
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 1

Holistic Scheduling of Real-time Applications in
Time-Triggered in-Vehicle Networks

Menglan Hu, Jun Luo, Member, IEEE, Yang Wang, Martin Lukasiewycz, Member, IEEE, and Zeng Zeng

Abstract—As time-triggered communication protocols (e.g.,
TTCAN, TTP, and FlexRay) are widely used on vehicles, the
scheduling of tasks and messages on in-vehicle networks becomes
a critical issue for offering quality-of-service (QoS) guarantees
to time-critical applications on vehicles. This paper studies a
holistic scheduling problem for handling real-time applications
in time-triggered in-vehicle networks where practical aspects in
system design and integration are captured. The contributions
of this paper are multi-fold. Firstly, this paper designs a novel
scheduling algorithm, referred to as Unfixed Start Time (UST)
algorithm, which schedules tasks and messages in a flexible
way to enhance schedulability. In addition, to tolerate assign-
ment conflicts and further improve schedulability, this paper
proposes two rescheduling and backtracking methods, namely
Rescheduling with Offset Modification (ROM) and Backtracking
and Priority Promotion (BPP) procedures. Extensive performance
evaluation studies are conducted to quantify the performance of
the proposed algorithm under a variety of scenarios.

Index Terms—Automotive electronics, distributed embedded
systems, FlexRay, in-vehicle networks, list scheduling, real-time
scheduling, task graphs, time-triggered systems.

I. INTRODUCTION

AS electronic and computer technologies rapidly evolve,
today’s cars are becoming complicated distributed em-

bedded systems where various electronic devices such as
controllers, sensors, and actuators are integrated to replace
mechanical components. These electronic control units (ECU)
require information exchange among each other via in-vehicle
networks to support the execution of their tasks. For example,
in today’s luxury cars up to 70 ECUs exchange up to 2500
signals [1]. Data exchange on in-vehicle networks are imple-
mented via communication protocols. One widely deployed
protocol is the Controller Area Network (CAN) [2]. However,
this event-triggered protocol is improper for novel real-time

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by the Singapore National Research
Foundation under its Campus for Research Excellence And Technological
Enterprise (CREATE) programme.

M. Hu is with the School of Computer Engineering, Nanyang Technological
University, Singapore and also with the Department of Electronics and
Information Engineering, Huazhong University of Science and Technology,
Wuhan, China. This paper was done when he worked in NTU. E-mail:
humenglan@gmail.com.

J. Luo is with the School of Computer Engineering, Nanyang Technological
University. E-mail: junluo@ntu.edu.sg.

Y. Wang is with the Faculty of Computer Science, University of New
Brunswick, Fredetricton, Canada. E-mail: ywang8@unb.ca.

M. Lukasiewycz is with TUM CREATE Centre, Singapore. E-mail:
martin.lucasiewycz@tum-create.edu.sg.

Z. Zeng is with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore. E-mail: elezengz@nus.edu.sg.

applications requiring predictable and robust communication.
Hence, the design paradigm in the automotive industry is
shifting from event-triggered systems (e.g., CAN) to time-
triggered systems, which are based on time-triggered protocols
such as Time-triggered Protocol (TTP) [5] and Time-triggered
CAN (TTCAN) [3]. As the number of ECUs and functions
in cars continues to increase, the needs of large-scale data
exchanges for novel applications such as X-by-wire [6] has
motivated the development of the FlexRay protocol [4], which
is expected to be the de-facto standard in the automotive
industry and has been deployed in new cars including new
BMW-7 series.

Due to the wide deployment of the time-triggered protocols
(e.g., TTCAN, TTP, and FlexRay) on vehicles [7], [8], [9],
the scheduling of applications on such systems becomes a
critical issue for offering quality-of-service (QoS) guarantees
to time-critical applications on in-vehicle networks. Here, an
application is referred to a set of tasks with timing constraints
to perform a well-defined function in the vehicle. Each task
running in a specified ECU is triggered by messages received
from other tasks and sends messages to its downstream tasks.
Consequently, the application can be abstracted as a directed
acyclic graph (i.e., task graph) where nodes represents either
the tasks or the messages and edges specify the precedences
among the nodes. For instance, the in-cycle control in a vehicle
is triggered when the messages of 4 wheel positions are
available (broadcast by the corresponding tasks of the wheels)
and thereby updates its control outputs (tasks). Given that such
applications are regularly repeated, the scheduling problem can
be formulated as a periodic task graph scheduling problem.

A number of studies for scheduling in time-triggered sys-
tems have been reported. Many existing works mainly focused
on scheduling messages while tasks were neglected [28], [30],
[29], [12]. The isolated message scheduling may severely
limit the overall performance and feasibility of all applications
which consist of both tasks and messages. A handful of
studies have studied the holistic scheduling on both tasks
and messages on time-triggered systems [20], [13], [18],
[19], [21]. However, most of the above mentioned studies
relied on mathematical programming techniques, which cannot
scale to large-scale systems. Due to the sharply increasing
amount of software functionality in modern vehicles, efficient
and scalable heuristic algorithms are desired. Over the past
decades, many heuristic algorithms for scheduling task graphs
in multiprocessors have been proposed in literature [14], [15],
[16], [26], [25], [24]. However, these heuristics were not
designed for time-triggered in-vehicle networks. Also, most
of the works even neglected the contention on communication



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 2

resources.
In addition, this paper considers practical needs in system

integration in automotive industries. In practice, applications
in vehicles are developed and tested by different teams and are
integrated in a later stage. For example, BMW may integrate
various sub-systems (i.e., partial schedules of various software
functionality) offered by its suppliers onto its cars. The partial
schedules have been verified by the suppliers so that possibly
the end-to-end delay of a task graph is constrained by both
lower bound and upper bound while in traditional models
end-to-end delays are only bounded by upper bounds (i.e.,
deadlines). Further, possibly the end-to-end delay in a partial
schedule is even fixed by the suppliers and cannot be changed;
otherwise applications need be tested again. Accordingly, com-
plex timing constraints are associated with the applications in
system integration, enhancing the difficulty in schedulability.

Given the practical demands in system design and integra-
tion for time-triggered vehicle-carried systems, the previous
approaches may not be directly applied and are likely to suffer
from severe performance deterioration even if they may be
revised to adapt for the novel needs. To this end, this paper
contributes a set of novel and scalable heuristic algorithms.

Firstly, this paper proposes a novel scheduling algorithm,
referred to as Unfixed Start Time (UST), which flexibly
schedules tasks and messages such that their actual start times
are not fixed during the scheduling. The flexibility offered by
the algorithm is a significant advantage when compared to
previous list scheduling heuristics (e.g., [26], [24], [14]). Also,
the contention on communication resources in time-triggered
systems is explicitly addressed in UST.

In addition, to tolerate assignment conflictions brought
by complex and hard timing constraints and further im-
prove schedulability, this paper proposes two rescheduling
and backtracking approaches, namely Rescheduling with Offset
Modification (ROM) procedure and Backtracking and Priority
Promotion (BPP) procedure. Upon a conflict in time allocation,
ROM reschedules the conflicted application with an adjusted
offset (i.e., release time) such that the scheduling of different
applications can be staggered to resolve conflicts. Once ROM
is not helpful, BPP backtracks a number of previously sched-
uled applications to create space for the conflicted application
and reschedules remaining applications with the priority pro-
moted for the conflicted application.

The remainder of this paper is organized as follows. Section
II discusses the related work. Section III introduces mathemat-
ical models, assumptions, and problem formulation. Section
IV describes the proposed algorithms in great detail. Section
V presents simulation results, with conclusions following in
Section VI.

II. RELATED WORK

A number of studies on scheduling in time-triggered in-
vehicle networks have been reported in literature. Park et
al. [10] proposed a FlexRay network parameter optimization
method which can determine the lengths of the static slot
and the communication cycle. In [30] and [28], the mes-
sage scheduling problems were solved via nonlinear integer

programming (NIP) for static segment and dynamic segment,
respectively. In particular, [30] applied a signal packing tech-
nique which packs multiple periodic signals into a message;
[28] proposed to reserve slots for aperiodic messages so that
flexible medium access of the dynamic segment is preserved
while QoS assurance can also be guaranteed. Both paper-
s formulated NIP and decomposed the NIP problems into
integer linear programming (ILP) problems. Another work
[29] transformed the message scheduling problem for the
static segment into a bin packing problem and again applied
ILP to solve it. [32] proposed a heuristic to construct the
communication schedule on the static segment of FlexRay
systems. However, these papers only focused on message
scheduling and neglected tasks in ECUs. The isolated message
scheduling may severely limit the performance and feasibility
of applications which consist of both tasks and messages. In
contrast, our paper holistically investigates the scheduling of
both tasks and messages on time-triggered systems.

The holistic scheduling on both tasks and messages has
also been studied for time-triggered systems [20], [13], [18],
[19], [11]. [20] applied constraint logic programming (CLP)
to the scheduling and voltage scaling of low-power fault-
tolerant hard real-time applications mapped on distributed
heterogeneous embedded systems. [18] leveraged geometric
programming (GP) to assign task and message periods for dis-
tributed automotive systems. [19] developed scheduling anal-
ysis approaches for hybrid event-triggered and time-triggered
systems. [31] applied genetic algorithm techniques to solve the
scheduling problem for FlexRay systems. The high complexity
of solving mathematical programming limits the applicability
and scalability of such methods.

The scheduling of task graphs in multiprocessors has been
extensively studied in past decades. One widely applied type
of algorithms is list scheduling. A list scheduling heuristic
maintains a list of all tasks according to their priorities. It
then iterates to pick tasks and schedule them onto selected
processors. Some of the examples are the Highest Level First
(HLF) [14], Earliest Task First (ETF) [15], Dynamic Critical
Path (DCP) [16], and Mobility Directed (MD) [17] algorithms.
As list scheduling approaches can provide high performance
at a low cost, our paper presents algorithms based on list
scheduling techniques. DCP is an efficient list scheduling
algorithm for allocating task graphs on multiprocessors to
minimize schedule length. One valuable feature of DCP is
that the start times of the scheduled nodes are unfixed until
all nodes have been scheduled. Our UST heuristic also applies
this feature. The differences between DCP and UST are that
DCP is not a real-time scheduling algorithm and cannot handle
contention of different messages on communication resources,
while UST is designed for real-time scheduling and can
address the contention of different messages on time slots in
time-triggered systems.

Another type of heuristic is clustering [26], [25], [24]. In
this category, tasks are pre-clustered before allocation begins
to reduce the size of the problem. Task clusters (instead of in-
dividual tasks) are then assigned to individual processors. [26]
presented a clustering-based co-synthesis algorithm, which
schedules periodic task graphs for hardware and software



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 3

Fig. 1. A cluster of ECUs on a car

64 communication 

cycles

Static slots in SS

1 communication 

cycle

0 1 2 …... 6362

SS DS SW NIT

ST slot ST slot ST slot…...

Fig. 2. FlexRay timing hierarchy.

co-synthesis on heterogeneous distributed embedded systems.
[25] proposed a period-based approach to the problem of
workload partitioning and assignment for large distributed
real-time systems. [24] designed a static algorithm for allocat-
ing and scheduling components of periodic tasks across sites
in distributed systems. In the problem discussed in this paper
each task must be processed in a specific ECU; therefore,
clustering may be useless since the tasks have been naturally
clustered by their functionality. In this case, these clustering
heuristics may lose their advantages when dealing with the
problem discussed in this paper.

Optimal methods for some real-time task graph scheduling
problems have also been proposed. [22] proposed an optimal
B&B algorithm for allocating communicating periodic tasks
to heterogeneous distributed real-time systems. [23] presented
an optimal B&B algorithm for task assignment on multipro-
cessors subject to precedence and exclusion constraints. These
are, however, applicable to only small task graphs.

III. PROBLEM FORMULATION

A. System models

The target platform is a typical time-triggered in-vehicle
system: a cluster of ECUs (i.e., hosts) that are connected via
the FlexRay bus, as shown in Fig. 1. The operating system
is non-preemptive. Each ECU can process particular tasks
which exchange data via messages transferred on the bus. The
operation of a FlexRay bus is based on repeatedly executed
communication cycles with a fixed duration. A FlexRay cycle
comprises a static segment (SS) and other segments such
as a dynamic segment (DS). This paper focus on periodic
applications, which only utilizes the static segment. Fig. 2
shows the timing hierarchy of 64 FlexRay cycles with an
emphasis on the static segment. Each static segment consists
of a fixed number of equal size static slots. Each static slot in
each each cycle can only be uniquely assigned to one ECU to

N1

N2 N3

N4

N5

N6 N7

N8

ECU 3

ECU 2

ECU 1

ECU 4

Bus

Fig. 3. An example of task graph running on ECUs.

transfer one frame (i.e., message), but each static slot can be
assigned to different ECUs in different cycles. The lengths of
static slot Ts, static segment Tss, and the communication cycle
Tc are assumed to be known beforehand as previous papers
have shown how to determine these parameters [10], [30].

B. Application Models

This paper assumes a periodic real-time task model where
G = {g1, g2, ..., gJ} is a set of J applications to be processed.
Each application is independent from others. 1 Let p(gj)
be the period of application gj ∈ G and L be the least
common multiple of all p(gj)s. The interval [0, L) is called
the hyper period. In one hyper period an application invokes
I(gj) = L

p(gj)
times. Also, one hyper period spans multiple

communication cycles. It suffices to analyze the behavior of
the whole system only in one hyper period, since it will repeat
for all hyper periods [22].

As shown in Fig. 3, an application can be modeled by
a directed acyclic graph (DAG) comprising multiple nodes
(i.e., vertexes), which are the smallest units to be scheduled,
and edges, which specify precedence constraints. Task graph,
DAG and application terms are interchangeably used in this
paper. A node can be either a task (i.e., computation module)
running on a particular ECU (e.g., a sensor, or an actuator)
or a message (i.e., communication module) exchanged on the
communication bus. Associated with each node ni is its time
cost w(ni) indicating the execution time on an ECU if the
node is task, or the transmission time on the bus if the node
is a message. In addition, since each ECU has its specific
function, the host ECU of each task is known beforehand
and processor selection appearing in conventional work is not
needed. The host of node ni is specified as H(ni). Further,
messages nodes should be fit into static slots on the FlexRay
bus. The transmission of a message cannot span two or more
static slots.

An edge eij linking two nodes nj and ni specifies the
precedence constraint between the nodes. That is, ni should
complete its execution before nj starts. The edges incur no
time cost. The source node ni and the destination node nj of
the edge eij are called parent and child respectively. A node
without parents is called an entry node while a node without

1In practice multiple applications may be related in the sense that they
share some tasks or messages. In this case these related applications are
merged/regarded as one application whose period is the least common multiple
of these applications’ periods.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 4

children is called an exit node. Also, once ni is scheduled onto
H(ni), prev(ni) is the node scheduled immediately before ni

and next(ni) is the node scheduled immediately after ni on
H(ni). Moreover, a node ni that must be finished before the
start of another node nj is called an ancestor of nj , and nj is
called an offspring of np. Hence, the ancestors of ni’s parents
and prev(ni) are also ni’s ancestors; the offspring of ni’s
children and next(ni) are also ni’s offspring.

Each application has an offset o(gj), which indicates the
start time of each invocation of gj in one hyper period. That
is, the start time of the k-th invocation of gj is o(gj)+k∗p(gj)
where k = 0, 1, ..., I(gj) − 1. The offset of each application
may vary between [0, p(gj)). By default o(gj) is set as zero
and it will be determined via the scheduling algorithm. Each
node ni may have a release time (i.e., input earliest start time,
ESTR(ni)). The k-th invocation of a node ni (i.e., nk

i ) cannot
start before ESTR(ni) + o(gj) + k ∗ p(gj), where gj is the
application containing ni. Also, each node ni may have a
deadline d(ni). The k-th invocation of a node ni cannot finish
after d(ni)+o(gj)+k ∗p(gj). The release time and deadlines
denote the timing constraints imposed by schedule design and
integration.

C. The Scheduling Problem

The main objective is to schedule all nodes in all invocations
of all applications in one hyper period to guarantee that
all invocations of all applications can satisfy their respective
deadlines. Once this goal can be achieved, the scheduler may
aim to minimize the length of the static segment which is
actually used, denoted as Tu

ss, i.e., to minimize the number of
used slots in the static segment. The unused bandwidth can
either be used by the dynamic segment or be reserved for
further schedule extension.

IV. THE PROPOSED ALGORITHMS

This section describes the proposed algorithm whose pseudo
code is shown in Algorithm 1. The algorithm works by
iteratively selecting applications and scheduling individual
nodes in the selected applications via UST, while ROM and
BPP serve as complements to enhance the schedulability of
the applications. The major components and their features of
the algorithm are summarized as follows:

• Section IV-A introduces two attributes: earliest start time
(EST) and latest start time (LST), which are assigned to
each node and will be used by UST described below.

• Section IV-B describes the application selection proce-
dure, which orders and selects applications for schedul-
ing.

• Section IV-C details the UST scheduling heuristic, which
flexibly schedules nodes of each selected application.
When the nodes are being scheduled (i.e., ordered), the
start times of the scheduled nodes are not fixed. The
unfixed scheduling policy offers more opportunities to
insert nodes into proper positions between scheduled
nodes.

• Section IV-D presents ROM. Upon a confliction in time
allocation, ROM reschedules the conflicted application

Parameter Definition
CPL(gi) the critical path length of application gj
d(gj) relative deadline of application gj
d(ni) relative deadline of node ni

eij edge linking two nodes ni and nj

H(ni) the host (ECU or bus) of node ni

L length of a hyper period
ni i-th node in a given application
nk
i k-th invocation of i-th node in a given application

p(gj) period of application gj
rank(gj) the rank of graph gj
Tc length of a bus cycle
Ts length of a slot in the static segment of the bus
Tss length of the static segment
w(ni) time cost of node ni

Variable Definition
EST (nk

i ) the earliest start time of node nk
i

ESTG(nk
i ) EST value constrained by nk

i ’s parents
ESTP (nk

i ) EST value constrained by prev(nk
i )

ESTR(ni) release time of node ni

ESTR(nk
i ) EST value constrained by input requirements

EST (nk
i ,m) EST value of nk

i after it is inserted into m-th position
LST (nk

i ) the latest start time of node nk
i

LSTG(nk
i ) LST value constrained by nk

i ’s children
LSTP (nk

i ) LST value constrained by next(nk
i )

LSTR(nk
i ) LST value constrained by input requirements

LST (nk
i ,m) LST value of nk

i after it is inserted into m-th position
next(nk

i ) next node of ni

o(gj) the offset of application gj
RM(nk

i ) relative mobility of ni

prev(nk
i ) previous node of ni

priority(gj) priority of application gj
ST (nk

i ) start time of nk
i

Tu
ss length of the static segment which is actually used

TABLE I
NOTATIONS AND TERMINOLOGY

with an adjusted offset such that the scheduling of differ-
ent applications can be staggered to avoid conflictions.

• Section IV-E describes BPP. Once ROM cannot help
to eliminate conflictions, BPP promotes the priority
of the conflicted application and backtracks previously
scheduled applications to create space for the conflicted
application.

• Section IV-F presents a bandwidth optimization pro-
cedure. Once all nodes are successfully ordered, the
scheduler determines a final schedule that can optimize
the bandwidth utilization of the bus while the deadline
requirements of all scheduled nodes are still satisfied.

A. EST and LST

Since the nodes are not allocated fixed start times, two
attributes are introduced for each node: earliest start time
(EST) and latest start time (LST), which are the lower bound
and upper bound on the start time of a node. The EST and
LST of a node can reflect its mobility since its actual start
time can slide between its EST and LST. Each invocation of
a node is separately scheduled. Hence, each node nk

i (i.e., k-
th invocation of node ni) has its own EST and LST. In the
following, the EST and LST of node nk

i belonging to gj are
derived.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 5

n5ECU 1

n1

n2

n0

n3

n6

n4

node

size

EST

LST

10

n1n0 n2 n3 n4 n6n5

5

108

2 7

2

40 3050

NA

NA

NA

NA

NA

NA

NA NA

NA?

?

Fig. 4. An example for calculating EST and LST of node n0.

The EST of a node nk
i is defined as:

EST (nk
i ) = max{ESTR(nk

i ), ESTG(nk
i ), ESTP (nk

i )}
(1)

where ESTR(nk
i ) is the EST value constrained by input

requirements; ESTG(nk
i ) is the EST value constrained by

nk
i ’s parent nodes; ESTP (nk

i ) is the EST value constrained by
prev(nk

i ). By default o(gj) is set as zero and it can be modified
in Section IV-D. One can write ESTR(nk

i ) as follows:

ESTR(nk
i ) = ESTR(ni) + o(gj) + k ∗ p(gj) (2)

If ESTR(ni) is not specified, ESTR(ni) = 0. Also, one can
write ESTG(nk

i ) as follows:

ESTG(nk
i ) = max

1≤p≤P
{EST (nikp

) + w(nikp
)} (3)

where nk
i has P parents and nikp

is the p-th parent node. If
nk
i is an entry node, then ESTG(nk

i ) = o(gj) + k ∗ p(gj).
Equation (3) states that the EST of a node nk

i is no greater
than the earliest ready time of all its parents. ESTP (nk

i ) is the
earliest finish time of the node that is scheduled immediately
before nk

i on the same host and can be written as:

ESTP (nk
i ) = EST (prev(nk

i )) + w(prev(nk
i )) (4)

If nk
i is scheduled as the first node on the processor,

ESTP (nk
i ) = 0. In addition, if nk

i has not been scheduled
onto its host, ESTP (nk

i ) = 0.
Fig. 4 shows an example for calculating EST and LST of a

node n0 where the superscript k is omitted and ESTR(n0) is
given as zero. In this example, only a small part of a whole
application, i.e., only directly related nodes to n0, are depicted.
Nodes n1 and n2 are n0’s parents and nodes n3 and n4 are
its children; n5 and n6 are scheduled immediately before and
after n0, respectively on n0’s hosted ECU. The table in Fig. 4
provides all required information for calculating n0’s EST and
LST, i.e., the sizes, EST, and LST of the above nodes. Accord-
ing to Equations (3) and (4), ESTG(n0) = max{EST (n1)+
w(n1), EST (n2) + w(n2)} = max{5 + 8, 2 + 10} = 13;
ESTP (n0) = EST (n5)+w(n5) = 7+2 = 9. Consequently,
EST (n0) = max{ESTR(n0), ESTG(n0), ESTP (n0)} =
max{0, 13, 9} = 13.

One cycle

SS

ST slot ST slot…... ST slot …...ST slot

n2

n2 n4

n4

ni Message niEST/LST before 

mapped

EST/LST after 

mapped

n1

n1 n3

n3

ST slot

LST(n1) LST(n3) EST(n4)EST(n2)

Fig. 5. Examples for calculating EST and LST for messages.

If nk
i is a message node, EST (nk

i ) is tailored so that the
message can be fit into a slot in the communication bus. Let
ST slot(t) be the start time of the slot in which time t resides.

ST slot(t) = ⌊ t

Tc
⌋Tc + ⌊

t mod Tc

Ts
⌋Ts (5)

Once EST (nk
i ) is computed in Equation (1), it can be tailored

for a message node as:

EST (nk
i ) =

 ⌈
EST (nk

i )

Tc
⌉Tc case 1

ST slot(EST (nk
i )) + Ts, otherwise

(6)

where case 1 is that EST (nk
i ) computed in Equation (1) falls

outside the range of static segments (EST (nk
i ) mod Tc >

Tss and EST (nk
i ) +w(ni) mod Tc > Tss). Thus EST (nk

i )
is mapped to the start time of the first static slot of the next
communication cycle. Fig. 5 shows examples for mapping
the EST of message nodes into static slots, where ESTT

denotes the EST value computed in Equation (1) and ESTM

denotes the mapped EST value in Equation (6). In Fig. 5, the
mapping of message n4 shows this case. Otherwise, EST (nk

i )
is mapped to the start time of the next static slot, as shown
by message n2 in Fig. 5.

EST (nk
i ) can be computed once the EST of all nk

i ’s parents
and prev(nk

i ) are known. Hence, the EST of all nodes can
be calculated by traversing the DAGs in a top-down manner
beginning from the entry nodes that are not scheduled or
are scheduled as the first nodes on their respective hosts.
Consequently, when all the EST of nk

i ’s parents and prev(nk
i )

are available, the EST of nk
i can be computed.

The LST of a task node nk
i is defined as follows:

LST (nk
i ) = min{LSTR(nk

i ), LST
G(nk

i ), LST
P (nk

i )} (7)

where LSTR(nk
i ) is the LST value constrained by input

requirements; LSTG(nk
i ) is the LST value constrained by

nk
i ’s children; LSTP (nk

i ) is the LST value constrained by
next(nk

i ). One can write LSTR(nk
i ) as follows:

LSTR(nk
i ) = o(gj) + k ∗ p(gj) + d(ni)− w(ni) (8)



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 6

If d(ni) is not specified, LSTR(nk
i ) =∞. Also, one can write

LSTG(nk
i ) as follows:

LSTG(nk
i ) = min

1≤q≤Q
{LST (nikq

)− w(ni)} (9)

where nk
i has Q children and nikq

is the q-th child. If nk
i is an

exit node, LSTT (nk
i ) =∞.

LSTP (nk
i ) is constrained by the start time of next(nk

i ).
Accordingly, one can write ESTG(nk

i ) as:

LSTP (nk
i ) = LST (next(nk

i ))− w(ni) (10)

If nk
i has not been scheduled or nk

i is scheduled as the last
node on its host, LSTP (nk

i ) =∞.
In the example of Fig.4, LSTR(n0) is given as
∞; LSTG(n0) = min{LST (n3) − w(n0), LST (n4) −
w(n0)} = min{50 − 10, 40 − 10} = 30, LSTP (n0) =
LST (n6) − w(n0) = 30 − 10 = 20. As a result,
LST (n0) = min{LSTR(n0), LST

G(n0), LST
P (n0)} =

min{∞, 30, 20} = 20.
If nk

i is a message node, one can tailor LST (nk
i ) for a

message node after it is computed in Equation (7) as:

LST (nk
i ) =

 ⌊
LST (nk

i )

Tc
⌋Tc + Tss − w(ni), case 1

ST slot(LST (nk
i )) + Ts − w(ni), otherwise

(11)
where case 1 is that LST (nk

i ) computed in Equation (7) falls
outside the range of static segments. Thus LST (nk

i ) is mapped
to the last static slot of the last communication cycle. Fig. 5
shows examples for mapping the LST of message nodes into
static slots, where LSTT denotes the LST value computed in
Equation (7) and LSTM denotes the mapped LST value in
Equation (11). In Fig. 5, the mapping of message n3 shows
this case. Otherwise, LST (nk

i ) is mapped to the last static slot,
as shown by message n1 in Fig. 5. Similar to the computation
of EST (nk

i ), LST (n
k
i ) can also be computed by traversing

the task graphs in a bottom-up manner.

B. Application Selection

The algorithm iterates to schedule all nodes of all invoca-
tions of each application. Since it is favoured to first schedule
hard applications, the first step is to obtain the priorities of
the applications and order them according to their priorities.
The priority of an application gj (denoted as priority(gj)) is
initially set as the rank of gj , which is defined as:

rank(gj) =
p(gj) + d(gj)

CPL(gj)
(12)

where CPL(gj) is the critical path length of the task graph
and is defined as:

CPL(gj) = max
i
{EST (n0

i ) + w(ni)} (13)

In addition, d(gj) is the relative deadline of gj which repre-
sents its overall urgency (i.e., hardness of timing constraints)
and d(gj) is defined as:

d(gj) = min
ni∈gj

{d(ni)− LST (n0
i )} (14)

Hence, rank(gj) can be obtained after EST (n0
i ) and

LST (n0
i ) are calculated via Equations (1) and (7) for all

nodes. The intuition to set rank(gj) as the initial priority is
that a longer critical path length probably means that the graph
is harder to schedule within limited space while a longer period
and a longer deadline usually implies larger space for the
nodes in the graph to be flexibly scheduled. It may be noticed
that the priority can be modified as described in Section IV-E.
The task graphs are sorted by the ascending order of their
priorities. Accordingly, a task graph with the smallest priority
is first selected for scheduling (Line 7 of Algorithm 1).

C. Node Scheduling (The UST Algorithm)

The UST algorithm flexibly schedules all nodes of all invo-
cations of a selected application gj (Lines 8-14 of Algorithm
1). When the nodes are being scheduled, the start times of the
scheduled nodes are not fixed. Hence, the nodes are actually
“clustered” together in a linear order. The unfixed scheduling
policy offers more opportunities to insert nodes into proper
positions between scheduled nodes. The flexibility offered by
the algorithm is a significant advantage when compared to
previous list scheduling algorithms (e.g., [26], [24], [14]) that
assign fixed start times in the process of scheduling.

Since the start time of the scheduled nodes are not fixed
when they are being scheduled, the scheduled nodes are
actually ordered on their hosts. The only constraint is that the
total order among the scheduled nodes will not be affected by
the subsequent scheduling. While preserving the linear order of
the scheduled nodes, the EST and LST values of the nodes can
be updated in each round of node scheduling (i.e., ordering).

The algorithm iterates two steps, a node selection step for
dynamically selecting nodes, and a node insertion step for
scheduling selected nodes onto their hosts. The node with the
smallest relative mobility value in gj is selected for scheduling
(Line 11 of Algorithm 1). The relative mobility of a node
RM(nk

i ) is defined as:

RM(nk
i ) =

LST (nk
i )− EST (nk

i )

w(ni)
(15)

Once a node nk
i is selected, it will be scheduled on its host

H(ni). Suppose a set of M nodes {n0, ..., nM−1} have been
scheduled on H(ni). Hence nk

i may be scheduled onto M+1
positions, i.e., position m ∈ [0,M ] between two consecutively
scheduled nodes nm−1 and nm. Virtual nodes n−1 and nM

are used for the convenience of denoting the first and the last
slots. For virtual nodes n−1 and nM , let EST (n−1) = 0,
w(n−1) = 0, LST (nM ) = L, and w(nM ) = 0. In order not
to violate the precedence constraints among nodes, nk

i must
not be scheduled before its ancestors, or after its offsprings.
If a position satisfies this constraint, it is called a candidate
position. Let EST (nk

i ,m) and LST (nk
i ,m) denote the re-

spective EST and LST values of nk
i if it is scheduled onto

m-th position on H(ni) (i.e., between nodes nm−1 and nm).
One can write EST (nk

i ,m) as:

EST (nk
i ,m) = max{ESTG(nk

i ), EST (nm−1) +w(nm−1)}
(16)



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 7

Also, one can write LST (nk
i ,m) as:

LST (nk
i ,m) = min{LSTG(nk

i ), LST (nm)− w(ni)} (17)

Theorem 1: If the current partial schedule of a set of nodes
S is feasible, after a new node nk

i is scheduled onto a candidate
position m on H(ni), the new partial schedule for S′ ← S ∪
{nk

i } is still feasible provided:

LST (nk
i ,m)− EST (nk

i ,m) ≥ 0 (18)

Proof: For the convenience of proof, insert nk
i on position

m and accordingly update nk
i ’s ancestors and offspring. In S,

any node nj’s start time can be feasibly set as nj’s EST if
all nj’s ancestors start time is set as their EST. Similarly, in
S any node nj’s start time can be feasibly set as nj’s LST
if all nj’s offspring’s start time is set as their LST. In this
case, after recursively setting all nk

i ’s ancestors’ start time as
their EST and setting all nk

i ’s offspring’s start time as their
LST, the schedulability of all nodes in S are kept. After-
wards, nk

i can be scheduled on position m between the range
[EST (nk

i ,m), LST (nk
i ,m)] if LST (nk

i ,m) > EST (nk
i ,m).

Among all candidate positions satisfying Equation (18), nk
i

is inserted into the one that can maximize LST (nk
i ,m) −

EST (nk
i ,m) (Lines 12-14 of Algorithm 1). That is, nm−1

becomes the previous node of nk
i (prev(nk

i )) if it exists, and
nm becomes the next node of nk

i (next(nk
i )) if it exists. Such

a position can help to preserve the flexibility of nk
i and may

ease the scheduling of latter nodes.
After scheduling the node, the algorithm updates EST and

LST for all nodes and continues selecting and scheduling
nodes. By iterating these steps (Lines 9-14 of Algorithm 1), all
nodes in gj can be ordered accordingly. Afterwards, another
applications is selected for scheduling. Once all applications
are successfully scheduled, a final schedule is produced by
simply setting the start time of each node, defined as ST (nk

i ),
as ST (nk

i )← EST (nk
i ) (Line 35 of Algorithm 1).

D. Rescheduling with Offset Modification (ROM)

Due to the complex timing constraints in system integration,
conflicts may frequently occur in node assignment, especially
when the offset (release time) of each application is limited
to be zero. It may be noticed that in many prior studies
(e.g., [22], [23], [26]), offsets were simply fixed as zero,
which might incur poor schedulability. If multiple applications
can start at different offsets such that the time allocations
of different applications can be staggered, the schedulability
can be improved even under complex timing constraints.
To this end, this paper designs the ROM approach, which
reschedules conflicted applications with adjusted offsets to
avoid the conflicts (Lines 24-29 of Algorithm 1).

Recall that the offset of each application is initially set as
zero. Once no feasible position can be found for scheduling
nk
i via UST, conflictions in time allocation have occurred. To

eliminate conflictions, ROM is applied to reschedule gj to a
new offset o(gj) such that nk

i can be inserted into a slack (i.e.,

Algorithm 1 The Scheduling Algorithm
1: Input: a set of J applications
2: Output: a schedule for the applications, i.e., start times

(ST (nk
i )) are determined for all nodes of the applications

3: ∀gj , compute rank(gj) and initialize priority(gj)
4: sort all applications by ascending order of priority(gj)
5: outerLoop:
6: while not all applications are scheduled do
7: pick next application gj from the application list for

scheduling
8: while not all nodes of all invocations of gj are sched-

uled do
9: update EST and LST for all nodes via Equations (1),

(6), (7), and (11)
10: update ancestors and offspring for all nodes
11: select a node nk

i with the smallest RM(nk
i )

12: find a position m that maximizes LST (nk
i ,m) −

EST (nk
i ,m) among all candidate positions

13: if the position is found then
14: schedule nk

i in the position
15: else if cntres > maxres or a feasible δm is not found

then
16: cntres ← 0
17: if exit conditions are fulfilled then
18: exit without a feasible solution
19: end if
20: cntback ← cntback + 1
21: execute a long-distance backtrack
22: update priority(gj) via Equation(21)
23: continue outerLoop:
24: else
25: cntres ← cntres + 1
26: update o(gj) via Equation(20)
27: backtrack all nodes of all invocations of gj
28: continue outerLoop:
29: end if
30: end while
31: remove gj from the application list
32: end while
33: update EST and LST for all nodes
34: if required, call Algorithm 2 to optimize bandwidth
35: ∀nk

i , ST (nk
i )← EST (nk

i )

capable) slot on H(ni). The slackness of m-th slot is defined
as:

δ(m) = LST (nm)−w(ni)−EST (nm−1)−w(nm−1) (19)

Actually δ(m) is the difference between the EST specified by
nm−1 and LST specified by nm for nk

i . If δ(m) < 0, the slot
cannot hold nk

i . But if any candidate position m exists such
that δ(m) ≥ 0, the algorithm will modify o(gj) as:

o(gj) = o(gj) + (EST (nm−1) + w(nm−1) + LST (nm)

− w(ni)− ESTG(nk
i )− LSTG(nk

i ))/2. (20)

where m is the position that δ(m) is the maximum among all
candidate positions. Such an update enables that the mobility



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 8

of nk
i given by its parents and children (i.e., LSTG(nk

i ) −
ESTG(nk

i )) probably fits m-th slot in the following runs.
Then, all scheduled nodes in gj are backtracked, i.e., they

are now unscheduled. Afterwards, the algorithm continues the
node scheduling procedure to reschedule gj .

E. Long-Distance Backtrack and Priority Promotion (BPP)

Once ROM is not helpful, BPP backtracks previously sched-
uled task graphs to create space for the failed one (Lines 15-23
of Algorithm 1). The backtracking technique is widely used
in exhaustive methods (e.g., branch and bound (B&B)) [22],
[23] which are, however, applicable to only small task graphs.
Accordingly, some prior work [27] limited the number/level of
backtracks to refrain time consumption. Since only one node
was backtracked in each step, the limited local exhaustive
search in such papers is probably ineffective for large task
graphs.

In contrast, to make a trade-off between time and perfor-
mance, BPP may backtrack multiple applications (rather than
one node) at one time depending on previous progresses. That
is, if the total number of offset modification and rescheduling
for the failed application gj (denoted as cntres) reaches a pre-
defined limit (denoted as maxres) or a feasible δm cannot be
found, the algorithm executes a long-distance backtrack, which
not only backtracks gj , but also backtracks multiple previously
scheduled applications to create space for gj . The number of
applications backtracked, denoted as backlimit, is initially set
as 1. If gj has ever failed previously, backlimit is doubled;
otherwise it is reset. For each backtracked application, all
nodes are backtracked. The algorithm repeatedly backtrack
scheduled applications from the tail of the scheduled list until
a number of backlimit applications have been backtracked or
the scheduled list is empty.

In addition, according to Equation (12), priority(gj) ≤ 2
and an application with priority(gj) = 2 has the highest
priority. Hence the priority of gj is updated as:

priority(gj) = priority(gj)/2 + 1 (21)

This significantly boosts the priority of gj , which is probably
hard to schedule, and places it into a front position for
scheduling in the next run. Afterwards, the algorithm continues
to select applications and scheduling nodes via UST. The
algorithm terminates once a feasible solution is found or
the following conditions are fulfilled. All recently NF failed
applications have ever failed before or the total number of
long-distance backtracks cntback reaches maxback. In our
simulations, NF is set as 5 and maxback is set as 20.

F. Schedule Determination with Bandwidth Optimization

This subsection provides an approach to derive a schedule
with bandwidth optimization which can be used once such
optimization is needed (Line 34 of Algorithm 1). Algorithm 2
depicts the pseudo code of the bandwidth optimization method.
After all nodes are successfully ordered in Algorithm 1,
Algorithm 2 determines a feasible schedule that can minimize
Tu
ss. Since Tu

ss is a multiple of Ts, there are only limited
choices for Tu

ss as Tss < Tc. In this case, a binary search

Algorithm 2 Schedule Determination with Bandwidth Opti-
mization

1: Thigh
ss ← Tmax

ss

2: T low
ss ← Ts

3: while true do
4: if T low

ss + Ts < Thigh
ss then

5: Tu
ss ← Ts⌊T

low
ss +Thigh

ss

2Ts
⌋

6: update EST and LST for all nodes
7: if ∀ni, EST (ni) ≤ LST (ni) then
8: Thigh

ss ← Tu
ss

9: else
10: T low

ss ← Tu
ss

11: end if
12: else
13: break
14: end if
15: end while
16: Tu

ss ← Thigh
ss

17: update EST and LST for all nodes

4 8 12 16 20
0

0.5

1

1.5

2

2.5
x 10

4

Number of ECUs

N
or

m
al

iz
ed

 T
im

e 
C

os
t o

f I
LP

easy
middle
hard

Fig. 7. Normalized time cost of ILP.

approach is applied to search for the minimum Tu
ss that is

feasible for a schedule. Let T low
ss denote the currently largest

infeasible value of Tu
ss and let Thigh

ss denote the currently
smallest feasible value of Tu

ss. Since a successful schedule
exists when Tss = Tmax

ss , initially let Thigh
ss = Tmax

ss and
T low
ss ← Ts. The while loop in Algorithm 2 iteratively updates

T low
ss and Thigh

ss and searches for a feasible Tu
ss among the

range (T low
ss , Thigh

ss ) by updating EST and LST for each
checked Tu

ss. If a candidate Tu
ss is feasible, after EST and

LST are updated for all nodes, EST (ni) ≤ LST (ni) holds
for each node ni. Finally, the actual start time of each node
is set as its EST updated after setting Tu

ss ← Thigh
ss (Lines 16

and 17 of Algorithm 2).

V. PERFORMANCE EVALUATION

In order to assess the effectiveness of the proposed schedul-
ing algorithm, this section presents a performance evaluation
study for scheduling a number of real-time applications (i.e.,



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 9

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of ECUs

S
uc

ce
ss

 R
at

io

ILP
UST−ROM−BPP

(a) Easy experiment

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ECUs

S
uc

ce
ss

 R
at

io

ILP
UST−ROM−BPP

(b) Middle experiment

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ECUs

S
uc

ce
ss

 R
at

io

ILP
UST−ROM−BPP

(c) Hard experiment

Fig. 6. Success ratio for the comparison of ILP and UST-ROM-BPP.

task graphs). The success ratio is used as the major perfor-
mance metric. It is defined as the the number that an algorithm
successfully schedules all application to the number of total
experiments.

The system configurations are set as follows: A set of
synthetic applications are randomly generated based on real-
istic cases. Basic parameters including the periods, deadlines,
and topology of the applications and the sizes of tasks and
messages are randomized according to sampled values from
industrial cases. Specifically, the period of each application
is varied among [5ms, 10ms, 20ms, 40ms]. The length of
one hyper schedule period is thus 40ms. The duration of a
cycle of the communication bus is 5ms and the duration of
the available static segment per cycle is 3.75ms. The duration
of a communication slot is set as 0.0625ms. The average cost
of a task is 2ms. Experiments with three different difficulties,
easy, middle and hard, are conducted. For each difficulty
level, one figure with five data points is plotted to exhibit the
performance of a set of algorithms on different system scales
to evaluate the scalability of the algorithms. In the following
figures of results, the horizontal axis marks the number of
ECUs, which is varied among the range [4, 8, 12, 16, 20].
That is, the number of ECUs on the horizontal axis denotes
the scale of the experiments as the number of ECUs and the
number of nodes simultaneously grows in each experiment.

Since the proposed algorithms comprise three major parts
(i.e., UST, ROM, and BPP), to understand the merits of our
algorithms, the results of three algorithm combinations are
separately presented. The first algorithm, denoted as UST, only
enables UST and disables both ROM and BPP. The second
algorithm, denoted as UST-ROM, enables UST and ROM and
disables BPP. The third algorithm, denoted UST-ROM-BPP,
enables all three proposed approaches.

As a first case, UST-ROM-BPP is compared with an ILP
solution formulated in [13]. In the ILP formulation an eCos-
based operating system and the FlexRay 3.0 model are applied.
The ILP formulation is then solved by the CPLEX ILP solver
[33]. Since ILP is very time-consuming and thousands of input
cases are simulated, a time-out of one hour is set for ILP
to guarantee that the simulations can stop within acceptable
time. As the results below show, the proposed algorithm can
deliver more competitive performance within few seconds,

which renders the one-hour timeout for ILP sufficiently long
for performance comparison. In this case, as the scale of ex-
periments increases, ILP may not deliver the optimal solution
within the time-out. The results on three difficulty levels are
shown in Fig. 6. Among the three experiments, the number
of nodes per ECU is the largest and deadlines are the most
urgent in the hard experiment, while in the easy experiment
the number of nodes per ECU is the smallest and deadlines
are the least urgent. The average ratio of deadline to period of
each application is 0.82, 0.71, and 0.6, for easy, middle, and
hard cases, respectively.

From Fig. 6 one can observe that UST-ROM-BPP outper-
forms ILP in the easy and middle experiments. Specifically, as
the number of ECUs increases, the performance gap between
UST-ROM-BPP and ILP significantly enlarges, which is due
to the fact that ILP is unscalable. As the number of ECUs
increases, it becomes more difficulty for ILP to search for so-
lutions within the timeout. Such gaps do not exist in Fig. 6(c),
showing that both UST-ROM-BPP and ILP are hindered in
hard cases. Also, Fig. 7 shows the time cost of ILP normalized
to the time cost of UST-ROM-BPP in the three experiments.
As Fig. 7 shows, UST-ROM-BPP consumes much less time
than ILP, i.e., the time consumed by ILP is about 1000 -
10,000 times of the time consumed by UST-ROM-BPP. Since
the performance of UST-ROM-BPP is at least as good as ILP
in Fig. 6, the advantages of UST-ROM-BPP over ILP in speed
and efficiency are quite obvious.

As ILP is unscalable, in the following experiments the
proposed algorithms are compared with 3 peer list scheduling
heuristics, ETF [15], HLF [14], MD [17], which are adapted
from previous algorithms. Because HLF outperforms ETF and
MD in our experiments, to further evaluate the effectiveness
of the proposed algorithms, by replacing UST with HLF
in UST-ROM and UST-ROM-BPP, another two algorithm
combinations, HLF-ROM and HLF-ROM-BPP, are generated.
In HLF-ROM, HLF is used for node scheduling and ROM is
tuned to adapt HLF. In HLF-ROM-BPP, both ROM and BPP
are enabled. By comparing HLF, HLF-ROM, HLF-ROM-BPP,
UST, UST-ROM, and UST-ROM-BPP, one can evaluate the
benefits of UST, ROM, and BPP.

Then, experiments with three different difficulties, easy,
middle, and hard, are conducted and the results are shown



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 10

in Fig. 8. The average ratio of deadline to period of each
application is 0.82, 0.77, and 0.7, for easy, middle, and hard
cases, respectively. It may be noticed that the inputs for these
experiment are easier than those of the first experiments for
comparing UST-ROM-BPP and ILP because the performance
of the peer list scheduling algorithms is much poorer than
UST-ROM-BPP and ILP.

The following observations are made from Fig. 8. Firstly,
UST-ROM-BPP significantly delivers the best performance
among all evaluated algorithms. Specifically, for the middle
experiment (Fig. 8(b)), the performance gap between UST-
ROM-BPP and others is huge. That is, the success ratio of
UST-ROM-BPP is kept above 0.7 while for other algorithms
the success ratio is no larger than 0.25. Similarly, for the
hard experiment (Fig. 8(c)), the success ratio of UST-ROM-
BPP is kept above 0.3 while for other algorithms the success
ratio is no larger than 0.1. These demonstrate the effectiveness
of the proposed three approaches. Secondly, UST constantly
outperforms HLF, ETF, and MD on success ratio by a clear
margin. This demonstrates that the unfixed start time of
UST offers more opportunities to flexibly insert nodes into
proper positions between scheduled nodes and thus great-
ly enhances overall schedulability. Thirdly, UST-ROM and
UST-ROM-BPP outperform their counterparts, HLF-ROM and
HLF-ROM-BPP, respectively. These again support the above
conclusion that UST is advantageous in node scheduling.
Fourthly, UST-ROM and HLF-ROM outperform UST and
HLF, respectively. This demonstrates the effectiveness of ROM
in enhancing schedulability. Fifthly, UST-ROM-BPP and HLF-
ROM-BPP outperform UST-ROM and HLF-ROM, respective-
ly. This demonstrates the effectiveness of BPP in enhancing
schedulability. Finally, the above observations are consistent
among three different difficulties. These further demonstrate
the effectiveness of the proposed approaches.

The time cost to achieve high performance is not free.
Fig. 9 shows the corresponding time cost of the algorithms
for the easy experiment (i.e., Fig. 8(a)). It is shown that
UST, UST-ROM and UST-ROM-BPP require much more
time than other algorithms. UST-ROM-BPP, which outperform
others in success ratio, consumes the most time among all
evaluated heuristic algorithms. Nevertheless, UST-ROM-BPP
is still quite scalable when its time cost is compared to that of
ILP, as shown in Fig. 7. Due to limited space, only the time
cost of the easy experiment is shown in the paper and the time
cost of other experiments are quite similar to this one.

Fig. 10 depicts the bandwidth saved (i.e., 1− Tu
ss

Tss
) by UST-

ROM-BPP in the above three experiments (i.e., Fig. 8). It is
shown that the algorithm saves up to 17% of bandwidth in the
experiments. Specifically, the algorithm saves less bandwidth
in harder cases. This may be due to the fact that timing
constraints are more urgent in harder cases, which limits the
room for bandwidth optimization. In addition, as the number of
ECUs increases, the bandwidth that can be saved decreases. A
plausible explanation is that when the number of ECUs grows,
there are more time constraints, which may limit the space for
bandwidth optimization.

In the above experiments, each application has only one
deadline. To evaluate the performance of the algorithms under

4 8 12 16 20
10

0

10
1

10
2

10
3

10
4

10
5

Number of ECUs

A
ve

ra
ge

 T
im

e 
C

os
t (

in
 m

s)

UST
UST−ROM
UST−ROM−BPP
MD
ETF
HLF
HLF−ROM
HLF−ROM−BPP

Fig. 9. Average time cost of the heuristics.

4 8 12 16 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of ECUs

B
an

dw
id

th
 S

av
in

g 
R

at
io

easy
middle
hard

Fig. 10. Bandwidth saving ratio of UST-ROM-BPP.

complex timing constraints, in the following two experiments,
the input cases of the above easy experiment are reused while
complex timing constraints are added. Fig. 11 shows the
corresponding success ratio of the two experiments. In the
first one (Fig. 11(a)), 50% of entry and exit nodes and 20% of
normal task nodes have constrained release time and deadlines.
In the second experiment (Fig. 11(b)), 40% of entry and exit
nodes have constrained release time and deadlines and another
15% of entry and exit nodes have given start times, i.e., the
release time is equal to the deadline for such nodes.

The results in Fig. 11 basically support the observations
made from Fig. 8. In addition, by comparing Fig. 11 with Fig.
8(a), one can observe that the degradation of success ratio of
UST-ROM-BPP is smaller than that of UST and UST-ROM.
This demonstrates that ROM and BPP can effectively tolerate
conflictions brought by complex timing requirements.

VI. CONCLUSIONS

This paper has studied an important scheduling problem
for holistically handling both tasks and messages in time-
triggered automotive systems. This paper has formulated novel



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 11

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ECUs

S
uc

ce
ss

 R
at

io

UST
UST−ROM
UST−ROM−BPP
MD
ETF
HLF
HLF−ROM
HLF−ROM−BPP

(a) Easy experiment

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ECUs

S
uc

ce
ss

 R
at

io

UST
UST−ROM
UST−ROM−BPP
MD
ETF
HLF
HLF−ROM
HLF−ROM−BPP

(b) Middle experiment

4 8 12 16 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of ECUs

S
uc

ce
ss

 R
at

io

UST
UST−ROM
UST−ROM−BPP
MD
ETF
HLF
HLF−ROM
HLF−ROM−BPP

(c) Hard experiment

Fig. 8. Results for the comparison of the heuristics.

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ECUs

S
uc

ce
ss

 R
at

io

UST
UST−ROM
UST−ROM−BPP
MD
ETF
HLF
HLF−ROM
HLF−ROM−BPP

(a) Type 1

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of ECUs

S
uc

ce
ss

 R
at

io

UST
UST−ROM
UST−ROM−BPP
MD
ETF
HLF
HLF−ROM
HLF−ROM−BPP

(b) Type 2

Fig. 11. Success ratio of experiments with complex timing constraints.

models for practical system design and integration in auto-
motive industries. This paper has presented the UST algo-
rithm that schedules tasks and messages in a flexible way
to enhance schedulability. In addition, to tolerate assignment
conflictions brought by complex timing constraints and further
improve schedulability, this paper proposes the ROM and
BPP procedures. The simulation results have shown that the
proposed approaches significantly outperform ILP and prior
peer heuristics for various settings.

REFERENCES

[1] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in Au-
tomotive Communication Systems,” Proc. IEEE, vol. 93, pp. 1204-1224,
2005.

[2] CAN in automation. http://www.can-cia.org/can/
[3] TTCAN. http://www.can-cia.org/can/ttcan/.
[4] “The flexray communication system specification, version 3.0.1,”

http://www.flexray.com.
[5] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. IEEE,

vol. 91, no. 1, pp. 1120-126, 2003.
[6] M. Bertoluzzo, G. Buja, and A. Zuccollo, “Design of drive-by-wire

communication network for an industrial vehicle,” in Proc. IEEE Int. Conf.
Ind. Informat., pp. 155-160, Jun. 2004.

[7] J. Broy and K. Muller-Glaser, “The impact of time-triggered communica-
tion in automotive embedded systems,” in Proc. IEEE Symp. Ind. Embed.
Syst., pp. 353-356, 2007.

[8] M. Short and M. Pont, “Fault-tolerant time-triggered communication
using CAN,” IEEE Trans. Ind. Informat., vol. 3, no. 2, pp. 131-142, May
2007.

[9] K. C. Lee, M. H. Kim, S. Lee, and H. H. Lee, “IEEE-1451-based smart
module for in-vehicle networking systems of intelligent vehicles,” IEEE
Trans. Ind. Electron., vol. 51, no. 6, pp. 1150-1158, Dec. 2004.

[10] I. Park and M. Sunwoo, “FlexRay network parameter optimization
method for automotive applications,” IEEE Trans. Ind. Electron., vol.58,
no. 4, pp. 1449-1459, Apr., 2011.

[11] H. Zeng, , M.D. Natale, A. Ghosal, and A. Sangiovanni-Vincentelli.
“Schedule optimization of time-triggered systems communicating over the
FlexRay static segment,” IEEE Trans. Ind. Informat., vol. 7, no. 1, pp.
1-17, Jan. 2011.

[12] B. Tanasa, U.D. Bordoloi, P. Eles, and Z. Peng, “Scheduling for fault-
tolerant communication on the static segment of FlexRay,” Proc. RTSS
2010.

[13] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems,” Proc. ASP-DAC, 2012.

[14] T.C. Hu, “Parallel Sequencing and Assembly Line Problems,” Oper.
Research, vol. 19, no. 6, pp.841-848, Nov. 1961.

[15] J.J. Hwang, Y.C. Chow, F.D. Anger and C.Y. Lee, “Scheduling Prece-
dence Graphs in Systems with Interprocessor Communication Times,”
SIAM Journal of Computing, vol. 18, no. 2, pp. 244-257, Apr. 1989.

[16] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors,” IEEE Trans.
Parallel and Distributed Systems, vol. 7, no. 5, pp. 506-521, May 1996.

[17] M. Wu and D. Gajski, “Hypertool: A Programming Aid for Message-
Passing Systems,” IEEE Trans. Parallel and Distributed Systems, vo. 1,
no. 3, pp. 330-343, 1990.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MONTH 201X 12

[18] A. Davare, Q. Zhu, M.D. Natale, C. Pinello, S. Kanajan, and A.S. Vin-
centelli, “Period Optimization for Hard Real-time Distributed Automotive
Systems,” Proceedings of the 44-th annual Design Automation Conference,
2007.

[19] T. Pop, P. Eles, and Z. Peng, “Schedulability Analysis for Distributed
Heterogeneous Time/Event Triggered Real-Time Systems,” Proceedings of
15th Euromicro Conference on Real-Time Systems, 2003.

[20] P. Pop, K.H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and Voltage
Scaling for Energy/Reliability Trade-offs in Fault-Tolerant Time-Triggered
Embedded Systems,” In Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, 2007.

[21] H. Jaouani, R. Bouhouch, W. Najjar, and S. Hasnaoui, “Hybrid task and
message scheduling in hard real time distributed systems over FlexRay
bus,” In IEEE International Conference on Communications and Informa-
tion Technology (ICCIT), pp. 21-26, 2012.

[22] D. Peng, K.G. Shin, and T.F. Abdelzaher, “Assignment and scheduling
communicating periodic tasks in distributed real-time systems,” IEEE
Trans. Software Engineering, vol. 23, no. 12, Dec. 1997, pp. 745-758.

[23] T.F. Abdelzaher, and K.G. Shin, “Combined task and message schedul-
ing in distributed real-time systems,” Parallel and Distributed Systems,
IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179-
1191, Nov., 1999.

[24] K. Ramamritham, “Allocation and Scheduling of Precedence-Related
Periodic Tasks,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no.
4, pp. 412-420, Apr. 1995.

[25] T.F. Abdelzaher, and K.G. Shin. “Period-based load partitioning and
assignment for large real-time applications,” IEEE Trans. Computers, vol.
49, no. 1 , pp. 81-87, Jan. 2000.

[26] B.P. Dave, G. Lakshminarayana, and N.K. Jha, “COSYN: HardwareC-
Software Co-Synthesis of Heterogeneous Distributed Embedded Systems,”
IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1,
pp. 92-104, Jan. 1999.

[27] G. Manimaran, C. Murthy, “An efficient dynamic scheduling algorithm
for multiprocessor real-time systems,” IEEE Trans. Parallel Distrib. Sys-
tems. vol. 9 , pp. 312-319, Mar. 1998.

[28] E. Schmidt and K. Schmidt, “Message scheduling for the flexray
protocol: The dynamic segment,”IEEE Trans. Vehicular Technology, vol.
58, no. 5, pp. 2160-2169, 2009.

[29] M. Lukasiewycz, M. Glab, J. Teich, and P. Milbredt, “Flexray schedule
optimization of the static segment,” Proc. CODES+ISSS, 2009.

[30] K. Schmidt and E. Schmidt, “Message scheduling for the flexray proto-
col: The static segment,” IEEE Trans. Vehicular Technology, vol. 58, no.
5, pp. 2170-2179, 2009.

[31] S. Ding, N. Murakami, H. Tomiyama, and H. Takada, “A GA-Based
Scheduling Method for FlexRay Systems,” In Proc. International Confer-
ence on Embedded Software, 2005.

[32] M. Grenier, L. Havet, and N. Navet, “Configuring the Communication
on FlexRay: the Case of the Static Segment,” In Proc. ECRTS, 2008.

[33] IBM, ILOG CPLEX, http://www.ibm.com/software/, Version 12.2.

Menglan Hu received the B.E. degree in Electronic
and Information Engineering from Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2007, and the Ph.D. degree in Electrical and
Computer Engineering from the National Univer-
sity of Singapore, Singapore, in 2012. From 2012
to 2014 he was a research fellow at the School
of Computer Engineering, Nanyang Technological
University, Singapore. In 2014 he joined the faculty
of the Department of Electronics and Information
Engineering, Huazhong University of Science and

Technology, Wuhan, China, where he is currently an Associate Professor. His
research interests includes cloud computing, parallel and distributed systems,
scheduling and resource management, as well as wireless networking.

Jun Luo received the B.S. and M.S. degrees in elec-
trical engineering from Tsinghua University, Beijing,
China, in 1997 and 2000, respectively, and the
Ph.D. degree in computer science from the Swiss
Federal Institute of Technology in Lausanne (EPFL),
Lausanne, Switzerland, in 2006. From 2006 to 2008,
he has worked as a Post-Doctoral Research Fellow
with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON,
Canada. In 2008, he joined the faculty of the School
of Computer Engineering, Nanyang Technological

University, Singapore, where he is currently an Assistant Professor. His re-
search interests include wireless networking, mobile and pervasive computing,
distributed systems, multimedia protocols, network modeling and performance
analysis, applied operations research, and network security. He is a member
of the IEEE.

Yang Wang received the BS degree in applied
mathematics from the Ocean University of China in
1989 and the MS and PhD degrees in computing
science from Carleton University and the University
of Alberta in 2001 and 2008, respectively. He is cur-
rently at IBM Center for Advanced Studies (CAS),
Atlantic, University of New Brunswick, Fredericton,
Canada. Before joining CAS Atlantic in 2012, he
was a research fellow at the National University of
Singapore from 2010 to 2012. Before that, he was
a research associate at the University of Alberta,

Canada, from August 2008 to March 2009. His research interests include
scientific workflow computation and virtualization in Clouds and resource
management algorithms.

Martin Lukasiewycz received the Dipl.Ing. and
Ph.D. degree in computer science from the Univer-
sity of Erlangen-Nuremberg, Germany, in 2006 and
2010, respectively. Since 2011, Martin Lukasiewycz
works as Principal Investigator on automotive Em-
bedded Systems at the TUM CREATE Centre for
Electromobility in Singapore. From 2006 to 2010,
he worked as research assistant at AUDI AG and
the Department of Hardware-Software Co-Design,
University of Erlangen-Nuremberg, before he joined
the Institute for Real-Time Computer Systems, Tech-

nical University of Munich, as a postdoctoral researcher in 2010. His research
covers automotive in-vehicle communication networks, system-level design of
embedded systems, and meta-heuristic optimization. Dr. Lukasiewycz serves
on the program committee of major conference such as DATE and DAC. He
is a member of the IEEE.

 

Zeng Zeng received the Ph.D. in electrical and
computer engineering from The National University
of Singapore, in 2005. He received his BS and
MS degrees in automatic control from Huazhong
University of Science and Technology, Wuhan, P.R.
China, in 1997 and 2000, respectively. His research
interests include distributed/grid computing systems,
multimedia storage systems, wireless sensor net-
works, and controller area networks. Currently, he
works as a senior research fellow at The National
University of Singapore and in the meanwhile, he is

the founder of GoGoWise Cloud Education Pte. Ltd, Singapore.


