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Abstract—Temperature is an important data source for weather forecasting, agriculture irrigation, anomaly detection, etc. While
temperature measurement can be achieved via low-cost yet standalone hardware with reasonable accuracy, integrating thermal sensing
into ubiquitous computing devices is highly non-trivial due to the design requirement for specific heat isolation and proper device layout.
In this paper, we present the first integrated thermometer using commercial-off-the-shelf acoustic-enabled devices. Our Software Sonic
Thermometer (SST) utilizes on-board dual microphones on commodity mobile devices to estimate sound speed, which has a known
relation with temperature. To precisely measure temperature via sound speed, we propose a chirp mixing approach to circumvent low
sampling rates on commodity hardware and design a pipeline of signal processing blocks to handle channel distortions. SST, for the first
time, empowers ubiquitous computing devices with thermal sensing capability. It is portable and cost-effective, making it competitive
with current thermometers using dedicated hardware. SST is potential to facilitate many interesting applications such as large-scale
distributed thermal sensing, yielding high temporal/spatial resolutions with unimaginable low costs. We implement SST on a commodity
platform and results show that SST achieves a median accuracy of 0.5◦C even at varying humidity levels.

Index Terms—Acoustic sensing, commodity hardware, temperature, sound speed.
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1 INTRODUCTION

Temperature is a type of useful empirical data for a
myriad of applications such as weather forecasting [1],
agriculture irrigation [2], anomaly detection [3], climate
change prediction [4], and health care [5]. Specially, near-
surface air temperature obtained through distributed
thermal sensing, plays a pivotal role in land surface
and hydrological modeling in meteorology [6] due to
its impacts on earth surface system. Currently, thermal
sensing are accomplished by dedicated temperature sen-
sors. Though the temperature sensors are very cheap and
can achieve precise measurement, it is not ubiquitous
right now. It is much desirable to empower temperature
measurement on a commercial-off-the-shelf (COTS) per-
vasive devices and thus enable many interesting appli-
cations such as large-scale distributed thermal sensing.
However, it is non-trivial to integrate a temperature
sensing into a ubiquitous computing devices due to the
design requirement for specific heat isolation and prop-
er device layout [7], [8]. Therefore, alternative thermal
sensing approaches are called for.

Nowadays, smartphones and Internet of Things (IoT)
devices enjoy explosive growth. In 2019, mobile users
worldwide are projected to reach 4.68 billion, among
which 3 billion use smartphones [9]. Smart devices now
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have rich on-board sensors and powerful processors,
enabling ubiquitous computing and sensing [10], [11],
[12], [13]. Most if not all of these devices are network
ready and in many cases (e.g., smartphones) can provide
their geo-locations. In this case, can we turn pervasive
mobile devices into a ubiquitous thermometer using existing
on-board sensors?

In this paper, we design the first Software Sonic Ther-
mometer (SST) on COTS IoT devices. SST empowers
acoustic-enabled IoT devices, smartphones, and wear-
ables to perform accurate ambient air temperature sens-
ing. We leverage on-board dual microphones to estimate
sound speed, which has a known relationship with tem-
perature, thus accomplishing ambient air temperature
sensing. SST is portable and cost-effective, making it
competitive with traditional thermometers for ubiqui-
tous sensing. With recent advances in mobile crowd-
sourcing, SST has the potential to leverage the ubiq-
uitous IoT devices to implement large-scale distributed
temperature sensing and yield high temporal and spatial
resolutions with extremely low costs. Such an approach
may reshape the landscape for large-scale distributed
temperature acquisition.

However, to implement SST on COTS devices is non-
trivial. First, in order to exploit the relationship be-
tween acoustic speed and ambient temperature, micro-
second timing resolution is required. Consider the time-
difference-of-arrival (TDoA) estimate between two mi-
crophones on either end of a Samsung S5 phone from
a single acoustic source 1. At a room temperature of

1. Acoustic speed can be determined as the ratio between the
distance of the two microphones and TDoA.
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25 ◦C (= 298.15 K), a 10-degree increase in temperature
roughly corresponds to a 3.3% change in acoustic speed
if we assume a TDoA of 471 µs (= 0.16 m/340 m/s). To
detect the 10-degree change, a timing resolution of 15 µs
is required. For changes within 1-degree, one needs a
timing resolution of 1.5 µs. However, acoustic modules
on smartphones typically can only sample up to 48
kHz or equivalently at sampling intervals around 21 µs.
Consequently, the sampling rate in smartphones is insuf-
ficient to achieve satisfactory thermal sensing resolution.
Second, acoustic modules on COTS devices are typically
optimized for the audible range [14], peaking around 8
kHz and decaying at lower and higher frequency. As a
result, their frequency responses tend to be non-flat. In
addition, acoustic sensors, either across different devices
or on the same device, exhibit different properties known
as device diversity. The non-flat frequency response and
device diversity result in channel distortions, inevitably
affecting sensing results.

To circumvent the insufficient sampling rate and break
the resolution limit, we adopt a chirp mixing approach.
This approach transforms the temperate associated tim-
ing information into a more fine-grained frequency do-
main, thereby yielding highly accurate temperature res-
olution. To deal with device diversity, non-flat frequen-
cy response, and other severe channel distortions, we
design a signal processing pipeline, mitigating channel
distortions and achieving accurate and stable thermal
readings. Simply put, this paper makes the following
contributions:
• We design the first Software Sonic Thermome-

ter (SST) on commodity hardware, achieving sub-
centigrade resolution.

• We propose a signal processing pipeline which
can successfully detect sound speed changes at a
granularity of decimeter per second, enabling sub-
centigrade thermal sensing.

• We have implemented SST on commodity hard-
ware and conducted extensive experiment studies to
demonstrate the robustness of SST under different
environmental conditions.

The rest of our paper is organized as follows: Section 2
introduces the related work. Section 3 the basic principle
of SST and detailed design. Implementation and exper-
imental evaluation are given in Section 6. We discuss
several issues and future works in Section 7. Finally,
Section 8 concludes the paper.

2 RELATED WORK

There are two well-known categories of thermal sens-
ing approaches, contact and non-contact methods [15].
Contact sensing methods require sensors to physically
contact the device under test (DUT). These sensors,
however, can only probe a specific temperature point
and the measurement process may significantly change
the temperature of the DUT. In addition, this line of
approaches has to wait for a heat equilibrium between

sensors and DUT. As a result, they usually incur long
latencies before precise temperature readings can be
obtained. Also, instruments to facilitate contact sensing
usually require special designs. As documented by chip
vendors including Texas Instrument [7] and Analog De-
vice [8], dedicated devices to measure ambient tempera-
ture needs special designs including heat isolation, prop-
er device layout, etc. However, today’s smartphones are
becoming more and more compact, leaving no room for
the luxurious isolation design. Therefore, it is difficult to
integrate these sensors on the ubiquitous mobile devices
for accurate ambient air temperature sensing.

To cope with the shortcomings of the contact methods,
non-contact approaches have been developed in the
literature. This line of work has fast response time but are
more vulnerable to environmental noises especially near-
by heat radiations [16]. As the most widely known non-
contact method, infrared-based approaches [17] measure
the temperature of a DUT in its vicinity by gauging
the radiated heat from the DUT, which however, is
unsuitable for measuring the air temperature. Other non-
contact thermal sensing techniques such as laser [18] or
ultra-high frequency based methods [19] are costly and
are more commonly used in high-end infrastructures.

Acoustic signals have been used to measure air tem-
perature and speed in meteorology [20], [21]. These
technologies also exploit the relationship between sound
speed and temperature. Nevertheless, such solutions
often target high-end devices and require either high
sampling rates or ultrasonic signals, all infeasible on
commodity mobile devices. In contrast, our SST is
portable, non-contact, and cost-effective when compared
with existing acoustic solutions.

To the best of our knowledge, we are the first to
develop a purely software sonic thermometer on com-
modity devices. SST builds upon recent advances in
acoustic sensing where acoustic signals have been used
to facilitate localization [22], [23], [24], tracking [10],
[25], [26], sensing [27], [28], and gesture recognition [29].
For instance, the authors in [29] leverage the phase
of acoustic reflections to achieve high-precision gesture
tracking and recognition. Mao et al., [10], [25] utilize
a chirp mixing approach to accomplish sub-centimeter
level tracking. ForcePhone [27] uses the properties of
structure-born sound propagation to estimate applied
force on commodity smartphones. Acoustic sensors can
be used in synthetic aperture radars to inspect the shape
of an object [30]. These exciting developments, especial-
ly the chirp mixing approaches in [25], [31], inspire us
to investigate acoustic thermal sensing on commodity
hardware. However, SST utilizes a much wide-band
signals and suffer from more severe channel distortions.
Consequently, the techniques in state-of-the-art work are
not directly applicable for our system.

3 OVERVIEW OF SST
SST consists of two devices: an auxiliary device that
transmits chirp signals and a measurement device that
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Fig. 1: System architecture of SST

receives and processes the audio samples for thermal
sensing. An overview of the system architecture is
shown in Fig. 1. The auxiliary device can be any device
that is capable of playing back specified acoustic signals.
The measurement device should have two separated
microphones for audio inputs. Such a requirement is
satisfied by many COTS mobile devices for the purpose
of stereo recording and noise cancellation.

To perform thermal sensing, first, the auxiliary device
is turned on to transmit chirp signals. To mitigate inter
chirp interference as well as multipath reverberations, a
guard interval is inserted between successive transmis-
sions. Second, the measurement devices begin to capture
the audio signals from its stereo channel. It synchronizes
to one audio channel and extracts a chirp segment,
over the same time window of which, it extracts the
same amount of samples from the other channel. Since
the two channels are strictly synchronized, the chirp
segment extracted from one channel is a delayed version
of that from the other channel. The delay that reflects the
travel speed of acoustic signals, can be more precisely
estimated via chirp mixing. Before mixing, the received
signals from the two channels undergo a signal process-
ing pipeline including wavelet denoising, compensation,
RANSAC filtering, mitigating the channel distortions
and yielding high resolution. Following that, the signals
are mixed. The mixed results, after a low pass filter, can
be used to extract frequency components, from which
fine-grained temperature can be derived. We further
apply median and Kalman filters to smooth the results.

The principle behind the above operation is the rela-
tion between sound speed c and air temperature T [20],

c2 = 403T (1 + 0.32e/p) , (1)

where c is the sound speed (m/s) in air, T is the
temperature (in Kelvin), e is vapor pressure of water in
air, p is the absolute atmospheric pressure. In (1), e

p has
a close relation with humidity. Theoretically, the term

e
p in (1) can be removed only in dry air. But previous
work [21] and our experiments reveal that this term has
negligible impacts on the final sensing results. Therefore,
we further simplify Eq. (1) as follows,

c2 = 403T. (2)

4 BREAKING THE RESOLUTION LIMIT

In this section, we first present the basic idea behind
chirp mixing and then discuss the key parameters and
rationales for the chirp signal design. Finally, we present
a feasibility study on a customized platform. From Eq.
(2), we have 403T = c2 =

(
d
∆t

)2
, where d is the fixed

distance between two microphones and ∆t is the TDoA
of the acoustic signal from the auxiliary device to the
two microphones of the measurement device. In time
domain, to improve the resolution of T , we need to in-
crease the resolution of ∆t, which however, is limited by
the sampling rate fs of the device. To break the resolution
limit, we adopt the chirp mixing approach [25], [10].

4.1 Chirp Mixing

Let the chirp signal emitted by the auxiliary device be
s = cos

(
2πfmint+ πkt2

)
, where fmin is the initial fre-

quency and k denotes the modulation coefficient. The
modulation coefficient is defined by k = B

D , where B is
the bandwidth and D is the duration of the signal. A
measurement device captures the emitted chirp signal
using its two microphones separated by distance d. The
received signals of the two channels are given by,

r1 = α1 cos
(
2πfmint+ πkt2

)

r2 = α2 cos
(
2πfmin

(
t− d

c

)
+ πk

(
t− d

c

)2)
,

(3)

where d
c is the delay due to propagation; α1 and α2 are

complex attenuations. We mix r1, r2 at the receiver and
obtain the following results:

rmix = r1 × r2
= α1α2 cos

(
2πfmint+ πkt2

)
×

cos
(
2πfmin

(
t− d

c

)
+ πk

(
t− d

c

)2)

= α1α2

2 cos
(
2πfmin

d
c + πk

(
2tdc −

(
d
c

)2))
+ (terms with

high frequency).
(4)

After passing through a low pass filter and ignoring the
attenuations, the mixed result becomes:

rf = cos

(
2πfmin

d

c
+ πk

(
2t
d

c
−
(
d

c

)2
))

. (5)

The frequency components of rf can be obtained by
taking the derivative of the phase component in (5) with
respect to t. Since all the constant terms are removed, the
frequency component is calculated as f :

f =
1

2π

∂θ

∂t
=

kd

c
(6)
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Fig. 2: Illustration to achieve the optimal chirp design.
The design goal is to achieve a high temperature resolu-
tion so that when f spans a wide range, the correspond-
ing changes for T should be small.

Since c, k, and d are all constants, and f is a scalar,
consequently, rf is a pure tone signal. Under such cir-
cumstance, f can be obtained with Discrete Fourier
Transform (DFT) analysis and c can be obtained by:

c =
kd

f
. (7)

Plugging Eq. (2) into Eq. (7), T can be calculated by:

T =
k2d2

403f2
. (8)

Eq. (8) gives us some tunable parameters, namely, k and
f , to circumvent the insufficient sampling rate thereby
achieving highly accurate thermal sensing.

4.2 Chirp Signal Design

The design of the chirp signal is crucial to system perfor-
mance. In determining the design parameters including
bandwidth B and duration D, a number of potentially
conflicting factors should be taken into account.

First, the frequency range of the chirp signals should
be kept small if possible to account for non-flat frequency
responses of microphones and speakers (more details to
be discussed in Section 5). Therefore, B should be small.
Second, a high-resolution frequency estimation for f is
desirable. The maximum resolution using Fourier trans-
formation to estimate f is determined by the effective
samples, which is equal to the multiplication between
sampling rate fs and the duration of chirp signal D.
Since fs cannot be changed, the larger the duration D,
the higher the frequency resolution can be achieved.

However, D should not be set arbitrarily large as there
is a trade-off here. First, to achieve a high temperature
resolution, it is beneficial to maximize k. Consequently,
a large chirp signal bandwidth B but a small D is
profitable. Moreover, a large signal duration D may
lead to severe self-inference and low signal-to-noise ratio
(SNR) due to echoes in the environments. Finally, a
large D also prolongs the measurement time. To help
understand how to choose an optimal parameter for T ,
we first express f as a function of T from Eq. (8) as
f = kd

403
√
T

. Next, we take the derivate of f with respect

d
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Fig. 3: Testbed for feasibility measurement

to T and have:
∆f

∆T
≈ − k × d

806
√
T 3

= − B × d

806D
√
T 3

. (9)

As shown in Fig. 2, a large absolute derivative indicates
that small variations in T result in large (detectable)
changes in f , indicating smaller D is better.

Based on the aforementioned analysis as well as ex-
periment evaluation, we choose a chirp signal that has a
bandwidth of B = 20 kHz, ranging from 2−22 kHz, and
a duration of 0.01 s. Given that the typical temperature
range is between −30 to 40 ◦C [1], these parameters offer
us a resolution of ∆T

∆f = 40−(−30)
932.8−822.6 ≈ 0.63 ◦C/Hz,2 which

is sufficient for most applications.
It should be noted that a larger two-microphone dis-

tance d, denoting the distance difference between the
acoustic source and the two microphones, would be
much desirable since it can improve the sensing accu-
racy. Therefore, it is recommended that the direction of
the acoustic transmission from the auxiliary device be
carefully placed so that the effective two-microphone
distance d can be maximized (to the distance between
the two microphones on the auxiliary device) and thus
the accuracy can be boosted. This could be achieved
by placing the speaker of the auxiliary device and two
microphones of the measurement device in a straight
line. Another thing worth noting is that the relative
placements of the auxiliary device and the measurement
device should be kept the same during the calibration
phase and the runtime phase. This could be properly
handled, for instance, by aligning the two devices to a
common straightedge shaped by a wall or other concrete
objects, or by manually placing marks [32] at the cali-
bration phase to guarantee consistence between multiple
placements.

4.3 Feasibility Measurement
To demonstrate the feasibility of SST, we have conducted
a measurement on a customized platform. as shown in
Fig. 3. This platform has multiple components: a data

2. This resolution is achieved by the premise that the distance
difference d from the speaker to two microphones is d = 0.146 m.
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Fig. 4: Estimated sound speed using our testbed

recorder that has dual channels and flexible sampling
rates up to 1 MHz, a rail that is controlled by an
arduino board taking commands from a PC through
serial interfaces, a smartphone with its output connected
to a 3W classic-AB audio power amplifier, and two
commodity microphone sensors with MAX9814, an Au-
tomatic Gain Control (AGC) to improve signal-to-noise-
ratio. We wrote a MATLAB script to move the rail
back and forth at a precision of 0.5 mm and developed
an Android APP to transmit chirp signals of various
settings. To measure the ground truth temperature, we
use an expensive commercial thermometer that achieves
0.1 ◦C and 1.5 %RH accuracy in estimating temperature
and humidity.

In this experiment, the smartphone acting as auxiliary
device transmits a chirp signal incessantly. The chirp
signal has a initial frequency of fmin = 15 kHz, 7 kHz
frequency bandwidth, and a duration of 0.02 s. We first
record a set of measurements from the two microphone
A and B at a sampling rate of 50 kHz. Using current two
channel data, the temperature can be estimated by:

T =
k2d21
403f2

1

, (10)

where d1 is the ground truth distance between A and B,
f1 is the estimated frequency via DFT analysis. We keep
A fixed, move B 52.5 mm away, and record another set
of audio signals. Now we can get:

T =
k2d22
403f2

2

, (11)

The ground truth distance d1 and d2 are non-trivial to
obtain since a microphone sensor has centimeter size.
However, their distance can be precisely obtained in our
platform as ∆d = d2 − d1 = 52.5 mm. Combining Eq. 10,
11 with the knowledge of k, f1, f2, and ∆d = d2 − d1,
the temperature can be finally computed.

Fig. 4 depicts the estimated sound speed using our
testbed. The mean value of sound speed is 334.75 m/s,
indicating a temperature of 5.5 ◦C. The reading from the
thermometer is 5.1 ◦C. Therefore, the estimation error is
only 0.4 ◦C. Considering the measurement noise, the es-
timation results successfully demonstrate the feasibility
of our proposal.

5 MITIGATING CHANNEL DISTORTION AND
NOISE

In this section, we present our channel distortion mit-
igation techniques, namely, wavelet denoising, com-
pensation, and RNSAC filtering. Apart from common
background noise, the acoustic signals suffer from se-
vere channel distortions. Without further distortion mit-
igation, using these unfiltered measurements cannot
achieve satisfactory results. One major distortion called
non-flat frequency responses or frequency selectivity,
wherein acoustic sensors have different channel gains
at different frequency bands, can lead to unstable mea-
surements and large variances in temperature estima-
tion [10]. Another one is called device diversity. De-
vice diversity describes a phenomenon where different
devices may exhibit different properties. SST requires
two microphones to capture the transmitted signals. The
two microphones on commodity hardware especially
smartphones typically have different sensitivity. The mi-
crophone on the back often has higher channel gains
at high frequency, which is used to remove background
noise. The bottom one, which is used to record human
voices, has higher channel gains under 8 kHz [33], [14].
The device diversity can also result in large measure-
ment variance. To understand these distortions, we first
present a measurement study.

5.1 Measurement Study

To characterize the degree and understand sources of
frequency selectivity and device diversity, we perform
measurement studies on a smartphone device. A com-
prehensive in-depth understanding of channel distortion
can serve as guidelines to optimize system designs. For
instance, we may disable parts of the hardware that
introduce severe distortions and thereby improve system
performance.

To begin with, we introduce the typical hardware
diagram for acoustic signal processing. Fig. 5 (a) and
(b) depict the typical pipelines of a sound recording
and emitting system [33], [34], respectively. A sound
recording system converts mechanical signals into digital
samples while a sound emitting system reverses this
process. In a recording system, sound signals are first
converted into voltage signals by a microphone. An
Automatic Gain Control (AGC) circuit or Programmable
Gain Amplifier (PGA) then amplifies the voltage signals
to surpass the quantization level of the posterior Analog-
to-Digital Converter (ADC). Next, the amplified signals
pass through a Low Pass Filter (LPF), also known as
an anti-aliasing filter, and become band-limited signals.
The cut-off frequency of the LPF is fs/2, where fs is the
sampling rate. The filtered signals go through a buffer
and finally become digital samples via ADC conversion.
A sound emitting system reverses the above process via
a different circuit. Digital samples are first interpolated,
then fed into a Digital-to-Analog Converter (DAC) and
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(a) Typical diagram for a sound recording system

(b) Typical diagram for a sound emitting system
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Fig. 5: Hardware diagram of sound recording and emitting system

(a) Frequency response of sound recording
system without microphones

(b) Frequency response of sound emitting sys-
tem without speakers

(c) Frequency response of two microphones on
a commodity smartphone

Fig. 6: Measurements on commodity hardware: (a) Frequency response of sound recording system without
microphones, (b) Frequency response of sound emitting system without speakers, (c) The two microphones on
a commodity smartphone exhibit different frequency response.

become analog signals, which after amplification are
finally converted into sound waves by a speaker.

We have modified the hardware of a commodity s-
martphone (Samsung Galaxy S5) to inspect where chan-
nel distortions are introduced. First, we remove the con-
nections between a microphone and its posterior circuit.
We use RIGOL DG4162, a 160 MHz arbitrary waveform
generator, to synthesize a chirp signal with fmin = 2 kHz,
B = 20 kHz, D = 0.01 s and connect the output of
this signal generator to the input of AGC as depicted
in Fig. 5 (a). The sampling rate is set to 48 kHz and
sufficient measurements are collected for analysis. Then,
we synthesize a wave audio file that contains the chirp
signal in the previous experiment, play the audio files
through the sound emitting system, and use Tektronix
TDS 2024C, a 200 MHz high-performance oscillograph,
to probe the frequency response before the speaker as
depicted in Fig. 5 (b). Fig. 6(a) and Fig. 6(b) depict the
frequency response of the remaining sound recording
system without the microphone and the sound emitting
system without the speaker, respectively. From the figure
we observe that the frequency responses in absence of
microphones and speaker are quite flat, indicating that
non-flat frequency responses are primarily introduced by
the acoustic sensors. The results reveal that we cannot
expect to lower channel distortions by simply disabling

the internal hardware modules.
Next, we let one smartphone transmit a chirp sig-

nal continuously and use two microphones on another
smartphone to record the signal. Fig. 6(c) shows the
frequency response of the two microphones. Clearly,
there are different gains and features. Both the non-flat
frequency response of microphones and device diversity
would introduce distortions on measurement results,
leading to degraded system performance. In the next
section, we will show how to mitigate these artifacts.

5.2 Channel Distortion Compensation
To compensate channel distortion, we propose a sig-
nal processing pipeline consisting of wavelet denoising,
compensation, and RANSAC filtering. Existing work
addresses the frequency selectivity problem via a com-
pensation filter whose frequency response is reciprocal
of that of the acoustic channels [10]. However, such a
solution is not applicable in SST since the employed
signals occupy a wide bandwidth. A small variation
in the severely attenuated frequency band can cause
significant noise if compensation is performed directly.

5.2.1 Wavelet Denoising
Wavelet filter [35] in SST is used to filter in-band
noise. Wavelet filters are well-known for their ability
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(b) After wavelet filtering
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(c) After compensation
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(d) After RANSAC filtering

Fig. 7: Spectrogram of signals in different processing stages: (a) raw signals (b) after wavelet filtering (c) after
compensation (c) after RANSAC filtering

(a) Raw signals (b) After wavelet filtering (c) After compensation (d) After RANSAC filtering

Fig. 8: Frequency response of signals in different processing stages: (a) raw signals (b) after wavelet filtering (c)
after compensation (d) after RANSAC filtering

to preserve local features and remove outliers. It has
many advantages such as low entropy, multi-scale reso-
lution, and design flexibility. However, directly applying
wavelet filtering on chirp signals is not appropriate due
to their non-smooth properties, making it challenging
to set appropriate wavelet coefficients to achieve good
performance [36]. However, chirp signals are smoother
in frequency domain. Therefore, we apply wavelet filters
in frequency domain. In the design of a specific wavelet
filter, choosing the appropriate wavelet basis is crucial.
To achieve optimal design, several factors should be tak-
en into consideration. In SST, phase information needs to
be preserved since it contains critical time information.
Therefore, a wavelet filter that has linear-phase property
is desired. In addition, it should be compactly supported
for fine resolution. Therefore, we choose bi-orthogonal
basis of compactly supported wavelets [37].

We utilize wavelet packet shrinkage denoising [38],
[39] to filter in-band noises. For a received signal x (t),
we first obtain its frequency domain representation X (f)
via DFT. We preserve its phase information θ (f) and
extract the amplitude for later processing. Next, the
wavelet filter is applied to improve SNR. Then, the phase
information θ (f) is added to the filtered signal. Final-
ly, Inverse Discrete Fourier Transform (IDFT) is used
to restore a time-domain signal, x̂ (t). The comparison
between Fig. 7(a) and Fig. 7(b) or Fig. 8(a) and Fig. 8(b)
demonstrate the effectiveness of wavelet filter. As de-
picted in Fig. 7(b), the intensity of the out-band noises
indicated by the yellow color are much lighter than that
of the original signals shown in Fig. 7(a). Meanwhile, the
ripples in the original signals presented in Fig. 8(a) are
attenuated after wavelet filtering as depicted in Fig. 8(b),

indicating less noises.
Since x̂ (t) has less noise, we subsequently compensate

x̂ (t) to address the frequency selectivity problem. It
should be noted that solutions to the frequency selectivi-
ty problem can also handle the device diversity problem.
For simplicity, we only discuss the frequency selectivity
hereafter.

5.2.2 Compensation
The compensation step is critical to address the frequen-
cy selectivity problem. As discussed earlier, frequency
selectivity is caused by non-flat channel responses intro-
duced by microphones, and leads to unstable measure-
ments. Let H (f) be the channel response in frequency
domain. The goal of compensation is to find a H ′ (f)
that is reciprocal to H (f) so that H (f)H ′ (f) = 1, ∀f .
Apparently, we can derive H ′ (f) by H ′ (f) = 1

H(f) .
To handle random noises in the severely attenuated
bandwidth, we add a small constant σ (default to 0.1) to
the denominator in H ′ (f) = 1

H(f) . Therefore, the com-
pensation filter has the following frequency response:

H ′ (f) =
1

H (f) + σ
(12)

The effects of compensation after wavelet filtering are
shown in Fig. 7 (c) and Fig. 8 (c). Before compensation, as
we can observe from Fig. 7 (b) and Fig. 8 (b), the channel
responses above 15 kHz are severely attenuated. Howev-
er, after compensation, the frequency response is much
flatter than before. Therefore, the frequency selectivity
problem is mitigated. Nevertheless, such compensation
leads to severe noises as depicted in Fig. 7 (c), where the
yellow color indicates that the signal intensity apart from
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Fig. 9: RANSAC filtering illustration: We use the
RANSAC fitted line and two boundaries with distance
d to the fitted line to form a region. The samples within
the regions are effective samples while outside ones are
noisy measurements and should be filtered out.

the chirp region is more intense after compensation. To
this end, we further suppress the noises via a Random
Sample Consensus (RANSAC) filtering approach.

5.2.3 RANSAC Filtering
RANSAC filtering is used to further suppress in-band
noise. RANSAC filtering originates from the RANSAC
fitting algorithm [40], which is used to estimate re-
gression parameters from noisy samples with outliers.
The intuition behind the proposed RANSAC filtering
algorithm is that we can use RANSAC fitting to identify
the main regions of chirp signals in the spectrogram
and set the remaining regions in the spectrogram to a
minimal value. Doing so removes undesirable in-band
noises. The pseudo-algorithm of the proposed RANSAC
filtering is summarized in Algorithm 1.

In the implementation, we set the threshold value
p = 1, the number of iteration as 10000, the inlier
distance threshold as 10; and the inlier number threshold
as 0.5 ∗ N , respectively, where N is the number of the
input samples.

Algorithm 1 RANSAC filtering algorithm

Data: Time series acoustic samples s
Result: Filtered signals ŝ

1: Perform STFT on s and preserve the corresponding
amplitude A and phase θ information;

2: Binarize the spectrogram via a threshold p,
A (A > p) = 1;

3: Perform RANSAC fitting on the binarized spectro-
gram;

4: Define two boundaries that are parallel to the fitted
line with a boundary-line distance d (see Fig. 8);

5: Minimize the values outside the boundaries;
6: Utilize the values within the boundaries to form a

matrix mask Mm;
7: Multiply Mm by the original spectrogram formed by

A and θ, and get the filtered spectrogram;
8: Perform ISTFT on the filtered spectrogram to obtain

time-series ŝ.

Fig. 7(d) and Fig. 8(d) demonstrate the effectiveness
of the RANSAC filtering algorithm. From Fig. 7(d) we

Fig. 10: The effect of filters on the raw frequency peaks
over a time window. The maximum deviation of the
frequency peak before filters can be over 8 Hz. However,
after median and Kalman filter, the maximum deviation
is within 0.5 Hz.

can see that, the in-band noise (depicted as yellow
regions apart from the desirable chirp region in Fig. 7
(c)) after RANSAC filtering is greatly reduced. We can
also observe the effectiveness of the filter from Fig. 8 (d)
and Fig. 8 (c). Compared with Fig. 8 (c), the frequency
response depicted in Fig. 8 (d) has fewer ripples, indi-
cating much weaker noises.

5.3 Smoothing
After compensation and filtering, the signals from the
two channels can finally be applied to perform mixing.
Following that, we find the peak frequency component
f from the mixed result and use Eq. (8) to obtain the
temperature results. To further smooth the estimated
temperature results over a time window, the raw esti-
mates of frequency peaks are filtered by a median filter
and a Kalman filter in tandem. The filter performance
can be observed in Fig. 10. As shown in Fig. 10, the
maximum deviation of the frequency peak before filters
can reach 8 Hz. However, after median and Kalman filter,
the maximum deviation is within 0.5 Hz.

6 PERFORMANCE EVALUATION

6.1 Implementation
We have implemented SST on a commodity smartphone,
i.e., Samsung Galaxy S5, and a custom-built platform.
The customized platform has three modules: the sensor,
codec, and Raspberry Pi modules. The customized plat-
form was previously designed for acoustic based local-
ization in indoor environments [41] and can be thought
of an example acoustic-enabled IoT devices. We mount
an INMP411 high-performance acoustic sensor on the
sensor board. INMP411 is chosen due to its optimized
performance in high frequency range. The amplifying
circuit on the sensor board is transistor-based and there
is no AGC. The codec board mounts a WM8731 codec
chip that has dual channel inputs with a maximum of 96
kHz sampling rate. It also has an on-board TDA2822M,
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Fig. 12: Platform two: A high-end customized acoustic
sensing platform that supports two channel inputs with
a maximum of 96 kHz sampling rate, and stereo output
up to 3W.

a 3W classic-AB audio power amplifier. The employed
chirp signal has 20 kHz bandwidth and 0.01 s duration
with an initial frequency of 2 kHz. The guard interval be-
tween successive transmission is 0.03 s and the sampling
rate is set to 48 kHz. The detailed settings are shown in
Table. 1.

SST works in two modes: stand-alone and client-

TABLE 1: Settings for the transmitted signals

Parameters Value
Sampling rate 48 kHz
Chirp bandwidth 20 kHz
Chirp duration 0.01 s
Initial frequency 2 kHz
Guard interval 0.03 s

(a) A commercial product 
with 0.1°C and 1.5 %RH 
accuracy in temperature 

and humidity measurement

(a) Pi testbed
Speaker

Smartphone

(b) Phone testbed

LaptopPI board or 
smartphoneSmartphone

Water spray

Fig. 13: Testbed setup

server. On the Android platform, we execute a stand-
alone app. In the app, most of the complex signal
processing modules are implemented via NDK APIs. The
final results are visualized using an open-source graphic
toolkit [42]. A snapshot of the Android app is shown
in Fig. 11. With this app, one can preset the microphone
distance, obtain the instantaneous temperature data, and
inspect the intermediate results including the mixed
spectrum and the estimated frequency peaks over a time
window.

A client-server application was developed for the cus-
tomized platform. We use MATLAB to synthesize an
audio file that contains the designed chirp signals. The
Pi plays this audio files, generating expected wide-band
chirp signal to be played back. The signals recorded
by the microphone modules are then streamed to a
server using a UDP socket. The server processes the
captured frames in real-time and performs temperature
estimation. To measure ground truth values, we use
an arduino-compatible module with dedicated sensors
named GY-213V-SI7021. It can achieve 0.05 ◦C and
2 %RH accuracy in measuring temperature and humid-
ity, respectively.

6.2 Results

We conduct extensive measurements to evaluate the
performance of SST.

6.2.1 Stability of SST
Stability indicates whether the thermometer outputs sta-
ble readings over a certain time window when the tem-
perature and humidity do not have dramatic changes.
Unstable measurements prohibit the practical use of a
thermometer since a user cannot obtain reliable read-
ings. We use the maximum deviation of the estimated
temperature values or frequency peaks to quantify the
stability. Clearly, a small deviation is much desirable.

We conduct experiments using the customized platfor-
m and smartphones shown in Fig. 13. Fig. 14(a) depicts
the results on the customized platform. It can be ob-
served that the deviation of the frequency peaks is within
1 Hz and the maximum deviation is 0.6583 Hz. This is
equivalent to a temperature deviation around 0.26 ◦C.
Fig. 14(b) depicts the results on the smartphone. The
results reveal a maximum frequency deviation of 1.62
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(a) Stability test on a customized platform (b) Stability test on a commodity smartphone (c) AGC incurs dynamic channel gains

Fig. 14: Stability evaluation on (a) a customized platform and (b) a smartphone. During the measurement period,
both temperature and humidity remain stable. The results on the customized platform is much better than that on
the smartphone. Fig. (c) Demonstrates that the channel gain exhibits variations due to AGC

(a) Frequencies under different temperatures (b) Model verification (c) CDF of measurement errors

Fig. 15: Evaluation results: (a) Measured frequency peaks under different temperatures, demonstrating the feasibility
of the proposed model (b) Model verification. The blue line indicates the theoretical relation between temperature
and frequency peaks. The red dots are measured frequency peaks at discrete temperature points. (c) CDF of the
measurement results under different configurations and platforms.

Hz which is not as good compared to the customized
platform but still provides acceptable temperature devi-
ations (around 1.1 ◦C. The degraded performance on the
smartphone are due to two major contributing factors.
First, the acoustic signals experience non-line-of-sight
path to reach two microphones. The NLOS signals are
comparatively weaker and more unstable than that of
line-of-sight (LOS) signals [27], [10]. This NLOS problem,
caused by the physical layout of the two microphones,
is inherent in a smartphone3. Second, a smartphone
has an on-board AGC (depicted in Fig. 5) that makes
the acoustic channel exhibit dynamic channel gains,
resulting in degraded compensation effects and thus
worse thermal sensing performance. Fig. 14(c) illustrates
this phenomenon. As we can observe in Fig. 14(c), as
the intensity of transmitted signals increases linearly,
the intensity of the received signals exhibits over 20%
variations. AGC cannot be disabled through Android
API [43]. As part of future work, we will investigate
native implementation that can disable AGC to improve
the stability of SST on smartphones.

3. A common microphone placement on a smartphone is: one mi-
crophone is at the bottom and the other is on the top. Therefore, it
is impossible for both microphones to be at LOS from the auxilary
device.

6.2.2 Accuracy of SST

To evaluate the temperature estimation accuracy of SST,
we conduct the experiments in a car. We use the air
conditioner in the car to change the temperature. The
enclosed environment makes it relatively easy to change
the temperature in a short period of time. The achievable
range of the temperature is 9 - 30 ◦C. We randomly select
one temperature point to calibrate d and then use Eq. (8)
to perform estimation at other temperature points.

Fig. 15(a) depicts the measured frequency peaks over
different temperatures. Evidently, different temperatures
result in different frequency peaks. Fig. 15(b) plots fre-
quency peaks vs temperature. The blue line plots the
theoretical relationship between the temperature and fre-
quency peak, and the red points are measured frequency
peaks at discrete temperature points. We can clearly
observe that the measurements are in good agreement
with the theoretical ones, verifying the correctness of
the proposed models. Fig. 15(c) depicts the CDF of the
estimated temperature. We can observe that SST can
achieve a median accuracy of 0.5 ◦C and a 80-percentile
of 0.7 ◦C on our Pi platform. On smartphones, SST
achieves a median accuracy of 0.6 ◦C and a 80-percentile
of 1.2 ◦C. Without the proposed compensation filter, the
80-percentile error of could reach 1.4 ◦C.
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Fig. 16: Measurement results of different phone models

We have also conducted experiments using differen-
t phone models. The phones used in the experiment
include HUAWEI Honor V9, Xiao MI 8, MEIZU 16s,
and Samsung S5. The frequency responses of the a-
coustic sensors on these phones are different. The two
microphones on these smartphones are all in opposite
directions with one on the top and the other on the bot-
tom (common microphone placement on smartphones).
However, the distances between the microphones and
their relative orientations across different smartphones
are different. We use another HUAWEI honor phone as
the auxiliary device. The measurement device and the
auxiliary device are placed along the long side. Though
the relative orientation of the microphones to the speaker
are different, the calibrated effective microphone-speaker
distances are much the same (around 0.15 m), indicating
the same measurement precision. The results are shown
in Fig. 16. Apparently, the sensing results across different
phones are almost the same.

6.2.3 Effect of Humidity
Humidity is known to affect sound speed in air but in
practice has negligible impacts on the estimated temper-
ature. To verify the above claim, we conduct another
experiment. The testbed setup is the same with the one
in the stability evaluation experiment and is shown in
Fig. 17. We use a smartphone to play the designed chirp
signals. We plot the frequency peaks, temperature, and
humidity in real-time, respectively. At some point during
the experiment, we use a water spay to change the
humidity of the acoustic channel. The vapor produced
by the water spay is fine-tuned so that it only changes
the humidity but not the temperature.

Fig. 18(a) depicts the estimated frequency peaks, the
estimated temperature, and measured humidity over a
certain time window, respectively. From Fig. 18(a) we can
observe that, when the humidity experiences a dramatic
change, increasing from a minimum of 42.6 %RH to
a maximum of 90.99 % RH, the frequency peaks only
undergo a change less than 0.89 Hz, or equivalently a
change in temperature estimation within 0.5 ◦C. Given
the inherent measurement noises, it is reasonable to
conclude that humidity has negligible impacts on the

(a) A commercial product 
with 0.1°C and 1.5 %RH 
accuracy in temperature 

and humidity measurement

(a) Pi testbed
Speaker

Smartphone

(b) Phone testbed

LaptopPI board or 
smartphone

Smartphone

Water spray

Fig. 17: Testbed setup to explore the impact of humidity
on the sensing results

sensing results. This can be further validated using the
Pearson Product-Moment Correlation Coefficient (PPM-
CC), a well-known statistical approach to measure corre-
lation between data sets, to quantify the relation between
the humidity and frequency peaks. The PPMCC [44] is
defined by,

ρX,Y =
cov (X,Y )

σXσY
=

E [(X − µX) (Y − µY )]

σXσY
, (13)

where µX , µY and σX , σY are mean and variance, re-
spectively. cov () calculates the covariance between two
measurements. The PPMCC is within a range between
[−1, 1] and if PPMCC is close to zero, two measurements
have loose correlation, otherwise strong correlation. In
the experiments, the correlation between the frequency
peaks and the humidity is ρ = −0.023963. In other
words, probably the fluctuation in frequency peaks is
due to different noisy sources other than humidity.

6.2.4 Usability Study
We have conducted a usability study to evaluate the
applicability of SST. In this experiment, we ask four vol-
unteers to use SST under real-world settings. During the
calibration phase, they manually marked the placement
of the measurement device and the auxiliary device a-
long a side of a common object such as a desk. Then they
were asked to take the devices away and recorded the
thermal readings in three different time (morning, noon,
and night) of the next day. Each participant was asked
to repeat the measurements at least at three different
places. It should be noted that the four volunteers took
turns in using the same devices for measurements. The
results are depicted in Fig. 18(b). It is observable that
all the measurements from four participants exhibit the
same performance. The average errors are all around
0.6◦C. The four participants all were excited about the
application and gave positive feedback to it.

7 DISCUSSIONS

7.1 Removing Auxiliary Device
Intuitively, one may wonder whether it is viable to run
the proposed algorithm on a single device. The answer
is no and the underlying reasons are listed as follows.
First, the SNR of recorded signals is much worse on
a single device. When performing sensing on a single
device, the model proposed in this paper (Eq. (8)) could
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Fig. 18: Evaluation results: (a) A dramatic change in humidity does not affect the estimated sensing results. (b)
Usability study. The measurement results from different users reveal the same performance. (c) The measurement
results at different transmission volumes.

be hardly verified due to severely signal distortions.
Second, the effective microphone distance d decreases
sharply. For instance, on Samsung S5, the effective micro-
phone distance almost cuts down by half. Therefore, the
corresponding measurement accuracy decays up to 1◦C,
which affects its usability. Finally, the sensed spectrum
peak is very unstable on a single device, resulting in
unstable thermal readings.

However, we believe that the auxiliary device may
not be needed in certain conditions. For instance, recent
advances in acoustic sensing have shown capabilities
in decomposing acoustic reflections [10], [30] and even
use it for acoustic imaging [30]. With advanced signal
processing techniques, we can perform thermal sensing
using acoustic reflections on a single commodity mobile
devices. For example, we can place a smartphone in
proximity to a concrete wall and inspect the temperature
empirically from a specific acoustic reflection. Under
such circumstances, the auxiliary device can be removed.

7.2 Effect of Wind Velocity
SST utilizes the relation between temperature and the
sound speed in thermal sensing. It is desirable that
external wind force is minimal, or otherwise the esti-
mated results would be greatly impacted. To mitigate
the impact of wind velocity, we can place a cover on
the acoustic channels or add a wind velocity sensor to
compensate the wind force effects.

7.3 Audibility
SST needs a wide-band chirp signal that occupies the
frequency range from 2 - 22 kHz. Such chirp signals are
audible to human ears and can be disturbing. However,
since obtaining a thermal reading only takes less than
a second, audibility is not a severe issue. The technique
of reshaping the signal amplitude in [23] can mitigate
the audibility problem but may aggravate the frequency
selectivity problem hence distort thermal sensing perfor-
mance. Another feasible approach to further deal with
the audibility is to reduce the volume on the transmis-
sion side. This operation would reduce the SNR and

thereby affect the sensing results. To explore how the
transmission volume affects the sensing results, we have
conducted experiments under different transmission vol-
umes. In the experiment, we use an APP called Sound
Meter [45] to measure the average sound intensity. The
results are presented in Fig. 18(c).

It can be observed that reducing the volume from
50 dB to 30 dB on the transmission side would slight-
ly decay the system performance. And at 20 dB, the
performance become worse with an average accuracy
over 4◦C. The degraded performance at 20 dB may
be caused by the fact that the transmitted signals are
under noise floor or below the quantization level of the
receiver end. At 50 dB, the average sensing results could
reach 0.6◦C. It should be noted that 50 dB is the sound
intensity of common indoor office and 30 dB is in a
quite home [46]. A noisy environment should reach 70
dB [46]. Consequently, we believe our proposed method
introduce neglectable interference to human life.

8 CONCLUSIONS
In this paper, we have proposed the first Software Sonic
Thermometer (SST) using acoustic-enabled IoT devices.
We have employed on-board dual microphones on com-
modity hardware to achieve accurate thermal sensing in
a non-contact manner by leveraging the deterministic
relation between sound speed and temperature data.
To precisely measure sound speed, we have present-
ed a chirp signal mixing technique to circumvent low
sampling rates on commodity hardware and designed a
pipeline of signal processing blocks to handle channel
distortion. Extensive measurements have revealed that
SST yields a median accuracy of 0.5 ◦C and 90% esti-
mation errors below 0.9 ◦C. With the recent advances in
crowdsourcing, SST could leverage the ubiquitous IoT
devices to achieve large-scale distributed thermal sens-
ing, which may revolutionize temperature acquisition in
meteorology and urban computing.
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