounding the minimum separation among sensor
nodes is proposed in [23]; the paper also shows that bounding
the min-separation may lead to lower coverage redundancy and
is hence a good approximation to minimum node 3-coverage.
To the best of our knowledge, the only optimality result in
terms of minimum node k-coverage is presented in [5], where
k = 2. It appears that minimum node k-coverage (for k > 2)
is better to be tackled indirectly due to its hardness. As we will
show in Sec. IV-C, our objective of a k-coverage with mini-
max sensing range may also imply minimum node k-coverage.
Deploying WSNs for k-coverage using mobile nodes is also
reported in [3], [36], but their approaches are not autonomous
as they all rely on a “blueprint” to guide the node mobility.

Considering that a WSN can be deployed on a 3D terrain
for some application scenario, the surface coverage problem
has also been investigated. Zhao et al. [24], [43] show that
extending just 1-area coverage to 1-surface coverage already
poses great challenges, and they provide approximation algo-
rithms to the resulting NP-complete problem. Recently, Jin et
al. [18] applies Centroid Voronoi Tessellation (CVT) [12] and
discrete Ricci flow [17] to obtain some form of optimal surface
1-coverage by defining sensing range upon geodesic distance.
However, the discrete Ricci flow is a global parametrization
process, so the motion control cannot be implemented in a
distributed manner using only local information.

Our work is also related to the sensing heterogeneity issue
[6], [35]. Unlike the previous proposals that aim to cope
with sensing heterogeneity or evaluate its impact, we actively
exploit the sensing heterogeneity to construct our algorithm
that guides the autonomous deployment.

III. PROBLEM DEFINITION AND MATHEMATICAL
BACKGROUND

In this section, we first present the system model and define
our optimization problem, and then introduce the relevant
mathematical basics. To simplify the exposition, the above
discussions are all for 2D plane with Euclidean metric. We
then show that a 2D plane can be straightforwardly generalized
to a 3D surface by replacing Euclidean metric with geodesic
distance, and we also introduce the mathematical tools to
perform this map locally.

A. System Model

We assume a WSN consisting of a set N = {n1, · · · , nN}
of sensor nodes, and |N | = N . Let U = {u1, · · · , uN} denote
the locations of sensor nodes. The nodes are initially deployed
arbitrarily on a 2D targeted area A. Each node ni is equipped

3

with certain mechanisms (e.g., motors plus wheels) that allow
it to gradually change its location ui [10]. We also suppose
that nodes are equipped with bumper sensors to detect and
avoid obstacles in the targeted area [30]. All nodes have an
identical transmission range γ, and we denote by N (ni) =
{nj |∥ui − uj∥2 ≤ γ, i ̸= j} the one-hop neighbors of ni.

We define the omnidirectional sensing model as a disk
centered at ui with sensing range ri. We assume the sens-
ing ranges are adjustable according to different application
requirements [42], [45]. A point v ∈ A is said to be covered by
node ni iff the Euclidean distance between v and node location
ui is no longer than ri, i.e., ∥v−ui∥2 ≤ ri. We use f(v, ui, ri)
to indicate if v is covered by node ni: f(v, ui, ri) = 1 if v
is covered by ni; otherwise, f(v, ui, ri) = 0. We apply the
MDS-based technique [30] that relies on the ranging ability
of each node to construct a local coordinate system for motion
control, but we do not require global location information as
it is immaterial to our algorithm.

In terms of energy cost, we consider only the cost induced
by the sensing activities of a node. Because our network de-
ployment strategy aims to achieve a constant (and long-term)
coverage by moving sensor nodes in the initial phase, the com-
munication cost becomes negligible as the data transmission
activities only take place sporadically, while the energy spent
in moving is only a one-time investment. We assume that the
energy consumed by a sensor node ni is an increasing function
E(ri) of its sensing range ri, and this function is identical for
all nodes. In other words, with a certain amount of energy
E(ri), ni can only cover the points {v ∈ A|∥v − ui∥2 ≤ ri}.

B. Problem Formulation

The node locations and sensing ranges define a network
deployment with a certain coverage.

Definition 1. A network deployment {ui, ri} is said to achieve
k-coverage iff for any point v ∈ A, there exist at least k sensor
nodes covering it, or

∑
i f(v, ui, ri) ≥ k.

To allow the sensor nodes k-cover the targeted area, we
divide A into several disjoint areas {Ak

j }j=1,2,..., and at least
k sensor nodes are allocated to take care of each area. In other
words, each sensor node ni takes care of multiple subareas,
and we indicate this covering relation by ni(Ak

j): it equals 1
if ni covers Ak

j ; otherwise 0. We also denote by Ak
ni

the area
covered by ni: we have Ak

ni
=

∪
ni(Ak

j)=1Ak
j . The sensing

range ri of ni is determined by the farthest point in Ak
ni

from
ui, i.e., ri = maxv∈Ak

ni
∥v − ui∥2, so that Ak

ni
can be totally

covered by ni.
Our k-coverage sensor deployment problem (k-CSDP) can

be formulated as follows.

minimize
{ui},{Ak

j },{ni(Ak
j)}

R (1)

subject to
∑N

i=1f(v, ui, ri) ≥ k, ∀v ∈ A (2)
∥v − ui∥2 ≤ R, ∀i, v ∈ Ak

ni
(3)

Ak
j1

∩
Ak

j2 = ∅,
∪

jAk
j = A (4)

Literally, k-CSDP aims at determining the node locations
{ui}, the area partition {Ak

j }, and the covering relations

{
ni(Ak

j)
}

, such that the targeted area A is k-covered, while
the maximum sensing range among all nodes is minimized. As
energy consumption is an increasing function of sensing range,
k-CSDP is equivalently balancing the energy consumption
over a whole WSN and hence maximizing the lifetime of the
WSN. As the problem is generally not convex due to its non-
convex feasible region, we have to be contented with local
minimum (i.e., a locally minimized maximum sensing range).

C. High Order Voronoi Diagram

We hereby briefly introduce the ideas and theories on high
order Voronoi diagram [31]. They are key to our autonomous
deployment strategy.

In a k-order Voronoi diagram, the targeted area A is
segmented into N̂k disjoint areas {Vk

j }j=1,...,N̂k ,2 each of
which is associated with k closest generators (sensor nodes
in our case), i.e., a subset N k

j ⊆ N with |N k
j | = k. The

k-order Voronoi cell Vk
j is defined as

Vk
j =

{
v ∈ A

∣∣∣∣ ∥v − ui∥2 ≤ ∥v − ui′∥2,
∀ ni ∈ N k

j , ni′ ∈ N/N k
j

}
(5)

The set N k
j is called the generator set of Vk

j . It is straight-
forward to see that each sensor node ni is associated with
multiple Voronoi cells. Let Vk

ni
denote the union of the Voronoi

cells for which ni serves as a generator; we term Vk
ni

the
dominating region of ni (hence ni the dominator of Vk

ni
). We

also have the following proposition.

Proposition 1. A point v ∈ A is said to belong to Vk
ni

iff there
exist at most k − 1 other generators such that their distance
to v is less than ∥v − ui∥2.

Proof: Assume v ∈ Vk
ni

but there were another k nodes
{nj}j∈J,i̸∈J,|J|=k such that ∥uj − v∥2 < ∥ui − v∥2. Then the
point v would strictly belong to the set of k-order Voronoi
cells generated by {nj}, which does not include ni as a
generator; a contradiction. Conversely, if there are at most
k − 1 nodes, {nj}j∈J,i̸∈J,|J|≤k−1, closer to v than ni, we
can find the set of v’s k-nearest nodes (which obviously
contains {nj}

∪
{ni}) to generate a set of k-order Voronoi

cells containing v. As ni is a generator, v ∈ Vk
ni

.
Based on the above proposition, assuming Skni

(v) = {nj ∈
N|∥uj − v∥2 < ∥ui − v∥2, j ̸= i}, we can re-define the
dominating region of ni as

Vk
ni

= {v ∈ A | |Skni
(v)| ≤ k − 1} (6)

We illustrate k-order Voronoi partition (k = 1, 2, 3, 4) gener-
ated by 30 nodes in Fig. 1. The cells shown in each figure are
{Vk

j }. Taking 2-order Voronoi partition for example, as shown
in Fig. 1(b), the area enclosed by red (resp. green) polygon
is actually the dominating region of the red node (resp. green
node). The hatched area is the Voronoi cell generated by the
two nodes, i.e., the points in this area are closer to the two
nodes than any other nodes.

2In 1-order Voronoi diagram, the number of Voronoi cells equals the number
of generators (i.e., N̂1 = N), while in generalized k-order Voronoi diagram
(k ≥ 1), N̂k is O(k(N − k)) [31].

4

(a) 1-order (b) 2-order

(c) 3-order (d) 4-order

Fig. 1. k-order Voronoi partition for k = 1, 2, 3, 4. The disks at the backdrop
represent the (overlapping) sensing ranges of individual sensor nodes.

D. Generalization to 3D Surfaces

For WSN deployed on a 3D surface, the conventional
Euclidean metric is no longer appropriate. Serving as the
generalization of “straight line” in curved space (e.g., 3D
surfaces), geodesic is the shortest path between two given
points on the surface [9]. Therefore, geodesic distance metric
is a natural choice for measuring distance on a 3D surface. By
replacing Euclidean metric with geodetic distance, we may
migrate the aforementioned model and problem definitions
directly from 2D planes to 3D surfaces.

1) Problem Description on 3D Surfaces: Consider the case
where a WSN N is deployed on the 3D surface M, we use
geodesic distance as the distance metric. In particular, we
replace all the distant metric ∥u− v∥2 used for 2D planes by
g(u, v), the geodesic distance between u and v. As a result, all
the definitions in Sec. III-A to III-C can be directly migrated
to 3D surface. For example, k-CSDP and high order Voronoi
diagram can be redefined using geodesic metric. The only
difference here is that, while A does not need an explicit
characterization, M is often represented by a triangular mesh
that is given to all nodes during the initialization phase.

In order to compute geodesic distance on M, we adopt
the Improved Chen & Han’s (ICH) algorithm [39]. The ICH
algorithm handles the “single source, all destinations” geodesic
problem, aiming at computing the geodesic from the source
u ∈ M to any destination point v ∈ M within a certain
geodesic radius r from near to far with a time complexity of
O(n2 log n) where n is the number of vertices of the triangular
mesh M within r. It maintains a priority queue of geodesic
windows on the edges of the triangular mesh, and outputs a
poly-line geodesic path for each pair of source and destination.
The ICH algorithm also can be extended to other types of
geodesic problem [40], e.g., “single source, single destination”
and “multiple sources, any destination”. Such a package of
geodesic computation tools is sufficient for our 3D extension.

2) Logarithm and Exponential Maps: As we need a local
coordinate system to compute k-order Voronoi diagrams in
a localized manner for every node, we cannot rely on a
parametrization method such as Ricci flow due to its global
nature and high computational cost. We instead apply the
ICH algorithm to compute an logarithm/exponential map [9]
around a certain node, which constructs a (local) geodesic
polar coordinate system on the curved surface as follows.

Given a point u ∈ M, we designate a local coordinate
system on its tangent plane Tu centered at u. A logarithm map
exp−1

u :M→ Tu maps the points on M to Tu. In particular,
for any other point v ∈M in a sufficiently small neighborhood
of u, there is a unique geodesic Gu(v) extending from u to
v. As G′

u(v), the tangent of Gu(v), is obviously tangent to
M at u, G′

u(v) ∈ Tu. Therefore, v can be mapped to Tu with
geodesic polar coordinates {g(u, v), θu,v} where g(u, v) is the
geodesic distance between u and v and θu,v is the polar angle
of G′

u(v) on Tu. Consequently, the geodesic coordinates on
M around u can be transformed to normal coordinates under
any orthogonal basis {e1, e2} with origin u. The inverse of
logarithm map is called exponential map. We illustrate the
log/exp map in Fig. 2. Here the ICH algorithm [39] is used

(a) Coordinate system in Tu (b) Coordinate system in M

Fig. 2. The log/exp maps at point u introduces a mapping between a vector
originating at u on Tu and a geodesic beginning at u on M. The circles on
Tu are mapped to the contours of the geodesic function on M.

to trace the geodesic Gu(v) such that any point v in the
neighborhood of u onM can get its geodesic polar coordinates
on Tu. As mentioned above, the ICH algorithm maintains a
“wavefront” and propagates outward from u, finally outputting
a local geodesic coordinate system within a radius r.

IV. APOLLO: LOCALIZED k-COVERAGE NODE
DEPLOYMENT ALGORITHM

In this section, we first develop two optimality conditions
for k-CSDP. Then we present the APOLLO algorithm details.
The correctness of APOLLO is then proven, and we finally
discuss the relation between k-CSDP and other optimization
problems related to k-coverage deployment, along with the
corresponding properties of APOLLO.

A. Optimal Conditions

To motivate our algorithm, we develop two optimality
conditions for k-CSDP. Firstly, we show if we fix {ui}, then
k-order Voronoi diagram is the optimal solution to k-CSDP.

Proposition 2. If we fix the sensor locations {ui}, the k-
order Voronoi diagram {Vk

j } generated by {ui} is an optimal

5

partition of A. Also, ni(Vk
j) = 1 if Vk

j ⊆ Vk
ni

; otherwise
ni(Vk

j) = 0.

Proof: The proof is by contradiction. Suppose for fixed
{ui}i=1,··· ,N , there exists an optimal solution to k-CSDP de-
noted by R∗, {Āk

j },
{
ni(Āk

j)
}

. Let r∗i = maxv∈Āk
ni
∥v−ui∥2

and rVi = maxv∈Vk
ni
∥v− ui∥2. Also assume that the optimal

value is obtained for nî, i.e., R∗ = r∗
î
. If rV

î
= r∗

î
, then it

is straightforward to see that rV
î

= maxi{rVi }, otherwise a
contradiction to the definition of Vk

ni
: some regions are not

covered by the k-closest nodes. Therefore, in this case the
k-order Voronoi diagram is equally optimal. If rV

î
> r∗

î
, it

means that nî could cede a certain region to have it covered
by other nodes while reducing maxi{rVi }. However, this again
contradicts the definition of Vk

ni
: as nî is already one of the

k-closest nodes that can cover the ceded region, ceding this
region to some other nodes would increase maxi{rVi }.

Before stating the second optimality condition, we need the
following definition.
Definition 2. Given an arbitrary set S in Euclidean s-
pace, the Chebyshev center uc is defined as uc =
argminû (maxu∈S ∥u− û∥2)

Given an area partition {Ak
j } and its dominator allocation

(or covering relations)
{
ni(Ak

j)
}

, the optimal locations of
{ni} can be obtained according to the following proposition.
Proposition 3. If we fix the partition {Ak

j } and its dominator
allocation

{
ni(Ak

j)
}

, the optimal sensor location u∗
i for k-

CSDP is given by the Chebyshev center of Ak
ni

.
Proof: As ni needs to cover Ak

ni
and the objective of k-

CSDP is to minimize the maximum sensing range among all
sensors, the optimal solution under a fixed partition is achieved
if each sensor individually minimizes its own sensing range.
This exactly coincides with the property of Chebyshev center,
hence the proposition follows.

B. The Algorithm

Given the two optimality conditions stated in Sec. IV-A,
we immediately have an iterative algorithm to solve k-CSDP.
The pseudo-codes of our APOLLO algorithm are presented
in Algorithm 1. The algorithm proceeds in rounds. At the

Algorithm 1: APOLLO

Input: For each ni ∈ N , initial location u
(0)
i , stopping

tolerance ε
Output: {u∗

i } and {r∗i }
1 For every node ni ∈ N periodically (every τ ms):
2 Compute its dominating region Vk

ni

3 Compute the Chebyshev center ci of Vk
ni

4 if ∥ui − ci∥2 > ϵ then
5 u+

i ← ui + α(ci − ui) /*α is the step size*/
6 end
7 u∗

i ← ci, r∗i ← maxu∈Vk
ni
∥u− ui∥2

beginning of each round, the k-order Voronoi diagram is com-
puted for the whole WSN, resulting in {Vk

1 , · · · ,Vk
N̂k
} along

with {Vk
n1
, · · · ,Vk

nN
} (Line 2). Then each node computes the

Chebyshev center of its dominating region (Line 3), and moves
to that location to end this round (Line 4-6). The algorithm
terminates if each node is indeed located at the Chebyshev
center of its dominating region. As a perfect matching is
impossible in face of numerical errors, we use a small value
ε as the stopping tolerance: the algorithm terminates if the
distance from the node’s current location to the Chebyshev
center of its dominating region is smaller than ε. Also, in order
to avoid oscillation, a step size α < 1 is chosen to confine the
motion of the nodes. At the termination, each node tunes its
sensing range to be the minimum value (the circumradius of
its dominating region) that covers its dominating region. As a
dominating region is a polygon, we apply Welzl’s algorithm
[37] to compute the Chebysehev center by taking the vertices
of the region as the input.

Similar algorithms have been applied in [6], [34], but they
were used to indirectly optimize a different objective (see our
discussions in Sec. IV-C). Consequently, their approaches do
not abide by the optimality conditions and employ a very
different termination condition. Therefore, their termination
proofs do not apply to our case even for k = 1. Most
importantly, as our algorithm deals with a more general k-
coverage, we are facing the following new challenges in
understanding our algorithm: 1) How to compute Vk

ni
in a

localized manner without involving all nodes? 2) Does the
algorithm terminate for k ≥ 1? 3) What is the complexity of
computations? We tackle these challenges in the following.

1) Localized Algorithm for Computing Vk
ni

: Unlike 1-order
Voronoi diagram that can be computed (mostly) by only
interacting with one-hop neighbors N (ni) of a given node ni,
N (ni) may not be sufficient to obtain k-order Voronoi cells,
especially when k is large. The reason is simple: at least k+1
nodes should be involved to compute a dominating region of ni

[26]. Therefore, we propose Algorithm 2 to locally calculate
Vk
ni

in an expanding ring manner.

Algorithm 2: Localized Vk
ni

Computation

Input: For each ni ∈ N , initial ring radius ρ = 0
Output: Vk

ni

1 repeat
2 ρ← ρ+ γ; out ← true
3 N (ni, ρ)← {nj |∥uj − ui∥2 < ρ}
4 Construct a local coordinate system using N (ni, ρ)
5 foreach v ∈ A s.t. ∥v − ni∥2 = ρ/2 do
6 Ŝkni

(v)← {nj ∈ N (ni, ρ)|∥uj − v∥2 <
∥ui − v∥2, j ̸= i}

7 if |Ŝkni
(v)| < k then out ← false; break

8 end
9 until out = true;

10 Compute Vk
ni

based on N (ni, ρ)

Basically, we expand the search ring ρ with a granularity
of the transmission range γ (line 2). As expending ρ beyond
γ will need multi-hop communication and the hop number
is always an integer, it makes no sense to apply a smaller
granularity. We use the embedding algorithm proposed in [32]
to construct a local coordinate system (line 4). If the location

6

information is available, this step is not necessary. Under the
constructed coordinate system, we check whether the circle
centered at ui with a radius ρ/2 is not dominated by ni

anymore (lines 5 to 8, based on Proposition 1). Because the
Voronoi edges computed given N (ni, ρ) divide the circle with
radius ρ/2 into a finite number of arcs, each of which either
fully dominated by ni or not at all, we only need to check
an arbitrary point on each arc in the actual implementation.
The ring expending terminates if the answer becomes true.
Finally, we compute Vk

ni
using only nodes falling into the

current search ring (line 10).
We need another lemma to show that Vk

ni
computed by

Algorithm 2 is indeed the one that would be computed in
a centralized manner using global information.
Lemma 1. If the dominating region of ni is enclosed by a
circle centered at ui with a radius of ρ/2, then it is fully
determined by all the nodes located within another circle
centered at ui with a radius of ρ.

Proof: For a disk ⊙(ui, ρ/2) centered at ui with radius
ρ/2, if Vk

ni
⊂ ⊙(ui, ρ/2), the boundary of Vk

ni
also belongs

to ⊙(ui, ρ/2). According to the definition of Voronoi cells,
the cell boundary consists of bisectors, each of which is
determined by two generators. For Vk

ni
, one generator is ni,

and all other generators can be obtained by going through each
segment (or bisectors) on the boundary of Vk

ni
and identifying

another generator that determines this bisector along with
ni. Since the boundary of Vk

ni
belongs to ⊙(ui, ρ/2), all

generators of Vk
ni

belong to ⊙(ui, ρ).

Fig. 3. Recognizing the network boundary (the green dashed curve), a
boundary node (dark) determines a searching ring (the outer circle) and check
the half-radius arc within the network coverage area (the inner red arc). It
then calculates its dominating region (the blue area) with N (ni, ρ), while
the searching ring helps to determine part of the boundary.

The correctness of our algorithm is immediate from this
lemma: as the algorithm terminates when ni is not dominating
the circle centered at ui with a radius ρ/2 anymore, the nodes
falling into ⊙(ui, ρ) are sufficient to compute Vk

ni
. In Fig. 4,

we demonstrate this sufficiency using k-order dominating
region (k = 1 to 12) in a regularly deployed WSN. The regular
deployment is chosen to facilitate exposition, our algorithm
works for any arbitrary deployments.

For a node ni on the boundary, the search ring will never
stop expanding, as the arc that is out of the network coverage
will always need the domination of ni. To cope with this issue,
we first refer to our previous work [29] for an on-line boundary
detection service. Sine each sensor node can identify if it is on
the network boundary only relying on local positions of it one-
hop neighbors, this boundary detection is highly efficient and

thus is quite suitable for our autonomous deployment. Based
on the boundary awareness, the boundary node executes the
circle checking procedure (lines 5 to 8) only for the arc that
lies within the network coverage area, as shown in Fig. 3.
Finally, the boundary node calculates its dominating region,
using N (ni, ρ) as well as the searching ring to determine
the boundary of the dominating region. For an initial random
deployment in which nodes only occupy a small fraction of
A, this procedure has the effect of “pushing” boundary nodes
outwards, hence expanding the network coverage to the whole
A. In fact, such a constrained checking procedure should
always be used by nodes on the boundary of A, the difference
is that A’s boundary, known in advance to the nodes, serves
as a natural boundary for a dominating region.

2) Termination Analysis: Showing the termination of Al-
gorithm 1 appears to be highly non-trivial, as many k-
order Voronoi cells are concerning a certain node, and the
dominating region of a node is mostly probably a non-convex
region. Fortunately, the termination can be shown by focusing
on the boundary of a dominating region.

Proposition 4. Algorithm 1 terminates for α ∈ (0, 1].

Proof: As shown in Fig. 5, ul
i and Vk,l

ni
are the location

and dominating region of node ni at the beginning of the
l-th round, respectively. We also denote by cli and Rl

i the
Chebyshev center and the circumradius of Vk,l

ni
computed

Fig. 5. Notations in the proof for Proposition 4.

by ni during the l-round. Let R̂l
i = maxu∈Vk,l

ni
∥u − ul

i∥2
be the farthest distance from ul

i in Vk,l
ni

. Finally, we define
Rl = maxi{Rl

i} and R̂l = maxi{R̂l
i}.

We first prove the termination for α = 1 by contradiction.
For each ni, we put a disk ⊙(cli, Rl) centered at cli with radius
Rl. Obviously,

∪N
i=1⊙(cli, Rl) form a k-coverage over the

targeted area A. The termination is naturally justified if we
can prove that Vk,l+1

ni
is inside ⊙(cli, Rl) after ul

i is updated
to cli (i.e., ul+1

i = cli). For each point q on the boundary of
Vk,l+1
ni

, it is straightforward to see that cli is the location of the
k-th nearest nodes. Assume that q is outside ⊙(cli, Rl), there
would be only k − 1 disks covering q, which contradicts the
fact that

∪N
i=1⊙(cli, Rl) constitute a k-coverage over A.

We then prove the termination for 0 < α < 1. Ac-
cording to line 5 of Algorithm 1, during the l-th round,
ul+1
i = ul

i+α(cli−ul
i). We put disks ⊙(ul

i, R̂
l) and ⊙(cli, R̂l)

centered at ul
i and cli, respectively. Obviously, Vk,l

ni
is inside

⊙(ul
i, R̂

l)
∩
⊙(cli, R̂l), which implies Vk,l

ni
⊂ ⊙(ul+1

i , R̂l).
Hence,

∪N
i=1⊙(u

l+1
i , R̂l) constitute a k-coverage over A.

7

(a) 1-order (b) 2-order (c) 3-order (d) 4-order (e) 5-order (f) 6-order

(g) 7-order (h) 8-order (i) 9-order (j) 10-order (k) 11-order (l) 12-order

Fig. 4. The dominating region of the central node in k-order Voronoi diagram k = 1, · · · , 12. The central node needs to collect location (or range) information
from its neighboring nodes (the dark nodes) via multi-hop communication according to Algorithm 2. Additionally, we illustrate multi-hop transmission range
using red circles in (a). While the cases for k = 1 can be handled by involving only the 6 closest nodes (1-hop neighbors) to the central node, computing the
2-, 3- and 4-order dominating regions requires 2-hop neighbors. When k > 4, all sensor nodes within 3 hops are involved.

Following a similar argument as for α = 1, we have Vk,l+1
ni

is involved in ⊙(ul+1
i , R̂l), which completes the proof.

In summary, our APOLLO algorithm terminates for any
α ∈ (0, 1]. Usually, smaller α leads to slower convergence
but smoother moving locus. As a byproduct of the proof, we
also conclude that R̂ is non-increasing iteratively and finally
equivalent to R. Especially, when α = 1, R is also non-
increasing in the iterative process. Therefore,

Corollary 1. Algorithm 1 terminates at a local minimum of
k-CSDP.

It is important to note that Rl and R̂l are introduced only
for our proof. During the algorithm execution, each node ni

can only compute its own Rl
i and R̂l

i. According to our earlier
discussion in Sec. IV-B1 (see Fig. 3 also), the evolution of the
node positions often takes two phases: an expanding phase and
a converging phase. The expanding phase exists if the initial
node distribution is non-uniform, our APOLLO algorithm will
force the node to spread out during this phase, as discussed at
the end of Sec. IV-B1. During this phase, both Rl and R̂l are
most probably achieved by boundary nodes. The expanding
phase ends when all the boundary nodes are at the boundary
of A, this is when the converging phase starts.

3) Computational Complexity Analysis: Each iteration of
APOLLO consists of two major steps: computing dominating
regions and Chebyshev centers. The dominating regions are
calculated in an expanding ring manner (see Algorithm 2). We
suppose Ni(ρ) = |N (ni, ρ)| is the number of the neighboring
nodes of ni within the searching ring ρ. According to [26],
each sensor node computes local k-order Voronoi edges (as
well as vertices) with a complexity of O(k2Ni(ρ) logNi(ρ)).
Recall that Ni(ρ) leads to O(k(Ni(ρ) − k)) Voronoi edges
[31], the following checking operation has a complexity of
O(kNi(ρ)(Ni(ρ) − k)) in the worst case. The underlying
boundary detection service requires only one-hop neighbors,
thus merely results in a negligible cost of O(Ni(γ) logNi(γ))
[29]. Assuming up to H-hop neighbors are required (i.e.,

ρ expands from γ to Hγ with a granularity of γ), Algo-
rithm 2 has a complexity of O(k2HNi(Hγ) logNi(Hγ) +
kHNi(Hγ)(Ni(Hγ)− k)). For certain coverage order k, the
overall complexity of Algorithm 2 is highly limited by the
number of required communication hops H . According to our
experiments shown in Fig. 4, even the transmission range is
restricted (only available for computing 1-order Voronoi domi-
nating region), nodes within two or three hops are sufficient in
most cases. Finally, given O(k(Ni(Hγ)−k)) Voronoi vertices
outputted by Algorithm 2, we spend O(k(Ni(Hγ) − k)) on
computing their Chebyshev center [37].

The total number of iterations of APOLLO depends on
individual cases, and thus cannot be derived by exiting analysis
techniques. Similar with [6], [18], we will employ extensive
simulations to reveal APOLLO’s convergence rate as well as
the induced time cost in Sec. VI.

C. Discussions

In this section, we show the relations between the output
of our APOLLO algorithm and other optimization objectives
often considered for area coverage problems in WSNs.

Min-Node k-Coverage: One type of problem that is
commonly tackled in the research community is to achieve
k-coverage using a minimum number of nodes (e.g., [3], [5],
[43]). As this problem often assumes that all nodes have a
fixed and identical sensing range rs, it appears that APOLLO
may not suggest a direct solution to it. However, we can
transform our algorithm to deliver a good approximation to
this min-node k-coverage problem as follows. APOLLO is
called iteratively3 and R∗ is compared with rs at the end of
each iteration. Nodes are added (resp. reduced) if R∗ > rs
(resp. R∗ < rs), until R∗ ≤ rs but adding one more node
would make R∗ > rs. Although the solution may not be
optimal, it yields very good approximation to the optimal
solution, as we will demonstrate in Sec. VI. If fact, as the

3If an application only requires a one-time (rather than autonomous)
deployment, we may use APOLLO in a centralized fashion.

8

up-to-date algorithms are all approximations for k > 2 and
they are not autonomous (e.g., [3]), our algorithm is also the
first autonomous deployment for approximating min-node k-
coverage with an arbitrary k.

Maximum k-Coverage: Another type of problem aims at
maximizing coverage under fixed sensing ranges, but existing
proposals only focus on 1-coverage [6], [18], [34]. A natural
definition of the general maximum k coverage problem is to
maximize the area that is k-covered under a fixed sensing
range. The major difference between k = 1 and k > 1
is that the former achieves maximum coverage if nodes are
far apart from each other whereas the same principle does
not apply to the latter. An obvious example is the following:
assume only 3 nodes are used to 3-cover an area, the maximum
coverage is achieved only if all three nodes are put at the same
location. Consequently, the heuristic of bounding the minimum
separation among nodes [23] fails. Intuitively, APOLLO may
deliver a good approximation to the maximum k-coverage
problem, e.g., APOLLO terminates at the optimal solution for
the aforementioned 3-node case.

Connectivity: Although maintaining network connectivi-
ty is not our concern in designing APOLLO, it appears to be a
natural outcome of achieving k-coverage for k ≥ 2. Under k-
coverage, it is easy to see that there should be at least k nodes
in the sensing range ri of a node ni (including ni), otherwise
ui is not k-covered. In reality, as shown in Fig. 4, there are
at least 7 nodes in a certain sensing range for k ≥ 2. Given
the common assumption in the literature that γ ≥ ri (e.g., [6],
[34], [44]), each node in a WSN has at least a degree of 6,
which is sufficient to guarantee connectivity in the WSN.

Min-Max Fair: While our k-CSDP only requires that the
maximum sensing range is minimized and hence does not
concern nodes with non-maximum sensing ranges, the min-
max fair utility (a Pareto optimal point) requires that a node ni

cannot further reduce its sensing ranges ri without increasing
the sensing range rj (rj ≥ ri) of another node nj . According
to the property of k-order Voronoi diagram, the output of
APOLLO is at least locally optimal with respect to the min-
max fair utility, i.e., if we reduce ri, another node nj that
shares dominating region boundary with ni should increase
rj to maintain k-coverage, but we know rj ≥ ri before ri
gets reduced. In fact, our simulation results in Sec. VI show
that, after APOLLO terminates, the maximum and minimum
sensing ranges are almost the same for k > 2.

V. APOLLO ON 3D SURFACES

Though replacing Euclidean metric by geodesic distance
yields a straightforward extension of our problem from 2D
planes to 3D surfaces (as we discussed in Sec. III-D), our
APOLLO algorithm has to be slightly tuned to adapt to the
local coordinate maps (i.e., the log/exp maps). As APOLLO
(Algorithm 1) involves two main computations: dominating
region and Chebyshev center, we present the APOLLO 3D
extension with respect to these two separately.
A. Computing Dominating Regions

By redefining the k-order Voronoi diagram based on
geodesic distance. Algorithm 2 could be extended to han-
dle computations on 3D surfaces, while still guaranteeing

the locality of the computations. After constructing a local
coordinate system on the 3D surface (see Sec. III-D2), each
node ni expands its searching ring ρ with a granularity of
transmission range γ, until the geodesic disk ⊙i = {v ∈
M|g(ui, v) ≤ ρ/2} is not dominated by ni anymore. ni needs
only to communicate with N (ni, ρ) = {nj |g(ui, uj) ≤ ρ} if
its dominating region lies in ⊙i, according to Lemma 1. This
extension is pretty straightforward; the only difference is that,
while we compute ∥ui − uj∥2 on 2D planes, we use the ICH
algorithm to obtain g(ui, uj) on 3D surfaces.

A seeming discrepancy here is that, while the sensing range
is mostly determined by Euclidean metric, APOLLO operates
on geodesic distance. Fortunately, based on [16], it can be
derived that 1 ≤ g(ui,v)

∥ui−v∥2
≤ β, where β is a constant

determined by the geometric properties of a 3D surface (i.e.,
its maximum Gaussian curvature). Consequently, the sensor
nodes simply assign the geodesic distance g(ui, v) (the upper
bound of the Euclidean distance) to their Euclidean sensing
ranges (i.e., ri = g(ui, v)). This leads to a feasible solution
that does not compromise much of the optimality. For brevity,
we omit this step in the later presentations.

B. Computing Chebyshev Centers

After determining the dominating region Vk
ni

, the next step
is for ni to compute the Chebyshev center of its dominating
region. The problem is reduced to that, given a set of points
(i.e., the vertices of Vk

ni
in our case) on a surface, how

to compute their Chebyshev center. Unfortunately, compared
with its 2D counterpart, computing Chebyshev centers on 3D
surface (i.e., under geodesic destance) appears to be highly
non-trivial; it has not been addressed in the literature to the
best of our knowledge. We thus propose an iterative algorithm
to calculate an approximate Chebyshev center c′i ∈M of Vk

ni

using log/exp map (see the pseudo-codes in Algorithm 3): the
basic idea is to first compute the mass center of the dominating
region by iteratively applying log/exp map (lines 1–6), and
then determine the Chebyshev center (lines 7–8).

Algorithm 3: Approximating a Chebyshev Center on a 3D
Surface

Input: For each ni ∈ N , a local geodesic coord. system
on the surface, the dominating region Vk

ni
,

stopping tolerance ε
Output: c′i

1 Initialize the mass center of Vk
ni

as ωi ← ui

2 repeat
3 Compute the logarithm map, exp−1

ωi
(Vk

ni
) ∈ Tωi , of

Vk
ni

at ωi

4 Compute the mass center ω̃i ∈ Tωi of exp−1
ωi

(Vk
ni
)

5 if ∥ω̃i∥2 > ϵ then ∆ωi ← δ
[
expωi

(ω̃i)− ωi

]
6 until ∥ω̃i∥2 ≤ ϵ;
7 Ṽk

ni
← exp−1

ωi
(Vk

ni
); compute the Chebyshev center, c̃i,

of Ṽk
ni

in the 2D tangent plane Tωi

8 c′i ← expωi
(c̃i)

As the difficulty in computing the Chebyshev center is
the local shape distortion resulting from any 3D-to-2D map,

9

we want to find a log/exp map that yields the smallest
distortion within Vk

ni
. Intuitively, the mass center of Vk

ni
,

ωi = argminu
∫
Vk

ni

g2(u, v)dv, may yield a log/exp map that

has the smallest shape distortion. Therefore, we take Vk
ni

to
the tangent plane Tωi by applying the logarithm map to Vk

ni

at ωi, and we compute the Chebyshev center of exp−1
ωi

(Vk
ni
)

(line 7), and we finally determine the Chebyshev center of Vk
ni

using the exponential map (line 8). As the shape distortion
has been suppressed as far as possible, we believe that c′i is
a good approximation to the real Chebyshev center of Vk

ni
.

Here δ
[
expωi

(ω̃i)− ωi

]
in line 5 is computed with respect to

a geodesic from expωi
(ω̃i) to ωi on the 3D surface.

The question is whether replacing {ci} by {c′i} in Algo-
rithm 1 still allows terminate. Fortunately, we have
Proposition 5. Algorithm 1 terminates with {c′i} if the step
size α is sufficiently small.

Proof: Let V on M be contained in a geodesic ball
B(y, r) centered at y ∈ M with radius r < π

2max{0,κ} ,
where κ is the maximal Gaussian curvature of points inside
B(y, r). It is proven in [20] that the function Φ(ω) =∫
V g2(ω, v)dv for ω ∈ V is convex and achieves a unique

minimum ω∗ ∈ B(y, r). A simple computation shows that
0 = ∇Φ(ω∗) = 2

∫
V exp−1

ω∗ (v)dv. In other words, the mass
center of V is uniquely defined and independent of the initial
value, hence the iterative computation (lines 1-6) converges to
the mass center. With the exponential map at the mass center
ω∗, a tangent plane Tω∗ is constructed and the Chebyshev
center c̃ is computed on that plane. This ends one round for
Algorithm 1. Suppose we take a sufficiently small step size
α, the next round for Algorithm 1 will be done on almost the
same tangent plane Tω∗ . Therefore, from a node ni’s point of
view, the computations involved in two consecutive rounds l
and l+1 are done in 2D. So we can apply the proving method
for Proposition 4 to show Ṽk,l+1

ni
⊂ ⊙̃(cli, Rl). As the log/exp

map is a bijection within B(y, r), we have Vk,l+1
ni

⊂ ⊙(cli, Rl),
which completes the proof.

The computations of Algorithm 3 are done by individual
nodes with neither communications nor motions. Since Φ(ω)
has C2 smoothness, the algorithm has a quadratic convergence
rate, causing a negligible computational cost. α < 1 almost
always guarantees the overall convergence.

VI. SIMULATIONS

In this section, we report our simulation results. We first
present the convergence of APOLLO. Studying the energy
consumptions during and after the autonomous deployments,
we also evaluate the performance of APOLLO in Min-
Node k-Coverage and Maximum k-Coverage, followed by the
adaptability to network irregularities. Finally, we validate the
effectiveness of APOLLO 3D extension.

A. Convergence

As convergence results we obtain from our extensive exper-
iments are all similar, we present only two case to demonstrate
the convergence of our algorithm. We consider a targeted
area of 1 km2, and initially deploy 100 sensor nodes either
at the bottom-left corner (see Fig. 6(a)), or separated into
two disjoint groups located at the bottom-left and upper-right

corners (see Fig. 6(f)). According to the following four sub-
figures for both cases, our algorithm apparently leads to an
“even” node distribution in the sense of multiple coverage.
Specifically, in the multiple coverage cases with k = 2, 3, 4,
nodes tend to cluster in groups of size k, in contrast to the
pure even distribution for k = 1. This is not a surprise as such
an “even clustering” distribution yields more overlaps of the
dominating regions among every cluster, which in turn reduces
the required sensing range. Interestingly, this appears to also
meet the needs of maximum k-coverage. As we discussed in
Sec. IV-C, APOLLO leads to a co-location deployment for the
extreme example of using three nodes to achieve 3-coverage.
The second case also shows that two disconnected clusters
will eventually merge into a concocted network. Our extensive
simulations show that the initial deployment does not have
significant impact on the algorithm output.

We show the convergence process of APOLLO in Fig. 7.
Since a sensor node finally reaches the Chebyshev center of

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

of rounds

C
ir
c
u
m

ra
d
iu

s
 (

k
m

)

1−Coverage Max Circumradius

1−Coverage Min Circumradius

2−Coverage Max Circumradius

2−Coverage Min Circumradius

3−Coverage Max Circumradius

3−Coverage Min Circumradius

4−Coverage Max Circumradius

4−Coverage Min Circumradius

Fig. 7. The convergence of APOLLO.

its dominating region and the sensing range is equivalent to
the circumradius of the dominating region, we illustrate the
relationship between execution rounds (of length τ ms each)
and the maximum/minimum circumradii. As the nodes are
deployed at the corner of the targeted area initially, the max-
imum circumcicle usually appears on the network boundary,
which is mainly determined by the searching ring (Fig. 3).
Consequently, the maximum circumradii for k = 1, 2, 3, 4 are
almost the same at the beginning. Corresponding to our proof
of termination, the maximum circumradius is monotonically
decreasing with the execution rounds of APOLLO, while the
minimum radius is increasing in general. In the end, the
maximum and minimum radii are very close to each other,
especially for larger k. While the monotonic decreasing in
maximum circumradius shows the termination of APOLLO,
the fact that the minimum circumradius coincides with the
maximum one further confirms the balanced sensing load.

B. Energy Consumption during Deployments

In this section, we use TOSSIM [27] simulations driven by
realistic power consumption data to evaluate the energy con-
sumption of the whole deployment process. We assume that a
mobile sensor node is equipped with a Micromo coreless D-
C motor (www.micromo.com/coreless-dc-motors-data-sheets.
aspx). It moves a MicaZ Mote in a speed of 0.2 m/s with an
energy consumption of 120 mW. We get the communication
cost data from the specification of the popular CC2420 radio
[1]: transmit power 52.5 mW and receiving (or idle-listening)

10

(a) Initial deployment I (b) 1-coverage I (c) 2-coverage I (d) 3-coverage I (e) 4-coverage I

(f) Initial deployment II (g) 1-coverage II (h) 2-coverage II (i) 3-coverage II (j) 4-coverage II

Fig. 6. Initial deployments and k-coverage (k = 1, 2, 3, 4) deployments as the output of APOLLO.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

1000

2000

3000

4000

5000

6000

7000

8000

Step size α

C
o

m
m

.
c
o

n
s
u

m
p

ti
o

n
 (

J
)

Net 1

Net 2

Net 3
Net 4

Net 5

Net 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
5500

6000

6500

7000

7500

8000

8500

9000

Step size α

M
o

ti
o

n
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Net 1

Net 2

Net 3

Net 4

Net 5

Net 6

(a) Total communication consumption (b) Total motion consumption

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x 10
4

Step size α

C
o
m

b
in

e
d
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Net 1

Net 2

Net 3
Net 4

Net 5

Net 6

0 0.2 0.4 0.6 0.8 1
130

140

150

160

170

180

190

200

210

220

Step size α

C
o
m

b
in

e
d
 n

o
d
e
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Net 1

Net 2

Net 3
Net 4

Net 5

Net 6

(c) Total combined consumption (d) Node combined consumption

Fig. 8. Energy consumption during the autonomous deployments

power 56.4 mW. We assume that, during the i-th round, the
radios are disabled when nodes move, and the communication
(and computation) session starts only when nodes have moved
to their new locations {u+

i } (see Algorithm 1).
Based on the same scenario studied in Sec. VI-A (i.e.,

100 nodes on 1 km2 area), Fig. 8 demonstrates the actual
energy consumption of six autonomous deployments. It is
evident that a smaller step size α results in more rounds but
shorter total moving distances; this is shown by a decreasing
communication consumption in Fig. 8(a) and an increasing
motion consumption in Fig. 8(b) as functions of α. Therefore,
given certain power consumption specifications for motion and
communication, we may tune α to obtain an energy efficient
deployment. For our current settings, the best step size shown
by Fig. 8(c) is around 0.3 to 0.7. We also pick up nodes that
consume the highest energy in each WSN to illustrate the
energy consumed by individual nodes in Fig. 8(d). To put
these consumptions into perspective, a 2450mAh Energizer

(www.energizer.com) AA battery contains 13kJ, so the (max-
imum) individual node consumption of 200J only accounts
from a small part of the node’s energy storage.

We also report the time cost of APOLLO in Fig. 9. As
the time cost stems from both communication and motion,
the general trend is similar to the total combined consump-
tion shown by Fig 8(c): the time cost is minimized around
α ∈ [0.3, 0.7] as well, for which APOLLO terminates within
around 25 minutes and is reasonable for practical applications.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1200

1400

1600

1800

2000

2200

2400

2600

Step size α

T
im

e
 c

o
s
t

(s
)

Net 1

Net 2

Net 3

Net 4

Net 5

Net 6

Fig. 9. Total time cost.

C. Energy Consumption after Deployments

In this section, we show the sensing energy consumption
after APOLLO completes the deployments. We again consider

20 60 100 140 180
0

0.1

0.2

0.3

0.4

of nodes

M
a
x
im

u
m

 s
e
n
s
in

g
 l
o
a
d

1−Coverage

2−Coverage

3−Coverage

4−Coverage

20 60 100 140 180
0

2

4

6

8

10

of nodes

T
o

ta
l
s
e

n
s
in

g
 l
o

a
d

1−Coverage

2−Coverage

3−Coverage

4−Coverage

(a) Maximum sensing load (b) Total sensing load

Fig. 10. Energy consumption in the final deployments of 100 nodes
a targeted area of 1 km2, while scaling the network size from
20 to 180. As data processing and memory accessing consume

11

most of power in sensing and their frequency depends on the
covered area, we model the energy consumption in sensing
to be proportional to the area of the sensing disk centered at
the sensor node with a radius ri. In particular, we define the
energy consumption function as E(ri) = πr2i : an increasing
function of ri

We illustrate the sensing energy consumption in terms
of maximum load max{E(ri)}i=1,...,N and total load∑N

i=1 E(ri) in Fig. 10. As we deploy more sensor nodes to
a given targeted area, each node takes care of less area when
achieving a certain coverage. The maximum sensing load is
thus decreasing with the increasing number of nodes. Given a
certain number of nodes, to achieve higher coverage degree,
each sensor node is supposed to cover larger area thereby
enhancing the maximum sensing load. We also observe that
for k1-coverage and k2-coverage, the ratio of maximum loads
between them is roughly k1/k2, which can be explained as
follows. Since APOLLO makes the minimum sensing range
very close to the maximum one, each sensor node roughly
covers the same area k|A|/N , i.e., E(ri) = k|A|/N where
|A| is the area of the targeted region. Nevertheless, increasing
the number of nodes does decrease the total sensing load of
the WSN, shown by Fig. 10 (b). Since using a less number
of nodes implies a larger sensing disk for each node, this in
turn yields more overlap between sensing ranges (i.e., a larger
sensing redundance), thus a higher total load.

D. Comparisons with Min-Node k-Coverage

As mentioned in Sec. IV-C, our APOLLO algorithm results
in a good approximation to min-node k-coverage problem
(where all nodes have the same sensing range and the objective
is to minimize the number of nodes used to achieve k-
coverage). In this section, we compare our algorithm with
the deployment strategies proposed in [5] and [3], in terms
of the required number of nodes guaranteeing k-coverage
(k ≥ 2). As we can increase the minimum sensing range
to the maximum one in the output of APOLLO without
compromising coverage, we assign an identical sensing range
to every node as the maximum sensing range R∗ in our case.

Bai et al. have proven in [5] that, without considering
boundary effect and with an identical sensing range r, the
optimal congruent deployment density4 for 2-coverage is
4π/3

√
3. Given a targeted area A, we thus compute the

minimum number of sensor nodes N∗
k=2 for 2-coverage as:

N∗
k=2 =

|A| 4π
3
√

3

πr2 = 4|A|
3
√
3R∗2 , here we use |A| to replace the

area of Voronoi polygons generated by sensor nodes, which
leads to an under-estimation of N∗

k=2 due to the boundary
effect. We simulate large-scale WSNs with size ranging from
1000 to 1600 in a 1 km2 targeted area. The result is shown in
Table I. In general, the number of nodes deployed by APOLLO
is about 15% higher than the minimum value, and it is obvious
that the boundary effect is the main reason for this difference.
As the boundary effect is not considered in [5], extra nodes
are needed to cover the vacancies on the boundary due to the
mismatch between the congruent deployment and an arbitrarily

4Deployment density is defined as a ratio of the area of sensing disks to
the area of Voronoi polygons generated by sensor nodes [5].

shaped targeted area. Therefore, we conclude that APOLLO
actually leads to a very good approximation of the min-node
2-coverage problem.

TABLE I
THE MINIMUM NUMBER OF SENSOR NODES TO ACHIEVE 2-COVERAGE

N 1000 1200 1400 1600
R∗ (m) 30.35 27.12 25.23 23.57
N∗

k=2 836 1047 1210 1386

In [3], Ammari et al. propose to decompose a targeted area
into adjacent Reuleaux triangles, and nodes are deployed in
the intersection areas between these triangles (so-called lens
in [3]). According to their derivation, 6k|A|

(4π−3
√
3)r2

nodes are
required to k-cover A where k ≥ 3 and r is the sensing range.
Here we compare this feasible deployment with APOLLO.
We deploy 180 nodes in a 1 km2 area and let all nodes have
the same sensing range R∗

k. We also compte the number of
nodes that deployed according to the strategy proposed in [3]
as N∗

k = 6k
(4π−3

√
3)R∗2

k

. From the results shown in Table II, it
is very clear that APOLLO can use much less nodes to achieve
the same level of coverage compared with [3].

TABLE II
THE NUMBER OF SENSOR NODES TO ACHIEVE k-COVERAGE WITH THE

STRATEGY PROPOSED IN [3] FOR k = 3, 4, ..., 8

k 3 4 5 6 7 8
R∗

k (m) 87.6 102.1 112.4 123.6 133.9 143.2
N∗

k 318 313 323 320 318 318

E. Performance in Maximum k-Coverage

In addition to the analysis in Sec. IV-C, we evaluate the
performance of APOLLO in solving maximum k-coverage
problem. Due to space limitation, we only illustrate the results
of 4-coverage. We assume sensor nodes have fixed sensing
ranges of 135m and are deployed in a square targeted region
of 1 km2. We also vary the network scale from 80 to 110 with
a step of 10. The 4-coverage ratio (i.e., the ratio between the
4-covered area and the whole targeted region) in each round
is demonstrated in Fig. 11. It is shown the area 4-covered by
the sensor nodes is increased with the execution of APOLLO,
and reaches maximum when APOLLO converges. Since the
sensing ranges of the sensor nodes are fixed, a network with s-
mall scale may not be able to fully 4-cover the targeted region,
e.g., 80, 90 or 100 nodes in our case. By gradually deploying
more sensor nodes (e.g., 110 nodes), we can have the whole
targeted area 4-covered. Recall that N = 110 sensor nodes
with a fixed sensing range of r = 135m can 4-cover (hence

k = 4) an area of up to N(4π−
√

(3))r2

6k = 0.9km2. Therefore,
we believe that, APOLLO provides a good approximation to
the maximum k-coverage problem.

F. Adaptability to Obstacles

We demonstrate the autonomous adaptability of APOLLO
to arbitrarily shaped targeted area (with obstacles inside) in

12

(a) Initial deployment I (b) 2-coverage I (c) 4-coverage I (d) 6-coverage I (e) 8-coverage I

(f) Initial deployment II (g) 2-coverage II (h) 4-coverage II (i) 6-coverage II (j) 8-coverage II

Fig. 12. Adaptability of APOLLO to arbitrarily shaped areas and obstacles as well.

0 20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

1

of rounds

4
−

c
o

v
e

ra
g

e
 r

a
ti
o

80 nodes

90 nodes

100 nodes

110 nodes

Fig. 11. 4-coverage ratio.

Fig. 12. The “holes” within the network region represent ob-
stacles that mobile sensor nodes cannot move upon. Obviously,
APOLLO adapts well to these irregularities and again achieves
the even clustering distribution as if the area were regular.

G. Extension to 3D Surfaces

We apply the 3D APOLLO extension discussed in Sec. V
for WSN deployments on various 3D terrain surface models.
The three terrain models are approximated by 5k, 20k and
130k triangles, respectively. In Fig. 13, each row shows one
terrian where we deploy the sensor nodes. Since a large-scale
sensor network are usually air-dropped in the applications
of terrain monitoring, we initially deploy 400, 400 and 800
mobile sensor nodes for these three terrains respectively in
a random manner. Fig. 13 shows the outputs also reflect
clustering distributions in the multiple coverage cases with
k = 2, 3, 4. The similarity between Fig. 13 and Fig. 6 clearly
demonstrates that our deployment algorithm designed for 2D
deployments has been successfully extended to handle 3D
surface deployments. Considering space limit, we hereby omit
the illustration of the convergence process of APOLLO in 3D
deployment, as it is very similar to its 2D counterpart.

In Table III, we use the maximum and minimum (Euclidean)
sensing ranges resulted from the autonomous deployments
to show the quality (in terms of load balancing) of the
coverage. In order to make the numbers comparable to each
other, we normalize the three surfaces such that their 2D
projections are all on a 1 km2 area. A direction interpretation,

TABLE III
THE MAXIMUM AND MINIMUM SENSING RANGES FOR THREE SURFACE

DEPLOYMENTS

Surface 1 Surface 2 Surface 3
k 2 3 4 2 3 4 2 3 4

Max range 56.77 69.35 81.80 44.94 54.53 55.65 35.56 38.09 47.46
Min range 47.06 62.21 76.97 37.55 46.93 53.32 29.49 31.69 41.45

by comparing Table III with Fig. 7, the differences between
the maximum sensing ranges and the minimum sensing ranges
in 3D deployments are a little larger than the ones delivered
by 2D deployments. In another word, quality of APOLLOs
output in terms of load balancing is worse in 3D than in 2D.
This is expectable as the problem becomes significantly harder
to handle on 3D surfaces. However, the results in Table III do
not indicate a worse performance of APOLLO in terms of
solving the k-coverage optimization problem, because it has
never been proven that an optimal k-coverage solution (for
k > 2) for either 2D planes or 3D surfaces can be or have
to be achieved by disks with an identical radius. It is highly
possible that, on 3D surfaces, an optimal k-coverage solution
indeed accommodates variable radii. Another reason is that, we
employ an approximated Chebyshev centers in 3D APOLLO
which may lead to compromise in terms of load balancing.

VII. CONCLUSION

In this paper, we have focused on minimizing the maximum
sensing range to achieve load balancing k-coverage through
autonomous deployments (i.e., relying on mobile sensors n-
odes and the wireless communications among them). We have

13

(a) Initial deployment (b) 2-coverage deployment (c) 3-coverage deployment (d) 4-coverage deployment

Fig. 13. k-coverage deployments on 3D surfaces, k = 2, 3, 4.

innovated in applying the k-order Voronoi diagram in a local-
ized manner, and proposed APOLLO to solve the optimization
problem through a distributed and localized procedure. Our
approach is the first to tackle the problem of k-coverage
autonomous deployment, for WSNs on both 2D planes and 3D
surfaces. We have proven the termination of APOLLO as well
as the (local) optimality of its output. We have also explained
the close relations between the output of APOLLO and other
commonly used optimization objectives, which provides a bet-
ter understanding of optimal k-coverage deployments whose
theoretical characterizations are hard to obtain under general
settings. Finally, our simulation results strongly confirm our
theoretical claims, as well as the adaptability of APOLLO
to the irregularities of the targeted sensing regions and the
effectiveness of its 3D surface extension.

This paper currently takes into account only omnidirectional
sensing model, while some types of real sensors may have
certain directional features (e.g., radar or acoustic sensors). We
are on the way of extending APOLLO to deal with directional
sensing model.

REFERENCES

[1] Chipcon’s CC2420 2.4G IEEE 802.15.4/ZigBee-ready RF Transceiver.
[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey

on Sensor Networks. IEEE Communication Mag., 40(8):104–112, 2002.
[3] H.M. Ammari and S.K. Das. Centralized and Clustered k-Coverage

Protocols for Wireless Sensor Networks. IEEE Trans. on Computers,
6(1):118–133, 2012.

[4] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T.H. Lai. Deploying Wireless
Sensors to Achieve Both Coverage and Connecitvity. In Proc. of the
7th ACM MobiHoc, pages 131–142, 2006.

[5] X. Bai, Z. Yun, D. Xuan, B. Chen, and W. Zhao. Optimal Multiple-
Coverage of Sensor Networks. In Proc. of the 30th IEEE INFOCOM,
pages 2498–2506, 2011.

[6] N. Bartolini, T. Calamoneri, T.F. La Porta, and S. Silvestri. Autonomous
Deployment of Heterogeneous Mobile Sensors. IEEE Trans. on Mobile
Computing, 10(6):753–766, 2011.

[7] B.A. Bash and Pe.J. Desnoyers. Exact Distributed Voronoi Cell Compu-
tation in Sensor Networks. In Proc. of the 6th ACM/IEEE IPSN, pages
236–243, 2007.

[8] M. Cardei, M.T. Thai, Y. Li, and W. Wu. Energy-Efficient Target
Coverage in Wireless Sensor Networks. In Prof. of the 24th IEEE
INFOCOM, pages 1976–1984, 2005.

[9] M.P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice
Hall, 1976.

[10] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G.S.
Sukhatme. Robomote: Enabling Mobility in Sensor Networks. In Proc.
of the 4th ACM/IEEE IPSN, 404-409.

[11] L. Ding, W. Wu, J. Willson, L. Wu, Z. Lu, and W. Lee. Constant-
Approximation for Target Coverage Problem in Wireless Sensor Net-
works. In Proc. of the 31st IEEE INFOCOM, pages 1584–1592, 2012.

[12] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithm. SIAM Review, 41(4):637–676, 1999.

[13] D. L. Hall and J. Llinas. Handbook of Multisensor Data Fusion. CRC
Press, 2001.

[14] K. Han, L. Xiang, J. Luo, and Y. Liu. Minimum-Energy Connected
Coverage in Wireless Sensor Networks with Omni-Directional and
Directional Features. In Proc. of the 13rd ACM MobiHoc, pages 1–
10, 2012.

[15] M. Hefeeda and M. Bagheri. Randomized k-Coverage Algorithms For
Dense Sensor Networks. In Proc of the 26th IEEE INFOCOM, pages
2376–2380, 2007.

[16] K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence
of metric and geometric properties of polyhedral surfaces. Geometriae
Dedicata, 123(1):89–112, 2006.

[17] M. Jin, J. Kim, F. Luo, and X. Gu. Discrete Surface Ricci Flow.
IEEE Trans. on Visualization and Computer Graphics, 15(5):1030–1043,
2008.

[18] M. Jin, G. Rong, H. Wu, L. Shuai, and X. Guo. Optimal Surface
Deployment Problem in Wireless Sensor Networks. In Proc. of the
31st IEEE INFOCOM, pages 2345–2353, 2012.

[19] K. Kar and S. Banerjee. Node Placement for Connected Coverage in
Sensor Networks. In Proc. of the 1st IEEE/ACM WiOpt, 2003.

[20] H. Karcher. Riemannian Center of Mass and Mollifier Smoothing.
Communications on Pure and Applied Mathematics., 30(5):509–541,
1977.

[21] G. Kasbekar, Y. Bejerano, and S. Sarkar. Lifetime and Coverage Guar-
antees Through Distributed Coordinate-Free Sensor Activity. IEEE/ACM
Trans. on Networking, 19(22):470–483, 2011.

[22] R. Kershner. The Number of Circles Covering A Set. American J.
Math., 61(3):665–671, 1939.

[23] J.-E. Kim, J. Han, and C.-G. Lee. Optimal 3-Coverage with Mini-
mum Separation Requirements for Ubiquitous Computing Environments.
Springer Mobile Netw. & Appl., 14(5):556–570, 2008.

[24] L. Kong, M. Zhao, X. Liu, J. Lu, Y. Liu, M. Wu, and W. Shu. Surface
Coverage in Sensor Networks. IEEE Trans. on Parallel and Distributed
Systems, 25(1):234–243, 2014.

14

[25] S. Kumar, T.H. La, and J. Balogh. On k-coverage in a Mostly Sleeping
Sensor Network. In Proc. of the 10th ACM MobiCom, pages 144–158,
2004.

[26] D.T. Lee. On k-Nearest Neighbor Voronoi Diagrams in a Plane. IEEE
Trans. on Computer, 31(6):478–487, 1982.

[27] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. In Proc. of the 1st
ACM SenSys, pages 126–137, 2003.

[28] F. Li, J. Luo, S. Xin, W. Wang, and Y. He. LAACAD: Load bAlancing
k-Area Coverage through Autonomous Deployment in Wireless Sensor
Networks. In Proc. of the 32nd IEEE ICDCS, pages 1–10, 2012.

[29] F. Li, C. Zhang, J. Luo, S. Xin, and Y. He. LBDP: Localized Boundary
Detection and Parametrization for 3D Sensor Networks. IEEE/ACM
Trans. on Networking, 22(2):567–579, 2014.

[30] J. McLurkin and E. Demaine. A Distributed Boundary Detection
Algorithm for Multi-robot Systems. In Proc. of IEEE/RSJ IROS, pages
4791–4798, 2009.

[31] M.I. Shamos and D. Hoey. Closest-Point Problems. In Proc. of the 16th
IEEE FOCS, pages 151–162, 1975.

[32] Y. Shang and W. Ruml. Improved MDS-Based Localization. In Proc.
of the 23rd IEEE INFOCOM, pages 2640–2651, 2004.

[33] S. Tang, X. Li, X. Shen, J. Zhang, G. Dai, and S.K. Das. Cool: On
Coverage with Solar-Powered Sensors. In Proc. of the 31st IEEE ICDCS,
pages 488–496, 2011.

[34] G. Wang, G. Cao, and T.F. La Porta. Movement-Assisted Sensor
Deployment. IEEE Trans. on Mobile Computing, 5(6):640–652, 2006.

[35] X. Wang, X. Wang, and J. Zhao. Impact of Mobility and Heterogeneity
on Coverage and Energy Consumption in Wireless Sensor Networks. In
Proc. of the 31st IEEE ICDCS, pages 477–487, 2011.

[36] Y.-C. Wang and Y.-C. Tseng. Distributed Deployment Schemes for
Mobile Wireless Sensor Networks to Ensure Multilevel Coverage. IEEE
Trans. on Parallel and Distributed Systems, 19(9):1280–1294, 2008.

[37] E. Welzl. Smallest Enclosing Disks (Balls and Ellipsoids). Results and
New Trends in Computer Science (LNCS 555), pages 359–370, 1991.

[38] L. Wu, H. Du, W. Wu, D. Li, J. Lv, and W. Lee. Approximations
for Minimum Connected Sensor Cover. In Proc. of the 32nd IEEE
INFOCOM, pages 1187–1194, 2013.

[39] S. Xin and G. Wang. Improving Chen & Han’s Algorithm on the
Discrete Geodesic Problem. ACM Trans. on Graphics., 28(4):1–8, 2009.

[40] S. Xin and G. Wang. Applying the Improved Chen and Hans Algorithm
to Different Versions of Shortest Path Problems on a Polyhedral Surface.
Computer-Aided Design, 42(10):942–951, 2010.

[41] Q. Yang, S. He, J. Li, J. Chen, and Y. Sun. Energy-Efficient Probabilistic
Area Coverage in Wireless Sensor Networks. IEEE Trans. on Vehicular
Technology, 2014.

[42] M. Younis, S. Ramasubramanian, and M. Krunz. Location-Unaware
Sensing Range Assignment in Sensor Networks. In Proc of the 6th
IFIP Networking, pages 120–131, 2007.

[43] M. Zhao, J. Lei, M. Wu, Y. Liu, and W. Shu. Surface Coverage in
Wireless Sensor Networks. In Proc of the 28th IEEE INFOCOM, pages
109–117, 2009.

[44] Q. Zhao and M. Gurusamy. Lifetime Maximization for Connected
Target Coverage in Wireless Sensor Networks. IEEE/ACM Trans. on
Networking, 16(6):1378–1391, 2008.

[45] Z. Zhou, S.R. Das, and H. Gupta. Variable Radii Connected Sensor
Cover in Sensor Networks. ACM Trans. Senor Networks, 5(1):8:1–8:36,
2009.

Feng Li received his BS degree in Computer Sci-
ence from Shandong Normal University, China, in
2007, and the MS degree in Computer Science from
Shandong University, China, in 2010. He is currently
a PhD student at School of Computer Engineering,
Nanyang Technological University, Singapore. His
research interests are computational geometry and
its application in wireless sensor networks.

Jun Luo received his BS and MS degrees in Elec-
trical Engineering from Tsinghua University, China,
and the PhD degree in Computer Science from EPFL
(Swiss Federal Institute of Technology in Lausanne),
Lausanne, Switzerland. From 2006 to 2008, he has
worked as a post-doctoral research fellow in the
Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Canada. In 2008,
he joined the faculty of the School of Computer
Engineering, Nanyang Technological University in
Singapore, where he is currently an assistant profes-

sor. His research interests include wireless networking, mobile and pervasive
computing, applied operations research, as well as network security. More
information can be found at http://www3.ntu.edu.sg/home/junluo.

Wenping Wang is a professor of computer science
at the University of Hong Kong. His research cov-
ers computer graphics, visualization, and geomet-
ric computing. He has recently focused on mesh
generation and surface modeling for architectural
design. He is journal associate editor of Computer
Aided Geometric Design (CAGD), Computers and
Graphics (CAG), IEEE Transactions on Visualiza-
tion and Computer Graphics (TVCG, 2008-2012),
Computer Graphics Forum (CGF), and IEEE Com-
puter Graphics and Applications (CG&A). He has

been the program chair of several international conferences, including Pacific
Graphics 2003, ACM Symposium on Physical and Solid Modeling (SPM
2006), International Conference on Shape Modeling (SMI 2009), and the
conference chair of Pacific Graphics 2012, SIAM Conference on Geometric
and Physical Modeling 2013 (GD/SPM13), and SIGGRAPH Asia 2013

Ying He received the BS and MS degrees in Elec-
trical Engineering from Tsinghua University, China,
and the PhD degree in Computer Science from
the State University of New York (SUNY), Stony
Brook, USA. He is currently an associate professor
at the School of Computer Engineering, Nanyang
Technological University, Singapore. His research
interests are in the broad areas of visual computing,
with a focus on the problems that require geometric
computation and analysis. More information can be
found at http://www.ntu.edu.sg/home/yhe.

