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Abstract For a set of mobile users with designated

friendship relations, it is a recurring issue to keep track of

whether some friends appear in the vicinity of a given user.

While both distributed and centralized solutions for prox-

imity detection have been proposed, the cost metrics for

evaluating these proposals are always based on counting

the number of message (e.g., query or update) exchanges.

However, as mobile users often rely on wireless networks

to maintain their connectivity, the cost incurred by any

message passing is strongly affected by the distance

between the sender and receiver. In this paper, we propose

TRack Others if You can (TROY) as a novel distributed

solution for proximity detection. Extending the principle of

spatial tessellations, TROY incurs only localized message

exchanges and is thus superior to existing proposals in

terms of more realistic cost metrics that take into account

the actual energy consumption of message passing.

Moreover, our spatial tessellations inspired analytical

framework allows for a meaningful comparison with an

existing work. Finally, we use extensive experiments to

validate the efficiency of TROY.

Keywords Proximity detection � Mobile networks �
Energy efficiency � Spatial tessellation

1 Introduction

With the proliferation of location positioning technologies

(e.g., GPS) and mobile communication devices, proximity

detection has emerged as an important type of location-

based online services. On one hand, geo-social networking

applications and social discovery platforms, e.g. Blendr

(blendr.com) and Grindr (grindr.com), allow users to

browse and possibly meet other users who are nearby to

their present locations. Also, a traveling businessman

attends a large conference in a city and would like to be

alerted and possibly meet other nearby attendee of the

conference [1]. In these applications, social groups are

formed by enrollment and the tracked users of each user

comprise all the other enrolled users in the service. On the

other hand, instead of tracking all the users within prox-

imity, some friend-locator services, such as Google Lati-

tude, track only users’ friends within proximity, where

social groups are formed by friend relationships. Precisely,

we are aiming to tackle the following problem in our paper:

Problem description given a set U of mobile users and a

social network GS(U, E) representing either the enrollment

or the friendship relations among them, proximity detection

[1] aims to alert an user ui if uj, where ðui; ujÞ 2 E, enters a

circle centered at the location of ui with a radius Ri. Here Ri

is the proximity threshold for ui.

In mobile applications, communication cost is the most

important optimization goal, due to the limited bandwidth

and battery power on the users’ mobile devices [16]. In fact,

battery drainage due to communications has becomes a pri-

mary issue for the contemporary mobile devices, as com-

munications entail far more energy than computations. Since

mobile devices always rely on wireless communications to

maintain connectivity among them, the real communication

C. Zhang � J. Luo (&)

School of Computer Engineering, Nanyang Technological

University, Singapore, Singapore

e-mail: junluo@ntu.edu.sg

C. Zhang

e-mail: czhang8@ntu.edu.sg

123

Wireless Netw

DOI 10.1007/s11276-014-0690-5

Author's personal copy

http://blendr.com
http://grindr.com


cost (i.e., the incurred energy consumption) depends on both

the number of message exchanges and the distance between

the sender to the receiver.

As the proximity detection problem requires the track of

all nearby users for every user in a mobile application, it is

challenging to design communication-efficient solutions. A

naive solution may require that each user reports his

location to his friends in a distributed setting, or to a

centralized server in a centralized setting, periodically

(e.g., per second). However, such a solution would incur a

tremendous communication cost.

The importance of the proximity detection applications

and the challenging nature of the problem have motivated

the development of dedicated methods for it. A few safe

region based centralized solutions [20, 24] have been

proposed to optimize the communications cost between

mobile users and the server, assuming that the locations of

moving users can be represented as linear functions of

time. However, these centralized solutions have two main

drawbacks: First, in many real situations it is difficult to

derive a linear function of time to represent the future

locations of human. Second, for proximity detection

applications that need to handle a huge number of mobile

users, these centralized approaches can suffer from dra-

matic performance degradation in terms of server load and

network bandwidth.

Another problem of the existing proposals [1, 20, 24] is

that they focus only on reducing the number of message

exchanges while ignoring the fact that the incurred energy

consumption of sending a message is strongly correlated

with the distance from the sender to the receiver [17]. A

realistic communication cost metric that considers both

number of messages and distance should be used to guide

and evaluate the proposed algorithm for proximity

detection.

In this paper, we tackle the proximity detection problem

in a peer-to-peer mobile network following the setting of

[1], i.e., there exists no centralized server in the network.

Compared with the centralized setting, the peer-to-peer

mode has the following benefits for proximity detection.

• Flexibility Unlike its centralized counterpart, a peer-to-

peer proximity detection algorithm can be easily

implemented by a group of mobile devices without

the need for setting up centralized supporting

infrastructure.

• Robustness As a peer-to-peer solution does not rely on

a centralized server that is prone to single point of

failure, it can be highly robust and resilient to device

failures or user churning.

• Energy efficiency While a centralized solution would

requires user devices to communicate with a central

server, the peer-to-peer setting enables us to design a

solution in which users communicate only with nearby

users, reducing the average energy consumption per

communication.

Our proposed solution, TRack Others if You can

(TROY), extends the idea of spatial tessellations [15] to

‘‘code’’ the proximity information. The resulting cell-based

distributed data structure enables TROY to fully confine

the message exchanges among only the closest users, and it

also substantially reduces the data maintenance cost for

individual mobile users. All these significantly improve the

efficiency of proximity detection.

The challenge in designing TROY resides in the main-

tenance of cells in a peer-to-peer mobile setting, so that a

cell always contains only the user that generates it and the

message exchanges for proximity detection can still be

confined among only the closest users under mobility. To

achieve this, we propose a novel communication-efficient

solution to cell maintenance. Under the TROY framework,

we first design a basic algorithm for the setting where each

user needs to track all the other users in the system (i.e., the

social graph GS as a complete graph). Then we generalize

the algorithm for arbitrary social graph GS.

We also propose an analytical framework to theoreti-

cally compare the communication cost of the proposed

method and the existing distributed proximity detection

method. As the communication distances need to be taken

into account, we introduce a cost model based on spatial

tessellations. Essentially, we model the mobile users as a

spatial point process, and hence the distances between

nodes can be theoretically characterized. As a result, we

may derive cost metrics to better represent the energy

consumption of operating TROY and the competing solu-

tion [1].

The contributions of this paper are summarized as

follows:

• We propose a novel distributed solution, TROY, for

energy efficient proximity detection.

• We develop a novel way of modeling of the commu-

nication cost measured by a realistic metric. Our

theoretical analysis shows the advantage of TROY

over a competing solution [1].

• We perform extensive experiments to compare TROY

with existing alternatives, and the experimental results

again demonstrate the superiority of TROY over both

[1] and [24].

In the rest of the paper, we first briefly survey the lit-

erature in Sect. 2. Then we present the basic version of

TROY (for complete GS) and its extension for arbitrary GS

in Sects. 3 and 4, respectively. These are followed by

theoretical analysis in Sect. 5 and simulations in Sect. 6 We

finally conclude our paper in Sect. 7.
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2 Related work and preliminary

We review the existing work on continuous spatial query

processing in Sect. 2.1 and proximity detection in Sect. 2.2

Moreover, Sect. 2.2 also serves as the preliminary for our

algorithm design and evaluation.

2.1 Continuous spatial query processing

The problem of proximity detection is related to continuous

spatial query processing on moving objects, which mainly

focuses on the continuous k nearest neighbor (k-NN) query

and continuous range query. The k-NN query determines

the nearest k objects to a given query point among all the

moving objects. This is a very different type of queries

from the proximity query. The continuous range query

returns the moving objects that are currently located inside

the query region: techniques developed for it could be

adapted for the proximity detection problem, although they

may not scale to the proximity detection problem where

each object corresponds to a continuous range query. Note

that the query can be either static or moving. We divide

continuous spatial query processing methods into central-

ized methods and distributed methods.

Centralized continuous spatial query processing Many

server-side methods have been proposed for continuous

spatial query processing. For example, SINA [11], SEA-

CNN [22], CPM [13] and the grid-based algorithm [25] for

k-NN queries and SINA [11] for range queries. In such

methods, the server refreshes the result periodically (every

a specified time unit) to maintain the results of spatial

queries based on the location updates of moving objects.

They typically employ grid indexes to index moving

objects at the server side for efficient processing of moving

queries. While the aforementioned proposals do not make

assumption on the future locations of moving objects,

another type of methods represents the locations of moving

points as functions of time, and predict the query result

based on the moving functions. When the motion function

of an object changes, it updates to the server and the server

recomputes query results associated with the object.

Examples for this latter type include [9] for continuous k-

NN and spatial join queries, and [27] for continuous pro-

cessing of intersection join between two sets of moving

rectangles.

The methods discussed above focus on the computa-

tional efficiency issue at the server but disregard the

communication cost between users and the server. There

also exist centralized algorithms [6, 12] that take into

account the communication cost for processing range or k-

NN queries. They utilize the concept of safe region, which

is a set of points where the query point can move without

changing the query answer. For example, Mouratidis et al.

[12] propose an algorithm for optimizing the communica-

tion between users and the server for continuous k-NN

queries. In this method, every object in the answer is

assigned a safe region where it can move without making

the result change, and only objects that may influence some

query result need to communicate their updated locations,

thus reducing the number of location updates from the

moving objects.

The constraint detection problem [23] is closely related

to the proximity detection problem. A specified constraint is

satisfied if a set of n moving objects are within a circle with

a predefined diameter. The proposed solution [23] aims to

optimize the computation in the server by an adaptive

location constraint indexing approach, which adaptively

merges and splits the cells of a grid index. This work does

not take communications cost into consideration.

In general, these centralized methods, beside a potential

high energy consumption, cannot be used for the proximity

detection problem in our setting without centralized servers.

Distributed continuous spatial query processing In

contrast with the employment of a single centralized ser-

ver, several studies (e.g., [8, 21]) introduce a distributed

server infrastructure to partition the entire service region

into a set of service zones and cooperatively handle

requests of continuous range queries.

Furthermore, MQM [4] and MobiEyes [5] assume a

distributed environment, where the mobile hosts have the

computing capability to process continuous queries. MQM

[4] processes continuous static range queries on moving

objects while MobiEyes [5] is developed for continuous

moving range queries. Both approaches distribute the job

of processing queries to mobile nodes of the system, the

scalability in terms of server load can be much better than

any centralized processing based solution. The setting of

MobiEyes [5] goes closer to ours for proximity detection.

However, a centralized server is still required to work as a

mediator coordinating the query processing: each moving

object monitors the queries it can affect and communicate

location updates to the centralized server.

As the aforementioned approaches still require central-

ized servers, they do not apply to the proximity detection

problem in our setting.

2.2 Dedicated solutions for proximity detection

Solutions specific to proximity detection can be either

centralized [20, 24] or distributed [1]. We briefly explain

their ideas, as well as relevant parameters that will be used

in analysis and simulations for comparing them with

TROY.

Tracking based solutions Aiming to reduce the number

of location updates from users to the server, Treu et al. [20]

adapt the safe region (also called dead reckoning)
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mechanism for proximity detection. Assuming that each

user updates the server with not only the velocity but also

thresholds for both direction and speed, the proposed

algorithm [20] assigns ring sector as the safe region where

a user may locate since the previous update. This sector is

time-variant: it grows larger in time, indicating an uncer-

tainty as an increasing function of time (Fig. 1 right). As a

position update is generated only if the user moves out of

the safe region, such a mechanism ensures the correctness

of proximity detection while reducing the number of

updates.

Based again on the safe region approach, Yiu et al. [24]

build a simply cost model to analyze the fixed-radius

mobile detection (FMD, a conventional safe region

approach where the region is a disk with fixed radius k
around a user, see the left figure in Fig. 1) in the context of

proximity detection. They also propose two self-tuning

policies to allow individual users to enlarge or reduce its

safe region, named reactive mobile detection (RMD) and

cost-based mobile detection (CMD), respectively.

Irrespective of how much communication cost can be

reduced by making location update ‘‘smarter’’, a tracking

based proximity detection is bounded to generate redun-

dant updates, simply because tracking is far beyond prox-

imity awareness. We will later show that, under some

common scenarios, a tracking-based proximity detection

approach continuously generates updates while our pro-

posal incurs zero communication costs.

Tracking-free proximity detection In a mobile peer-to-

peer setting, it is not always possible to have a centralized

database. As maintaining location information in such a

distributed setting is highly complicated, efficient prox-

imity detection needs to get rid of its reliance on location

tracking. Motivated by the fact that proximity awareness

depends only on mutual distances that contain less infor-

mation than user locations, the Strips algorithm is proposed

by Amir et al. [1] as a distributed proximity detection

mechanism. The idea is straightforward: each user main-

tains a proximity indicator for each of its friends. This

indicator, as illustrated in Fig. 2, is a strip of width Rþ e
centering around the perpendicular bisector of the line

segment determined by a friend and the user, assuming a

uniform proximity threshold R. The extra width e is added

such that the proximity threshold would not be compro-

mised by the transmission delay when two users happen to

be on the boundary of the strip. Once a user enters a strip,

an update procedure is triggered such that the user and its

corresponding friend exchange messages to verify their

mutual distance. If the distance is larger than R, they re-

build the proximity indicator; otherwise a proximity noti-

fication is generated.

There are two drawbacks for the Strips algorithm. First,

users need to communicate with all of their friends to build

and maintain the set of strips, leading to a large cost.

Second, the correlations among these strips are not fully

utilized. In fact, the strips are correlated in the sense that a

strip closer to a user implies to some extend farther ones. In

other words, if the user does not enter a closer trip, it will

not enter farther ones. As the Strips algorithm treats each

strip independently, many redundant updates can be gen-

erated, resulting in a high communication cost.

3 TROY basic: proximity detection for a complete

social graph

In this section, we first explain the rationale behind TROY.

Then we introduce the local cell algorithm (LCA) as a

basic version of TROY. In order to simplify the basic

design, we assume that the social graph is complete (which

represents the case that GS is determined by the enrollment

of certain mobile applications, see Sect. 1); a general

TROY presented in Sect. 4 will relax this assumption. We

first present LCA assuming a uniform proximity threshold

R, and then we explain how to extend LCA to handle the

case where each user ui has a distinctive Ri in Sect. 3.3.

3.1 Principles of TROY

We first use an example to demonstrate how the redun-

dantly maintained strips (which we have discussed in Sect.

Fig. 1 Convention safe region (left) and the ring sector based safe

region (right). The areas indicated by dash-dot lines/curves are the

safe regions. Opened circle Original location, filled gray circle actual

location that triggers no update, open dotted circle estimated location,

filled block circle actual location that triggers an update

a

b
c

d
e

f

g

R+

Fig. 2 The strips generated by user a to indicate its proximity with

respect to its friends {b, c, d, e, f, g}
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2.2) lead to unnecessary energy cost and to motivate our

cell-based design. Let us consider a user u1 moves towards

a clique of friend C, a scenario shown in Fig. 3. Note that

in Fig. 3 we only draw the edges as line segments though

they are actually strips with a width Rþ e (see Sect. 2.2).

We assume that the distance d from u1 to C is much larger

than the diameter of C’s convex hull. As the Strips algo-

rithm maintains a strip for each friend of u1, it keeps update

in total |C| strips when moving, as shown in Fig. 3(a).

In contrast, if we require each user to maintain only the

closest strips in TROY, u1 needs to update only one strip

(the one between u1 and its closest friend) in Fig. 3(b) when

u1 enters the strip. Consequently, the number of message

exchanges incurred by Strips is |C| times larger than that by

TROY. In fact, TROY takes advantage of the correlation

among strips (see Sect. 2.2) and allows the closest friend to

‘‘shadow’’ others. Here, by ‘‘shadow’’, we mean other users

in clique C are temporarily hidden from u1 by the user

closest to u1. Obviously, the users that are shadowed from

u1 are not in proximity with u1. Note that this mechanism

also reduces the average communication distance, as to be

analyzed in Sect. 5.

Interestingly, the combination of all the closest strips

actually forms a cell containing the user itself (see

Fig. 4(a) for a better illustration of the cell). In particular,

when the strips are initialized to be centered around the

bisectors between pairs of users, the resulting cells are

Voronoi cells.

3.2 Local cell algorithm (LCA)

We proceed to present the local cell algorithm (LCA),

which establishes and maintains a cell for each user in

TROY. In its initialization phase, LCA requires each user

ui 2 U, with location ‘i, to execute a localized algorithm to

compute the Voronoi cell Vi. This procedure is straight-

forward: the user simply contacts the close-by users to

establish Voronoi edges. The algorithm terminates when

the cell is closed and does not contain any other users. We

refer the readers to [2] for an implementation of this pro-

cedure. The outcome, the cell edges and their corre-

sponding user locations, is kept in a local database. For a

user ui, one database entry concerning its adjacent user uj is

as follows:

(user) id (user) location edge

uj ‘j (aij, bij)

where aij ¼ ‘j � ‘i is the normal (vector) of the edge

between ui and uj, and bij ¼ 1
2
k‘i � ‘jk2 þ aT

ij‘i gives the

initial position of the edge; hence the edge can be repre-

sented by aT
ijx ¼ bij. There is also an entry for ui itself, in

which the third field is NULL. Note that all the entries

jointly form Vi, the cell for ui. Similar to the Strips algo-

rithm (see Sect. 2.2), we also deem each edge not as a line

segment but a strip of width Rþ e centered around the line

segment. We hereafter use the terms edge and strip

interchangeably.

Though the cells initially generated are Voronoi cells

built using existing algorithms, it is not cost-effective to

maintain the Voronoi cells in the presence of user mobil-

ities in our distributed setting.1 Instead of maintaining

u1

(a) (b)

u1

C C

Fig. 3 Whereas the Strips algorithm needs to repetitively update |C|

strips (a), TROY only updates one strip until u1 joins C (b). To

simplify the exposition, we only draw the bisectors though they

should be strips with a width Rþ e. a The strips algorithm, b TROY

u1
u1

u2 u2

(a) (b)

u1

u2

(c)

u3 u3

u4 u4

u3

u4

(d)

R/2+2

Fig. 4 Illustrating LCV operations. To simplify the exposition, we

only draw the edges as line segments though they are actually strips

with a width Rþ e. a Original cells, b Cell adjust: edge merging,

c Cell adjust: edge deleting, d Tracking in proximity

1 Existing techniques [10, 26] on the dynamic maintenance of

Voronoi cells are centralized, and hence do not apply to our case.
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Voronoi cells, we propose a communication cost efficient

solution to maintain cells for individual users such that for

each user, the cell of the user does not contain other users,

thus guaranteeing the correctness of proximity detection.

The main idea of our proposal is that each user only

maintains its own cell; it adjusts the cell boundaries upon

hitting some edge(s), aiming at guaranteeing no other users

fall into its own cell. Specifically, our Cell Adjust algorithm

is outlined in Algorithm 1.

If a user ui hits the edge separating it from uj (meaning it

enters the strip implied by that edge), a round of message

exchange will take place between ui and uj, involving a

notification from ui to uj (lines 1–3) and a reply message

from uj to ui (lines 13–14). In each message, the whole

database maintained by sender is attached (lines 3 and 14).2

Upon receiving the message, ui (resp. uj) updates its own

database (hence the maintained cell) by:

a-1 updating the edge (line 6) with respect to uj (resp. ui),

a-2 choosing an entry from uj’s (resp. ui’s) database such

that the area of Vi (resp. Vj) is minimized by adding the

edge into the existing cell boundaries and merge this

entry into ui’s (resp. uj’s) database (lines 7–9), and

a-3 deleting edges (lines 10–12) that have been excluded

from the current Vi (resp. Vj).

These updates allow both ui and uj to get aware of other

users (hence the corresponding strips) that were shadowed

from them. This is possible as the cell adjacency is transitive:

user may get aware of other users whose cells are not adja-

cent through those adjacent friends. It is possible that no

entry in uj’s (resp. ui’s) database may reduce the area of Vi

(resp. Vj), then in that case step a-2 leads to no change in ui’s

(resp. uj’s) database. We illustrate these database updates

(with respect to u1) in Fig. 4(b)–(d) demonstrate what hap-

pen after u1 enters the strip between itself and u2. In Fig. 4(b),

an edge between u2 and u4 (originally in u2’s database) is

merged with u1’s database (due to a-2). Consequently, the

hatched area is excluded from u1’s cell. In Fig. 4(c), the edge

between u1 and u3 is deleted from u1’s database as it has been

excluded from u1’s new cell. When u1 and u2 are in proximity

(a dotted circle of radius R in Fig. 4(c) roughly marks such a

case), a special tracking process is invoked (which will be

discussed later), as shown in Fig. 4(d).

Note that a cell may not be a Voronoi cell after even just

one adjustment. This enables LCA to have a very low

message complexity: one message exchange compared

with on average six exchanges if a Voronoi cell were

reconstructed upon each adjustment [2]. Nevertheless, this

does not affect the correctness of LCA, as shown by the

following proposition.

Proposition 1 For an arbitrary user ui, LCA maintains Vi

so that ui is the only user located inside Vi.

Proof The proof is by contradiction. Assume there is a uk

that is also located inside Vi. This is possible only if uk has

passed across one of the edges of Vi. As the edges either

belong to ui or some close-by user uj that causes the adjust

of Vi, either ui or uj should have been notified by uk before.

A contradiction.

It is straightforward to see that the worst-case time

complexity of the Cell Adjust algorithm is OðmÞ, where

m � |U| is the maximum number of entries (edges of a

cell) in each user’s database. The average-case complexity

is only Oð1Þ, because the average number of entries is

bounded by a constant [15].

For the cases shown in Fig. 4(b), (c), u4 is no aware of

the cell adjust of u1. Therefore, in u4’s database, it is u2 that

is adjacent to it. Consequently, if u4 hits the edge between

itself and u2, it will initiate an message exchange with u2.

Fortunately, as wireless communication is omni-direc-

tional, u1 can ‘‘overhear’’ the exchange and hence reply to

u4 in addition to u2 if it stays in between u2 and u4 (i.e., u1

has an entry about u4 in its database). Though overheard

messages are usually dropped due to address mismatch in a

common wireless network, LCA verifies every overheard

message against the cell database. An address matching is

identified and a reply message is sent if any database entry

matches the source or destination address of a message

(line 5). Note that this procedure does not introduce any

extra communication cost.

When a user ui moves into the proximity Dj of user uj, a

special track mechanism is invoked to let them track each

2 As each user only maintains its own cell, the database has a very

small size and can hence be contained in one network packet.

Therefore, no extra cost is incurred.
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other, until they are again separated further than R. We

borrow this local tracking algorithm from [1]: a disk Dij of

radius R=2þ 2e, centered at at the midpoint between the

two user locations, is created. If either user leaves the disk,

the distance between them is re-measured. If the distance is

smaller than Rþ 2e, a new disk is created; otherwise a new

strip is created. This procedure is shown by Fig. 4(d); it

guarantees that, as far as a new strip is not created, two

users are still in proximity to each other.

Given that the energy consumption of a wireless trans-

mission grows in power law of the distance between two

users, LCA is obviously much more cost-efficient than the

existing proposals, as a user needs only to communicate

with its adjacent users, while other proposals either need to

update to a (possibly) far away server [24] or exchange

messages with several far away users [1]. We will give a

concrete demonstration of this advantage in Sect. 5.

3.3 Algorithm extensions and optimizations

For LCA described above, we assume that all users have an

identical proximity threshold R. In fact, it is rather

straightforward to extend the basic LCA to handle user

specific proximity thresholds (i.e., a distinct Ri for ui). The

extension works as follows: when two users ui and uj

exchange messages to build a strip between them, the

width of the strip is set as Rij þ e where Rij = max{Ri, Rj}.

For proximity tracking, the disk Dij is set to have a radius

of Rij=2þ 2e. It is easy to show that this extension guar-

antees the correctness of LCA under non-identical prox-

imity thresholds. Of course, this procedure is biased

towards the users with larger thresholds, as their friends

(with smaller thresholds) are paying more cost than they

need to maintain the correctness of the proximity detection

system.

Observing the case with u2 shown in Fig. 4 indicates

that LCA may introduce certain unnecessary overhead to a

user who is static or rarely moves. When u1 passes by u2,

the latter’s database experience several drastic changes. For

example, the strip between u2 and u3 and that between u2

and u4 are removed due to the ‘‘shadowing’’ of u1 during

some time periods, but they are added back to u2’s database

after u1 moves away. If the algorithm could somewhat

predict such ‘‘back-and-forth’’ behaviors, some database

operations can be saved.

Here we propose a simple optimization to LCA, aiming

at suppressing the unnecessary database operations. We

first set a global speed threshold r such that any user

whose speed is below this value is considered as quasi-

static. We also add a fourth field vj into a database entry

concerning ui: it indicates the velocity of the user ui at the

time the entry is added into a database. Now, if uj needs to

delete an existing edge from its database due to the

intervention of ui (or vice versa), it actually perform the

deletion only if kvi � vjk2� r; otherwise the edge remains

in the database. The outcome is that uj’s cell may tempo-

rarily contain both ui and uj. However, such a situation

happens only when these edges are ‘‘shadowed’’ by a fast

(relative to uj) moving user ui, whose effects on Vj can be

transient, so deleting these edges is not necessary.

4 TROY reloaded: coping with general social graphs

The LCA algorithm and its extensions involved in the basic

TROY framework work on a complete social graph; they

apply to social groups formed by enrollment. For appli-

cations where the social graph GS is not complete, LCA

could be in trouble. As the cell constructed for each user is

meant to ‘‘separate’’ it from its friends, a cell edge, by

default, does not exist for two geographically close users

that do not have a friendship relation. This means that a

user’s database may not contain information about other

close-by users, which may compromise the algorithm’s

correctness.

We illustrate this with an example. Consider that two

geographically separated user sets contain respectively ui

and uj, but ui and uj are surrounded by their respective

friends in each set. Moreover, ui and uj are mutual friends,

and the link between them in GS is the only link between

these two sets. As a result, ui and uj are hidden from each

other by their respective friends; they might never get to

learn the proximity of each other, simply because LCA

relies on the transitivity of cell adjacency (in other words, a

user may get aware of other friends whose cells are not

adjacent through those adjacent friends) that always holds

only for a complete social graph. We illustrate such a case

in Fig. 5(a), (b). It is clear from the figures that, given an

initial setting shown in (a), the two friends u1 and u4 will

not be aware of each other later even if they are actually in

the proximity (b). In the following, we first describe a naive

solution, Underlay LCA (U-LCA), and then present our

main proposal, Overlay LCA (O-LCA).

4.1 Underlay LCA (U-LCA): a naive solution

The idea for U-LCA is rather straightforward. Though the

social graph GS is not complete, we may consider an

extended complete social graph G0S that shares the same

vertex set with GS when detecting proximity among users.

However, whether a proximity notification is generated still

depends on the original graph GS. By decoupling the

proximity detection database from the social relation

database, U-LCA allows proximity detection to execute in

a non-discriminating manner at a lower protocol layer.

More specifically, LCA works at a lower layer, maintaining
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a database as if every user is every others’ friend. In other

words, ui maintains a cell V0i with respect to G0S. In case

that a proximity alert is fired due to a user ui entering a strip

separating it from uj, a database representing GS at a higher

layer of ui and uj is checked. An actual proximity notifi-

cation to ui or uj is generated only if there is a match in the

database, i.e., ðui; ujÞ 2 ES.

Although U-LCA appears to incur some extra mainte-

nance cost as it is based on G0S, its actually communication

(energy) cost may still be lower than the Strips algorithm.

The reason is twofold: On one hand, the degree of a real

social graph GS; DðGSÞ, is often much larger than the

number of edges of a cell generated by f‘lgui2U (6 on

average [18]), U-LCA maintains fewer entries for each

user. On the other hand, the cost in updating each edge (or

strip) is lower for U-LCA due to the shorter distance

required for each message exchange.

4.2 Overlay LCA (O-LCA)

While U-LCA globally ‘‘complete’’ GS to handle the

incompleteness in GS, we may locally complete GS to

further reduce the overhead. As this approach requires only

one database (similar to the basic LCA), we term it

Overlay-LCA (or O-LCA) to differentiate it from U-LCA.

We hereby define k-hop friendship as the relation

between two users whose shortest path in GS has a length

k. And we denote by local k-hop partition the procedure

that, given a user ui 2 U, for each friend uj of ui, we extract

from GS a subgraph and extend it to a complete graph GS
i,j,

where the vertex set of GS
i,j contain ui, uj, and all uj’s l-hop

friends (1 B l \ k); the generated graph GS
i,j is called ui’s

local k-hop partition with respect to uj. For example, after a

local 2-hop partition for the case in Fig. 5(a) with i = 1

and j = 4, u1 joins the user set {u4, u5, u6} to form a

complete graph GS
1,4 with respect to u4, which is high-

lighted by green color in Fig. 5(c); conversely, GS
4,1 is

highlighted by red color for the case with i = 4 and j = 1.

Based on a k-hop partition, O-LCA maintains in every

user’s database several tables, each corresponding to a cell

Vi
j for GS

i,j. The basic idea is that ui uses the cell Vi
j to keep

track of the proximity of uj, rather than a strip used in [1].

For instance, Fig. 5(d) shows that u1 will not lose track of

u4 by using V1
4 (green), as the graph GS

1,4 is complete. The

difference in database entry between O-LCA and LCA is

that the value k is stored as an extra field for each entry in

O-LCA. When two users are detected as in proximity by

O-LCA, a notification is generated only if they have a

1-hop friendship. A redundancy check is applied before a

message exchange is initiated, such that only one message

is sent if the strip entered by a user belongs to multiple

cells.

The following proposition shows the correctness of

O-LCA under any local k-hop completion for k C 2.

Proposition 2 Let {GS
i,j} be the partition and extension of

GS through a local k-hop partition with k C 2. After user ui

updates its database and hence the cell edges according to

O-LCA, no other ui’s friend could possible be located in Vi
j.

Proof The proof is again by contradiction. Assume k = 2

(the weakest case) and some uj enters Vi
j without notifying

ui. However, Vi
j is maintained by O-LCA on top of GS

i,j, a

complete subgraph. According to Proposition 1, uj cannot

enter Vi
j without notifying ui. A contradiction.

The worst-case complexity of performing cell adjusts is

Oðm̂2Þ, where m̂ denotes the maximum number of friends a

user may have, because m̂ tables may be updated with each

containing up to m̂ entries. Fortunately, the average-case

complexity is much lower, which is Oð �mÞ, where �m

denotes the average number of friends a user may have, as

the average number of entries is bounded by a constant

[15]. We also have the following observations:

• If GS is a complete graph, then Vi
j = Vi, for all uj such

that ðui; ujÞ 2 ES. Therefore, O-LCA falls back to the

basic LCA.

u1

u2

(a) (b)

u3

u4

u1

u2

u3

u4

u1

u2

(c) (d)

u3

u4

u1

u2

u3

u4

u5 u5

u6 u6

u6u6

u5 u5

Fig. 5 Whereas the solid thick lines represent cell edges (strips) and

colors are used to distinguish two different cliques, the dash-dot line

represent the edges in ES and the dash-double-dot lines represent the

edges the extended subgraphs. a Original cells, b detection failure,

c original cells after partition, d detection success
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• If k is set to the diameter of GS, then local completions

all become global; hence O-LCA becomes equivalent

to U-LCA.

• If GS has its clustering coefficient (the ratio between the

number of closed triplets and that of connected vertex

triples [14]) equal to one, O-LCA with k = 2 is

equivalent to the basic LCA.

As social networks often have a high clustering coeffi-

cient [19], the last observation implies that the energy

efficiency of O-LCA can be close to that of the basic LCA.

The reason is that, though each user ui needs to maintain

several cells, the edges of these cells are very likely to

coincide if the clustering coefficient of GS is large. We will

give a qualitative analysis in Sect. 5.3. In practice, we set

k = 2 and obviously the number of entries of a local

database of a user is bounded by the number of 2-hop

friends of the user.

5 Analysis

In this section, we analytically compare TROY with the

Strips algorithm [1]. As the analytical framework used by

the proposal in [24] is significantly different, we can make

the comparison with [24] through only experimental study.

The metric we use to compare them is the energy con-

sumption of communications (or communication cost)

demanded by a proximity detection system. The energy

cost spent to maintain databases is ignored as is it negli-

gible compared with the communication cost. We model

TROY in terms of the basic LCA in Sects. 5.1 and 5.2, but

we discuss the performance of O-LCA using the high

clustering coefficient feature of social graphs in Sect. 5.3.

The comparisons between TROY and the Strips algorithm

are made using two different user distributions: regular

distribution and arbitrary distribution.

5.1 Regular user distribution on a grid

We first study the case where users are regularly distributed

on a square grid of two rows, as shown in Fig. 6. Let d be

the distance between two closest users.

We assume a user, starting from the center of a square,

moves horizontally from left to right in Fig. 6. Let c be the

number of columns the moving user passes. Fig-

ure 6(a) shows that the number of strips being updated

grows superlinearly in c, so does the communication dis-

tance for each update. Using the result derived in [1] that

the number of updates incurred by moving towards another

user at distance x is Xðlog xÞ, we can obtain that the

number of times of updating strips as
Pc

i¼1 Xðlog idÞ ¼ Xðc log cÞ

The total communication cost depends on the function

relation between the communication cost and

communication distance for one update. According to

[17], the communication cost is proportional to the

communication distance raised to power g, where

g = 2-6 is the path loss exponent. In this paper, we take

a conservative value g = 2, which actually favors Strips.

Consequently, the total communication costs can be

represented as
Pc

i¼1 Xði2d2Þ ¼ Xðc3d2Þ

On the contrary, TROY only updates 4c strips after passing

c columns, and the communication distance for each

update can be two alternating constants
ffiffi
2
p

2
d and 1

2
d given

the special geometry of the grid, as illustrated by Fig. 6(b).

We also numerically compute both the number of updates

and total communication cost in such a grid setting, and we

plot the curves of these two quantities in Fig. 7. We

observe that TROY incurs fewer updates and less com-

munication cost than Strips.

5.2 Arbitrary user distribution

We analyze the chance of updating strips of the two

algorithms in a more general case, where users are dis-

tributed according to a homogeneous Poisson point process

in R2 with intense measure l. The main difference between

TROY and Strip is that, TROY only maintains the Voro-

noi-like edges, and the Strips takes care of each strip

between every user pair, including the Voronoi-like edges.

In order to show this difference, we first introduce the

number of disturbed users (NDU) as a metric: suppose at

one point of time, only one user u is moving while others

being static. NDU is the number of users whose strip with

u can potentially be updated. Based on the principle of

TROY, we can partition the 2D space using cell tessella-

tion generated by all the users. If u takes a random walk

within its own cell, we have NDUStrips ¼ NDUTROY ¼ 0. If

the random walk may cover an area A larger than u’s cell,

NDUTROY ¼ ljAj while NDUStrips ¼ ljFðAÞj, where FðAÞ
denotes the fundamental domain associated with A, i.e.

(a) (b)

Fig. 6 Strips incurs an increasing number of strip updating per

column (a), while TROY only updates the two neighboring users (on

the forward direction) twice for each column (b). a The Strips

algorithm, b TROY
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FðAÞ ¼
[

x2A

Dðx; kxk2Þ

with the origin set at the current location of u and Dðx; yÞ
denotes a circle centered at x of radius y. For any convex

area A, it can be shown that jFðAÞj is four times of |A| (see

Fig. 8), so the NDUStrips ¼ 4 � NDUTROY.

In terms of the communication cost, the advantage of

TROY becomes more conspicuous. it is easy to see that the

average distance from u to a user in FðAÞ is twice of that in

A. Further counting the fact that the communication cost

per update is proportional to communication distance

raised to power 2, the total communication cost of Strips

can be 16 times of that of TROY.

5.3 Inferring the performance of O-LCA

As the performance of O-LCA depends strongly on the

actual social graph GS and the user distribution, it is rather

hard to evaluate it quantitatively. Fortunately, according to

the observation we made (in Sect. 4.2) in terms of clustering

coefficient of GS, we may qualitatively infer extra overhead

brought by O-LCA as compared with the basic LCA.

Assume we take k = 2 of O-LCA, a most commonly

used O-LCA setting. Denote by cS the clustering coeffi-

cient of GS. According to the algorithm description for

O-LCA, each user has to maintain cells within a set of

subgraphs fGi;j
S jðui; ujÞ 2 ESg, which appears to be incur-

ring a large communication cost. However, the cost can

still be lower than the Strips algorithm for two reasons. On

one hand, cS, by its definition, also indicates the percentage

of overlap between any two subgraph G
ij1
S and G

ij2
S in their

vertex sets. In the extreme case where cS = 1, all the

subgraphs coincide and hence O-LCA degenerates to the

basic LCA (as we observed in Sect. 4.2). Therefore, given a

reasonable value of the clustering coefficient (according to

[19], it may be as high as 0.588 for company director

network), the extra overhead in terms of message number

introduced by O-LCA can still be comparable to the basic

LCA. On the other hand, with relatively small cS, the

number of messages incurred by O-LCA can sometimes be

larger than the Strips algorithm (as we will show in Sect.

6), the communication distance for each message exchange

can still be shorter for O-LCA. As a result, O-LCA may

well have an advantage in the total communication cost,

due to the power law relation between (communication)

energy consumption and distance.

6 Experimental study

In this section, we experimentally evaluate the communi-

cation cost of the proposed system TROY, and empirically

compare it with Strips [1], the-state-of-art proximity

detection algorithm on peer-to-peer mobile networks. We

also report the experimental results of the best centralized

algorithm, namely reactive mobile detection (RMD; [24]),

for reference purpose. Note that RMD works on a cen-

tralized setting. We consider the communication energy

consumption as the most important metric for proximity

detection applications, as elaborated in the introduction,
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Fig. 8 Comparing strips and TROY with respect to NDU. The inner
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but we also report the total number of messages incurred by

each algorithm.

6.1 Experiment setting

Mobility model To simulate user mobility, we use two

types of mobility model. The first model is produced by the

network-based moving object data generator [3], the

parameters we can control are the road model and the

maximum moving speed Vmax. we generate the movement

of users on the Oldenburg road network (also used in in

[24]). We will call this mobility model Oldenburg. The

other model is the Random Waypoint (RW) model [7]

commonly used in mobile network simulations. In the RW

model, each user node randomly chooses to move or to

stay, and a time period is randomly set for either case. If a

node decides to move, a velocity is chosen randomly, i.e.,

a speed is chosen uniformly between a minimum and a

maximum values (represented by Vmin and Vmax and a

direction is chosen uniformly in [0, 2p) This behavior

repeats at the end of each time period. To be consistent

with the Oldenburg model, we set Vmin = 0 RW model.

The user movements in both mobility models are con-

strained in a square region of 1,0002 meters

User graph To model the relationships among users for

the two types of applications discussed in the introduction,

we consider two kinds of social relationship model, namely

complete graph model and real-life social network model

from SNAP (snap.stanford.edu) shown in Table 1. Addi-

tionally, we generate a series of artificial social network

models using the SNAP graph library for scalability eval-

uation by setting the average number of friends per user as

100. The complete graph model is used to represent the

enrollment-based proximity detection application (such as

Blendr and Grindr mentioned in Sect. 1), while the social

network model is for applications like Google Latitude. We

randomly map the vertex sets of individual user graphs to

the movement region.

Setting of RMD RMD is a self-tuning safe region algo-

rithm proposed by Yiu et al. [24]. which work in a cen-

tralized setting. It is similar to FMD (see Sect. 2.2), except

that the safe region radius k decreases by dividing a[ 1

when distance between two users need to be confirmed, and

increases by multiplying a when a user gets out of the

uers’s safe region. RMD periodically measures user loca-

tions (and performs proximity detection) every DT . In our

experiments, we set a = 2, k = 20 m initially with a range

[2, 100] m, and DT ¼ 1s. Although another two algorithms,

FMD and CMD, are proposed in [24], RMD performs

slightly better than CMD and much better than FMD. as it

is shown in [24]. Therefore, we only report results of RMD.

The location of the server for RMD is set at the center of

the square region, which would minimize the average

transmission distance between users and the server.

Metric As we mentioned in Sect. 5, we assume the

energy consumption for sending a message is proportional

to square of the transmission distance (i.e., g = 2). Again,

this is a conservative value that actually favors RMD and

Strips, as a real value of g can be up to 6 according to [17].

Without loss of generality and also for ease of exposition,

we take the square of transmission distance as the energy

consumption in our simulations.

A list of parameters used in our simulations, along with

their default values, are also shown in Table 2. We preform

simulations for 500 s. Here we deliberately take a much

longer simulation period than the 100 s adopted in [24] for

the stationarity (hence validity) of our simulations; we refer

to ‘‘Appendix’’ for details.

6.2 Experiments on complete graph

We evaluate the communication cost of all methods on a

complete social graph GS, where every pair of users are

friends. The results on both mobility models are given in

Figs. 9 and 10, respectively.

Figures 9(a) and 10(a) show that TROY outperforms

both RMD and Strips by orders of magnitude in terms of

the communication cost (note the logarithm scale is used

for y-axis in all figures). On one hand, TROY incurs only

local (hence short distance) communications, and thus it

may significantly reduce the communication cost per

transmission compared with the centralized scheme RMD

that often requires long distance communications. On the

other hand, TROY beats Strips due to the shadowing effect

of the cellbased structure, which is consistent with our

analysis in Sect. 5.

Figures 9(b) and 10(b) shows the number of messages

since the number of messages is used in previous work,
Table 1 Social relationship graph statistics

Nodes # Edges # Clustering

coefficient

Wiki-vote 7,115 103,689 0.1255

ca-AstroPh 18,772 396,160 0.318

cit-HepPh 34,546 421,578 0.1457

soc-sign-Slashdot090221 82,168 948,464 0.02411

Table 2 List of experimental parameters

Symbol Description

N Number of users in network

R = 12 m Sensitive range for users

Vmax ¼ 10 m/s Maximum speed of users
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although the metric cannot reflect the communication cost. It

is interesting to see that RMD has an advantage over both

Strips and TROY in terms of the number of messages, which

will be observed in the other experiments as well, although

the metric incorporating the distance factor in communica-

tion cost used in Figs. 9(a) and 10(a) report contrary findings.

This demonstrates that the number of message is not a good

metric to evaluate the system performance, as it fails to

properly indicate the actually incurred energy consumption

of a proximity detection scheme.

We also observe from Figs. 9(a) and 10(a) that the

communication cost of all the three algorithms grows with

the number of users. Moreover, the communication cost of

Strips is more sensitive to the number of users than both

RMD and TROY. In a complete graph GS, users are friends

of each other, so increasing the network size is equivalent

to increasing the number of friends for all users. This

naturally leads to the growth of both the communication

cost and the number of messages. For Strips, each user

needs to maintain a strip between the user and every friend

of the user. This means that each user may potentially need

to communicate with all friends, making Strips more sen-

sitive to the network size. In contrast, TROY needs only to

take care of the closeby friends, while RMD is designed to

be relatively independent of the network size, which makes

them less sensitive to the network size.

6.3 Experiments on general social graphs

We evaluate the communication cost for the scenarios

where the social graphs are determined by the friendship

relations among users. Since LCA, the basic version of

TROY, does not work in these cases, we compare O-LCA

for k = 2 with RMD and Strips.

The evaluation results on the four real-life social graphs

(shown in Table 1) using the Oldenburg model and the RW

model are given in Figs. 11 and 12, respectively. We

observe that TROY excels in the communication cost for

all the graphs under both mobility models. This is due to

TROY’s ability of confining message exchanges between

close-by users. We also observe that RMD performs rela-

tively worse on the RW model than the Oldenburg model

while TROY and Strips are relatively stable. This might be

because in RWmodel the users’ movement is less pre-

dictable and thus a user is more likely to move beyond the

user’s safe region. If we compare the results on the general

social graph and those on complete graph, we find that

TROY does pay a price to be extended to support general

social graphs: the advantage of TROY over Strips

decreases compared with the cases with a complete social

graph, due to the extra overhead introduced by O-LCA

(compared with the basic LCA) to handle arbitrary social

graphs.
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Fig. 10 A complete social graph over the RW model. a Communication cost. b Number of message

Wireless Netw

123

Author's personal copy



To study the scalability of the different methods with the

number of users in the social graph model, we adopt six

sets of artificial social graphs generated by the SNAP graph

library with node sizes ranging from 10,000 to 100,000.

The results are shown in Figs. 13 and 14. It can be

observed that TROY exhibits a similar scalability to the

other algorithms. In other words, the communication cost

of TROY grows at the same pace as the other two algo-

rithms with the increase of network size.

For all the cases, both the communication cost and the

number of messages increase with the network size, similar

to what we have observed for the complete social graph.

6.4 Influence of sensitive range R

In this experiment, we evaluate the effect of the sensitive

range R, a crucial parameter of a proximity detection ser-

vice, on the communication cost. Due to the space limit, we
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Fig. 13 Artificial social graphs over the Oldenburg model. a Communication cost. b Number of message
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choose to present only four sets of results in Figs. 15, 16,

17, and 18, on two types of graph, namely a complete

social graph and the Astro-Physics social graph

(ca-AstroPh), with the two mobility models.

We observe that the sensitive range R has different

impacts on the three algorithms under comparison: TROY

has a largely decreasing cost in R and Strips behaves inver-

sely, while RMD is insensitive to R. The insensitivity of

RMD to R stems from the fact that RMD adopts essentially a

tracking (rather than proximity detection) mechanism and is

thus largely independent of R. The increasing cost of Strips in

R is mainly due to the ‘‘thicker’’ strips resulting for larger

R. Although TROY (O-LCA) is affected similarly by R, the

thicker strips have another effect on it. Roughly speaking, the

chance of having coincident cell edges (recall O-LCA

maintains several cells) gets larger, making O-LCA closer to
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Fig. 14 Artificial social graphs over the RW model. a Communication cost. b Number of message
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Fig. 15 A complete social graph over the Oldenburg model with a varying sensitive range. We set N = 10,000. a Communication cost.

b Number of message
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(a) (b)Fig. 16 A complete social

graph over the RW model with a

varying sensitive range. We set

N = 10,000. a Communication

cost. b Number of message
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the basic LCA and hence gaining better performance. The

interaction of these two effects leads to the non-monotonic

behavior of TROY

6.5 Influence of the maximum speed

In this experiment, we study the influence of the maximum

moving speed of users on the communication cost of

proximity detection. We choose to report four sets of

results, obtained on two types of graph, namely a complete

social graph and the Astro-Physics social graph, with the

two mobility models (as in Sect. 6.4)

Figures 19, 20, 21 and 22 show the results. We observe

that, while both TROY and Strips have increasing cost as

the maximum speed increases, the cost of RMD is not

sensitive to the speed. Though this seems to suggest that

RMD is robust to user mobility, we have to be careful with

this interpretation due to the following reasons.
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(a) (b)Fig. 17 Astro-physics social

graph over the Oldenburg model

with a varying sensitive range.

a Communication cost.

b Number of message
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Fig. 18 Astro-Physics social graph over the RW model with a varying sensitive range. a Communication cost. b Number of message
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(a) (b)Fig. 19 A complete social

graph over the Oldenburg model

with a varying maximum speed.

a Communication cost.

b Number of message
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The advantage of RMD (a safe region based approach)

lies in its (presumable) ability of predicting the future

location of a user. This ability is not affected by the speed,

but it becomes mostly prominent when movements always

follow lines, which happen to be case for both mobility

models that we adopt. Actually, this is the feature for

almost all mobility models, as there is virtually no way to

emulate the micro-movements of human users. Therefore,

the observed advantage of RMD in robustness may most

probably be an artifact caused by the mobility model. This

artifact exists for all the previous experimental results, but

it becomes more conspicuous now due to the increased cost

of both Strips and TROY.

7 Conclusion

Proximity detection is an important application in mobile

social networks. Aims at reducing the number of mes-

sages, the existing proximity detection algorithms are

developed based on a problematic assumption that the

communication cost is only determined by the number of

2 4 6 8 10 12 14 16
108

109

1010

1011

1012

1013

maximum speed (m/s)

co
m

m
un

ic
at

io
n 

co
st

 

 

RMD
Strips
TROY

2 4 6 8 10 12 14 16
105

106

107

108

109

maximum speed (m/s)

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

RMD
Strips
TROY

(a) (b)Fig. 20 A complete social

graph over the RW model with a

varying maximum speed.

a Communication cost.

b Number of message
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(a) (b)Fig. 21 Astro-physics social

graph over the Oldenburg model

with a varying maximum speed.

a Communication cost.

b Number of message

2 4 6 8 10 12 14 16
107

108

109

1010

1011

maximum speed (m/s)

co
m

m
un

ic
at

io
n 

co
st

RMD
Strips
TROY

2 4 6 8 10 12 14 16
104

105

106

107

maximum speed (m/s)

nu
m

be
r 

of
 m

es
sa

ge
s

RMD
Strips
TROY

(a) (b)Fig. 22 Astro-physics social

graph over the RW model with a

varying maximum speed.

a Communication cost.
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message exchanges. However, it is a well known fact that

the communication cost incurred by any message trans-

mission is strongly affected by the distance between the

sender and receiver, as mobile users often rely on wireless

networks to maintain their connectivity. Motivated by this,

we propose TROY as a new proximity detection approach

for peer-to-peer mobile networks. TROY maintains cells

dedicated for individual users and incurs only localized

message exchanges, which makes TROY superior to

existing proposals in terms of more realistic communica-

tion cost metric that takes into account the distance of

message transmission. We propose an analytical frame-

work to compare TROY with Strips, the state-of-the-art

distributed proximity detection algorithm. We also conduct

extensive experiments on both complete graph (for appli-

cations where social groups are formed by enrollment) and

general social graphs (for applications where social groups

are formed by friend relationships) over two mobility

models to study the communication cost of TROY.

Experimental results demonstrate the superiority of TROY

over Strips, as well as the state-of-the-art centralized

algorithm RMD.

Appendix: Simulation stationarity under mobility

As our simulations all rely on some form of randomized

mobility model, we need to be careful in choose a simu-

lation period to guarantee the validity of our simulations.

Roughly speaking, as there is no guarantee that the initial

states of the randomly moving nodes are stationary, the

results obtained from a very short simulation period may

not be representative or can even be misleading. Here we

use the Slashdot09 social graph over the Oldenburg model

to illustrate the changes of the two metrics in time. Obvi-

ously, it takes about 100 s to make a mobile network enter

its steady state. Therefore, the simulation results reported

in [24] may well be measured during the transient state of

the networks given their 100 s simulation time, and their

validity is highly questionable. In our simulation, we set

the simulation period to 500 s and only start to measure the

cost after the first 100 s (Fig. 23).
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