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Throughput-Lifetime Tradeoffs in Multihop
Wireless Networks under an SINR-based

Interference Model
Jun Luo∗, Aravind Iyer† and Catherine Rosenberg‡

Abstract—High throughput and lifetime are both crucial design
objectives for a number of multihop wireless network applica-
tions. As these two objectives are often in conflict with each
other, it naturally becomes important to identify the tradeoffs
between them. Several works in the literature have focused on
improving one or the other, but investigating the tradeoff between
throughput and lifetime has received relatively less attention.
We study this tradeoff between the network throughput and
lifetime, for the case of fixed wireless networks where link
transmissions are coordinated to be conflict-free. We employ a
realistic interference model based on the Signal-to-Interference-
and-Noise Ratio (SINR) which is usually considered statistically
sufficient to infer success or failure of wireless transmissions.
Our analytical and numerical results provide several insights into
the interplay between throughput, lifetime, and transmit power.
Specifically, we find that with a fixed throughput requirement,
lifetime is not monotonic with power − neither very low power
nor very high power result in the best lifetime. We also find that,
for a fixed transmit power, relaxing the throughput requirement
may result in a more than proportional improvement in the
lifetime, for small enough relaxation factors. Taken together, our
insights call for a careful balancing of objectives when designing
a wireless network for high throughput and lifetime.

Index Terms—Multihop wireless network, throughput, lifetime,
tradeoff, interference model.

I. INTRODUCTION

Improving the network throughput (how fast the network
may deliver data), and improving the network lifetime (how
long the network may last) are two important design objec-
tives for multihop wireless networks. These two objectives
appear to be in conflict with each other − intuitively, higher
throughput means greater energy consumption, and hence
reduced network lifetime. In order to be able to balance these
two design objectives, it becomes important to identify the
tradeoffs between throughput and lifetime. In particular, it
is not clear if it is possible to set the transmit power in
a network, so as to improve both throughput and lifetime.
Further, how much throughput needs to be traded off to achieve
a certain improvement in lifetime? Our aim is to investigate
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the tradeoff between throughput and lifetime in multi-hop
wireless networks, to address questions of the above nature.
We consider scenarios where it is required to achieve an
adequate network throughput (not necessarily the maximum)
as well as a sufficiently long lifetime. This would be the
case for wireless sensor networks which need to collect a
large amount of data, such as multimedia sensor networks [1].
Wireless mesh networks in developing countries whose nodes
have occasional access to the power grid serve as another
example.

We focus on the case of fixed scheduled wireless networks.
More precisely, we consider wireless networks which are
operated by scheduling link transmissions to be conflict-free,
as opposed to a random access MAC (medium access control)
protocol. There are several reasons for focusing on such
networks. Firstly, upcoming standards such as IEEE 802.16
and LTE (Long-Term Evolution) for fourth generation (4G)
cellular networking support completely scheduled modes of
operation, whereby link transmissions in the network can
be precisely controlled and scheduled to be conflict-free.
Secondly, our centralized and scheduled solutions bound the
performance of distributed solutions, and serve as benchmarks
for designing wireless networks. We also focus on the case
where the traffic requirements are static. Both IEEE 802.16
and LTE are envisaged for static deployment of wireless
networks, which would carry aggregated traffic from several
users, thereby motivating aggregated (and relatively static)
traffic requirements. Hence, we use a fluid model of data, i.e.,
we offer long-term guarantees on network throughput.

We assume that the network is specified in terms of a set of
nodes and a set of flows described in terms of their origin and
destination. We use a realistic interference model based on the
Signal-to-Interference-and-Noise Ratio (SINR) for modeling
the conflicts to avoid when scheduling the wireless links. This
conflict set model (also used in [12], [14]) captures the fact that
the interference to a certain link is the cumulative interference
from the multiple links that are activated during the same
period of time. Our notion of network throughput is the max-
min flow rate [14] and our notion of network lifetime is the
max-min node lifetime [8].

We formulate the following three optimization problems:
P1 To maximize the network lifetime while achieving the

max-min network throughput;
P2 To maximize the network throughput while achieving a

pre-specified network lifetime; and
P3 To maximize the network lifetime while achieving a
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fraction of the max-min throughput.
A solution to any of the problems above is a network configu-
ration which achieves the corresponding objective. By network
configuration, we mean the complete choice of parameters
for operating the network including the set of links, the link
transmission schedules and the routes for the flows. In other
words, we jointly select flow routes and link schedules, to
achieve the desired objective.

In order to solve problems P1, P2 and P3, and study the
trend of their solutions as a function of transmit power, we
adopt the following approach. We assume a network-wide
reference power level. All the nodes may use the reference
power, or a finite number of power levels which have a fixed
offset from the reference power. Nodes may also use a finite
set of modulation and coding schemes. We solve the problems
P1, P2 and P3 for a fixed setting of the network-wide reference
power (and possibly, a fixed set of offsets), and study the
trend of the solution by varying the reference power. We
consider this model a realistic representation of the capabilities
of modern wireless radios, as compared to using the Shannon
capacity formula to model wireless link rates. For ease of
exposition, we assume first that all the nodes use a single
power level (the reference power) and a single modulation and
coding scheme. We will later show how to extend this case to
multiple power offsets and modulation and coding schemes.

Even in the case of a single power and modulation, solv-
ing these problems requires searching among combinatorially
many configurations due to the intricate conflict structure. In
[17], we have developed computational tools based on column
generation to circumvent this issue which we use to obtain all
the numerical examples in this work. It must be emphasized
that all our solutions are exact. Whereas our formulation makes
no assumptions on the traffic flows, for our numerical results
we consider traffic patterns that converge to a gateway/sink.
Examples of such traffic patterns can be found in wireless
mesh and sensor networks, where only a few gateways or sinks
attract or initiate traffic. We have also studied cases where all
flows are initiated by the gateway/sink. We have not observed
any major differences in trends, and hence we do not present
them for lack of space. Note that our analytical results are
very general, and would apply regardless of the traffic pattern.

Both our analytical and numerical results show that the
optimal tradeoffs between throughput and lifetime are usually
not obtained at the minimum power that enables network
connectivity. In addition, our results show that, by fixing the
throughput requirement, the lifetime is not a monotonically
decreasing function of the transmit power. Finally, for a given
power level, our results indicate the existence of a throughput
threshold, below which a small sacrifice of throughput leads
to a large (more than proportional) improvement of lifetime
and beyond which a reduction in throughput only leads to
a proportional improvement in lifetime. We provide both
theoretical and intuitive explanations for these phenomena in
the paper. In addition to the above, we highlight the importance
of the interference model, and point out why results based
on the interference range model (to be defined later) may be
misleading. For further discussions, please see [12].

The rest of the paper is organized as follows. We first

discuss related work in Section II. We then describe our
network model and study the problem P1 in Section III. We
then focus on P2 and P3, and we address them in Sections IV
and V, respectively. Section VI extends our approach to
multiple power and modulation levels. In Section VII, we
report the numerical results. Finally, we conclude our paper
in Section VIII.

To facilitate readability, we present all the proofs in the
appendix. In order to facilitate understanding, we will use a
simple network (shown later in Fig. 1) to explain notations,
propositions and other remarks, throughout the paper. The use
of the simple example should not be seen as limiting our
results, but rather as a tool to illustrate them.

II. RELATED WORK AND DISCUSSIONS

In the research community, maximizing the throughput (or
a network utility in general) [13], [21], [6], [7], [14] and
maximizing the lifetime [8], [20], [16], [18] of multihop
wireless networks, have long been treated as two separate
problems.

Approaches to throughput maximization have (roughly)
been of the following three kinds: (i) offline design with exact
solution (e.g., [13], [14]), (ii) offline design with approximate
solution (e.g., [21], [6]), and (iii) online dynamic control
(e.g., [10] and the references therein). We would like to point
out that the throughput maximization approaches we discuss
here lead to explicit solutions. This differs from the approach
that aims at characterizing the capacity of a network in an
asymptotic sense (e.g., [11]).

The first approach explicitly formulates an optimization
problem with the throughput as the objective. Typically, such
problems turn out to be NP-hard. In [13], the authors derive
bounds rather than exact solutions. In [14], more realistic
SINR-based interference models are considered, and exact
solutions are derived for medium size networks, by intelli-
gently enumerating independent sets of link. Since solving the
offline design problem exactly could be problematic for large
networks, the second approach resorts to heuristics: either
randomized algorithms [21] or deterministic algorithms with
provable performance [6]. Whereas the first two approaches
assume a quasi-static environment, the third approach consid-
ers the cases where no information about the environment is
available à priori. However, the price paid for the lack of à
priori information, is the increased algorithmic complexity:
NP-complete problems (e.g., finding maximum weight inde-
pendent set [10]) need to be solved online, repeatedly.

Approaches to lifetime maximization include [8], [9], [20],
[16], [18], which aim at identifying the network configuration
that gives the longest lifetime. Now, if the required throughput
is considered to be extremely low as in [8], [20], [16], [15],
interference (or collisions) happens with very low probability
and can hence be neglected. As a result, the conflict structure
(and therfore, the issue of scheduling) does not come into the
picture, and finding the optimal configuration only involves
the routing strategy. However, the required throughput cannot
always be assumed to be very low: even wireless sensor
networks may demand a sustained throughput [1]. Other
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approaches [9], [18] take into account the issues of interference
mitigation and frequency reuse to reduce energy consumption
under high throughput requirements. In the latter set of works,
the link rate is derived from Shannon capacity formula, which
neglects the limitation imposed by the availability of only a
finite set of modulation schemes in practice.

It has been only very recently that the tradeoff between
network utility and lifetime has been investigated [19], [22].
In these recent works, the tradeoff is identified by means of
scalarizing the two conflicting objectives. However, scalariza-
tion (i.e., a linear combination through a weight vector) [5]
yields results that are not always easy to interpret: what does
the weighted sum of throughput (in, e.g., bit per second) and
lifetime (in, e.g., second) mean? These papers aim at devising
distributed algorithms for solving the optimization problem
online, and they apply either a predefined scheduling [19] or
a randomized collision avoidance mechanism [22]. These are
costs that have to be paid to make the problem tractable to
be solved online. Since we want to address the offline design
problem for dimensioning a network, we are able to build
a more general analytical framework and therefore able to
characterize the optimal solution.

III. NETWORK LIFETIME WITH MAXIMUM THROUGHPUT

In this section, we introduce our network model, and
precisely formulate problem P1, namely that of maximizing
network lifetime while achieving the max-min throughput, for
a given assignment of physical layer parameters. Please use
Table I as a handy reference for notation.

A. Network Model
We model the network as a set N of nodes and a set F of

flows, with |N | = N . Each node n ∈ N is associated with a
geographical location. We assume that time is slotted and all
the nodes are synchronized.

Physical Layer Model: We assume that all the nodes use
the same network-wide reference power Ptx and the same
modulation and coding scheme z with a data-rate of unity.
Note that, as we remarked in Section I, this is only for ease
of exposition. We will show in Section VI how our approach
can accommodate multiple power levels and modulation and
coding schemes. We assume that the channel gain from a node
i to a node j is quasi-static, since we are looking at fixed
wireless networks. For simplicity, we model the channel gain
as isotropic path-loss given by (

dij
d0

)−η where dij denotes the
distance from node i to node j, d0 is the near-field crossover
distance and η is the path-loss exponent. Incorporating non-
isotropic attenuation, and in general, shadowing in our frame-
work, is straightforward. The feasibility of a wireless link is
based on whether a bit-error-rate (BER) less than a tolerable
maximum can be achieved on the link. We assume that this
BER requirement translates into a minimum SINR requirement
corresponding to an SINR threshold β(z), depending on z. The
set L is defined as the set of all feasible links. Specifically,
a link l = (i, j) exists (or l ∈ L) if Ptx

N0
(
dij
d0

)−η ≥ β(z)
where N0 is the thermal noise power in the frequency band of
operation. Let |L| = L, and let lO and lD respectively denote
the origin and destination of link l.

TABLE I
NOTATION USED FOR PROBLEM FORMULATIONS

N , F and L Respectively the set of Nodes, Flows and Links
Ptx Transmit Power
Prx Power Consumption during packet reception
β(z) SINR threshold for unit rate modulation scheme z(
d
d0

)−η
Channel Gain as a function of distance d

N0 Thermal Noise
Ei Initial Battery Energy of node i
ζ A set of links

γl(ζ) SINR of link l when ζ is active
Dl Collection of Conflict Sets of l

I or I(Ptx) Collection of all Independent Sets
Il or Il(Ptx) Collection of all Independent Sets containing l

S The power set of L
αζ Time Fraction for which ζ is active
Rf Set of all routes of flow f

Rlf Set of all routes of flow f which pass through l
r A route (a sequence of links)
φrf Fraction of traffic of flow f on route r
λf Throughput of Flow f
P ci Power consumption of Node i

Link Conflict Model: In order to characterize the simul-
taneous conflict-free operation of sets of wireless links, we
use the following link conflict model derived from the SINR-
based model. This link conflict model was introduced in our
previous work [14]. Let ζ ⊂ L denote a set of links. When all
the links in ζ are simultaneously active, the SINR perceived
by link l ∈ ζ is given by

γl(ζ) =
Ptx(

dlOlD
d0

)−η

N0 +
∑
k∈ζ\{l} Ptx(

dkOlD
d0

)−η
(1)

For data transmissions on link l to be successful under
activation of the set ζ, we require γl(ζ) ≥ β(z). Now, given
a link l and a set of links ζ such that l /∈ ζ, we define ζ to be
a conflict set of link l, if γl(ζ ∪ {l}) < β(z). In other words,
if l is concurrently active with all the links in ζ, then l would
be infeasible (i.e., would not meet the SINR threshold). We
define Dl to be the collection of conflict sets of link l:

Dl = {ζ|l /∈ ζ, ζ ⊂ L and γl(ζ ∪ {l}) < β(z)} (2)

A dual concept of the conflict set is the independent set (not
in the conventional graph-theoretical sense). We define a set
of links ζ to be an independent set if for every link l ∈ ζ,
we have γl(ζ) ≥ β(z). In other words, links belonging to an
independent set ζ can operate concurrently without conflicts.
We define I to be the collection of all independent sets:

I = {ζ|γl(ζ) ≥ β(z) ∀ l ∈ ζ} (3)

Let Il denote the set of independent sets that contain link l.
We will also use the notation I(Ptx) and Il(Ptx) in order to
emphasize their dependence on Ptx.

This link conflict structure will be compared later with the
interference range model [12] that we describe now. Denote
by R(Ptx, z) the maximum communication range of a node
given the reference transmit power Ptx and modulation scheme
z. Specifically, R(Ptx, z) = d0( Ptx

N0β(z) )1/η . A transmission
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on link l is successful under the interference range model,
characterized by the constant parameter σ ≥ 1:

dlOlD ≤ R(Ptx, z) and
dkOlD > σR(Ptx, z) ∀ links k concurrently active (4)

The independent set for this model is the set of links that
do not interfere directly with each other; it is the graph-
theoretical independent set in the conflict graph [13] induced
by (4). It may also be noted that the SINR-based model and
the interference range model are respectively analogous to the
physical and protocol models described in [11].

Routing: A flow f ∈ F is identified by its source-
destination pair and is assumed to have a rate λf . Let Rf be
the set of all routes used by f and Rlf be the set of routes of
f going through link l. The fraction of f routed on r ∈ Rf is
denoted by φrf . Thus,

∑
r∈Rf φ

r
f = 1. Let φ = [φrf ]r∈Rf ,f∈F .

Scheduling: The network is assumed to use conflict-free
scheduling as opposed to a random access protocol. Let S
denote the power set of L. A transmission schedule is an
|S|-dimensional vector α = [αζ ]ζ∈S such that αζ > 0 only
if the set ζ is an independent set (otherwise αζ = 0) and∑
ζ∈S αζ = 1. We can interpret αζ as the fraction of time

allocated to the set of links ζ.
Energy Model: We assume a simple model: the power

Ptx is expended by the source node lO of a link l during
transmission, and a fixed power Prx is consumed by a node
during reception.1 We assume that nodes have an initial energy
denoted by ~E = [Ei]i∈N . We also allow for the possibility
of Ei = ∞ for certain nodes (see Section III-C for details).
Now, the energy consumed per unit time, in operating a
link l, depends on the time fraction l is active. We compute
this fraction as the ratio of the amount of flow rate carried
by a link to the link data-rate (which is the same as the
amount of flow if the link data-rate is unity). Consequently,
the power consumption P c

i of a node i is the sum of the power
consumptions on all the links (i, j) and (j, i) ∈ L where j 6= i.

P c
i =

∑
(i, j) ∈ L
(j, i) ∈ L
f ∈ F

λf

Ptx

∑
r∈R(i,j)

f

φrf + Prx

∑
r∈R(j,i)

f

φrf

 (5)

The lifetime of a node i then, is simply Ei/P c
i . We define the

network lifetime as the time when the first node runs out of its
initial energy, or mini∈N

(
Ei
P c
i

)
. In other words, the network

lifetime is the max-min node lifetime.

B. Constraints on Flows

Given the network model described above, the set of flows
F is constrained by the following.

Flow Conservation: For each flow f ∈ F , we have∑
r∈Rf

φrf = 1 (6)

This is actually the path formulation of the flow conservation
law: at the source node, the flow out of the source balances the

1This is the power consumption of a transceiver in the receiving mode. It
is not the signal power at the receiver antenna.

flow injected to the source; the conservations at other nodes
are implied by the path formulation.

Link Capacity Bound: For each link l ∈ L, we have

∑
f∈F

λf

∑
r∈Rlf

φrf

 ≤∑
ζ∈Il

αζ (7)

It means that the amount of flow going through a link is
bounded from above by the link capacity (represented by the
product of the link data-rate (unity) and the scheduled time).

Scheduling Constraint: As explained in Section III-A,
any feasible scheduling has to abide by the following equality∑

ζ∈I

αζ = 1 (8)

We have replaced S with I, because αζ > 0 only if ζ ∈ I.
Energy Constraint: Let T denote the minimum node

lifetime in the network. Thus, for every node i ∈ N , we need
Ei/P

c
i ≥ T . In other words,

TP c
i ≤ Ei (9)

where P c
i is given by (5).

C. P1: Max-min Lifetime with Max-min Throughput

The problem of maximizing the throughput in a network
given in terms of the set of nodes and flows, can be posed as
follows:

Maximize
φ,α

λ Subject to: (6)—(8) and

λ ≤ λf f ∈ F (10)

where λ is the minimum flow throughput. Here the notion of
maximum throughput is basically the max-min flow rate, and
the optimization is over all possible routes φ and all possible
schedules α. This problem was introduced and studied in
[14] and [17]. We refer to this problem as the throughput
optimization (TO) problem.

The solution of TO (10) is in general not unique: there may
exist different configurations that achieve the same optimal
throughput. Among all these configurations, we are interested
in one (not necessarily unique) that results in the longest
lifetime. Therefore, we formulate the following lifetime op-
timization problem (P1):

Maximize
φ,α

T Subject to: (6)—(9) and

λf ≥ λ∗ f ∈ F (11)

where λ∗ is the optimal solution of TO (10).

S A B

Fig. 1. A Simple Example Network

To understand the problems TO and P1 and their solutions,
let us first work them out for the simple network shown in
Fig 1. The network consists of 3 nodes S, A and B with
two flows, one from A destined to S, and another from B
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destined to S. The nodes are equally spaced. Let P (1)
tx be the

minimum transmit power level such that the links (A, S) and
(B, A) are feasible, but not the link (B, S), and let P (2)

tx be
the minimum transmit power level such that the link (B, S)
is feasible. Clearly, P (1)

tx ≤ P
(2)
tx . Also, for Ptx < P

(1)
tx the

network is disconnected.
For P (1)

tx ≤ Ptx < P
(2)
tx , the collection of independent sets

is just the collection of singleton sets of the following links:
(A, B), (B, A), (A, S) and (S, A). The best throughput is
achieved by scheduling the independent set {(B, A)} for 1/3rd
of the time, and the set {(A, S)} for 2/3rd of the time. This
solution is also unique so P1 is trivial in this case. The max-
min throughput (i.e., the solution of TO) is 1/3. The power
consumption of node A is 1

3Prx + 2
3Ptx, that of node B is

1
3Ptx, and that of node S is 2

3Prx. Let us assume that the initial
battery energies are EA = EB = E and ES =∞. Clearly, the
power consumption of node A is greater than that of node B,
and the power consumption of node S is irrelevant, since it has
no energy constraint. Therefore, the lifetime (i.e., the solution
of P1) is nothing but the lifetime of node A, E

1
3Prx+ 2

3Ptx
.

For Ptx ≥ P (2)
tx , two new independent sets become feasible,

viz., the singletons {(B, S)} and {(S, B)}. Hence, the best
throughput is achieved by scheduling the set {(B, S)} for 1/2
the time, and the set {(A, S)} for 1/2 the time. Again, the
solution is unique so P1 is trivial. The solution of TO is 1/2,
and the solution of P1 is E

1
2Ptx

since both nodes A and B
are transmitting for 1/2 the time. So the overall trend in the
solutions of TO and P1 is the following. The solution of TO is
non-decreasing and shows non-negative jumps whenever new
independent sets are created. The solution of P1 is decreasing
between the points of creation of independent sets, and the
jump is positive in this case. Of course, note that there are
exactly two points at which new independent sets are created,
viz., P (1)

tx and P (2)
tx .

To further illustrate the solutions of TO (10) and P1 (11),
we solve them for the two networks shown in Fig. 2. The set

(a) Grid network. (b) Arbitrary network.

Fig. 2. Two networks with 25 nodes (a) and 30 nodes (b).

of nodes in each case is apparent from the figures. The set of
flows for both networks consists of a flow to the gateway node
(marked as a red square) from every other node (marked as
a black dot). We assign E = 1mJ to all nodes (except to the
gateway whose energy is infinite). We take β(z) = 6.4 dB.
For radio propagation, we assume d0 = 0.1m and η = 3. In
Fig. 3, we plot the solution of both problems (10) and (11),
viz., λ∗(Ptx) and T ∗(Ptx), respectively, as functions of the

reference power Ptx. Note that, unless otherwise specified, the
results are obtained for the SINR-based interference model.
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(a) Grid network. (b) Arbitrary network.

Fig. 3. Throughput and lifetime versus Ptx for (a) the grid network from
Figure 2 (Prx = −26 dBm) and (b) the arbitrary network from Figure 2
(Prx = −29 dBm).

It can be seen that the maximum throughput is an increasing
function of Ptx, which was proved in [2] and [14]. Inter-
estingly, the maximum lifetime is not strictly decreasing in
Ptx. The longest lifetime is obtained for the grid network at
the lowest power level enabling connectivity, but it is not the
case for the arbitrary network. These results seem to indicate
that the interplay between throughput, lifetime and transmit
power are far from trivial. Given the differences between the
results for the grid and the arbitrary networks, it may be
also noted that the results obtained for grid networks should
not be overinterpreted. In order to investigate the interplay
between throughput, lifetime and transmit power, we look at
the problems P2 and P3 next. In particular, studying P3 will
allow us to explain the behavior of the lifetime in Fig. 3.

IV. MAXIMIZING THROUGHPUT UNDER A CONSTRAINT
ON LIFETIME (P2)

In this section, we consider the case where we try to
maximize the minimum flow throughput given a lower bound
for the lifetime. This is the problem P2 introduced earlier.
Specifically, the problem we consider in this section is:

Maximize
φ,α

λ Subject to: (6)—(8), (10) and (12)

P c
i ≤ Êi ∀ i ∈ N (13)

where Êi = Ei/Treq is the bound on the energy consumed per
unit time for node i. Note that we directly take T = Treq in the
formulation, because the maximum λ obtained for T = Treq

is no less than that obtained for T > Treq. In what follows,
we first study the optimal configuration for a given reference
transmit power. Then, we characterize the evolution of the
throughput as a function of the reference power. Finally, we
comment on the unsuitability of the interference range model
in investigating P2.

A. The Throughput Optimal Configuration

Let the optimal solution of P2 be λ∗(Ptx, Treq). In order to
study the structure of the optimal configuration, we express
the optimal throughput in terms of the routing variables φ.

Our approach is to use results from graph theory. In order
to treat the problem under a graph theoretical framework,
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we need to embed the link conflict structure (as defined in
Section III-A) into a graph the way it is done in [14]. Such
a graph is termed an extended conflict graph (ECG) [14].
The idea behind the transformation is the following. Each
set of links ζ ∈ Dl (refer to (2)) conflicts with the link l.
Say, ζ = {m1,m2,m3}. Then, scheduling l,m1,m2 and m3

simultaneously is infeasible. This constraint can be represented
as “scheduling l means m1 should not be scheduled OR m2

should not be scheduled OR m3 should not be scheduled”. To
represent these constraints, we replicate each physical link into
multiple copies called “virtual” links, with each copy realizing
one of the OR-clauses derived from all ζ ∈ Dl. Then, in the
ECG, a vertex represents a virtual link and an edge exists
between two vertices if and only if the corresponding virtual
links are involved in a scheduling constraint.

This extension allows us to apply graph theoretical results.
For example, a graph theoretic independent set in an ECG is
equivalent to the definition in (3). Also, a clique q in an ECG
represents a set of virtual links such that for every pair of
them (say) l and m, the real link l belongs to some conflict
set of the real link m, and vice versa. We say a node i ∈ N is
“involved” in clique q (or i ` q) if at least one “virtual” copy
of (i, j) or (j, i) belongs to q for some node j ∈ N .

Now recall that in any graph, the size of the largest clique
is a lower bound on its chromatic number2. A perfect graph is
one in which the chromatic number is equal to the size of the
largest clique, for every induced subgraph. Thus, for a perfect
graph, the lower bound is tight. Vertex coloring of the ECG
is analogous to creating a feasible link schedule. A clique in
an ECG is basically a set of virtual links all of which contend
with one another. Clearly, in a feasible schedule, each of these
links would have to be scheduled at different times (analogous
to being assigned a different color). In other words, the sum
of the time-fractions for which virtual links are active should
be less than or equal to unity, in every clique in the ECG.

Now, this is necessary but not sufficient to guarantee a
feasible schedule. If the ECG is a perfect graph, it would also
be sufficient. An alternate way to derive a sufficient condition
for a feasible schedule is to restrict the sum of the time-
fractions for which virtual links are active to be less than a
factor κ ∈ (0, 1] within every clique in the ECG. Clearly, κ
depends on the network topology and the transmit power Ptx.
It can now be noted that the ECG being a perfect graph is
equivalent to κ being equal to unity.

Proposition 1: The optimal throughput λ∗(Ptx, Treq) is
bounded above and below as follows:

λ∗(Ptx, Treq) ≤ max
φ

{
min
q,i`q

[
1

wq(φ)
,

1

wi(φ)

]}
(14)

λ∗(Ptx, Treq) ≥ max
φ

{
min
q,i`q

[
κ

wq(φ)
,

1

wi(φ)

]}
(15)

2The chromatic number of a graph is the minimum number of colors
required for vertex coloring. Vertex coloring is the assignment of colors to
vertices of a graph in such a way that no two vertices which are connected
by an edge share the same color.

where wq(φ) and wi(φ) are given by:

wq(φ) =
∑
l∈q

∑
f∈F

∑
r∈Rlf

φrf

wi(φ) = Ê−1
i

∑
(i, j) ∈ L
(j, i) ∈ L
f ∈ F

Ptx

∑
r∈R(i,j)

f

φrf + Prx

∑
r∈R(j,i)

f

φrf


Remark: The upper bound on the optimal throughput

comes from the necessary condition for a feasible schedule:
that the time-fractions for which virtual links are active should
add up to less than or equal to unity in every clique in the ECG.
The lower bound comes from the sufficient condition: that such
time-fractions need to add up to less than or equal to κ in every
clique. In addition to the scheduling constraints, the energy
constraint due to the lifetime requirement Treq also figures in
the upper and lower bounds on the optimal throughput. The
quantities wq and wi can be thought of as the “cost” of using
the clique q for scheduling time, and the node i for its energy,
respectively.

Now, let us define φ̂ as a routing scheme which max-
imizes the right-hand side term within braces in (14), i.e,
φ̂ = arg maxφminq,i`q

[
1

wq(φ) ,
1

wi(φ)

]
. Also, given a routing

φ, let us define λ∗(φ) as the solution of the problem:

Maximize
α

λ Subject to: (6)—(8), (10) and (13) (16)

Given φ

In other words, λ∗(φ) is the maximum achievable throughput
under the routing φ, while ensuring a minimum lifetime of
Treq. Now, Proposition 1 can be equivalently stated as follows,
to capture the performance of the routing φ̂ defined above.
Note that the constant κ is the same as that in Proposition 1.

Proposition 2: For some κ ∈ (0, 1] which depends on the
conflict structure and a given reference transmit power Ptx,

κλ∗(Ptx, Treq) ≤ λ∗(φ̂) ≤ λ∗(Ptx, Treq)

In particular, we have λ∗(φ̂) = λ∗(Ptx, Treq) if the ECG
induced by the link conflict structure is perfect.

Remark: The above proposition states that the routing
scheme φ̂ achieves a throughput which is within a factor κ of
the optimal throughput, provided the optimal schedule is used
once the routing is fixed. This can viewed as separating the
optimal routing problem from the optimal scheduling problem.
Such an approach would achieve optimal performance only if
the ECG is a perfect graph.

B. Optimal Throughput vs. Transmit Power

We now look at how changing the reference power Ptx

affects the optimal throughput λ∗(Ptx, Treq). We first consider
TO (P2 with Treq = 0) and then P2 in general. We will use
P̄ to denote the maximum allowed value of Ptx. Please refer
to Table II for a summary of additional notation pertaining to
the Propositions to follow.

Definition 1: Let Np for p ∈ [0, P̄ ] be the counting process
which counts the number of independent sets in a network
when all the network nodes use a transmit power Ptx = p. Let
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TABLE II
NOTATION USED FOR PROPOSITIONS

Np Process counting independent sets vs. transmit power
{Pn} Point Sequence of Np

λ∗(Ptx, 0) Solution of TO
λ∗(Ptx, Treq) Solution of P2
T ∗(Ptx, ρ) Solution of P3

∆λ(p) Variation of solution of TO at p
∆λ(p, Treq) Variation of solution of P2 at p

∆T (p, ρ) Variation of solution of P3 at p
g(p, Treq) Derivative of continuous part of solution of P2 at p
h(p, ρ) Derivative of continuous part of solution of P3 at p
C(Ptx, ρ) Configuration Ensemble

{Pn} denote the sequence of transmit power levels at which
new independent sets are created.

Remark: For a fixed set of nodes N , Np would actually
be a deterministic process, and the points {Pn} would be
determined only by the locations of the nodes.

We first show that λ∗(Ptx, 0) is a non-decreasing function
of Ptx. Let us define ∆λ(p) = limp′↑p(λ

∗(p, 0)− λ∗(p′, 0)).
Proposition 3: Let Ptx ∈ [0, P̄ ]. Then we have that:

λ∗(Ptx, 0) =

∫ Ptx

0

∆λ(p)Np(dp) and ∆λ(p) ≥ 0

Remark: In other words, the optimal throughput is con-
stant in [Pn, Pn+1) and has a non-negative jump at each Pn.
We have already seen exactly this trend for the case of the
simple network of Fig. 1. The proposition is actually just a
special case of the general result that high transmit power
increases throughput [2], [14]. However, it is instructive to
state and prove it using the notation of the point process Np,
since its point sequence actually determines the evolution of
the solution of problems P2 and P3, and not just of TO.

Now let us look at the case where Treq > 0. Again, let
us define ∆λ(p, Treq) = limp′↑p(λ

∗(p, Treq) − λ∗(p′, Treq))

and g(p, Treq) = limp′→p
λ∗(p,Treq)−λ∗(p′,Treq)

p−p′ . In other
words, g(p, Treq) is the derivative of the continuous part of
λ∗(Ptx, Treq) at p and ∆λ(p, Treq) is the throughput variation
at power level p.

Proposition 4: Let Ptx ∈ [0, P̄ ]. Then we have that:

λ∗(Ptx, Treq) =

∫ Ptx

0

∆λ(p, Treq)NP (dp)+

∫ Ptx

0

g(p, Treq)dp

We also have that ∆λ(p, Treq) ≥ 0 and g(p, Treq) ≤ 0.
Remark: In other words, the optimal throughput

λ∗(Ptx, Treq) as a function of Ptx has non-negative variations
at {Pn} but is non-increasing between any two successive
points Pn and Pn+1.

Remark: Let us work out the trend of the solution of P2
vs transmit power for the simple example of Fig. 1. As we
saw earlier, for P (1)

tx ≤ Ptx ≤ P
(2)
tx , scheduling the set {(B,

A)} for 1/3rd the time, and the set {(A, S)} for 2/3rd the
time, provided the solution for TO. Now, due to the minimum
lifetime requirement, Treq, this schedule may not be feasible.
So, we schedule {(B, A)} for a time fraction ρ

3 and {(A, S)}
for a time fraction 2ρ

3 , where 0 ≤ ρ ≤ 1 is a factor which
we will use for meeting the lifetime requirement. This yields

a throughput of ρ
3 . Clearly, we require the lifetime of node

A to be greater than Treq, i.e., E
ρ
3Prx+ 2ρ

3 Ptx
≥ Treq. In other

words, ρ = min( 3E
Treq(Prx+2Ptx) , 1). Therefore, the max-min

throughput (i.e., the solution of P2) is min( E
Treq(Prx+2Ptx) ,

1
3 )

Similarly, for Ptx ≥ P
(2)
tx , the solution of P2 can be

worked out to be min( E
TreqPtx

, 1
2 ). Thus, as per Proposition 4,

λ∗(Ptx, Treq) is non-increasing between jumps, and has non-
negative jumps.

In Fig. 4 we illustrate Propositions 3 and 4, using the
network and parameters of Fig. 2 (a). The curves labeled
SINR-based Interference Model in Fig. 4 show that λ∗(Ptx, 0)
is indeed non-decreasing, and that λ∗(Ptx, Treq) shows non-
negative “jumps” and is non-increasing between jumps. Note
that we use the term “jumps” to indicate points on the curves
where there is a step-change or a discontinuity. The jumps may
be difficult to discern if they are closely spaced, since our plots
are numerical, rather than based on an explicit formula.
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(a) Treq = 0. (b) Treq = 1600.

Fig. 4. Optimal throughput for different lifetime requirements under different
interference models.

C. The Case of the Interference Range Model

If we consider the interference range model (instead of the
SINR-based model used above), the throughput varies in a
totally different way as we increase the transmit power. The
following proposition serves as a counterpart to Propositions 3
and 4. It shows that, under the interference range model,
λ∗(Ptx, Treq) may decrease at points {Pn}.

Proposition 5: Let Ptx ∈ [0, P̄ ]. Then we have that:

λ∗(Ptx, Treq) =

∫ Ptx

0

∆λ(p, Treq)NP (dp)+

∫ Ptx

0

g(p, Treq)dp

We also have that g(p, Treq) ≤ 0. However, ∆λ(p, Treq) can
be of either sign.

We illustrate λ∗(Ptx, 0) and λ∗(Ptx, Treq) under the inter-
ference range model with σ = 2 also in Fig. 4. The differences
with the SINR-based model are very remarkable, and the trend
described by Proposition 5 is clearly demonstrated.

Remark: As per the interference range model, a link
is feasible if the source and destination nodes are within
R(Ptx, z) of each other and every other transmitter is at least
σR(Ptx, z) from the destination node. Thus, as the transmit
power increases, a link would eventually become feasible.
Subsequently, the link would remain feasible, but its exclusion
circle of σR(Ptx, z) around the destination node would keep
growing, causing more interference, and possible decreasing
the number of independent sets. This is in contrast with the
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SINR-based model in which a link actually becomes more
immune to interference as the power increases, and hence
more independent sets are created. Thus, the interference range
model is inaccurate: the throughput is overestimated at low
powers but underestimated at intermediate power levels.

V. MAXIMIZING LIFETIME UNDER A CONSTRAINT ON
THROUGHPUT (P3)

In this section, we consider the case where the data rate
of each flow f ∈ F is required to be greater than λreq. The
problem aims at maximizing the network lifetime T under
the constraint that λf ≥ λreq,∀f ∈ F . We refer to this
problem as P3. Let us define the cumulative data from flow
f transported over link (i, j) over the entire lifetime T as
xf(i,j) = λfT

(∑
r∈R(i,j)

f

φrf

)
and the total time for which

the independent set ζ is scheduled over the lifetime T as
α̂ζ = Tαζ . Now P3 can be formulated as:

Maximize
x,α̂

T (17)∑
j:(i,j)∈L

xf(i,j) −
∑

j:(j,i)∈L

xf(j,i)
≥
≤

λreqT1{i=fs}
−λreqT1{i=fd}

∀ f ∈ F
∀ i ∈ N (18)

∑
f∈F x

f
l −

∑
ζ∈Il α̂ζ ≤ 0 ∀ l ∈ L (19)∑
ζ∈I α̂ζ = T (20)∑

j∈N
f∈F

Ptxx
f
(i,j) + Prxx

f
(j,i) ≤ Ei ∀ i ∈ N (21)

where x = [xf(i,j)](i,j)∈L,f∈F and α̂ = [α̂ζ ]ζ∈S . The con-
straint (18) comes from flow conservation: the incoming flow
should balance the outgoing flow for a given node. Since we
require λf ≥ λreq, this constraint is an inequality rather than
an equality as suggested by the conservation law. The objective
T has been absorbed into the cumulative data flow variables
xfl and the aggregated scheduling variables α̂ζ in order to
formulate P3 as a linear program.

Note that, given an arbitrary λreq, the problem might not
be feasible. However, we can guarantee feasibility (and thus
avoiding the complexity of feasibility verification) by requiring
λreq = ρλ∗(Ptx, 0) where ρ ≤ 1 and λ∗(Ptx, 0) is the optimal
solution of TO (P2 with Treq = 0).

A. Optimal Lifetime vs. Transmit Power

We investigate the trend of the optimal lifetime T ∗, as
a function of the reference transmit power. We want to
characterize the trend of T ∗(Ptx, ρ) as Ptx varies in [0, P̄ ].
Note that the lower bound λreq(Ptx) = ρλ∗(Ptx, 0) is also
a function of Ptx.3 The following proposition shows that
T ∗(Ptx, ρ) has a similar trend (i.e., is piecewise continu-
ous) as λ∗(Ptx, Treq) given by Proposition 4. Let us define
∆T (p, ρ) = limp′↑p(T

∗(p, ρ) − T ∗(p′, ρ)) and h(p, ρ) =

limp′→p
T∗(p,ρ)−T∗(p′,ρ)

p−p′ .

3This differs from P2, where the lower bound of the lifetime is a constant
for all Ptx ∈ [0, P̄ ]. The reason is that λreq cannot be taken arbitrarily; it
has to be defined with respect to the maximum achievable throughput for the
given Ptx in order to preserve the feasibility of the problem P3.

Proposition 6: Let Ptx ∈ [0, P̄ ]. Then we have that:

T ∗(Ptx, ρ) =

∫ Ptx

0

∆T (p, ρ)Np(dp) +

∫ Ptx

0

h(p, ρ)dp

We also have that h(p, ρ) ≤ 0. However, ∆T (Pn, ρ) can be
of either sign.

Remark: In other words, the optimal lifetime T ∗(Ptx, ρ)
as a function of Ptx is non-increasing between any two
successive points Pn and Pn+1, but could show positive or
negative variations at {Pn}. Thus T ∗(Ptx, ρ) need not be a
decreasing function of Ptx as a whole.

Remark: Again, let us try to work out the trend of the
solution of P3 vs. transmit power, for the simple network of
Fig. 1 to understand Proposition 6. For P (1)

tx ≤ Ptx ≤ P
(2)
tx ,

the max-min throughput is 1/3. So, to meet a throughput
requirement of ρ

3 , we need to schedule {(B, A)} for a time
fraction ρ

3 and {(A, S)} for a time fraction 2ρ
3 . Since this is the

only possible configuration, the solution of P3 is trivial. The
lifetime of the network is nothing but 3E

ρ(Prx+2Ptx) . Similarly,

for Ptx ≥ P (2)
tx , the maximum network lifetime can be worked

out to be 2E
ρPtx

. This trend is accordance with Proposition 6.
We illustrate Proposition 6 by plotting T ∗(Ptx, 1) and

T ∗(Ptx, 0.75) in Fig. 5 (labeled SINR-based interference
model). The network and parameters are taken from Fig. 2
(a).
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(a) ρ = 1. (b) ρ = 0.75.

Fig. 5. Optimal lifetime under different interference models.

Remark: As λ∗(Ptx, Treq) is non-decreasing at points of
Np (Proposition 4) and T ∗(Ptx, ρ) may increase or decrease
at the same points (Proposition 6), it is straightforward to see
that very low power levels may benefit lifetime but lead to
very low throughput; the reversed case happens for very high
power levels. Consequently, our results imply that the optimal
tradeoffs between λ and T are usually obtained at a moderately
high transmit power. Our numerical results in Section VII give
a strong evidence of this point.

B. The Case of the Interference Range Model
If we use the interference range model, the maximum

lifetime T ∗(Ptx, ρ), as a function of Ptx would vary in a
similar way as with the SINR-based interference model. In
Fig. 5, we compare T ∗(Ptx, 1) and T ∗(Ptx, 0.75) for both
the interference range and SINR-based interference models.
However, remember that P3 is defined with respect to the
optimal value of the TO problem. Since the interference
range model, as shown in Section IV-C, is inadequate for
investigating the TO problem, the same model should not be
applied to P3 either.
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C. The Tradeoff between Throughput and Lifetime

The solution of P3 clearly depends on the choice of ρ,
since λreq = ρλ∗(Ptx, 0). Here, we investigate the trend
of the solution of P3 as a function of ρ. As ρ decreases,
we are essentially relaxing the throughput requirement, and
expecting to improve the lifetime T ∗(Ptx, ρ). This is the
tradeoff we investigate. Now, unlike P2 (whose parameter
Treq is unbounded), the parameter λreq(Ptx) of P3 is bounded
within [0, λ∗(Ptx, 0)] for all Ptx ∈ [0, P̄ ]. This simplifies our
investigation. We first give a definition to facilitate further
discussions.

Definition 2: Duty cycle scaling refers to a specific strategy
of trading throughput for lifetime. Given a schedule α and a
routing φ which achieve a flow throughput of λf for flow f ∈
F , duty cycle scaling by a factor ρ < 1 refers to scaling the
operation time of each link l,

∑
f∈F λf

(∑
r∈Rlf

φrf

)
, by ρ

which is feasible since the operating time is less than or equal
to the time for which the link is scheduled,

∑
ζ∈Il(Ptx) αζ .

When the operation time of a link is strictly shorter than
its scheduled time, we assume that both the transmitter and
the receiver will switch to sleep mode during the spare time
to conserve energy. The duty cycle scaling utilizes this mech-
anism to trade throughput for lifetime. The next proposition
is a direct consequence of this definition. It shows that, if we
accept a decrease in throughput, duty cycle scaling leads to
a lower bound on the optimal lifetime. In other words, the
tradeoff is biased towards the lifetime in proportional sense:
sacrificing a certain fraction of throughput gains a larger or
equal fraction of improvement in lifetime.

Proposition 7: Given a fixed Ptx and two required source
rates λ(1)

req(Ptx) = ρ1λ
∗(Ptx, 0) and λ(2)

req(Ptx) = ρ2λ
∗(Ptx, 0)

with ρ1 > ρ2, we have

T ∗(Ptx, ρ2) ≥ ρ1

ρ2
T ∗(Ptx, ρ1)

An interesting question that we turn to now, is whether
the inequality of Proposition 7 is strict, and if so, under
what conditions. In order to answer this question, let us
consider the feasible network configurations that achieve a
throughput of ρλ∗(Ptx, 0). A feasible network configuration
is an assignment of the flow variables xfl and the scheduling
variables α̂ζ such that (18) holds with λreq = ρλ∗(Ptx, 0). For
each such network configuration, we consider the collection
of independent sets ζ for which α̂ζ > 0. We denote this
collection by I∗i (Ptx, ρ), where i is a generic index. We now
define a configuration ensemble C(Ptx, ρ) as the set

C(Ptx, ρ) = {I∗i (Ptx, ρ)|i = 1, 2, . . . , |C(Ptx, ρ)|} (22)

The problem P3 can be solved by finding among all the
configurations in the configuration ensemble C(Ptx, ρ), one
that achieves the best lifetime.

Now, for ρ1 > ρ2, we know that any configuration achieving
a throughput ρ1λ

∗(Ptx, 0) can be duty cycle scaled to achieve
ρ2λ
∗(Ptx, 0). Therefore, we have C(Ptx, ρ1) ⊆ C(Ptx, ρ2).

Therefore, C(Ptx, ρ) grows with decreasing ρ. In other words,
more collections of independent sets are included in the
configuration ensemble as ρ is decreased. This accounts for the
inequality in the Proposition 7. However, the size of C(Ptx, ρ)

is bounded from above by the size of the power set of I(Ptx).
As a consequence, C(Ptx, ρ) will reach its maximum size for
some small enough ρ0 ∈ [0, 1]. We formally define this in the
following:

Definition 3: We say C(Ptx, ρ) is complete if C(Ptx, ρ)
includes all the elements of the power set of I(Ptx) that yield
a connected routing topology for f ∈ F . Let ρ0 be the largest
ρ for which C(Ptx, ρ) is complete.

Remark: In order to understand the notion of configura-
tion ensembles, and the Definition 3, let us use the example
given in Fig. 1. Let Ptx ≥ P

(2)
tx . As we have discussed

earlier, the maximum throughput achievable λ∗(Ptx, 0) = 1
2 .

Now, observe that by scheduling the independent sets {(B,
S)} and {(A, S)} for a time-fraction ρ

2 each, any throughput
between 0 and 1

2 can be achieved. However, by scheduling
the independent set {(B, A)} for a time-fraction 1

3 and the
independent set {(A, S)} for a time-fraction 2

3 , the maximum
achievable throughput is only 1

3 . Thus, for a max-min through-
put requirement between 1

3 and 1
2 (i.e., for 2

3 < ρ ≤ 1), only
the configuration consisting of independent sets {(B, S)} and
{(A, S)} can be used. For ρ ≤ 2

3 , the other configuration
consisting of independent sets {(B, A)} and {(A, S)} can also
be used. Thus, we have for Ptx ≥ P (2)

tx :

C(Ptx, ρ) =

{{
{(B, S)}, {(A, S)}

}}
for

2

3
< ρ ≤ 1 (23)

=

{{
{(B, S)}, {(A, S)}

}
,
{
{(B, A)}, {(A, S)}

}}
for ρ ≤ 2

3
(24)

Thus, we see that C(Ptx, ρ) is increasing with decreasing ρ.
Also, it is easy to see that C(Ptx, ρ) cannot grow any larger
than the right-hand side of (24). Thus, ρ0 = 2

3 for the simple
network in Fig. 1, for Ptx ≥ P (2)

tx .
Based on Definition 3, we can state the sufficient condition

for the equality in Proposition 7 to hold:
Proposition 8: If ρ0 ≥ ρ1 > ρ2, then

T ∗(Ptx, ρ2) =
ρ1

ρ2
T ∗(Ptx, ρ1)

Essentially, if the configuration ensemble is sufficiently large
(or in other words, the throughput requirement ρλ∗(Ptx, 0) is
sufficiently low), the tradeoff between throughput and lifetime
is strictly proportional.

Remark: Note that the condition of ρ1 and ρ2 being
less than or equal to ρ0 in Proposition 8 is not a necessary
condition, but a sufficient one. In particular, for the simple
example of Fig. 1, we know that Proposition 8 would apply
for ρ ≤ 2

3 . However, as we saw earlier in the remarks following
Proposition 6, the solution of P3 for Ptx ≥ P

(2)
tx is obtained

by duty-cycle scaling for any ρ, by scheduling the independent
sets {(B, S)} and {(A, S)} for a time-fraction ρ

2 each. Thus,
the equality in Proposition 8 applies for any ρ ≤ 1, although
ρ0 = 2

3 .
The previous results describe the tradeoffs at a fixed transmit

power. Based on Propositions 4 and 6, the following property
for the optimal solutions of both P2 and P3 within the full
range of variation of the reference power [0, P̄ ] is immediate:
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Proposition 9: The optimal solutions of both P2 and P3 are
achieved at a point of Np.

This proposition reduces our search scope for the optimal
tradeoffs from a continuous spectrum of [0, P̄ ] to a few discrete
points given by Np.

Remark: In fact, Proposition 9 applies to any trade-
off utility function Γ(λ, T ) which is a monotonically non-
decreasing function of both the throughput and lifetime when
the other is fixed. We actually prove this general case in the
appendix.

D. Identifying the Optimal Lifetime Given a Feasible Through-
put Requirement λreq

As we saw earlier, a throughput requirement λreq is feasible
at Ptx if λreq = ρλ∗(Ptx, 0) for some ρ ≤ 1. Clearly, λreq is
feasible for some Ptx ∈ [0, P̄ ], if λreq = θλ∗(P̄ , 0) for some
θ ≤ 1. Now, given a feasible λreq, among all combinations of
Ptx and ρ which satisfy λreq = ρλ∗(Ptx, 0), we would like to
identify that combination for which T ∗(Ptx, ρ) is the highest.
This corresponds to the maximum lifetime that the network
can provide while delivering a minimum throughput of λreq.

If we were to directly use P3 to identify this optimal
lifetime, we would have to solve a tremendous number of
instances of P3 (each with a different Ptx and ρ). Fortunately,
Proposition 9 allows us to significantly reduce the computa-
tional complexity. In summary, we take the following steps
to identify the optimal lifetime and its corresponding network
configurations.

1) Given a known network topology, compute the points
{Pn} of Np, where optimal tradeoff points can be
found (by Proposition 9), as well as {λ∗(Pn, 0)}. The
computation is done by solving P3 instances at Pn for
which λ∗(Pn, 0) ≥ λreq.

2) At each power P ∈ {Pn}, solve a P3 instance with a ρ
such that λreq = ρλ∗(Pn, 0).

3) An optimal tradeoff point with respect to a certain λreq

is obtained by maximizing over T ∗
(
P,

λreq

λ∗(P,0)

)
for all

P ∈ {Pn}.
Similarly, we can compute λ∗(Ptx, Treq) for Ptx ∈ [0, P̄ ],

by solving a sequence of P2 over {Pn}. In general, the
complexity of this algorithm is mainly determined by the
complexity of solving a P3 (or P2) instance and the number
of jumps in {Pn}. For the complexity of solving a P3 (or P2)
instance, we refer to [17] for details.

VI. EXTENDING OUR APPROACH TO MULTIPLE POWERS
AND MODULATIONS

The results presented so far are based on the assumption
of a single power level and modulation scheme. In practice,
a node may have a choice of using a power level and a
modulation scheme from a finite set of power levels, and a
finite set of modulation schemes, respectively. To incorporate
such cases, we assume a network-wide reference power level.
We assume that each node can transmit at a finite number of
power levels each obtained via a fixed offset with respect to
the network-wide reference power. Then, with multiple power
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Fig. 6. Throughput (with lifetime lower bound) vs. transmit power for the
30-node arbitrary network.

and modulation levels, we replicate each link between two
nodes into multiple “logical links” − each representing a
certain feasible power and modulation level (see also [17]).
For example, a link (i, j) where nodes can use two power
level offsets from the reference power (P1 and P2) and two
modulation schemes (z1 and z2), would be replicated as
(i, j, P1, z1), (i, j, P2, z1), (i, j, P1, z2) and (i, j, P2, z2). An
independent set is now a collection of “logical links” each
of which can operate simultaneously without packet decoding
failures. The point process Np counts such independent sets
and is defined with respect to the network-wide reference
power p ∈ [0, P̄ ]. All the propositions that we have presented
are based only on Np and would still hold. We provide
examples in Section VII-C to illustrate this scenario.

VII. NUMERICAL RESULTS

We report our numerical results in this section. Since we
have focused on the grid topology of Fig. 2 (a) so far, we
now focus on the arbitrary network of Fig. 2 (b).

A. Optimal Throughput vs. Lifetime Requirement and Transmit
Power

As proved in Section IV, the optimal throughput is a piece-
wise continuous function of the transmit power. In case there
is no lower bound on lifetime, then the optimal throughput
is non-decreasing with increasing transmit power. But with
a non-zero lower bound on lifetime, the throughput shows
non-negative “jumps” at power levels where new independent
sets get created, and is non-increasing between the “jumps”.
This behavior is illustrated in Fig. 6 which plots solutions
of P2 for different values of Treq. In the figure, the highest
value of Treq (resp. the lowest value) is chosen such that
the constraint in equation (13) is active for all P ∈ [0, P̄ ]
(resp. not active for any P ∈ [0, P̄ ]). Consequently, the curve
with Treq = 1600 in the figure is exactly the same as the
optimal throughput with Treq = 0. For higher values of Treq,
the throughput eventually starts decreasing as Ptx increases.
This behavior is more prominent the higher the value of Treq.
Overall, the curves seem to suggest that intermediate power
levels maybe where good tradeoffs between throughput and
lifetime performance can be found.
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Fig. 7. Maximum Achievable Throughput and transmit power curves as
function of Treq for the 30-node arbitrary network.

It is also instructive to look at the maximum achieveable
throughput for a fixed lifetime requirement, by optimizing over
all possible reference transmit power levels. These results have
been depicted in Fig. 7. The curve marked λ∗ represents the
maximum achieveable throughput as a function of the lifetime
requirement Treq. It is obtained by maximizing the solution of
P2 over Ptx ∈ [0, P̄ ]. The curve marked P ∗ represents the
minimum transmit power level at which the solution of P2
achieves the corresponding throughput. There are a number of
points to note. The curve marked λ∗ is smooth, remains flat
for low values of Treq and starts decreasing for Treq ≥ 5000
time units. In other words, throughput has to be sacrificed to
improve lifetime. The value of the plateau is given by the
(unconstrained) maximum achievable throughput, i.e., for a
30-node network with unit link rate, 1/30. At lower values
of Treq, this throughput can be reached for lower value of
the reference power, but when Treq increases while remaining
below 5000 time units, the reference power at which the max-
min throughput is achieved increases. This is again is support
of our intuition that very low powers do not provide sufficient
flexibility (in terms of independent sets) to achieve a high
lifetime and throughput. Note that the λ∗ curve in Fig. 7 does
not describe a Pareto frontier [5] as a whole since all Treqs
less than 5000 correspond to the same λ∗. But the portion of
the curve for Treq ≥ 5000 does. This is because, for a vector
[Treq, λ

∗] on the curve, one can easily show that any vector
v � [Treq, λ

∗], except [Treq, λ
∗] itself, is not feasible.

B. Optimal Lifetime vs. Throughput Requirement and Transmit
Power

As proved in Section V, the optimal lifetime is also a
piecewise continuous function of the transmit power which
shows non-negative “jumps” at power levels where new in-
dependent sets get formed, and is non-increasing between
the “jumps”. This behavior is illustrated in Fig. 8 which
plots solutions of P3, for various values of ρ. The “jumps”
provide improvements to the lifetime performance for low to
intermediate power levels, and then the non-increasing trend
between the “jumps” starts dominating. Again, overall the
curves suggest that for good tradeoffs between lifetime and
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Fig. 8. Lifetime (with throughput lower bound) vs. transmit power for the
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throughput, intermediate power levels are better. Also, based
on Fig. 6 and Fig. 8, it seems that neither throughput nor
lifetime is better off at a very low power level.

Next, we investigate the tradeoff between optimal lifetime
and throughput requirement, at a fixed transmit power. In
order to represent the results in the context of all available
power levels in [0, P̄ ], we take λreq = θλ∗(P̄ , 0) where
θ ≤ 1 and λ∗(P̄ , 0) is the optimal throughput at the maximum
transmit power P̄ (i.e., it is the largest achievable throughput
for a given network and power range). For a given power
level P , θ translates to ρ (as in problem P3) as follows:
θ = ρ

(
λ∗(P, 0)/λ∗(P̄ , 0)

)
. Given these notations, Fig. 9

shows the evolution of the optimal lifetime (by solving P3),
as a function of the throughput requirement for a fixed power.
The different curves correspond to different values of the fixed
power. This is also represented in Fig. 10 which depicts the
envelope of all the curves in Fig. 9 as a function of θ (the
curve marked T ∗). The curve marked P ∗ in Fig. 10 is the
transmit power which achieves the optimal lifetime for the
corresponding value of θ.

Several remarks are in order. First, from the displacement of

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

θ

T
*

 

 
Ptx = −36.50 dBm

Ptx = −34.00 dBm

Ptx = −32.25 dBm

Ptx = −30.00 dBm

Ptx = −26.25 dBm

Ptx = −22.50 dBm

Fig. 9. Optimal Lifetime vs. Throughput Requirement for Fixed Transmit
Power.
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the curves from the origin in Fig. 9, it is clear that intermediate
power levels provide better tradeoffs between optimal lifetime
and throughput requirement. Secondly, we find that there is
a threshold level in the throughput requirement below which
reduction of the throughput requirement results in only a
proportional improvement in lifetime. But above the threshold,
lifetime can improve much better than proportionally, by
relaxing the throughput requirement. The threshold observed
here corresponds to ρ0 as defined in Section V-C. Note that
the threshold could be larger than ρ0 because the proportional
tradeoff region may extend beyond ρ0 where Cf (ρ) is not
complete yet. Finally, it can be seen that, for very high Ptx,
there may be no such threshold as seen for Ptx = −22.5
dBm. All these findings confirm the insights from Section V-C.
Note that all the points on the curve shown in Fig. 10 are
Pareto optimal [5] with respect to throughput and lifetime. In
fact, the curve characterizes the Pareto frontier of the feasible
throughput-lifetime allocation region.

C. Multiple Power Offsets and Modulation Levels

Finally, we consider the case of multiple power offsets and
modulation levels. We consider a 25-node arbitrary network,
similar to that shown in Fig. 2 (b). We do not depict this
network due to lack of space. Each node is allowed to choose

between two power levels, Ptx and Ptx− 7dB, as well as two
modulation schemes with data-rates of unity and two. The
SINR threshold of the rate two modulation scheme is 3 dB
higher than that of the unit rate modulation scheme. We solve
the problems TO and P1. The solutions of these problems are
plotted against Ptx in Fig. 11. As expected, allowing multiple
power and modulation levels, does not fundamentally alter
the relationship between throughput and lifetime. In particular,
note the similarity between Fig. 11 and Fig. 3 (b).

VIII. CONCLUSION

Operating a multi-hop wireless network while achieving
both high throughput and high lifetime is a highly desirable
design goal. However, since these objectives do often conflict
with each other, it is naturally important to identify the
tradeoff between them. Towards this end, we have carried out
a systematic study of the tradeoff between network throughput
and lifetime, by means of the three problem formulations
P1, P2 and P3. By focusing on fixed scheduled networks,
we have been able to derive a number of analytical results.
These together with the numerical results presented throughout
the paper shed light on this tradeoff. Our main finding is
that the performance of a network in terms of its max-min
throughput and max-min lifetime, is intimately connected to
the set of independent sets that are available at the reference
transmit power level at which the network is operating. If
the transmit power can be increased to expand the pool of
candidate independent sets, it may improve the throughput
and lifetime. Otherwise, the increasing transmit power only
serves to drive up the energy consumption which in turn results
in decreased lifetime (or decreased throughput, if there is a
lifetime constraint). Overall, our insights call for a careful
balancing of objectives when designing wireless networks for
high throughput and lifetime.
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APPENDIX

Proposition 1: We first parameterize the P2 problem
by fixing the routing variable φ = [φrf ]f∈F,r∈Rf . Let Φ =
{φ|

∑
r∈Rf φ

r
f = 1, φrf ≥ 0} and λ∗(φ) be the optimal

solution of the parametrized problem (17). According to the
Maximum theorem [4], λ∗(φ) is continuous in φ. Given the
compactness and convexity of Φ, the Weierstrass theorem [3]
implies that maxφ∈Φ λ

∗(φ) exists and it is indeed λ∗(P, Treq).
Now since λ∗(φ) is optimal (hence feasible), we have the

following inequalities from (7) and (13):

λ∗(φ)
∑
l∈q

∑
f∈F

∑
r∈Rlf

φrf

 ≤∑
l∈q

∑
ζ∈Il(P)

αζ ≤ 1 ∀ q

λ∗(φ)
∑

(i, j) ∈ L
(j, i) ∈ L
f ∈ F

Ptx

∑
r∈R(i,j)

f

φrf + Prx

∑
r∈R(j,i)

f

φrf


≤ Êi ∀ i ∈ N

where the first inequality states a necessary condition for
schedulability in terms of clique feasibility. Consequently,

λ∗(φ) ≤ min
q,i`q

[
1

wq(φ)
,

1

wi(φ)

]
The upper bound (14) is obtained by maximizing over φ ∈ Φ
on both sides and applying λ∗(P, Treq) = maxφ∈Φ λ

∗(φ).
The proof of the lower bound is omitted; it follows from the
sufficient condition for feasible flow rates that can be derived
by tightening the clique feasibility constraints by a factor κ
depending on the conflict structure [14].

Proposition 2: The right inequality is due to the opti-
mality of λ∗(P, Treq). For the left inequality, we have

λ∗(φ̂) ≥ κ · min
q,i`q

[
1

wq(φ̂)
,

1

wi(φ̂)

]

= κ ·max
φ

{
min
q,i`q

[
1

wq(φ)
,

1

wi(φ)

]}
≥ κλ∗(P, Treq)

where the first inequality is derived by tightening both (7) and
(13) with κ, the second inequality is due to the definition of
φ̂, and the last inequality follows from (14). Finally, as κ = 1,
if the induced ECG is a perfect graph, we have the equality
as required.

Proposition 3: The result is rather straightforward from
the formulation of TO. Since the set of independent sets
remains unchanged between two events at Pn and Pn+1, the
constraint set of TO remains the same. As a result, the optimal
throughput λ∗(Ptx, 0) remains constant in [Pn, Pn+1). By the
definitions of independent set and a point Pn of Np, we
have I(Pn−) ⊂ I(Pn) as increasing power for every link is
equivalent to reducing the noise power. Therefore, the number
of independent sets of TO grows in size upon each event,
which suggests a non-negative ∆λ(p).

Proposition 4: ∆λ(p, Treq) ≥ 0 can be shown in
the same way as proving ∆λ(p, 0) ≥ 0. Since the set of
independent sets remains unchanged between two events at
Pn and Pn+1, the constraints (6)–(8) and (10) of P2 remain
the same; the only affected constraint is (13).

In order to prove that the function λ∗(Ptx, Treq) is con-
tinuous in Ptx ∈ (Pn, Pn+1), we have to show that for all
ε > 0 there exists a δ > 0 such that, for P ′tx ∈ (Pn, Pn+1),
|P ′tx − Ptx| < δ ⇒ |λ∗(P ′tx, Treq) − λ∗(Ptx, Treq)| < ε.
We only prove the case where P ′tx > Ptx; the proof for
the other case follows directly. On one hand, given ε > 0,
we have λ(P ′tx, Treq) = λ∗(Ptx, Treq) − ε as a feasible
solution of P2, because we can scale down the variable λf
accordingly without violating constraints (6)–(8) and (10) and
deduce P ′tx from (13). This guarantees that λ∗(P ′tx, Treq) −
λ∗(Ptx, Treq) ≥ −ε. On the other hand, it is impossible
that λ(P ′tx, Treq) − λ∗(Ptx, Treq) ≥ ε, as it contradicts the
optimality of λ∗(Ptx, Treq). As a result, we have the existence
of δ = P ′tx−Ptx such that |P ′tx−Ptx| < δ ⇒ |λ∗(P ′tx, Treq)−
λ∗(Ptx, Treq)| < ε.

Finally, g(p, Treq) ≤ 0 becomes obvious from the above
arguments: as λ∗(p′, Treq)−λ∗(p, Treq) ≥ ε does not hold for
any ε > 0 if p′ > p, the derivative, by definition, is

g(p, Treq) = lim
p′→p

λ∗(p′, Treq)− λ∗(p, Treq)

p′ − p
≤ 0

Literally, the function λ∗(Ptx, Treq) is a decreasing function
between “jumps”.

Proposition 5: The proof for the continuous part is the
same as Proposition 4. We only need to show ∆λ(p, Treq) can
be either positive or negative. By the definitions of independent
set under the interference range model and a point Pn of
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Np, we have, on one hand, I(Pn−) 6⊂ I(Pn) as increasing
the transmit power for a node i raises the interference range
σR(Ptx, z) and hence a link l tends to interfere with more
links. On the other hand, we have I(Pn−) 6⊃ I(Pn) as
a higher transmit power brings more links and hence new
independent sets. Therefore, the number of independent sets of
P2 may increase of decrease in size upon each event depending
on which of the above subsequences is dominating, which
suggests the required results.

Proposition 6: According to Proposition 3, λreq(Ptx) =
ρλ∗(Ptx, 0) remains constant in (Pn, Pn+1). Moreover, the set
of independent sets remains unchanged between two events at
Pn and Pn+1. Therefore, the constraints (18) and (19) remain
the same; the only affected constraint is (21).

In order to prove that the function T ∗(Ptx, ρ) is continuous
in Ptx ∈ (Pn, Pn+1), we have to show that for all ε > 0
there exists a δ > 0 such that, for P ′tx ∈ (Pn, Pn+1),
|P ′tx − Ptx| < δ ⇒ |T ∗(P ′tx, ρ) − T ∗(Ptx, ρ)| < ε. We only
prove the case where P ′tx > Ptx; the proof for the other
case follows directly. On one hand, given ε > 0, we have
T (P ′tx, ρ) = T ∗(Ptx, ρ) − ε as a feasible solution of P3,
because we can scale down variable xf(i,j) accordingly without
violating constraints (18) and (19) and deduce P ′tx from (21).
This guarantees that T ∗(P ′tx, ρ) − T ∗(Ptx, ρ) ≥ −ε. On the
other hand, it is impossible that T ∗(P ′tx, ρ)− T ∗(Ptx, ρ) ≥ ε,
as it contradicts the optimality of T ∗(Ptx, ρ). As a result, we
have the existence of δ = P ′tx − Ptx such that |P ′tx − Ptx| <
δ ⇒ |T ∗(P ′tx, ρ)− T ∗(Ptx, ρ)| < ε.

Finally, h(p, ρ) ≤ 0 becomes obvious from the above
arguments: as T ∗(p′, ρ)− T ∗(p, ρ) ≥ ε does not hold for any
ε > 0 if p′ > p, the derivative, by definition, is

h(p, ρ) = lim
p′→p

T ∗(p′, ρ)− T ∗(p, ρ)

p′ − p
≤ 0

Literally, the function T ∗(P, ρ) is a decreasing function be-
tween “jumps”.

Proposition 7: we can easily check that ρ1
ρ2
T ∗(Ptx, ρ1)

is an achievable lifetime under λ(2)
req(Ptx): it is the outcome

of keeping the optimal configuration for T ∗(Ptx, ρ1) and
applying duty cycle scaling with a factor ρ2

ρ1
.

Proposition 8: According to the assumption, Cf (Ptx, ρ1)
is complete and hence cannot be larger. This ensures that
Cf (Ptx, ρ1) = Cf (Ptx, ρ2) for any ρ2 < ρ1. Assume in con-
tradiction that ρ2T

∗(Ptx, ρ2) > ρ1T
∗(Ptx, ρ1), then keeping

the configuration that achieves T ∗(Ptx, ρ2) and applying duty
cycle scaling with a factor ρ1

ρ2
leads to a lifetime larger than

T ∗(Ptx, ρ1), a contradiction.

Proposition 9: We prove the proposition for a more
general case where Γ(λ, T ) is a monotonically non-decreasing
function of either one of throughput and lifetime when another
is fixed. The proof is by contradiction. Without loss of gener-
ality, we assume that the optimal solution is only achieved at
a point P ∗tx ∈ (Pn, Pn+1), for some integer n, with optimal
values Γ(λ(P ∗tx), T (P ∗tx)). Now, we fix Treq = T (P ∗tx) and
reduce Ptx to Pn. By Proposition 4, the optimal throughput at

Pn is at least λ(P ∗tx). However, since the power is decreased
and T ∗(Ptx) is decreasing in Ptx for Ptx ∈ (Pn, Pn+1)
(by Proposition 6), the optimal lifetime T ∗(Pn), by fixing
λreq = λ(P ∗tx), at Pn is larger than T (P ∗tx). As a conse-
quence, Γ(λ(P ∗tx), T (P ∗tx)) ≤ Γ(λ(P ∗tx), T ∗(Pn)) given the
non-decreasing property of Γ, a contradiction.
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