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Abstract—Mobile crowdsensing has shown a great potential
to address large-scale data sensing problems by allocating sens-
ing tasks to pervasive mobile users. The mobile users will
participate in a crowdsensing platform if they can receive a
satisfactory reward. In this paper, to recruit effectively and
efficiently sufficient number of mobile users, i.e., participants, we
investigate an optimal incentive mechanism of a crowdsensing
service provider. We apply a two-stage Stackelberg game to
analyze the participation level of the mobile users and the optimal
incentive mechanism of the crowdsensing service provider using
backward induction. In order to motivate the participants, the
incentive mechanism is designed by taking into account the social
network effects from the underlying mobile social domain. We
derive the analytical expressions for the discriminatory incentive
as well as the uniform incentive mechanisms. To fit into practical
scenarios, we further formulate a Bayesian Stackelberg game
with incomplete information to analyze the interaction between
the crowdsensing service provider and mobile users, where the
social structure information, i.e., the social network effects,
is uncertain. The existence and uniqueness of the Bayesian
Stackelberg equilibrium is analytically validated by identifying
the best response strategies of the mobile users. Numerical
results corroborate the fact that the network effects significantly
stimulate higher mobile participation level and greater revenue
of the crowdsensing service provider. In addition, the social
structure information helps the crowdsensing service provider
to achieve greater revenue gain.

Index Terms—Crowdsensing, social network effects, incen-
tive mechanism, complete and incomplete information, Bayesian
game, Stackelberg game, uncertainty, social influence

I. INTRODUCTION

In the past decade, we have been witnessing a fast prolifera-
tion of mobile users and devices in our daily lives. The ubiqui-
tous mobile devices with various embedded functional sensors
have remarkably promoted the information generation process.
These advances stimulate the rapid development of mobile
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sensing technologies, and mobile crowdsensing becomes one
of the most attractive and popular paradigms. Mobile crowd-
sensing leverages the sensing capacity of worldwide available
smart phones, e.g., GPS, camera and digital compass, to collect
distributed sensory data.

A basic crowdsensing platform typically includes a cloud-
based system and a collection of smart phones or mobile users.
The platform can post a set of sensing tasks with different
purposes, and mobile users are actively involved to perform the
corresponding tasks. Realizing the great business potential, lots
of crowdsensing-based applications have been designed and
introduced in a number of areas. Sensorly [1] is dedicated for
WiFi coverage information, Waze [2] and GreenGPS [3] are
to collect road traffic information, DietSensor [4] is proposed
to share and track users’ diet and nutrition, and Noisetube [5]
is for monitoring noise pollution.

Nevertheless, voluntary participation in the crowdsensing
platform may not be sustainable. This is from the fact that the
mobile users need to spend their own resources, e.g., smart
phone battery, CPU computing power, storage memory, to
accomplish the sensing tasks. Another major concern that dis-
courages the mobile users from participation comes from the
potential privacy issues. Therefore, individuals are reluctant
to participate and share their collected information due to the
lack of sufficient motivation and incentive. Nevertheless, the
crowdsensing systems heavily rely on total user participation
level and the individual contribution from each user. To
stimulate and recruit users with mobile devices to participate
in crowdsensing, the crowdsensing platform administrator, i.e.,
the Crowdsensing Service Provider (CSP), usually provides a
reward for mobile users as a monetary incentive to compensate
their cost or risk.

It is challenging to design the incentive mechanism that
achieves a sustainable and profitable market for the CSP.
When the reward is small, the collected sensing information
from mobile participants is insufficient. Conversely, when
the reward is large, the CSP may incur excessive opera-
tion cost. Accordingly, an efficient incentive mechanism has
become an emerging topic of interest for a large number
of researchers. However, most of the existing works have
addressed the incentive mechanism for mobile crowdsensing
without considering the interdependent behaviors of mobile
users from social domain. This interdependency originates
from network effects. Traditionally, network effects refer to
the phenomenon that public goods or service is more valuable
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if it is adopted by more users. In crowdsensing services,
the participation behavior of mobile users can be deemed as
buying “public goods”, which means that the mobile users
are more willing to participate if the number of other users
is greater. For example, in a crowdsensing-based road traffic
information sharing application, a user can receive a better and
accurate traffic report if more users join and share their road
information. Consequently, the complex and interdependent
user behaviors post a remarkable challenge to the operation of
the crowdsensing platform. More importantly, network effects
frequently exist in densely connected social relationships,
which is one of the key criteria to promote the wisdom of
crowds [6], [7].

Nevertheless, only a few works [8], [9] have studied the
incentive mechanism for crowdsensing and exploited network
effects at the same time. The authors in [8], [9] investigated
the behaviors of mobile users under global network effects1,
which is not appropriate for the structure of an underlying
social domain. By contrast, social (local) network effects refer
to the case where each user is only influenced directly by the
decisions of other densely socially-connected users [11], [12].
For example, in a mobile crowdsensing platform for sharing
road traffic information, a user (driver) can get a better route if
more neighbourhood users (users in the same or nearby roads)
of this user join and contribute their traffic data [2], [3]. On
the contrary, this user cannot obtain any benefits if the users
in other distant roads join and share their traffic data. This
fact motivates us to explore the role of social (local) network
effects in designing the incentive mechanism of crowdsensing
services.

In this paper, we propose novel incentive mechanisms by
leveraging the underlying social network effects to attract
participants to crowdsensing platform. First, the crowdsensing
platform administrator, i.e., the CSP, determines an incentive,
i.e., the offered reward, to maximize its revenue. Then, based
on the given reward, the mobile users decide on their partic-
ipation level individually by taking the social network effects
into account. The above rewarding and participating decision
marking process can be inherently modeled as a hierarchical
Stackelberg game. Moreover, we consider the uncertainty of
social network effects, which commonly exists in the real-
world crowdsensing applications. As such, we formulate the
Bayesian Stackelberg game with incomplete information to
analyze and evaluate the impacts of uncertainty of social
network effects. The major contributions of this paper are
summarized as follows:

• To the best of our knowledge, this is the first work on
designing incentive mechanisms for mobile crowdsens-
ing with the consideration of complete and incomplete
information on social network effects. In particular, we
incorporate the social network effects in the game model,
which utilizes the structural properties from the under-
lying social domain, and fully characterizes the social
relations among the mobile users.

1Global network effects refer to as the phenomenon that a user will obtain
higher value when its behavior aligns with any other users [10].

• We model the interaction between the CSP and mobile
users as a two-stage Stackelberg game and analyze each
stage systematically through backward induction. We
investigate two types of incentive mechanism for the
crowdsensing platform with complete and incomplete in-
formation on social network effects, i.e., the Stackelberg
game based incentive mechanism and the Bayesian Stack-
elberg game based incentive mechanism, respectively.

• In the Stackelberg game based incentive mechanism, the
CSP and mobile users acquire the exact information
on underlying social network effects. We propose the
optimal incentive mechanism in terms of discriminatory
incentive and uniform incentive, in which the CSP offers
the different or the same reward to all the mobile users.
For both, we are able to obtain the analytical expression
for optimal reward.

• In the Bayesian Stackelberg game based incentive mech-
anism, the specific information on social network effects
is under uncertainty. We obtain a unique Bayesian Nash
equilibrium adopted by the mobile users in closed-form.
Thereafter, the existence and uniqueness of the Bayesian
Stackelberg equilibrium is proved by analyzing the best
response strategies of the mobile users.

• Performance evaluation is provided to demonstrate the
effectiveness of the proposed game theory based socially-
aware incentive mechanisms. Numerical results show that
the network effects play an important role to promote
higher participation level and thus greatly improve the
revenue of the CSP. Moreover, the information about
social relationship, i.e., social structure, helps the CSP
to achieve greater revenue gain.

The rest of this paper is organized as follows. Section II
provides the literature review. Section III describes the system
model and the game formulation. In Section IV, we analyze
the mobile user participation level and optimal reward using
backward induction. In Section V, we formulate a Bayesian
Stackelberg game where the social structure information is un-
certain, and study the Bayesian game equilibrium. Section VI
presents the performance evaluation and Section VII concludes
the paper.

II. RELATED WORKS

Recently, a large number of prior works have been dedicated
to designing incentive mechanisms [13]. Auction is a widely-
adopted method to design the incentive mechanisms. In [14],
the authors presented a mechanism for participation level
determination and reward allocation using optimal reverse auc-
tion, in which the CSP receives service queries and initiates an
auction for user participation. The authors in [15] explored the
truthful mechanism with strong requirements of data integrity
where the tasks are time window dependent. A reverse auction
framework is adopted to derive the optimal incentive, which
is computationally efficient and individually rational. In [16],
the authors investigated scheduling problem, where the CSP
announces a set of tasks and then mobile users compete for the
tasks based on the sensing costs and available time periods.
The approximation mechanisms for the CSP to schedule and
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reward the users under certain budget is provided. The authors
in [17] studied incentivizing user participation and assigning
location dependent tasks with capacity budget. A truthful one-
round auction with approximation algorithm is proposed to
obtain the optimal reward offered to the participants. In [18],
the authors considered the user-centric model where each
user can ask for reserve price, and designed the truthful and
scalable auction mechanism for the CSP to achieve revenue
maximization. The authors in [19] addressed how to maximize
the valuation of the covered interested regions under limited
budget for strategy-proof mobile crowdsensing. In [20], the
authors proposed a long-term dynamic incentive mechanism
to capture the dynamic nature of long-term data quality of par-
ticipants, where a truthful, quality-aware and budget feasible
algorithm is designed for task allocation with polynomial-time
computational complexity. The authors in [21] investigated the
auction based incentive mechanism considering social cost
minimization and privacy preservation. The participants are
selected based on predefined score functions by the CSP, and
the computational efficiency, individual rationality, truthful-
ness and differential privacy are guaranteed. To prevent the
Sybil attack where a user illicitly disguises other identities
to obtain benefits, the authors in [22] designed Sybil-proof
auction-based incentive mechanisms.

In addition to auction mechanism design, the incentive
mechanisms are examined with different objectives. For exam-
ple, the authors in [23] considered that the sensing information
has an attached time-sensitive value that decreases over time
and focused on the incentive design for cooperative data
collection of participants. In [7], the authors explored the
incentive mechanism with multiple CSPs, where the incentive
mechanism is modeled as a noncooperative game. The discrete
time dynamic inspired by the best response dynamics is
proposed to achieve the Nash equilibrium of the modeled
game. The authors in [24] presented a novel Vickrey-Clarke-
Groves game based incentive mechanism for sensing resource
sharing by the encouraged participants. The task allocation
and resource sharing algorithm is developed to achieve the
social fairness and efficiency tradeoff. The authors developed
a new framework called Steered Crowdsensing in [25], which
controls incentives by introducing gamifications with monetary
reward to location-based services. In [26], the authors incor-
porated the consideration of data quality into the mechanism,
and rewarded the participant depending on the quality of its
collected data. The authors in [27] applied Tullock contests
to design incentive mechanisms, where the reward includes
a fixed contest prize, and Tullock prize function depending
on the winner’s contribution. In [28], the authors proposed
a reward-based collaboration mechanism, where the CSP
announces a total reward to be shared among collaborators,
and the task and reward are allocated if sufficient number
of participants are willing to collaborate. In [29], the authors
studied a quality-aware Bayesian incentive problem for robust
crowdsensing, where the data quality and sensing cost of users
are drawn from known distribution.

In [30], the authors considered a sealed market for the
CSP, where the participants have imperfect information on
other participants behavior. The iterative game framework

Crowdsensing service provider Mobile users

Social tie

Reward
Task

Information

Social tie

Cloud

Figure 1: Basic system model of mobile crowdsensing plat-
form with social network effects.

is introduced and the incentive mechanism is obtained by
best response dynamics with several iterations. The authors
in [31] formulated the one-to-many Nash bargaining game to
model the interaction between the CSP and participants. The
distributed algorithm that ensures the participators’ privacy and
reduces the computation load of the CSP is provided. The au-
thors in [32] proposed blockchain based distributed incentive
mechanism which can remove the security threats caused by a
“trustful” crowdsensing center. The participants with sensing
information contribution obtain the reward that is recorded in
transaction blocks. In our previous work [33], we considered
the social network effects that promote the participation level
while designing the incentive mechanism. In [34], the authors
also highlighted the importance of “network effects” on social
information sharing with the problem of dynamic routing.
For example, a user traveling on one route benefits from the
information collected by other users traveling on another route.
However, the scenario where the network effects is certain
has its limitation which may not be applicable to some of the
real-world applications such as crowdsensing. In this paper,
we consider the uncertain scenario where the social structure
information is not known exactly by the CSP and participants.

III. SYSTEM DESCRIPTION AND GAME FORMULATION

We model the interaction among the Crowdsensing Service
Provider (CSP) and the socially-aware participants, i.e., Mo-
bile Users (MUs), as a hierarchical Stackelberg game, where
the action of each MU is to choose an individual participation
level and the action of the CSP is to give the payment as
a reward to incentivize the MUs (Fig. 1). Consider a set
of MUs denoted by N ∆

= {1, . . . , N}. Each MU i ∈ N
determines its participation level or effort level, e.g., sensing
data transmission frequency or sensing resolution, denoted by
xi where xi ∈ (0,+∞).

Let x
∆
= (x1, . . . , xN ) and x−i denote the participation

levels of all the MUs and all other MUs except MU i,
respectively. The reward per effort unit provided to the MUs
is given as: r = [r1, . . . ri, . . . , rN ]�. Then, the utility of MU
i is given by

ui(xi,x−i) = fi(xi) + Φ(xi,x−i) + r(xi)− c(xi). (1)

The first term fi(x) represents the private utility or internal
effects that MU i obtains from the participation, which can
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Table I: Main Notations

Symbol Definition
N , N Set of MUs, and the total number of MUs, respectively
Ni Set of social neighbours of MU i

xi
Participation level of MU i, i.e., the effort level in
participation

x, x−i
The participation levels of all the MUs and all other MUs
except MU i, respectively

ri The offered reward to MU i from the CSP

ai, bi
The coefficients capturing the intrinsic value of different
MUs

gij The influence of MU j on MU i
c The MU’s unit cost associated to its participation level

µ
The parameter representing the equivalent monetary worth
of MUs’ participation level

s, t
The coefficients capturing the concavity of the profit
obtained from the total contribution of all MUs

ui The utility of MU i
Π The revenue of the CSP
γ Given social network effects coefficient
k The out-degree of MU
l The in-degree of MU
P (k) The out-degree distribution of MUs
H(l) The in-degree distribution of MUs

Avg(x−i)
The average participation level of social neighbours of
MU i

k̄ Average level of social network effects
σ2

k, σ
2
l The two variance of out-degree and in-degree distributions

be formulated as fi(xi) = aixi − bixi2, where ai > 0 and
bi > 0 are the coefficients that capture the intrinsic value
of the participation to different MUs with heterogeneity [11],
[12]. For example, in a crowdsensing-based traffic information
sharing application, when a user reports speed and location on
a certain road more frequently, i.e., larger xi, the accuracy
of the traffic condition on that road is higher [2], [3]. As
in [11], the quadratic form of the internal utility not only
allows for tractable analysis, but also serves as a good second-
order approximation for a broad class of concave utility func-
tions. Additionally, the linear-quadratic function captures the
decreasing marginal returns from participation. In particular,
ai models the maximum internal participation willingness rate,
and bi is the willingness elasticity factor.

The second term, Φ(xi,x−i) denotes the external benefits
gained from the network effects, which is the key component
from Eq. (1). In crowdsensing applications, an MU can enjoy
an additional benefit from information contributed or shared by
the others [10]. The existing work explored the network effects
of global nature, where the additional benefits due to new
coming MUs are the same for all the existing MUs [8]. How-
ever, due to the structural properties from the underlying social
domain, it is more appropriate to consider the network effects
locally in crowdsensing service, i.e., the social network effects.
Then, we introduce the adjacency matrix G = [gij ]i,j∈N . The
elements in matrix gij indicates the influence of MU j on MU
i, which can be unidirectional or bidirectional. For example,
with a larger gij , the participation level of MU j can increase
the utility of MU i faster. Motivated by the idea of social
reciprocity [35], [36], a user’s social behavior to another is
likely to imitate the latter’s behavior to the former, and vice
versa. In other words, two friends in social network tend to
influence each other and then behave similarly. As a result, the

social ties from one MU to another MU, and vice versa tend
to be the same. Thus, we consider gij = gji in this paper, i.e.,
the social tie is reciprocal. Nevertheless, the proposed model
can be applied to asymmetric social ties straightforwardly,
interested readers can refer to Appendix C in [37]. Specifically,
we adopt

∑
j∈N gijxixj to represent the additional benefits

obtained from the network effects, similar to that in [11], [12],
[38].

The third term, r(xi), is the reward from CSP to the
MU i, which is equal to rixi , i.e., the reward is a linear
function to the effort or participation level. The last term c(xi)
denotes the cost associated to the participation level of the MU,
e.g., energy consumption and network bandwidth consumed.
Similar to [8], we assume that the cost is equal to cxi, where
c is the MU’s unit cost. It is noted that, the same approach
can be applied to the model with the heterogeneous unit cost
(e.g., cixi2) straightforwardly, interested readers can refer to
Appendix D in [37]. Then the utility of MU i is expressed by:

ui(xi,x−i, r) = aixi− bixi2 +
N∑
j=1

gijxixj + rixi− cxi. (2)

The monopoly CSP operates and maintains the platform
with a fixed cost, which is ignored for the simplicity of the
analysis later. Then, the formulation of revenue for the CSP is
given by the payoff from total aggregated contribution of all
MUs minus the total reward paid to MUs, i.e.,

Π = µ
N∑
i=1

(sxi − txi2)−
N∑
i=1

rixi. (3)

Similar to [12], we also use the linear-quadratic function for
tractability to transform the MUs’ participation level into the
monetary revenue of the CSP, which features the law of di-
minishing return. That is, an MU’s contribution increases with
the MU’s effort level but the marginal return decreases. µ is
an adjustable parameter representing the equivalent monetary
worth of MUs’ participation level, and s, t > 0 are coefficients
capturing the concavity of the function.

We first address the incentive mechanism by modeling the
strategic interactions between the CSP and the MUs as a two-
stage single-leader multi-follower Stackelberg game.

Definition 1. Two-stage reward-participation game:
• Stage I (Reward): The CSP determines the reward, aiming

at the highest revenue, i.e.,

r∗ = arg max
r

{
µ

N∑
i=1

(sxi − txi2)−
N∑
i=1

rixi

}
;

• Stage II (Participation): Each MU i ∈ N chooses the
participation level xi, given the observed reward r and
the participation levels of other MUs x−i, with the goal
to maximize its individual utility, i.e.,

x∗i = arg max
xi

ui(xi,x−i, r).

We solve this two-stage Stackelberg game by finding a
subgame perfect equilibrium for the cases of discriminatory
incentive mechanism and uniform incentive mechanism for all
MUs.
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IV. STACKELBERG GAME EQUILIBRIUM ANALYSIS WITH
COMPLETE INFORMATION

A. Stage II: MUs’ participation equilibrium

Based on the definition of the Nash equilibrium, each MU
chooses its participation level that is the best response. By
setting the first-order derivative ∂ui(xi,x−i)

∂xi
to 0, we obtain

the best response of MU i as follows:

x∗i = max

0,
ri − c+ ai

2bi
+

N∑
j=1

gij
2bi

xj

 ,∀i. (4)

Each MU’s best response includes two parts. ri−c+ai2bi
is inde-

pendent from the strategies of the other MUs, and
N∑
j=1

gij
2bi
xj

is dependent on the other MUs’ participation levels due to
underlying social network effects. Although the participation
level strategy of each MU is obtained as in Eq. (4), the Nash
equilibrium cannot be ensured to be unique or even exist
since each MU may unboundedly increase its participation
level if the other MUs’ participation levels are large enough.
Therefore, we present a sufficient assumption, under which
there exists the unique Nash equilibrium as described in
Theorem 1. Regarding the assumption, the MU has the upper
bound on participation level, e.g., due to the battery capacity
of a mobile device, and thus Assumption 1 is reasonable.

Assumption 1.
N∑
j=1

gij
2bi

< 1,∀i.

Theorem 1. Under Assumption 1, the existence and unique-
ness of MU participation equilibrium, i.e., the Nash equilib-
rium of Stage II in this Stackelberg game, can be guaranteed.

Proof. Existence of MU participation equilibrium: We
denote x∗ as the strategy profile in the MU participation sub-
game, and x†i as the largest participation level in x∗. Then,
we have

x†i =

(
ri − c+ ai

2bi
+
∑N

j=1

gij
2bi

xj

)+

≤ ri − c+ ai
2bi

+
∑N

j=1
x†i
gij
2bi

≤ |ri − c+ ai|
2bi

+
∑N

j=1
x†i
|gij |
2bi

.

Thus, under Assumption 1, we have x†i ≤
|ri−c+ai|

2bi−
N∑
j=1

|gij |
= x̂. As

a result, the strategy space [0, x̂] is convex and compact, and
the utility function ui(xi,x−i) is continuous in xi and x−i.
We also have the second-order derivative of MU’s objective
function as follows: ∂2ui

∂2xi
= −2bi < 0. Thus, the MU

participation sub-game is a concave game which always admits
the Nash equilibrium.

Uniqueness of MU participation equilibrium: Firstly, we
have

−∂
2ui
∂xi2

= −(−2bi + gii) = 2bi.

Then, based on Assumption 1, we have

−∂
2ui
∂xi2

>
N∑
j=1

gij =
N∑
j=1

|gij | =
N∑
j=1

∣∣∣∣− ∂2ui
∂xixj

∣∣∣∣, (5)

which satisfies the dominance solvability condition, i.e.,
Moulin’s Theorem [39]. As a result, the uniqueness of MU
participation equilibrium is guaranteed under Assumption 1.
The proof is then completed.

Then, we propose the best response dynamics algorithm to
obtain the Nash equilibrium with respect to MUs’ participation
level, as shown in Algorithm 1. The algorithm iteratively
updates the MUs’ strategies based on their best response
functions in Eq. (4), and converges to the Nash equilibrium of
MU participation sub-game.

Algorithm 1 Simultaneous best-response updating for finding
Nash equilibrium of MU participation sub-game
1: Input:

Precision threshold ε, x[0]i ← 0, x[1]i ← 1 + ε, k ← 1;
2: while

∥∥∥x[k]i − x
[k−1]
i

∥∥∥
1
> ε do

3: for all i ∈ N do

4: x
[k+1]
i =

(
ri−c+ai

2bi
+

N∑
j=1

x
[k]
j

gij
2bi

)+

;

5: end for
6: k ← k + 1;
7: end while
8: Return x

[k]
i ;

Proposition 1. Algorithm 1 achieves the Nash equilibrium of
MU participation sub-game.

Note that Algorithm 1 achieves the approximate Nash equi-
librium of MU participation sub-game, and the approximate
accuracy, which measured by the gap between the achieved
results and the actual solutions, depends on the precision
threshold ε. The convergence speed of the proposed algorithm
also depends on precision threshold ε. When ε is small, the
number of iterations needed is large but the achieved results
are more accurate. Conversely, when ε is big, the number of
iterations needed is small but the achieved results are less
accurate.

For ease of presentation, we have the following definitions,
B := diag(2b1, 2b2, . . . , 2bN ), a := [ai]N×1, 1 := [1]N×1,
G := [gij ]N×N , r := [ri]N×1 and I is an N × N identity
matrix. For the rest of the paper, similar to [12], [40], we
consider the practical situation where all the MUs have posi-
tive participation levels at the Stackelberg equilibrium, i.e., a
special case of Eq. (4). Then, with Lemma 1, we can rewrite
Eq. (4) in a matrix form as follows:

x = K (a + r− c1) , (6)

where K = (B−G)
−1.

Lemma 1. B−G is positive definite matrix, which is invert-
ible.

Proof. We first denote (B−G)ij as the value in the ith row
and the jth column of the matrix B−G, and it holds that
(B−G)ii = 2bi − gii = 2bi since we have gii = 0. Under
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Assumption 1, we also have 2bi >
N∑
j=1

gij . Furthermore, we

observe that
N∑
j=1

gij = −
∑
j 6=i

(B−G)ij =
∑
j 6=i

∣∣∣(B−G)ij

∣∣∣.
Therefore, it holds that (B−G)ii = 2bi >

∑
j 6=i

∣∣∣(B−G)ij

∣∣∣.
Accordingly, B−G is strictly diagonally dominant and all

the diagonal elements, i.e., 2bi are larger than 0. Based on
Gershgorin circle theorem [41], every eigenvalue λ of B−G
satisfies

|(B−G)ii − λ| <
N∑
j=1

∣∣∣(B−G)ij

∣∣∣. (7)

Moreover, we know λ > 0, and thus B−G is a positive
definite matrix, from which its invertibility follows. The proof
is then completed.

B. Stage I: Optimal incentive mechanism

In this stage, the monopoly CSP determines the reward to
be paid to the MUs, the objective of which is to maximize the
CSP’s revenue. Specifically, we investigate the discriminatory
incentive mechanism and the uniform incentive mechanism,
respectively. The significance of each incentive mechanism is
as follows. Under the uniform incentive mechanism, the equi-
librium ensures a fair reward applied to all MUs. Moreover,
the uniform incentive mechanism is simple to implement in
the crowdsensing applications. However, the CSP has lim-
ited degree of freedom to maximize its profit. By contrast,
under the discriminatory incentive mechanism, the CSP can
customize the reward for each MU, matching with the MU’s
preference and capability. As such, the profit obtained under
the discriminatory incentive mechanism is expected to be
higher than that of the uniform incentive mechanism. This
is also confirmed in our numerical results.

1) Discriminatory incentive mechanism: Under reward dis-
crimination, the CSP is able to provide different reward for
different MUs as incentive to maximize its revenue. The
revenue maximization problem can be formulated as follows:

maximize
r

Π = µ
N∑
i=1

(sxi − txi2)−
N∑
i=1

rixi

= µ(s1>x− x>tx)− r>x.

subject to x = K (a + r− c1) .

(8)

By plugging x into the objective func-
tion in Eq. (8), we have Π =

µ
(
s1>K (a + r− c1)− t(a + r− c1)

>
K2 (a + r− c1)

)
−

r>K (a + r− c1). Taking the partial derivative of
the objective function in Eq. (8) with respect to the
decision vector r to zero, i.e., ∂Π

∂r = 0, we obtain
µ
(
sK1− 2tK2 (a + r− c1)

)
− K (a + r− c1) − Kr = 0.

Then, we have µ
(
sK1− 2tK2 (a− c1)

)
− K (a− c1) =(

2K + 2µtK2
)
r. Finally, we obtain the optimal value r∗,

which is represented as follows:

r∗ = (2I + 2µtK)
−1

(µ (s1− 2tK (a− c1))− (a− c1)) .
(9)

2) Uniform incentive mechanism: In this case, the CSP can
only choose a single uniform reward to be paid to all the
MUs, i.e., ri = r, for all i. Then, the optimization problem is
given by

maximize
r

Π = µ
N∑
i=1

(sxi − txi2)− r
N∑
i=1

xi

= µ(s1>x− x>tx)− r1>x.
subject to x = K [a + (r − c)1] .

(10)

Similarly, we eliminate x from the objective function in
Eq. (10), and we obtain Π = µ(s1>K(a + (r − c)1) −
t(a + (r − c)1)

>
K2 (a + (r − c)1))− r1>K (a + (r − c)1).

Then, we evaluate its first-order optimality condition
with respect to the reward r, which yields
∂Π
∂r = µ

(
s1>K1− 2t(a + (r − c)1)

>
K21

)
−

1>K (a + (r − c)1) − r1>K1 = 0. As a result, with
simple steps, we obtain the optimal value of the uniform
reward, which is represented by

r∗ =
(
2µt1>K21 + 21>K

)−1
{
µ
[
s1>K1− 2t(a− c1)>

×K21
]
− 1>K (a− c1)

}
. (11)

Until now, we have obtained the optimal incentive mecha-
nism in terms of uniform reward and discriminatory reward in
a closed-form solution with complete information, and hence
validated the uniqueness of the Stackelberg equilibrium.

V. BAYESIAN STACKELBERG GAME THEORETIC ANALYSIS
FOR SOCIALLY-AWARE INCENTIVE MECHANISM WITH

INCOMPLETE INFORMATION

Recall from Section IV, we assume that the MUs will
truthfully report their personal information (type) to the CSP.
This situation can happen when there exists a supervising
entity in the market that is capable of monitoring, sharing and
storing all behaviors to ensure that the MUs always report
the correct information. However, without the supervising
entity which is often the case in practice, the MU does not
reveal private information (type) to the CSP because of the
concern on privacy leakage or selfish behaviors. Therefore,
the incomplete information scenario is more suitable and
applicable to the real-world crowdsensing applications and
address the incentive mechanism therein. In this section, we
extend the analysis to the scenario where the social structure
information, i.e., the social network effects, is not exactly
known by the CSP and MUs. Thus, we formulate the incentive
mechanism as a Bayesian Stackelberg game [42], [43], and
evaluate the game equilibrium by defining and optimizing the
expected utility of MUs and the expected revenue of the CSP.

A. Problem formulation with social structure uncertainty

In the model proposed in Section III, the important social
structure information may be uncertain or unknown by the
decision makers, i.e., the CSP and MUs. Accordingly, this
game can be modeled as a Bayesian game where the Bayesian
analysis is adopted to predict the game outcome. In particular,
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the social relationship, i.e., social structure of each MU is
private information and is considered as the type of the fol-
lowers. Only its probability distribution is commonly known.
Such distribution information can be obtained through, e.g.,
historical information or long-term learning.

The mobile social structure is represented by an interaction
matrix, i.e., the adjacency matrix G. As aforementioned, the
element gij denotes the strength of the influence of MU j on
MU i. Recall from Section III, the utility of an MU can be
expressed as follows:

ui(xi,x−i, r) = xi −
1

2
xi

2 +
N∑
j=1

gijxixj + rixi − cxi. (12)

Note that we set ai = 1 and bi = 1/2 in order to concentrate
on the social structure uncertainty. Moreover, without loss of
generality, for all the social neighbours of MU i, i.e., j ∈ Ni,
gij = γ > 0, and γ is a given social network effect coefficient.
Thus, the above equation is rewritten as follows:

ui(xi,x−i, r) = xi −
1

2
xi

2 + γxi
∑
j∈Ni

xj + rixi − cxi. (13)

Therefore, the expected utility is expressed as follows:

Ui(xi,x−i, r) = E [ui(xi,x−i, r)] = xi −
1

2
xi

2

+ γxiE
[∑

j∈Ni
xj

]
+ rixi − cxi. (14)

The social structure leads to different in-degrees and out-
degrees of MUs. The in-degree denotes the number of other
MUs that a certain MU influences, the out-degree denotes
the number of other MUs influencing this MU. Thus, the in-
degree represents its influence and the out-degree represents
its susceptibility. The distribution2 of in-degree and out-degree
captures the social network effects from the network interac-
tion patterns [11], [44]–[47]. Note that the proposed model can
still be applied to the asymmetric social ties, since we consider
both the in-degree and out-degree distributions of each MU
instead of the degree distribution. For example, an MU Alice
has the social influence on MU Bob, but Bob may not have
the social influence on Alice. The reason is that Alice may
have different in-degree and out-degree.

The in-degree l ∈ D and out-degree k ∈ D, where
D = {0, 1, . . . , kmax} and kmax denotes the maximum
possible value. We define P : D → [0, 1] and H : D → [0, 1]
as the probability distributions of out-degree and in-degree,
respectively, and we have

∑
k∈D

P (k) =
∑
l∈D

H(l) = 1.

Furthermore, we assume that two probability distributions
are independent and their variances are denoted as σk

2

and σl
2, respectively. Due to consistency theory, we know

2Since the social ties/links are constructed by the in/out-degree information
of MUs, the social ties/links are also treated as random variables in some
sense. Note that γ in the model is a given social network effect coefficient,
which captures the strength of social ties/links. Although the value of γ is
given, the social ties/links follow certain probability distribution instead of
being a constant value. It is also noteworthy that γ can be treated as an
approximate term instead of an exact value. Nevertheless, the impacts of
uncertainty of γ can still be absorbed into the distribution of in/out-degree
since these impacts are interdependent.

∑
k∈D

P (k)k =
∑
l∈D

H(l)l = k, and thus k is referred to as

the mean value of social network effects. Moreover, we have

E

∑
j∈Ni

xj

 = ki ×Avg(x−i), (15)

where Avg(x−i) = E [xj |j ∈ Ni ] denotes the average partic-
ipation level of social neighbours of MU i.

In order to obtain the expression of Avg(x−i), we employ
the concept of “Configuration Model” in Network Science [48]
to model the random networks generated with only in-degree
distribution. According to Configuration Model’s property
(See Chapter 12.2 in [48]), to a user, the degree distribution of
its randomly chosen neighbor is H(l) = H(l)l∑

l′∈D
H(l′)l′ . In other

words, a randomly selected social neighbours of MU i has
the in-degree distribution as H(l) and out-degree distribution
as P (k). Thus, by denoting the participation level of the MU
with out-degree k and in-degree l as x(k, l), we have [46],
[47]

Avg(x−i) =
∑
l∈D

H̄(l)

(∑
k∈D

P (k)x(k, l)

)
, (16)

where H(l) = H(l)l∑
l′∈D

H(l′)l′ . Note that given Avg(x−i), the

participation level of MU i only depends on the reward and
its out-degree k. Thus, the final expected utility of MU i is
expressed as follows:

Ui(xi,x−i, r, ki) = (1 + ri − c)xi −
1

2
xi

2 + γkixiAvg(x−i),

(17)
and the type of the MU is its in-degree and out-degree, which
is denoted as (l, k).

Since only the distribution of the in-degree and out-degree
information is known, instead of maximizing the revenue as
defined in Eq. (3), the objective of the leader, i.e., the CSP, is
to maximize its expected revenue, which is given as follows:

Π =
∑

l∈D

(∑
k∈D

H(l)P (k)
(
(µs− r(k, l))x(k, l)

− µtx2(k, l)
))
, (18)

where r(k, l) is the reward offered to the MU with out-degree
k and in-degree l.

B. Stackelberg game equilibrium analysis

We also adopt the backward induction to analyze the
Bayesian Stackelberg game.

1) Follower game: For the given incentive or the reward
determined by the CSP, we examine the Bayesain Nash
equilibrium in the follower game which is characterized by
the following theorem.

Theorem 2. The existence and uniqueness of the Bayesian
Nash equilibrium of the follower game can be guaranteed,
provided that the following condition

γkmax < 1 (19)

holds.
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Proof. The existence of Bayesain follower game: To prove
that there exists at least one Bayesian Nash equilibrium in the
follower game (Proposition 1 in [49]), we need to ensure that
the following condition

∂Ui(x,x−i, r, ki)

∂xi
≤ 0,

∀i ∈ N , k ∈ Z+, r ∈ R+,∃x ≥ 0,∀x ≤ x (20)

holds, where x = Avg(x−i). Since we have

∂Ui(x̄,x−i, r, ki)

∂xi
= (1 + ri − c)− x̄+ γkiAvg(x−i)

≤ (1 + ri − c)− x̄+ γkmaxx̄

= 1 + ri − c+ (γkmax − 1)x̄, (21)

we can ensure that the condition in Eq. (20) holds provided
that γkmax < 1 is satisfied.

The uniqueness of Bayesain follower game: The proof
of the uniqueness of the pure Bayesian Nash equilibrium
can be directly derived from [49]. In particular, the sufficient
condition that implies there exists at most one Bayesian Nash
equilibrium is given as follows (Proposition 3 in [49]):∣∣∣∣∂2Ui(x̄,x−i, r, ki)

∂xi∂Avg(x−i)

/
∂2Ui(x̄,x−i, r, ki)

∂xi∂xi

∣∣∣∣ < 1,∀i ∈ N .
(22)

With simple steps, we have∣∣∣∂2Ui(x̄,x−i,r,ki)
∂xi∂Avg(x−i)

/∂
2Ui(x̄,x−i,r,ki)

∂xi∂xi

∣∣∣ = |γki| ≤ |γkmax|.
Thus, if γkmax < 1 holds, the condition given in Eq. (22) is
guaranteed. The proof is then completed.

To obtain the closed-form expression of the unique Bayesian
Nash equilibrium point in the follower game, we first apply
partial derivative of the expected utility given in Eq. (17), i.e.,
∂Ui(x̄,x−i,r,ki)

∂xi
= 0, as shown as follows:

x∗i = 1 + ri − c+ γkiE [xj |j ∈ Ni ] . (23)

Thus, we have

x(k, l) = 1 + r(k, l)− c+ γkE
[
x(k, l)

∣∣(k, l) ∈ D2
]
. (24)

From Eq. (16), we have

E
[
x(k′, l′)

∣∣(k′, l′) ∈ D2
]

=
∑
l′∈D

H(l′)
∑
k′∈D

P (k′)x(k′, l′)

=
∑
l′∈D

(
H(l′)

∑
k′∈D

(P (k′)(1 + r(k′, l′)− c

+ γk′E
[
x(k′′, l′′)

∣∣(k′′, l′′) ∈ D2
]
))

)
= 1 + r − c+ γkE

[
x(k′′, l′′)

∣∣(k′′, l′′) ∈ D2
]
, (25)

where r =
∑
l∈D

H(l)
∑
k∈D

P (k)r(k, l) and k =∑
l∈D

H(l)
∑
k∈D

P (k)k =
∑
k∈D

P (k)k. Since we also have

E
[
x(k′, l′)

∣∣(k′, l′) ∈ D2
]

= E
[
x(k′′, l′′)

∣∣(k′′, l′′) ∈ D2
]
,

(26)
it can be concluded from Eq. (25) with the following expres-
sion

Avg(x−i) = E [xj |j ∈ Ni ] =
1 + r − c
1− γk

. (27)

Therefore, we obtain the closed-form expression of the par-
ticipation level of the MU with type (k, l) in the Bayesian
follower game, which is given as follows:

x∗(k, l) = 1 + r(k, l)− c+ γk
1 + r − c
1− γk

. (28)

Note that Algorithm 1 can be implemented similarly in
incomplete information scenario. The only difference is that
the best-response function update policy in Line 4 of Algo-
rithm 1 is replaced by another update policy obtained from
Eq. (19). Since we have validated the existence and uniqueness
of the Bayesian Nash equilibrium, the modified Algorithm 1
can achieve the Bayesian Nash equilibrium [50]. Similar to
that in the complete information scenario, this Bayesian Nash
equilibrium is also the approximate equilibrium due to the
error ε.

2) Leader game: As the CSP has the information on the
degree distributions of MUs but has no information on MUs’
type, and thus can offer only a uniform reward3, i.e., r(k, l) =
r for all MUs. The optimal incentive mechanism obtained from
the leader game is characterized by the following theorem.

Theorem 3. The optimal reward offered by the CSP in
the Bayesian Stackelberg game is unique, which is given as
follows:

r∗ = c− 1 +
(µs+ 1− c)

(
1− γk

)
2
(
1− γk + µt+ µtγ2σk2

) . (29)

Proof. Please refer to the appendix for the details.

Furthermore, we study the benchmark case where the CSP
knows both the in-degree and out-degree of any individual
follower. In such a situation, the CSP is able to offer discrimi-
natory reward as incentive, r(k, l) for the MU with out-degree
k and in-degree l. Then, the revenue maximization problem
faced by the CSP is characterized in the following theorem.

Theorem 4. Provided that the CSP clearly knows the type of
each individual MU, the optimal discriminatory reward r(k, l)
offered to the MU with out-degree k and in-degree l, is unique.

Proof. Please refer to the appendix for the details.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
socially-aware incentive mechanisms of the CSP in crowd-
sensing applications, and investigate the impacts of different
parameters of mobile networks on the performance.

3Note that the uniform incentive mechanism is more applicable in incom-
plete information scenario, where the CSP has no information on the specific
type of each individual MU. However, the in/out-degree distributions of MUs
can be obtained through, e.g., historical information or long-term learning,
which makes the uniform incentive mechanism feasible. This can also be
confirmed by the closed-form solution for the optimal uniform reward, since
the expression of the optimal reward only includes the mean and variance of
the in/out-degree distributions instead of the type of individual MU.
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Figure 2: The impact of total number of MUs on the
crowdsensing service provider and mobile participants.
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Figure 3: The impact of average value of social network
effects on the crowdsensing service provider and mobile
participants.

A. Investigation on Stackelberg game with complete informa-
tion on social structure

We consider a group of N MUs, i.e., mobile participants,
in a social network and set the parameters as follows. We
assume the intrinsic parameters of MUs, i.e., ai and bi follow
the normal distribution N (µa, 2) and N (µb, 2). In addition,
the social tie gij between any two users i and j follows a
normal distribution N (µg, 1). The default parameters are set
as: c = 15, µ = 0.1, s = 20, t = 0.05, µa = µb = 15, µg =
0.05 and N = 50. Note that some of these parameters are
varied according to the evaluation scenarios. As expected and
verified in Fig. 2 and Fig. 3, the discriminatory incentive yields
the larger revenue for the CSP, compared with the uniform
incentive. Intuitively, the reason is that the CSP can adjust the
reward according to individual MU’s effort and contribution,
which is proven by Fig. 4.

We next evaluate the impact of the total number of MUs
on the proposed incentive mechanisms, as illustrated in Fig. 2.
As the number of MUs increases, the total utilities of partici-
pants and the revenue of the CSP also increase under both
mechanisms. The reason is that when the total number of
MUs increases, the number of social neighboring MUs also
increases. Owing to the underlying social network effects, the
MUs are motivated by their social neighbours to have higher
participation levels, and the revenue of the CSP is improved
accordingly. In addition, with the increase of total number of
participants, the total offered reward increases since the CSP
tends to encourage more MUs to participate, in order to attain
a greater revenue gain. In particular, the discriminatory and
uniform incentive mechanisms enable the CSP to reduce the
reward paid to the MUs, i.e., the cost, and therefore achieve
a greater revenue gain in turn. Figure 3 depicts the impact
of average value of social network effects on two entities of
this network, i.e., the CSP and MUs. We observe that as the
social network effects becomes stronger, the total utilities of

participants and the revenue of the CSP also increase. Since
when the strength of social tie is stronger, the additional
benefits obtained from social network effects are greater. In
other words, the socially-aware MUs are motivated by each
other and have higher participation levels consequently. When
the participation levels are high enough, the CSP is able to
offer less reward to save money. In turn, the total utilities
of participants and the revenue of the CSP are improved.
Furthermore, we observe that the total offered reward under the
uniform incentive mechanism and the discriminatory incentive
mechanism have no big difference from both Figs. 2 and 3.
The reason is that the CSP under the discriminatory incentive
mechanism is able to achieve a balanced reward allocation
with the similar cost. For example, the CSP can offer more
reward to some MUs and less reward to some other MUs,
which leads to a greater overall participation level. This
intuition is demonstrated in Fig. 4. From the third sub-figure
in Fig. 3, we find that the uniform reward curve has several
fluctuations suffering from the randomness of the social tie
gij when network effects become stronger. Nevertheless, we
can observe that the uniform reward still remains largely
unchanged (around 50). This is different from the third sub-
figure in Fig. 2, where we cannot observe the fluctuations.
The reason is that Fig. 2 illustrates the impacts of the number
of MUs on the total offered reward from the CSP. Intuitively,
the total reward increases when the number of participants
increases. Thus, the slight fluctuations cannot be observed in
Fig. 2 since the reward keeps increasing.

Then, to explore the impacts of social network effects on
each specific participant, we investigate the optimal reward
and resulting MUs’ participation level with the number of 50
MUs, and we adopt the similar default parameters setting to
that in above discussions. The adjacency matrix G is generated
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Figure 4: A case illustration of distribution of normalized
reward and participation level.

as follows:


gi,i+1 = 0.2×
(
0.5−

(
0.5− i−1

N

)2)
, i ∈ [1, N − 1];

gi+1,i = 0.2×
(
0.5−

(
0.5− i−1

N

)2)
, i ∈ [1, N − 1];

gi,j = 0, otherwise.
(30)

From Eq. (30), only participants who are adjacent in partic-
ipant indexes (neighbours) can affect each other. From Fig. 4,
we observe that the CSP offers each participant the same
reward when it has no information about the value of matrix
G. Given the reward from the CSP, the MUs have different
participation level equilibrium as shown in Fig. 4, where we
observe that the participation levels of the MUs are socially
related to each other. In particular, the 27th MU is the most
susceptible or influenced one in this network because it has
the highest participation level given the same reward. On the
contrary, the 1st and the 51st MUs are the most influential
ones. Therefore, with the knowledge about the value of matrix
G, the CSP is likely to offer more reward to the 1st and the
51st MUs and less to the 27th MU, under the discriminatory
incentive mechanism. The reason is that the CSP tends to have
the highest participation level from the participant with the
lowest cost and thus have a greater revenue gain. However,
under the uniform incentive mechanism, the CSP can offer
only the same reward to the participants. As such, the CSP
usually offers more reward and promotes the participants to
attain higher participation level, but the incurred extra cost
is also very high, which decreases the revenue of the CSP
consequently.

B. Investigation on Bayesian Stackelberg game with incom-
plete information on social structure

Similar to the above discussions, we consider a group of
N MUs. The in-degree and out-degree of MUs follow the
normal distribution N (k, σ2

k) and N (k, σ2
l ), respectively. The

parameters are set as follows: γ = 0.01, k = 20, σ2
k = σ2

l =
10, µ = 10, s = 20, t = 0.05, c = 15, and N = 100.
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Figure 5: The illustration of the optimal offered reward with
respect to different in-degrees and out-degrees.

We first study the optimal offered reward in terms of
different in-degrees and out-degrees, as illustrated in Fig. 5.
Interestingly, we find that the optimal offered reward increases
with the increase of in-degree, and increases with the decrease
of out-degree. Recall that the MU’s in-degree represents its
influence and the out-degree represents its susceptibility. As
the in-degree of the MU increases, this MU can encourage
more other MUs due to the underlying social network ef-
fects. In a crowdsensing-based road traffic information sharing
platform, we can treat the drivers in critical central paths as
the MUs with higher in-degree, i.e., greater influence. The
road information from these drivers plays a great role, i.e.,
the participation of these drivers can greatly promote the
participation of others. Thus, in the presence of social network
effects, the CSP tends to offer more reward to the MUs with
the higher in-degree, since they potentially motivate more
participation level of other MUs. On the contrary, for the MUs
with the higher out-degree, the CSP has no incentive to offer
more reward. The reason is that the MUs with the higher out-
degree are more susceptible, and these MUs are potentially
positively affected by others. Consequently, the CSP is able to
offer less reward to save the cost.

Furthermore, we investigate the impacts of mean value of
social network effects on the players of Bayesian Stackelberg
game in Fig. 6. As expected, we observe that the optimal
offered reward decreases when the mean value of social
network effects increases. The reason is that as the mean
value of social network effects become stronger, the MUs
can motivate each other to have higher participation level
due to the interdependent participation behaviors. The total
utilities of MUs become greater, and thus the CSP tends to
offer less reward to save the cost. Consequently, the CSP
achieves the greater revenue gain. In addition, comparing
different curves with different value of µ, we find that when
µ, i.e., the equivalent monetary worth of MUs’ participation
level increases, the CSP tends to offer more reward as the
participation incentive. The reason is that the CSP is more
inclined to arouse the enthusiasms of MUs when the CSP can
transform the participation level of MUs to more monetary
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Figure 7: The impacts of variance of the distribution of in/out-degree.

revenue efficiently. Therefore, to extract more surplus from
MUs, the CSP offers more reward and thus achieves a greater
revenue gain.

Figure 7 illustrates the impacts of variance of the distri-
bution of social network effects on the players of Bayesian
Stackelberg game. As the variance of social network ef-
fects decreases, the achieved revenue under uniform incentive
mechanism is close to that under discriminatory incentive
mechanism. The reason is that the heterogeneity of MUs
is reduced when the value of variance decreases. We may
consider an extreme case when the value of variance is zero,
i.e., the MUs are homogeneous, the discriminatory incentive
mechanism yields the same results as those of the uniform
incentive mechanism. On the contrary, when the value of
variance increases, the achieved revenue under the discrim-
inatory incentive mechanism increases. The reason is that
discriminatory incentive mechanism enables the CSP to exploit
the different preference, i.e., parameters of utility function, for
each of MUs, which leads to the decrease of total utilities
of MUs and the increases of the revenue. Moreover, when
the participation cost of MUs increases, the utility of MUs
from participation is discounted. As such, the CSP tends to
offer more reward to compensate the participation cost for
improving their motivation. Meanwhile, the total utilities of
MUs still decrease due to the increasing participation cost.
Similarly, the revenue of the CSP decreases.

Lastly, both Figs. 6 and 7 demonstrate the fact that the
discriminatory incentive mechanism performs better in terms

of the achieved revenue compared with uniform incentive
mechanism. The intuition is that, with the certain social
structure information, the CSP can set different reward for
different MUs, as verified by the Fig. 5. As such, the CSP can
significantly encourage the greater participation level of MUs.
In particular, the social structure information guides the CSP
to extract more surplus from the MUs’ participation, which
results in the greater revenue gain.

In summary, we draw the following engineering insights:
• The network effects tremendously stimulate higher MU

participation level, which leads to the greater total utilities
of MUs as well as the greater revenue of the CSP.

• The discriminatory incentive mechanism yields the
greater revenue of the CSP than that of the uniform
incentive mechanism in both the complete and incomplete
information scenarios.

• The revenue gap between the uniform and discriminatory
incentive mechanisms depends on the variance of network
effects.

• The CSP has an incentive to offer more reward to the
influential MUs and less reward to the susceptible MUs,
in order to promote a greater overall participation level.

VII. CONCLUSION

In this work, we have developed a two-stage Stackel-
berg game theoretic model, and obtained the equilibrium
using backward induction. The Crowdsensing Service Provider
(CSP) determines the incentive in the first stage, and the



12

Mobile Users (MUs) decide on their participation level in
response to the observed incentive in the second stage. Taking
the social (local) network effects among MUs into account, we
have proposed two incentive mechanisms, i.e., discriminatory
incentive and uniform incentive, where we have obtained the
closed-form expression for optimal incentive. Moreover, we
have formulated the Bayesian Stackelberg game to analyze
the incentive mechanism, when the social network effects are
uncertain. We have validated the existence and uniqueness
of the Bayesian Stackelberg equilibrium by identifying the
best response strategies of MUs. Performance evaluations have
demonstrated that the network effects significantly improve
the participation levels of MUs and the revenue of the CSP.
Additionally, it has been confirmed that the social structure
information helps the CSP to achieve greater revenue gain.
The joint considerations of uncertainties of internal utility and
social influence in the model are well worth studying in the
future works.

APPENDIX

A. Proof of Theorem 3:

Proof. Similar to that in Section IV, we first apply the
unique Bayesian Nash equilibrium of the follower game given
in Eq. (28) into the objective function given in Eq. (18).
Since r(k, l) = r for all MUs under the uniform incentive
mechanism, we know that the unique participation level of
the MU only depends on its out-degree k from Eq. (28), i.e.,
x∗(k, l) = x∗(k). The expected revenue of the CSP given
in (18) is then expressed as follows:

Π =
∑
k∈D

P (k)
(

(µs− r)x∗(k)− µt(x∗(k))
2
)
. (31)

In particular, we have the mathematical transformations as
shown in Eq. (32).

Then, we evaluate its first-order optimality condition with

respect to the reward, and we have ∂Π
∂r = ∂Π

∂ 1+r−c
1−γk

∂ 1+r−c
1−γk
∂r ,

which yields(
(µs+ 1− c)− 2

(
1− γk + µt+ µtγ2σk

2
)

×
(

1 + r∗ − c
1− γk

))
1

1− γk
= 0. (33)

Thus, we can conclude that

1 + r∗ − c =
(µs+ 1− c)

(
1− γk

)
2
(
1− γk + µt+ µtγ2σk2

) . (34)

Therefore, the optimal uniform reward under Bayesian formu-
lation is uniquely determined, which is given as follows:

r∗ = c− 1 +
(µs+ 1− c)

(
1− γk

)
2
(
1− γk + µt+ µtγ2σk2

) . (35)

B. Proof of Theorem 4:
Proof. The CSP determines r(k, l) for the MU with out-
degree k and in-degree l to maximize its expected revenue.
The derivation of the optimal reward follows the similar steps
discussed in Section IV. We have the expected revenue of the
CSP, which is expressed as follows:

Π =
∑
l∈D

(∑
k∈D

H(l)P (k)

(
(µs− r(k, l))

(
1 + r(k, l) − c+

γk
1 + r − c

1 − γk

)
− µt

(
1 + r(k, l) − c+ γk

1 + r − c

1 − γk

)2))
. (36)

By taking the first derivative with respect to r with any out-
degree m ∈ D and in-degree n ∈ D, we have Eq. (37). Since
we know ∂Π

∂r(m,n) = 0, we conclude that

0 = H(n)P (m)

(
−
(

1 + r(m,n) − c+ γm
1 + r − c

1 − γk

)
+ µs

−r(m,n) − 2µt

(
1 + r(m,n) − c+ γm

1 + r − c

1 − γk

))
+γ

H(n)P (m)

1 − γk

∑
l∈D

∑
k∈D

H(l)P (k)k

(
µs− r(k, l) − 2µt

×
(

1 + r(k, l) − c+ γk
1 + r − c

1 − γk

))
. (38)

With simple steps, we obtain the following expression

r∗(m,n) =
1

2(1 + µt)

(
c− 1 − γm

1 + r − c

1 − γk
+ µs− 2µt

(
1 −

c+ γm
1 + r − c

1 − γk

)
+

γn

1 − γk

(
µs− 2µt (1 − c) −

2µtγ (1 + r − c) (σk
2 + k

2
)

(1 − γk)k

)
− γn

1 + 2µt

1 − γk
ψ

)
,

(39)

where
ψ =

∑
l∈D

∑
k∈D

1

k
kH(l)P (k)r(k, l). (40)

Moreover, based on the definition of r, we have

r =
∑
m∈D

∑
n∈D

H(n)P (m)r(m,n)

=
1

2(1 + µt)

(
c− 1 − γk

1 + r − c

1 − γk
+ µs− 2µt

(
1 − c+

γk
1 + r − c

1 − γk

)
+

γk

1 − γk

(
µs− 2µt (1 − c) −

2µtγ (1 + r − c)
(
σk

2 + k
2
)

(1 − γk)k

)
− γk

1 + 2µt

1 − γk
ψ

)
. (41)

Thus, we have

r =
1

2(1 + µt)

(
−
(

1 − c+ γk
1 + r − c

1 − γk

)(
2µt

1 − γk
+ 1

)
+

µs

1 − γk
− 2µtγ2σk

2 (1 + r − c)(
1 − γk

)2 (
1 − c+ γk

1 + r − c

1 − γk

)

−γk 1 + 2µt

1 − γk
ψ

)
. (42)
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Π = (µs− r)
(

1 + r − c+ γk
1 + r − c
1− γk

)
− µt

∑
k∈D

P (k)

(
1 + r − c+ γk

1 + r − c
1− γk

)2

= (µs− r)
1 + r − c
1− γk

− µt (1 + r − c)2 − 2µt (1 + r − c) γk
1 + r − c
1− γk

− µt
(
k
2

+ σk
2
)(

γ
1 + r − c
1− γk

)2

= (µs− r)
1 + r − c
1− γk

− µtγ2σk2

(
γ

1 + r − c
1− γk

)2

−
(
µt (1 + r − c)2 + 2µt (1 + r − c) γk

1 + r − c
1− γk

+ µtk
2
(
γ

1 + r − c
1− γk

)2
)

= (µs+ 1− c)
1 + r − c
1− γk

−
(

1− γk + µt+ µtγ2σk
2
)(1 + r − c

1− γk

)2

(32)

∂Π

∂r(m,n)
=

∂

∂r(m,n)
H(n)P (m)

(
(µs− r(m,n))

(
1 + r(m,n)− c+ γm

1 + r − c
1− γk

)
− µt

(
1 + r(m,n)− c+ γm

1 + r − c
1− γk

)2
)

+
∂

∂r(m,n)

∑
l6=n

∑
k 6=m

H(l)P (k)

(
(µs− r(k, l))

(
1 + r(k, l)− c+ γk

1 + r − c
1− γk

)

−µt
(

1 + r(k, l)− c+ γm
1 + r − c
1− γk

)2
)

= H(n)P (m)

(
−
(

1 + r(m,n)− c+ γm
1 + r − c
1− γk

)
+

(
1 + γm

H(n)P (m)

1− γk

)
(µs− r(m,n))

−2µt

(
1 + r(m,n)− c+ γm

1 + r − c
1− γk

)(
1 + γm

H(n)P (m)

1− γk

))
+

∂

∂r(m,n)

∑
k 6=m

∑
l6=n

H(l)P (k)

×
(

(µs− r(k, l)) γk
H(n)P (m)

1− γk
− 2µtγk

H(n)P (m)

1− γk

(
1 + r(k, l)− c+ γm

1 + r − c
1− γk

))
(37)

Likewise, based on the definition of ψ given in Eq. (40), we
know

ψ =
∑
l∈D

∑
k∈D

1

k
kH(l)P (k)r(k, l). (43)

Thus, we have Eq. (44).
The two expressions given in Eq. (42) and Eq. (44) to-

gether formulate a full rank linear equation system with
two variables, i.e., r and ψ. Thus, we can derive the
closed-form expression for both r and ψ [51]. In particular,
the closed-form expression for the variable r is obtained
as Eq. (45), where ρ = 1 + γk

2(1+µt)−γk

(
1 + 2µt

1−γk

)
+

µtγ2σk
2(1+r−c)

(1−γk)
2
(1+µt)

− (1+2µt)γ2σk
2

2(2+2µt−γk)(1−γk)(1+µt)

(
1 + 2µt

γk

)
. Like-

wise, the closed-form expression for the variable ψ can be
derived through similar steps. Accordingly, r(m,n) can be
obtained after plugging these two closed-form expressions into
Eq. (39), and thus the solution of r(m,n) is unique. The proof
is then completed.
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