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Learning-Based Outdoor Localization Exploiting
Crowd-Labeled WiFi Hotspots

Jin Wang Jun Luo Sinno Jialin Pan Aixin Sun

Abstract—The ever-expanding scale of WiFi deployments in metropolitan areas has made accurate GPS-free outdoor localization
become possible by relying solely on the WiFi infrastructure. Nevertheless, neither academic researches nor existing industrial
practices seem to provide a satisfactory solution or implementation. In this paper, we propose WOLoc (WiFi-only Outdoor Localization)
as a learning-based outdoor localization solution using only WiFi hotspots labeled by crowdsensing. On one hand, we do not take
these labels as fingerprints as it is almost impossible to extend indoor localization mechanisms by fingerprinting metropolitan areas. On
the other hand, we avoid the over-simplified local synthesis methods (e.g., centroid) that significantly lose the information contained in
the labels. Instead, WOLoc adopts a semi-supervised manifold learning approach that accommodates all the labeled and unlabeled
data for a given area, and the output concerning the unlabeled part will become the estimated locations for both unknown users and
unknown WiFi hotspots. Moreover, WOLoc applies text mining techniques to analyze the SSIDs of hotspots, so as to derive more
accurate input to its manifold learning. We conduct extensive experiments in several outdoor areas, and the results have strongly
indicated the efficacy of our solution in achieving a meter-level localization accuracy.

Index Terms—WiFi-based Localization, Manifold Learning, Crowdsensing, Mobile Computing.

F

1 INTRODUCTION

A LTHOUGH WiFi has been intensively used for the pur-
pose of indoor localization since the seminal work [1],

GPS is still dominating the outdoor market. Nevertheless,
the landscape of outdoor (user) localization is shifting due to
the high energy consumption of embedded GPS sensors (in
smartphones, for example) and the frequent loss of signal in
“urban canyon” [2], [3]. Therefore, it is as imperative as in-
door scenarios to look for supplementary location indicators
in metropolitan areas. Whereas many location indicators,
namely general RF signal [3]–[5], light [6], sound [7], and
magnetic field [8], can be explored indoors, they either
lose their location discriminability (e.g., light, sound, and
magnetic field) or offer very low localization accuracy due
to the sparse deployment of signal sources (Cellular1 and
FM). In the meantime, the WiFi density can be so high that
it is common to discover up to hundreds of public or private
hotspots at any position in metropolitan areas. As a result,
the pervasively available WiFi infrastructure appears to a
promising choice for us to explore further.

While the majority of the research efforts are still
dwelling in indoor localization, quite a few industrial prac-
tices have already started to provide GPS-free outdoor
localization services based on WiFi infrastructure [9]–[13].
These services are backed up by one fact: since one WiFi
scan may discover up to hundreds of WiFi hotspots in a
common metropolitan area, crowdsensing by a large num-
ber of smartphone users has already labeled those hotspots
without the need for war-driving by the provider of localiza-
tion service. War-driving often requires high commitment

1. CTrack [3], though based on GSM, achieves satisfactory vehicle
trajectory mapping by exploiting the trajectory continuity along a road,
but this approach may not work for general pedestrian localization
purpose, which may not exactly follow the road system and thus has a
more complex moving pattern.

of human resource and time to traverse over the entire area.
Equipment, path and time should also be carefully designed
and scheduled to ensure the quality of data collected. In
contrast, crowdsensed databases are contributed by diversi-
fied individuals, and they are not intentionally established
but crowdsourced to these individuals during their daily
commute or location-based recommendation queries. Con-
sequently, even a small database in such a system (e.g.,
OpenBMap [10]) may have thousands of WiFi hotspots
recorded for one metropolitan area, with each one getting
several hundreds of labels. If we can properly exploit such
“big data”, GPS-free localization in metropolitan areas can
be made very accurate.

Unfortunately, neither academic proposals (e.g., [14],
[15]) nor industrial practices (e.g., [10], [11]) have achieved
a satisfactory localization accuracy so far. Most academic
proposals are trying to migrate the WiFi fingerprinting
methods (e.g., [1]) proven to be effective indoors to a
metropolitan area, but fingerprinting such a huge area
through war-driving is extremely difficult (if not impossi-
ble), and the localization algorithms adapted to sequential
war-driving labels (e.g., particle filter [14]) do not work
well for crowdsensed labels possibly absent of sequential
timestamps. More importantly, localization does not work
beyond the fingerprinted zones. Some other academic pro-
posals (e.g., [2]) along with most industrial practices take a
simpler approach that involves a WiFi hotspot localization
phase using the labels and a user localization phase based
on the estimated hotspot locations. Whereas this method
avoids the weakness of the fingerprinting method and also
delivers the WiFi hotspot locations as a byproduct, it cannot
achieve a good localization accuracy because the synthesiz-
ing methods in the both phases (e.g., centroid [2], [10]) are
over simplified and they process data only in a localized (in
topological sense) manner, so that they i) may not handle
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the label errors well enough to avoid error accumulation
across the two phases, and ii) can cause a significant infor-
mation loss to hamper the crowdsensed labels from fully
contributing to the user localization.

Additionally, with the increasing popularity of
crowdsourced social venue check-in database (e.g.,
FourSquare,Yelp) and industry-maintained venue database
(e.g., Google Places, Baidu Map), more information regarding
public places in metropolitan areas are publicly available,
including name and geo-location. Since part of hotspots
in urban areas are from public areas for food, leisure or
services, it is highly possible that the places that maintain
the hotspots have been discovered and socially checked-in
by mobile users to crowdsourced venue database. Another
part of hotspots are from areas for companies and agencies,
which are mostly maintained in industry-maintained
venue database. By analyzing the text information in
the SSIDs of collected hotspots, venue information are
revealed to facilitate the labelling process for part of the
location-unknown hotspots.

In order to fully exert the strength of WiFi-based lo-
calization outdoors, we propose an integrated solution,
WOLoc, to better utilize the crowdsensed WiFi labels, in-
cluding both SSID and RSSI, for improving the localization
accuracy. Equipped with a large amount of labels, WOLoc
takes a holistic view on all such data collected within
a metropolitan area (or a sub-area) and it processes the
labels based on semi-supervised manifold-learning tech-
niques after partially labelling unknown hotspots by SSID
analysis. The rationale behind our design is the following:
assuming all labels are perfect (with each label produced
by a mobile device δ for a hotspot Θ containing a tuple
of {location of δ,RSSI from Θ to δ}), the locations of all mo-
bile devices and hotspots should lie on a low dimensional
Euclidean space (normally 2D or at most 3D). Although
imperfect labels (in terms of both location and RSSI) may
“bend” the original space into a much higher dimension, it
is highly possible that those locations still lie on some man-
ifold structure of low dimension [16]. Therefore, WOLoc
aims to discover this manifold structure so as to recover
the true locations of the both users and WiFi hotspots. In
particular, we are making the following contributions:
• A pre-processing method to filter the labels and

remove meaningless (e.g., mobile) hotspots, so that
outliers that might significantly deviate from the
ground truth can be removed.

• A specifically designed manifold-learning scheme to
holistically synthesize all the filtered labels belonging
to a certain metropolitan area, so as to locate both
users and WiFi hotspots.

• A unified text analysis pipeline to retrieve venue
information from hotspot SSID and query venue-
related database for positioning part of unlabeled
hotspots in the manifold.

• An online localization approach to take only a small
subset of labels into account when processing loca-
tion queries so as to improve efficiency while pre-
serving localization accuracy.

• A full implementation and extensive experiments
using it in several metropolitan areas to validate the
effectiveness of our WOLoc system.

Note that WOLoc delivers hotspots positions as a byprod-
uct; this may not serve the purpose of user localization, but
it may provide guidance for users to look for better WiFi
performance. The remaining of the paper is organized as
following. We first survey the literature in Sec. 2. Then we
briefly discuss the current practices of outdoor localization
in Sec. 3. The detailed design of WOLoc system is presented
in Sec. 4 and is then evaluated in Sec. 5. We finally conclude
our paper in Sec. 6.

2 RELATED WORKS

Whereas most user localization systems are designed for
indoor scenarios, GPS-free outdoor localization has a long
history under the topic of wireless sensor network (WSN)
localization but very few of them are dedicated to user
localization. Our following discussions categorize them into
i) range-based method and ii) range-free method, but omit
recent developments on (RF) Angle of Arrival (e.g., [17]),
which is clearly not suitable for outdoor scenarios.

2.1 Range-based Localization Method

Range-based methods normally require pairwise distance
measurements among all or part of the devices (or among
various locations of the same device). The distance measure-
ments are normally obtained through ToF/ToA [18], [19],
TDoA [20], RSSI (with a certain propagation model) [21],
and dead reckoning [22]. Measuring distance through
ToF/ToA/TDoA requires either non-RF signal sources [18],
[20] (so that the time can last long enough to be measurable)
or a sophisticated design for RF signal [19] (which would
not be usable for outdoor localization any sooner). Dead
reckoning is useful for assisting user tracking in small-
scale indoor space [22] (otherwise the accumulated errors
can render the results unusable), but locating a user in a
metropolitan area cannot solely rely on dead reckoning.

As a result, the error-prone RSSI-based ranging seems
to be a reasonable solution. As RSSI values are subject
to various shadowing effects [23], existing methods focus
on suppressing the induced errors. [21] uses pair-distance
constraints obtained between hotspots and users to infer an
RF model. However, the knowledge of hotspot location is
absent in outdoor scenarios. [24] introduces collaborative
localization to WSNs; it adopts a “brute-force” dimension
reduction conducted by minimizing the mean errors itera-
tively between the error-twisted high dimensional structure
and its 2D projection. Many follow-ups [25]–[27] improve
its efficiency through new iterative approaches or by re-
defining the optimization problem. However, the peer na-
ture of WSNs makes them very different from WiFi net-
works where distances among hotspots (or users) cannot
be explicitly obtained through RSSI modeling.

The approach of manifold-alignment [28] can be deemed
as an implicit range-based method: it does not directly
convert RSSI readings into distances, but it rather considers
those readings as metrics in a certain manifold structure.
This approach has been applied to indoor tracking [16],
but it is still an open question whether it works or not
for localization with crowdsensed labels in the absence of
sequential timestamps.
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Fig. 1. A two-stage localization approach: Hotspots Localization (Left)
and User Localization (Right). We mark known locations in black and
estimated locations in red. Hotspots Localization aims to locate hotspots
(AP1 to AP5) given several user locations (U1 to U4) along with cor-
responding hotspots RSSIs. User Localization aims to estimate a new
user’s (User X) location based on previously estimated locations and
their respective RSSIs. [Best viewed in color.]

2.2 Range-Free Localization Method

Range-free methods have two different manifestations,
namely beacon-enabled methods for multi-hop net-
works [29]–[31] and fingerprinting method for indoor lo-
calization [1], [32]. The beacon-enabled methods only re-
quire a node/user to hear from a few beacons with known
locations, and then use simple computations [29] or logi-
cal reasoning [30], [31] to obtain a coarse-grained location
estimation. Fingerprinting methods take RSSIs not as a
distance indicator but rather as an observed pattern [1],
[32], so indicating locations by pattern matching has the
potential to achieve a fine-grained localization if a cer-
tain area is fully labeled with the observable patterns (or
fingerprints). However, whereas certain efforts have been
made to migrate the fingerprinting methods from indoor
scenarios to outdoor environment [14], [15], it is now well
accepted that i) fingerprinting an area (even a very small
one) through war-driving is a major bottleneck even for
indoor localization, and ii) the localization ability is confined
to only the region that has been fingerprinted. As a result,
practical deployments for outdoor localization are mainly
using the computationally light beacon-enabled methods by
taking WiFi hotspots as beacons [2], [10]. Nevertheless, as
we shall show in both Sec. 3 and Sec. 5, the over-simplified
method cannot offer satisfactory localization accuracy due
to the significant loss of information.

3 OUTDOOR GPS-FREE LOCALIZATION: TWO-
STAGE CENTROID VS. MANIFOLD LEARNING

3.1 Current Practices of Outdoor GPS-free Localization

Most of current commercial or open-source WiFi localization
systems can be clearly divided into two stages: Hotspot
Localization (HL) and User Localization (UL), as illustrated
by Fig. 1. Hotspots localization is often regarded as the
offline pre-processing stage, where the locations of WiFi
hotspots are estimated based on crowdsensed labels col-
lected and stored in a database. These estimations stored in
the database are regularly updated as new labels become
available. To the best of our knowledge, WiGLE [9] and

Skyhook [11] have proprietary implementations, but they
have published that they employ weighted centroid method
to estimate hotspot locations based on the crowdsensed
labels [33], [34]. In particular, each label contains a GPS
location indicating where the concerned hotspot is heard
(i.e., a user location), as well as the RSSI from that hotspot
indicating the receiver’s relative distance to the hotspot. As
a result, a hotspot location is estimated as the centroid of all
labels (their GPS locations) concerning it, but weighted by
the respective RSSIs.

User localization is regarded as the online localization
stage, when a user location is calculated based on the
observed hotspots whose positions have been estimated
and stored at the first stage, as well as their RSSI readings.
The weighted centroid method is again used in this stage,
which is a reversed process of getting the hotspots loca-
tions: the estimated hotspot locations are used to compute
the centroid that indicates the user location, with RSSIs
serving as the weights. OpenBMap [10] is open-source and
its offline localization algorithm applies a Kalman Filter to
sequentially process the hotspot labels during this stage,
this seemingly more sophisticated method essentially yields
the same (unsatisfactory) localization accuracy, as we shall
explain soon and experimentally evaluate in Sec. 5. Fig. 1
illustrates how a two-stage approach works in an ideal case.

Although a two-stage approach may work in an ideal
case, it is prone to error accumulation across the two stages
because the information contained in the original labels do
not get fully propagated to the UL stage. Moreover, a two-
stage approach treats each estimation (in both stages) in a
localized manner, neglecting the spatial relationship among
hotspots and users; losing such information can be fatal to
the final location estimation result. In Fig. 2, we use left
side as an illustration of centroid-based methods. One main
limitation of centroid-based methods in estimating a hotspot
location is that it treats the hotspot independently from
other hotspots. Therefore, no matter how RSSIs are factors as
weights, the estimated hotspot location (red star) is always
inside the convex hull induced by the observing user loca-
tions (black dots). When the collected data are mainly on the
road, the weighted centroid method also gives the estimated
location of a hotspot very close to the road. Apparently, such

Fig. 2. Comparing Weighted Centroid Method (Left) with Manifold-based
Learning (Right). We consider a target hotspot whose true location is
shown as the black star. Black dots show locations of users that discover
it. Blue stars are its neighboring hotspots in the constructed manifold.
The red star indicates the estimated hotspot location, with a concentric
red disk denoting a rough transmission range of it: both can be seriously
biased by the centroid method. The phone icon indicates a new user
location that is better predicted by our manifold-based learning scenario.
[Best viewed in color.]
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a large error may seriously jeopardize the user localization
later: if we simply estimate a user requesting location (the
mobile phone) as within the red circle centered around the
estimated hotspot location, it can be seriously biased. In
sum, a two-stage localization method that considers hotspot
independently easily accumulates error.

3.2 Manifold Perspective of WiFi-based Localization

Manifold learning is essentially a non-linear dimensionality
reduction method. It is based on a basic observation that
dimensionality of many data sets is only artificially high.
Algorithms relevant to manifold learning tends to learn the
manifold structure underlying in the dataset. When part of
the data are labeled, semi-supervised manifold alignment
can be applied [35] to predict the unlabeled data. If we
represent each data as a vertex and construct a graph based
on their neighbourhood relation, a general objective cost
function of semi-supervised manifold alignment problem is
defined as:

C(f) =
∑
i

| fi − yi |2 + γfTLf , (1)

where f is a mapping function defined on the vertices of the
graph that matches labeled vertices to the target values, yi
represents each labeled data value, L is the graph Laplacian
for the underlying manifold, and γ controls the relative
weights among terms. The first term is the fitting error,
and the second term is the regularization term for graph
Laplacian which ensures nearer points on the manifold have
more similar values, thus it enforces the smoothness along
the manifold.

In the context of WiFi-based localization, if we consider
the signal received for all hotspots from one location as a
data point, the dimension of the data is high given that
hundreds of hotspots can be observed at that location.
Fortunately, as two close-by locations should have similar
signal readings, the distance between data points in the
high-dimensional space intrinsically preserves the geometry
between locations. If every signal is received perfectly and
follows the Path Loss Model based on the distance between
transmitter and receiver, the data is only artificially high-
dimensional and should lie on a 2D manifold. However,
due to the errors inherent to RSSIs, the manifold created
based on them would be bend to a space with dimension
higher than 2. Given some of the locations are labeled
by crowdsensing participants, a semi-supervised manifold
regularization aims to learn the graph structure in the low-
dimensional space that can best fit all the signal data while
preserving their geometry. The unlabeled locations are thus
estimated through the low-dimensional structure [36].

Different from the two-stage method that focuses locally
on a single hotspot or user, manifold learning takes a more
holistic view over all crowdsensed data. It not only uses
RSSI as distance metrics between user and hotspots but
also reconstructs the topological relations among hotspots
and users. User manifold is constructed under the observa-
tion that close-by locations observe similar RSSIs from all
hotspots, while hotspot manifold is constructed under the
observation that two close-by hotspots cause similar RSSI
readings to all receivers. Furthermore, these two manifolds

Fig. 3. WOLoc system architecture.

(for users and hotspots, respectively) are unified into one
large manifold (more details in Section 4.3). As shown
in Fig. 2 (right side), within the constraint of the large
manifold, the target hotspot (red star) is not independently
estimated by the surrounding users’ observations (black
dots) but rather together with its surrounding hotspots (blue
stars). Obviously, constructing a manifold to represent the
relations among hotspots and users preserves the label in-
formation to the maximum extent, hence it has the potential
to obtain a higher localization accuracy.

4 WOLOC: A MANIFOLD PERSPECTIVE IN LOCAL-
IZATION

To overcome the potential problem inherent in the current
practices, we proposed WOLoc as an outdoor localization
system driven by manifold-based learning techniques. The
system architecture comprised of three parts shown in
Fig. 3: pre-processing of crowdsensed data, offline manifold
learning exploiting existing crowdsensed labels, and online
location query processing.

4.1 Pre-Processing of Crowdsensed Data
Many crowd-sensing applications available in the market
share a similar mechanism to obtain crowdsensing hotspot
location data. The application starts a hotspot discovery
according to various schedules (e.g., triggered by a sig-
nificant location change). It records, for each discovered
hotspot, the BSSID, SSID, RSSI. It also obtains its own
location (latitude, longitude) along with GPS signal statistics
(accuracy, represented by confidence range, and the num-
ber of satellites), and this location and the corresponding
timestamp are associated with every discovered hotspot. All
these information for a given hotspot constitute a label. A
record contains a set of labels collected by a user at a given
position. Crowdsensing data include two types: i) sequential
data with timestamps and ii) single data at any position. We
first mark the records with very few number of satellites
or large confidence range as “suspicious records", which
mostly occur among high-rises, under shelters or at the
beginning of a trip when GPS is still searching for satellites.
Then we eliminate, out of these suspicious records, those
with fewer than 5 satellites or a confidence range beyond
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20 meters. For data logged sequentially (in timestamp), we
also remove those with huge jumps in distance and velocity
to avoid potential errors caused by inaccurate GPS location;
this is done by calculating the distance between consecutive
records and average velocity inside a sliding window of 3
records. We set distance threshold as 100 meters and velocity
threshold as 80 m/s given a sampling rate of 1Hz.

Among all the detected hotspots, two types of mobile
hotspots should be eliminated: i) personal hotspots and ii)
public transport hotspots. Normally, a fixed hotspot has a
signal range of about 100 meters, so we apply the DBSCAN
clustering algorithm on all label locations for each hotspot.
Assume there are k labels available for one hotspot, we set
the minimum points of a cluster as 0.8k and the maximum
distance as 200 meters. If all the points are finally labeled
as “noise" after DBSCAN, it means the heard locations for
the hotspot are too sparsely distributed, and the hotspot
is highly likely to be mobile. We maintain the database by
keeping a record of all the mobile hotspots discovered, and
avoid using them in the following processing.

Besides the mobile hotspots that can be identified with
DBSCAN on their location labels, some hotspots are essen-
tially mobile but may not be easily identified using locations
if the carriers are static when the logs are collected, such
as the tachograph on vehicles which parked nearby or
the personal hotspots on mobile phones from users who
work nearby. We want to further eliminate these essentially
mobile hotspots. To fully utilize the information in the user
log, we further process the SSIDs for the remaining hotspots.
There are several typical patterns for personal hotspots
enabled by personal mobile phones and hotspots enabled by
tachographs on vehicles. Many personal hotspots have the
user’s name and the phone’s brand name as a default SSID,
such as “Alice’s iPhone 6” or “Ben’s Samsung Galaxy”.
Similarly, we find that many tachographs share the same
pattern which starts with a brand name and ends with a 4-
digit or 6-digit model number, such as “DR650GW-F0BF62”
and “IROAD_AEV_077865”. We search over the SSIDs of
remaining hotspots and match these patterns, and remove
the hotspots of which the SSIDs have similar patterns to
avoid involving potential mobile hotspots into our database.

As we want to limit the size of the database to achieve
efficient computation in the following process, labels with
same locations are combined into one by averaging the RSSI
for each hotspot, where the “same” is defined as within 1
meter distance. The number of combined labels is recorded
for a further combination. For any new label inserted into
the database, a same-location check/combination is per-
formed to minimize the size of the database.

4.2 Problem Formulation
After filtering processing, we can construct a signal matrix S
for all the remaining labels. Assume that we have n hotspots
detected in m records, S will be a m × n matrix, and S = s11 · · · s1n

...
. . .

...
sm1 · · · smn

 where sij is the RSSI for the j-th hotspot

in the i-th record. Each column represents one hotspot, and
each row represents one record. We fill all the blank cells
with a small default value smin. Locations of records are

maintained using a m × 2 matrix u = [u1, · · · , um]′ where
ui = [uix, uiy]′. Given the signal matrix S, our goal is, for
any new record sm+1 ∈ R1×n, to estimate the user location
um+1. It turns out that, as a byproduct, we will obtain the
hotspot locations h = [h1, · · · , hn]′ simultaneously, where
hi = [hix, hiy]′.

4.3 Manifold Construction
The construction of manifold is based on three facts: i)
two near locations receive similar signal strengths from sur-
rounding hotspots, ii) a user receives similar signal strength
from two hotspots near to each other, and iii) the nearer a
user is to a hotspot, the stronger the signal received will
be [16]. In our context, these translate to: i) if each row of
S is represented as a point in n-dimensional space, two
locations, ui and uj , spatially near in real-world should be
close to each other in the n-dimensional space, ii) if each
column of S is represented as a point in m-dimensional
space, two hotspots, hi and hj , spatially near in real-world
should be close to each other in the m-dimensional space,
and iii) the larger sij is, the nearer j-th hotspot is to the
location of the i-th record.

Therefore, we construct two separated manifolds first:
user location manifold and hotspot location manifold, and
the neighbourhood relationship is given by k-Nearest-
Neighbour (KNN) method. Since the RSSI and distance is
not linearly related, we first convert the RSSI values to
weights using a non-linear transformation to get the normal-

ized signal matrix SN : s̃ij = exp

(
− (sij − smax)2

2σ2

)
, where

smax is the maximum RSSI a user can receive in an outdoor
environment, which indicates a significantly close distance
between user and hotspot. σ is known as the Gaussian
kernel width. Empirically, we set smax = −30dBm and σ
= 12 based on the crowdsensed data. Note that σ affects
the spatial density of hotspots: the larger the σ is, the more
sparsely hotspots are distributed. Given users’ geographic
locations, we directly use great-circle distance as the metric
for user location manifold. For hotspots location manifold,
we use the Euclidean distance between column vectors in S̃
as the metric.

For each manifold, we define a weighted adjacency

matrix A∗ where aij = exp

(
−‖s̃i − s̃j‖2

2σ2

)
if i and j are

neighbours in the manifold; otherwise 0. Let Au be the
m × m matrix for the user location manifold and Ah be
the n× n matrix for the hotspot location manifold. To align
the two manifolds into one, we define a unified adjacency

matrix A =

[
ruAu rsS̃N
rsS̃
′
N rhAh

]
where parameters ru, rs, rh

are set to be small positive values induced by harmonic
functions on the graph. A clearly represents the relative
distances and connectivity among users and hotspots based
on the three aforementioned facts.

4.4 Hotspot Online Location Labelling
As we are applying a semi-supervised learning mechanism,
parts of the manifold vertices have to be labeled to facilitate
the training for the unlabeled data. Among the two previ-
ously constructed manifold, user location manifold has all
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TABLE 1
Hotspot SSID examples for public places.

SSID Place Name Place Category Place Source Keyword Tokens
Guest@Truefitt&Hill Truefitt & Hill Salon/Fashion FourSquare truefitt, hill
myhelper MyHelper Pte Ltd Agency Google Places myhelper
keckseng-wlan2 Keck Seng (s) Pte Ltd Company Google Places keckseng
brotzeit_2.4 Brotzeit Food FourSquare brotzeit
chanhampe2 (5 ghz) Chan Hampe Galleries Art Gallery FourSquare chanhampe
iptv@south_african South African High Commission Government office Google Places iptv, south, african
www.homemart247.com (5g) HomeMart Home Services FourSquare homemart
smu_visitor Singapore Management University University Google Places smu
leica-store The Leica Store Store FourSquare leica, store
sunnyhills@raffles-2g Sunnyhills Confectionery Google Places sunnyhills, raffles
fairmont_meeting Fairmont Singapore Hotel FourSquare fairmont, meeting

the locations known because the GPS location readings are
available from user-submitted log, but none of the hotspots
bear location information. We propose two methods to give
a coarse-grained estimation for some of the hotspots in the
manifold. Firstly, since the nearer a user is to a hotspot,
the larger the received signal strength (RSSI) will be, we
can apply a “cut-and-pin” method to set a high threshold
smaxloc to pick out those user-hotspot pairs which are quite
close to each other, then locate the hotspots with the user
location labels as a rough estimation. For each hotspot Θ
and its label set {(lΘi, rΘi)i=1,2,···},

l(Θ) =

{
lΘk, k = arg maxi rΘi if rΘk > smaxloc
⊥ otherwise

where lΘi represents the location of the i-th user, rΘi denotes
the RSSI from Θ to that user, and ⊥ means undefined. This
“cut-and-pin” method is easy to implement but suffers from
low accuracy given the signal vanishing and fading effect in
outdoor scenarios. We either end up with very few hotspots
located due to signal loss or locate the hotspot on the street
with sub-optimal accuracy.

Another method to locate the unlabeled hotspots is
through the analysis on the SSIDs. We find that many public
places (e.g. shops, restaurants, hotels) name their hotspots
by the names of the places. Table 1 shows some SSID ex-
amples in our collected data and their corresponding place
names in FourSquare/Google Places database. The similarity
between the SSID and the place name is sufficiently high for
us to confidently locate the hotspot to the corresponding
place. We firstly extract keywords from the SSID by (1)
removing hotspots with router brand names, (2) tokenizing
by non-alphabet character, (3) removing frequent words
(such as wifi, free, guest, visitor, ghz) and (4) generating
keywords from remaining tokens (example keyword tokens
are shown in Table 1). By the end of keyword extraction,
each hotspot will have several keywords and one keyword
may be shared by several hotspots since each place may
have more than one hotspot. To minimize the number of
queries issued to venue databases, for each keyword, we
further process all the location labels of all related hotspots
to get a location coverage of that keyword. Given the
keyword and the coverage, we query FourSquare API and
Google Places API through a "keyword + area" query-pair
to retrieve all the relevant places, ρ = (nρ, lρ), from these
online venue databases, where nρ is the name string of
ρ and lρ is the geolocation of ρ. We further conduct a

scoring mechanism among all candidate places ρ for each
hotspot Θ to determine the most suitable one. Given each
returned place ρ and its corresponding hotspot Θ (its SSID
represented by nΘ and all corresponding labels represented
by {(lΘi, rΘi)i=1,2,···}, we compute an overall similarity
score Φ between ρ and Θ as:

Φ = wnφn + wlφl + wcφc,

where the individual scores are defined as follows, and wn,
wl, wc are corresponding weights summing to 1.

• Name similarity φn is defined by adding several
string similarity metrics including Jaccard Simi-
larity, Normalized Levenshtein Distance, JaroWin-
kler Distance, Long Common Subsequence, Cosine
Similarity and N-gram Similarity, such that φn =∑
i αiφni(nρ, nΘ) where each φni(nρ, nΘ) indicates

a kind of text similarity metric and αi is the corre-
sponding weight summing to 1.

• Location similarity φl = −corr(d, τ ) is calculated
as a negative correlation between the distances se-
quence of labels to the estimated locations and
the normalized signal strength sequence, where
d = [d1, d2, ..., dn], di = ‖lΘi − lρ‖2 and τ =

[τ1, τ2, ..., τn], τi = exp(− (rΘi − smax)2

2σ2
). It is based

on the assumption that the distance from a user
location to a hotspot location should be inversely
proportional to the received signal strength.

• Source credibility φc ∈ [0, 1] assigns a higher value
to a more credible database, so that our scoring
mechanism tends to favor results from more reliable
sources.

Among all the candidate places for a hotspot Θ, we
select the most suitable place ρ? with the highest overall
score, and lρ? will be assigned to Θ as a location estimation.
In special cases where one place from the venue database
is associated with a large number of different hotspots, it
is highly possible that the place covers a large area, like
outdoor park or college. It is not appropriate to locate all
the relevant hotspots to the same location, so we skip the
large-area places and keep the relevant hotspots unlabeled.

Although the “cut-and-pin” method does not have as
high accuracy as the SSID text analysis method, it does not
require any online query and will not suffer from potential
large error due to wrong matches or inaccurate database
information. However, SSID text analysis provides us with
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(a) 0.07 km2 (b) 0.14 km2 (c) 0.04 km2 (d) 0.07 km2 (e) 1.45 km2 (f) 1.27 km2

Fig. 4. Maps provided by Google Map for all areas concerned in our experiments. (a) Downtown. (b) Campus. (c) Hybrid Residential Area. (d)
Residential Blocks. (e) Community Area. (f) Downtown Entertainment Area.

more references for localization, and generally improves
the accuracy of localization by avoiding unexpected large
errors due to numerical instability. We will compare the
performance of these two methods in Section 5.4.2.

4.5 Offline Learning for Location Estimations

To solve the hotspot locations and unknown user locations
at one time, we apply a semi-supervised learning approach.
Given the relative locations of users and hotspots repre-
sented by A, known locations denoted by y = [u′,h′]′, and
indication matrix K = diag(k1, . . . , km+n) where ki = 1
if the location of user or hotspot is given in y, otherwise
ki = 0, our objective is to find a set of locations p best fit
current relative patterns and has the minimum fitting errors
compared to known locations. Therefore, the objective is:

p∗ = arg min
p∈R(m+n)×2

(p− y)′K(p− y) + γp′Lp, (2)

where L is the graph Laplacian: L = D − A where
D = diag(d1, d2, . . . , dm+n) with di =

∑m+n
k=1 Aik. The

second term is the regularization term, where γ > 0 controls
the smoothness of the coordinates along the manifold. The
problem has a closed-form solution:

p∗ = (K + γL)−1Ky, (3)

where p∗ = [u∗′,h∗′]′ yields estimated locations for both
users and hotspots.

4.6 Online Location Query Processing

When processing the online location queries, involving all
records in a database (hence the full manifold) can be
avoided for efficiency purpose if the queries are geographi-
cally confined in a small region. In the WOLoc system, the
hotspot manifold is constructed offline and stored in the
database. Upon receiving a user location query (i.e., a record
with an unknown location, su), WOLoc server searches
through the hotspots in the query record, and retrieves a
subset of relevant hotspots from the database. This candidate
set concerns all the hotspots in the query, as well as their
neighbouring hotspots in global hotspots manifold.

Then WOLoc selects a subset of records from the
database to formulate ˆ̃S along with the query record su;
a record is selected if it contains an RSSI value significant
enough for any hotspot in the candidate set. Âh is computed
based on ˆ̃S and sub-manifold retrieved from the global
hotspot manifold computed offline. Based on the location
û from the selected records, WOLoc creates a user location
manifold online and inserts query record using KNN with

the Euclidean distance between row vectors in ˆ̃S as distance
metrics, and then computes Âu. After obtaining Âh and Âu,
WOLoc server applies the learning solver (3) to obtain the
optimal solution for these local structures and returns the
queried location back to the user. By processing a much
smaller set of records, the processing time is significantly re-
duced and WOLoc can respond to the query more promptly,
as we shall demonstrate in Sec. 5.3.

5 SYSTEM EVALUATION

5.1 Experiment Setting
We conducted experiments in the following 6 outdoor areas:

• Downtown: central business district filled with com-
mercial and business buildings as shown in Fig. 4(a).

• Campus: educational institute district with buildings
in open area as shown in Fig. 4(b).

• Hybrid Residential Area (Hybrid R.A.): medium-
density residential neighborhood with a few shops
and a community center as shown in Fig. 4(c).

• Residential Blocks (R.B.): high-density residential
neighborhood filled with high-rises as shown in
Fig. 4(d).

• Community Area (C.A.): a mixture of residential
high-rises, private houses, markets, shopping malls
and community centers as shown in Fig. 4(e).

• Downtown Entertainment Area (D.E.): high-density
of business high-rises, shopping malls, restaurants,
and entertainment facilities along riverside as shown
in Fig. 4(f).

As the commercial platforms either do not open their
database [11], [12] or have very limited coverage in our
city [10], we have limited open data from online sources
for our evaluation. We construct the cases (e) and (f) from
OpenBMap database that has in total 26 traces from 2010
to 2016 covering some of these 2 areas. To further extend
our evaluation cases, we develop an Android application to
collect WiFi and location data through walking and cycling.
The Android application continuously detects user location
using GPS module and scans surrounding WiFi hotspots
at 1Hz. For each hotspots scan, we record all the standard
information as discussed in Sec. 4.1.

All the complementary data are collected over a 2-month
period at various times in a day (30% in the morning, 53%
in the afternoon, 17% in the evening). 3 Android phones
with different brands (HTC One M8, Xiaomi Redmi Note
4 and Samsung Galaxy S4) are used. In each area, 2 traces
are collected by each of the 3 phones, thus in total 6 traces
are collected to cover each of the areas. Data in cases (a)-(d)
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(f) Downtown entertainment area

Fig. 5. Hotspots density for all areas in our experiments.

are collected by walking, while data in cases (e) and (f) are
complemented by cycling given the larger area.

We have a full-implementation for WOLoc server in
Java on a PC with 16GB RAM. For each evaluation, we
select part of records as testing data and use the remaining
records as training data. For each area, the server firstly
builds a database and constructs manifolds offline based
on the training data, then it processes location queries in
JSON format (generated from testing data) and returns user
locations.

5.2 Statistics on Hotspots
Fig. 5 shows the distribution of the number of hotspots
detected per record for each of the 6 areas. Table 2 shows the
statistics for hotspots per record for different areas. As ex-
pected, downtown and campus have higher hotspot density
than residential zones, where the number of hotspots per
record can reach more than 100 in some areas. Downtown
area also has the high variance in the number of hotspots
per record as a result of various heights of buildings and
unevenly distributed buildings in the zone. Campus has
generally more hotspots detected per record and highest
density, as the hotspots are densely located to achieve high
accessibility for all users in the campus. Residential blocks

TABLE 2
Hotspots density and number of hotspots per record

Area Hotspots
Density

(APs/km2)

# Hotspots per record

Mean Standard
Deviation Median

Downtown 30400 51.32 32.99 41
Campus 32900 88.42 36.08 91

Hybrid R.A. 27300 32.17 6.95 31
R.B. 29800 38.77 12.21 38
C.A. 18800 35.90 15.89 32
D.E. 26100 48.21 31.14 41

have a bit denser hotspots distribution as the blocks have
more levels and more residents compared with private semi-
detached houses in hybrid residential area. Community
area, as a larger scale of residential area, share similar
properties as hybrid residential area and residential blocks.
Most of records in this case contain about 15 to 45 hotspots.
Downtown entertainment area has almost the same distri-
bution as downtown case, which shows not only streets and
pedestrian streets but also riverside streets have sufficient
hotspots equipped. However, the reported hotspots density
at the two large areas is lower than the first 4 areas as
we cannot cover the entire large space in details due to
the lack of manpower. In summary, nowadays metropolitan
areas have sufficient WiFi infrastructure to help outdoor
localization if we use them properly.

5.3 Time Efficiency of WOLoc Localization

We verify the time efficiency of the system before evaluating
its performance in term of accuracy. WOLoc has two sepa-
rated processes, namely offline process and online process.
During the offline process, logs submitted to the server are
pre-processed and global manifolds are pre-computed in the
server. It only happens when there are a sufficient number
of new user logs received. An online process is invoked in
response to a user location query. This process involves local
manifold construction and location computation. Time to
accomplish the online process is the processing time for the
server to return location back to a user, so this is what we
are evaluating here.

We implement a full-version of WOLoc with pre-
processing module and “Cut-and-Pin” method for online
hotspot labelling. We arbitrarily select 100 records as testing
data and build the global manifold with the remaining
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Fig. 6. Processing time using all hotspots in a query and their neighbour-
ing hotspots. (a) Impact of number of hotspots/records. (b) Processing
time distribution.
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Fig. 7. Error statistics as a function of number of candidate hotspots.

records. We record the time that WOLoc takes to accomplish
online processing for each query. We plot the processing
time as a function of number of hotspots involved in the
online processing in Fig. 6(a); it is exponentially increased
with both number of hotspots and number of records. If
we retrieve all the surrounding hotspots concerned by a
location query, 70% of the queries in the experiment can
be finished within 5 seconds as shown in Fig. 6(b). The
mean processing time is 4.22 seconds. To further reduce
the processing time, we test the performance by involving
only those hotspots in the query and even a subset of
it. We select the subset based on the RSSI value, and we
only take the hotspots with strong RSSI values for further
processing. Fig. 7 shows the accuracy when processing with
different numbers of hotspots. We observed that the location
accuracy is largely insensitive to this number as long as it
is sufficiently large (≥ 6). Fig. 8(a) and 8(b) show that, after
reducing the number of candidate hotspots, the processing
time can be reduced to 0.5s for most cases. The mean
processing time is 158.12 ms with a standard deviation of
146.98 ms. Therefore, for the following experiments, we only
take the hotspots contained in a query as candidates. As it is
impossible to tell the processing time from the Internet delay
for public web services, we have to omit the comparison of
processing time at this stage.

5.4 Performance Analysis on Individual Components
Before evaluating the performance of the entire system in
term of localization accuracy, we verify the effectiveness of
two main components of WOLoc: pre-processing (in Section
4.1) and hotspot location labelling (in Section 4.4). We arbi-
trarily select 100 records from each case as testing queries,
and use the remaining records as data in crowdsensed
database to implement WOLoc system.
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Fig. 8. Processing time using only hotspots in a query. (a) Impact of
number of hotspots/records. (b) Processing time distribution.
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Fig. 9. Accuracy comparison between WOLoc with/without pre-
processing in terms of median error and mean error.

5.4.1 Pre-Processing of Crowdsensed Data
As mentioned in Section 4.1, pre-processing includes remov-
ing records with inaccurate GPS data and removing mobile
hotspots by DBSCAN and SSID text analysis. To evaluate the
effectiveness of the pre-processing module, we implement 2
versions for the system: one without pre-processing module
and one with pre-processing module. For online hotspot
labelling, we use SSID text analysis on both versions for a
fair comparison. The same 100 queries arbitrarily chosen are
issued to the two systems. Since the pre-processing are in the
offline process, we omit the evaluation of online processing
time for two systems.

Fig. 9(a) and Fig. 9(b) show a comparison between
WOLoc without pre-processing and a full-version WOLoc.
Results show that pre-processing improves the localization
accuracy in all cases. There is no significant improvement in
campus case. It is probably because that (1) testing area in
campus is open and has no shelters or blocking, so GPS can
work properly; (2) no vehicles are parked at the testing zone
and few students are outdoor during testing period, so there
are few meaningless hotspots detected. As a result, pre-
processing module does not improve much for the results
in campus. However, in other more crowded cases where
GPS fails to work, the pre-processing module is proven
to successfully remove inaccurate and irrelevant data from
database and finally improves the localization accuracy.

5.4.2 SSID Text Analysis for Hotspot Localization
As presented in Section 4.4, we propose two methods to
label a hotspot to a fixed location: (1) “Cut-and-Pin” uses
a RSSI threshold to locate all hotspots to its nearest user
location label, while (2) “SSID text analysis” extracts use-
ful venue information from SSIDs of hotspots and label
hotspots’ positions with the help of online venue database.
To compare the performance of the two methods, we imple-
ment each method in two versions of WOLoc and test them
with the same queries to compare their performance. For
“Cut-and-Pin” method, we set the smaxloc to -50dBm. For
SSID text analysis, we connect it to both FourSquare API and
Google Places API for POI queries. We set the score weights of
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Fig. 10. Accuracy comparison between “Cut-and-Pin” and “SSID text
analysis” in terms of median error and mean error.

name, location and source to 0.7, 0.2 and 0.1 respectively. We
use the average normalized similarity score for all kinds of
string similarity as the name score, and set the overall score
threshold as 0.6. Both systems are implemented with pre-
processing module. The same 100 queries selected earlier
are issued to both systems.

Fig. 10(a) and Fig. 10(b) show a comparison between
“Cut-and-Pin” and “SSID text analysis” in mean error and
median error for different cases. It is observed that SSID text
analysis significantly improves the mean error as it helps in
reducing errors for extreme cases. The average localization
errors can be bounded within 30 meters for 6 different cases.
Except the last 2 cases with larger area, first 4 cases have
mean errors less than 10 meters. SSID text analysis helps
to reduce the median error in all 6 cases, which is further
validated by Fig. 11. SSID text analysis not only constrains
the error within a boundary but also further improves the
accuracy for sufficient small errors, leading to an overall
better performance.

Fig. 12 shows a case that using SSID text analysis sig-
nificantly improves the accuracy. Fixed hotspots by these
2 different methods are shown in red dots. Estimated po-
sitions of hotspots are shown as green dots. Yellow dot
is estimated user location, while cyan dot is ground truth
location. Observe that SSID text analysis not only yields a
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Fig. 11. CDF of error for “Cut-and-Pin” and “SSID text analysis”.

(a) Case with “Cut-and-Pin”

(b) Case with “SSID text analysis”

Fig. 12. Example cases on how SSID text analysis improves localization
error for extreme cases. Yellow dots: the estimated location of users;
Red dots: fixed hotspot locations; Green dots: estimated hotspot loca-
tions. [Best viewed in color.]

better localization accuracy, but also locates the unknown
hotspots inside the buildings instead of on the street.

Since SSID text analysis mainly happens during the
offline training process, the online process only needs to
query the local database to check whether a certain hotspot
has been located based on SSID before. We compare the
online query performance time for both methods in Fig. 13.
The CDF of processing time for both methods are almost
same, and both methods are able to process nearly 80%
of queries within 200ms. A detailed comparison in mean
processing time and median processing time, Fig. 13(b),
shows that SSID text analysis may result in slightly longer
processing time, but given the better error control and
higher localization accuracy, “SSID text analysis” method
outperforms “Cut-and-Pin” method generally. Therefore,
we suggest incorporating the SSID text analysis if the system
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Fig. 13. Comparison between “Cut-and-Pin” and “SSID text analysis” in
processing time of online queries.
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Fig. 14. Error in meters for estimating user location using WOLoc.

allows online queries to third-party venue databases during
the offline training process.

5.5 Accuracy of User Localization
As Section 5.4 verifies the effectiveness of pre-processing
module and suggests “SSID text analysis” as hotspot la-
belling method, we conduct the following experiments on
a full-version of WOLoc with pre-processing module and
“SSID text analysis” for online hotspot labelling.

To evaluate the accuracy of WOLoc in user localization,
we conduct 50 experiments for each area. For each exper-
iment, we first randomly select 100 records with a high
accuracy level (≤10 meters) and a sufficient number of satel-
lites (≥8) as the testing set. The locations contained in these
records are treated as “ground truth” for the evaluation
purpose; they are temporarily removed from the records so
that they can emulate the location queries issued to WOLoc.
We then use the remaining records as the crowdsensed data
set to emulate the database; they are used by WOLoc to
construct the manifolds. We choose 100 since it is roughly
10% of all data in each of cases (a) - (d) and 5% of all data
in each of cases (e) - (f). We will examine the effect of testing
proportion on localization accuracy in Section 5.6.1.

In Fig. 14, we only report the results of 10 experiments
in each area due to space limitations. WOLoc yields me-
dian error less than 7 meters for all testing cases in first
4 areas (a)-(d), as well as third quartile of errors all less

than 20 meters. Normally, an error less than 10 meters
can be achieved if the number of hotspots per record is
high (e.g., in Campus case), whereas large errors are often
due to insufficient numbers of hotspots per record (e.g.,
in Downtown case). For Community Area, it has a higher
median of 13 meters compared with all other areas, and both
Fig. 14(e) and Fig. 14(f) have higher variances. These stem
from the low WiFi coverage given the much larger areas.
Note that the median errors yielded by WOLoc are quite
comparable to the accuracy level of GPS, which is about 3
to 7 meters if there is a sufficient number of satellites.

5.6 Sensitivity Analysis

5.6.1 Training vs Testing Data Proportion
For the results presented in Section 5.5, the testing propor-
tion within total dataset is about 5% to 10% given each case
has about 1500-2000 records. We evaluate the performance
of the system by choosing different training/testing ratio.
We firstly randomly select 5%, 10%, 20%, 50%, 60%, 70%
80%, 90% out of the entire dataset for each of cases (a)-(d),
and use the remaining data as training data to build global
manifold. Then we test on all the selected queries and report
the mean and median error in Fig. 15. Results show that
the testing ratio has no significant impact on localization
accuracy generally. Median error remains about 7 meters for
testing ratio below 60% and gradually increase with testing
ratio from 60%. Similarly, mean error only shows an increase
from 60%. It shows as long as the training data are evenly
distributed within the zone, WOLoc does not rely on high-
volume of training data to achieve a satisfactory accuracy.

5.6.2 Number of Hotspots Per Query
We further analyze the effect of the number of hotspots
involved in each query on localization accuracy. We collect
all the testing results in Section 5.6.1 for all the testing ratio,
and group them by the number of hotspots involved in each
query. Fig. 16(a) shows the distribution for the number of
hotspots involved per query. Over half of queries are with
20-60 hotspots per query. Fig. 16(b) shows localization error
for different groups of queries with various numbers of
hotspots. Queries with fewer than 10 hotspots suffer from a
large mean and median error, which is because there is too
limited information involved to infer an accurate location.
For queries with larger than 10 hotspots, median error drops
below 10 meters and the performance does not vary much
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Fig. 15. Localization accuracy over various testing ratios.
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Fig. 16. Accuracy comparison between WOLoc with/without pre-
processing in terms of median error and mean error.

with the increase of the number of hotspots. It shows the
performance of WOLoc is not very sensitive to the number
of hotspots.

5.6.3 Sampling Frequency
To evaluate how sampling frequency will affect the result,
we re-sample the collected data with a varying sample
rate, i.e., only keep one record for every N records with
N = 1, 5, 10, 15. We only conduct this evaluation on cases
(a) - (d) as all data collected for these cases are at the same
sampling rate, because data on cases (e)-(f) are sampled
at an unknown frequency. Given the original sampling
frequency is 1Hz, such re-sampling corresponds to different
sampling rate at 1/5Hz, 1/10Hz, 1/15Hz. This emulates a
crowdsensing database at various granularity.
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Fig. 17. Performance analysis on hotspots label (temporal) granularity.

The median error at different sampling rate is shown
in Fig. 17(a), and the statistics on the distance between
two consecutive records in the down-sampled database are
reported in Fig. 17(b). The median errors for N ≤ 10 are
all below 10 meters, and the increase in median error for
N = 15 suggests that the WiFi labels may be too sparse for
localization purposes. Re-sampling at N = 10 and N = 15
also helps us to simulate data from crowdsensed partici-
pants who contributed by driving a vehicle. When N = 10
or 15, the average distance between every two consecutive
records in the training sampling data is about 15 meters
and 20 meters, respectively 54km/h and 72km/h when
sampling at 1Hz, which is faster than normal driving speed
in the city street and results in quite sparse crowdsensed
data points. The results show that our system can also work
on data collected by users when driving.

5.7 Comparison with other systems
We also compare WOLoc’s user localization accuracy
against 3 open-source or commercial systems available in
the market: OpenBMap Offline Localization System [10],
Skyhook Precision Location Service [11], and Google Loca-
tion Service [12]. We issue the same location queries to the
3 systems mentioned earlier. Though each of them has its
own database, the open-source nature of OpenBMap [10]
allows us to compensate its sparse WiFi labels: it has only
about 5,000 hotspots available in their database for the
areas that we conduct the experiments, so we add more
hotspots labels from WiGLE [9] to enlarge the database
to over 25,000 hotspots. Skyhook [11] provides a Python
API for us to submit online location queries, but we have
no details about its database. A similar situation applies
to Google Location Service [12], but it by default requires
GPS to achieve an accurate localization, though WiFi-based
localization is used to complement the GPS. To have a fair
comparison, we disable GPS when issuing queries to Google
in JSON format through Google Maps Geolocation API [12].
OpenBMap returns a location containing only latitude and
longitude, but both Skyhook and Google return a JSON
response, in which besides the estimated location, there is an
“accuracy indicator” of the estimated location represented
as the radius of a circle around the given location.

Fig. 18 shows a comparison between 4 different systems,
and it is very clear that WOLoc outperforms all of them.
Detailed error distributions are shown in Fig. 19 for all the
3 commercial systems with 10 test rounds for each of the 5
areas (1 area is omitted due to space limitations). Generally,
all 4 systems perform better in smaller areas (the first 4) than
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Fig. 18. Median error comparisons between WOLoc, OpenBMap, Sky-
hook and Google for all 6 areas.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2849416, IEEE
Transactions on Mobile Computing

13

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

50

100

150

200

250

(a) Downtown
Test Round

1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(b) Campus
Test Round

1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(c) Hybrid R.A.
Test Round

1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(d) R.B.

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

50

100

150

200

250

(e) D.E.

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

50

100

150

200

(f) Downtown

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(g) Campus
Test Round

1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(h) Hybrid R.A.

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(i) R.B.
Test Round

1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

50

100

150

200

250

(j) D.E.

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

50

100

150

200

(k) Downtown

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(l) Campus

Test Round
1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

20

40

60

80

100

(m) Hybrid R.A.
Test Round

1 2 3 4 5 6 7 8 9 10
E

rr
or

 (
m

et
er

s)
0

20

40

60

80

100

(n) R.B.
Test Round

1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
et

er
s)

0

50

100

150

200

250

(o) D.E.

Fig. 19. Location error distributions for 3 commercial systems: (a) to (e) for OpenBMap, (f) to (j) for Skyhook, and (k) to (o) for Google.

larger areas (the last 2), but WOLoc significantly improves
the performance (in both statistics and distributions) com-
pared with others. OpenBMap’s algorithm with weighted
centroid and Kalman filter performs worse given the same
database as WOLoc, which shows the ineffectiveness of its
oversimplified method. The other two commercial systems
are closed source and have self-maintain databases, so we
omit the discussion on their performance.

6 CONCLUSION

We present in this paper WOLoc as a WiFi-only outdoor lo-
calization system that relies solely on crowdsensed hotspot
labels. We apply a semi-supervised manifold learning tech-
niques to estimate a queried location based on its connection
to the labeled manifold structure. We have conducted exper-
iments in 6 metropolitan areas, and our results show that
WOLoc yields localization errors between 5 to 15 meters for
most cases. This result is significantly better than 3 systems
currently available in the market, namely OpenBMap, Sky-
hook, and Google, in terms of WiFi-only outdoor localiza-
tion, suggesting its effectiveness in outdoor localization. We
have also figured out that the density of WiFi labels is a key,
as WOLoc can have a larger localization error if the label
density is low. Finally, the average processing time after our
optimization is less than 200ms, demonstrating WOLoc’s
capability in responding to real-time location queries.

As public databases with hotspot locations are still lim-
ited, we have not evaluated the performance of WOLoc
in areas where GPS actually fails. Also, due to the lack of

ground truth for hotspot locations in our current experi-
ments, we cannot report the accuracy of hotspot localization
that is a byproduct of WOLoc. Therefore, we are planning
to design better-controlled experiments for these evaluation
purposes.
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