
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 1

Scheduling Periodic Task Graphs for Safety-Critical
Time-Triggered Avionic Systems

Menglan Hu, Jun Luo, Member, IEEE, Yang Wang, and Bharadwaj Veeravalli, Senior Member, IEEE

Abstract—Time-triggered communication protocols, such as
Time-Triggered Protocol (TTP) and FlexRay, have potential
to solve many system integration and concurrent engineering
issues in the aerospace industry. This paper investigates the
scheduling of periodic applications on time-triggered systems.
A novel scheduling problem is formulated to capture a unique
feature commonly existing in the safety-critical time-triggered
systems, i.e., in task graphs running in such systems, some nodes
(i.e., tasks and messages) are strictly periodic while others are
not. To address the problem, a novel scheduling algorithm called
Synchronized Highest Level First (SHLF) algorithm is presented.
Moreover, to further improve schedulability, this paper also
proposes two rescheduling and backtracking approaches, namely
Release Time Deferment (RTD) procedure and Backtracking
and Priority Promotion (BPP) procedure. Performance evalua-
tion results are presented to demonstrate the effectiveness and
competitiveness of our approaches when compared to existing
algorithms.

Index Terms—Avionic systems, time-triggered systems, real-
time scheduling, list scheduling, end-to-end-delays, task graphs.

I. INTRODUCTION

Time-triggered communication protocols, such as Time-
Triggered Protocol (TTP) [9], Time-triggered CAN (TTCAN)
[4] and FlexRay [5], have the capabilities to solve many system
design and integration problems in the avionics industry.
They have considerably influenced the design of a variety of
modular system architectures of modern aerospace vehicles.
For example, TTP has been applied to critical modular systems
for distributed power generation, engine and flight controls
in aircrafts including Airbus A380, Boeing 787, Bombardier
CSeries, Embraer Legacy, fighter jets and other regional and
business airplanes [1].

Due to the wide deployment of the time-triggered protocols
(i.e., TTP, TTCAN, and FlexRay), the scheduling of appli-
cations on time-triggered systems becomes a critical issue
for offering quality-of-service (QoS) guarantees to safety-
critical systems, here, an application is referred to a set
of tasks with timing constraints to perform a well-defined

Menglan Hu is with the School of Electronic Information and Commu-
nications, Huazhong University of Science and Technology, Wuhan, China
430074. E-mail: humenglan@gmail.com.

Jun Luo is with the School of Computer Engineering, Nanyang Techno-
logical University, 50 Nanyang Avenue, Singapore 639798. E-mail: junlu-
o@ntu.edu.sg.

Yang Wang is with the Faculty of Computer Science, University of New
Brunswick, Fredetricton, Canada, E3B 5A3. E-mail: ywang8@unb.ca.

Bharadwaj Veeravalli is with the Department of Electrical and Computer
Engineering, National University of Singapore, 4 Engineering Drive 3, Sin-
gapore 117576. E-mail: elebv@nus.edu.sg.

function in the system. Each task in the application running
in a specified electronic control unit (ECU) is triggered by
one or more messages from other tasks and sends messages
to its downstream tasks. Consequently, the application can
be abstracted as a directed acyclic graph (aka task graph)
where nodes represent either the tasks or the messages and
edges specify the precedence constraints among the tasks. For
instance, TTP-based modular aerospace control (MAC), which
is a part of the F110 full authority digital engine control
(FADEC) system of General Electric, is integrated into the
Lockheed Martin F-16 fighter aircraft. The FADEC is a system
consisting of a collection of ECUs, and its related accessories
control all aspects of the aircraft engine performance. The
FADEC works by receiving multiple input variables of the
current flight condition, including air density, throttle lever
position, engine temperatures, engine pressures, and many
other parameters. The inputs are periodically received by
the ECUs and then analyzed up to 70 times per second.
Accordingly, an applications in the FADEC can be abstracted
as a periodic task graph.

Unlike traditional embedded systems, the complexity of
the avionic systems is dramatically increased to fulfill di-
verse functionalities in a time-bounded manner, rendering the
scheduling of both tasks and messages at the same time to
be commonplace. However, many existing research efforts
only concentrate on the message scheduling in the commu-
nication channels between ECUs, lacking the notion of its
task counterpart [10], [11], [27], [12], [13]. Such isolated
message-only scheduling may severely compromise the overall
performance and feasibility of the application. A handful of
studies have investigated the holistic scheduling problem of
both tasks and messages on time-triggered systems [18], [15],
[16], [17], [31]. However, most of them suffer from the limited
scalability as their solutions are usually relied on mathematical
programming techniques, which cannot be scaled to a large-
scale system. To deal with the sharply increasing amount of
software functionality in the avionic systems, it is desirable to
design efficient and scalable heuristic approaches. Of course,
many heuristics have been proposed in literature to deal with
the scheduling of task graphs in multiprocessors [34], [33],
[32], [20], [25], [24], [23]. Nevertheless, these algorithms were
not developed for the safety-critical time-triggered systems.
Further, most of these studies even neglect the contention
among the underlying communication resources.

Further, in most previous studies [21], [22], [19], [25],
[26], a task graph is only periodic in terms of its release
time and deadline while the nodes in the task graph are not
necessary to be strictly periodic. That is, the comparative



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 2

start time (to the release time of the task graph) of different
invocations of a task can be different provided that their
deadlines and precedence constrains can be met. However,
such an assumption is untenable for safety/time-critical appli-
cations (i.e., task graphs) in time-triggered systems. For such
an application, besides release time and deadline, the start time
of different invocations of the same time-critical task (e.g., data
collection task) need also be periodic. In this case, some prior
studies on the time-triggered systems which used mathematical
programming techniques simply assumed that all nodes in a
task graph are strictly periodic. Nevertheless, since in fact
other nodes (e.g., messages and data processing nodes) in
the application are unnecessarily periodic, this oversimplified
assumption may impose excessive constraints and undermines
the schedulability of the whole system. Therefore, a scheduling
algorithm that is aware of the periodicity of specific nodes
should correctly address both periodic and aperiodic nodes
for periodic time-triggered applications.

Motivated by these needs, this paper investigates the prob-
lem of scheduling periodic task graphs consisting both periodic
and aperiodic tasks and messages for the safety-critical time-
triggered systems. To the best of our knowledge, this study is
the first attempt to consider this problem. The contributions are
multi-fold. Firstly, this study proposes a novel scheduling algo-
rithm, referred to as Synchronized Highest level First (SHLF)
algorithm. The SHLF algorithm simultaneously assigns all
instances of each periodic node to guarantee the periodicity
of the periodic nodes. Meanwhile, it separately schedules
each instance of an aperiodic node to utilize the flexibility of
those aperiodic nodes. Also, the contention on communication
resources in the time-triggered systems is explicitly addressed.

Additionally, to further improve the schedulability, this
paper also proposes two rescheduling and backtracking ap-
proaches, called Release Time Deferment (RTD) method and
Backtracking and Priority Promotion (BPP) method, respec-
tively. The essence of the RTD algorithms is to defer the
release time of conflicted task graphs for conflict resolution,
which overcomes the downside of many prior studies (e.g.,
[21], [22], [25]), where the release time of task graphs
is simply fixed as zero, leading to poor performance (i.e.,
schedulability) under complex timing constraints. Once the
conflicts cannot be eliminated by deferring the release time,
BPP backtracks a number of previously scheduled applications
to create space for the conflicted applications and reschedules
them with promoted priorities.

The remainder of this paper is organized as follows. Section
2 discusses the related work. Section 3 explains the motivation
of the paper via an example. Section 4 introduces mathematical
models, assumptions, and problem formulation. Section 5
describes the proposed algorithms in great detail. Section 6
presents simulation results to evaluate the algorithm, with
conclusions following in Section 7.

II. RELATED WORK

The scheduling problem in time-triggered systems has
received considerable attention in recent years. Park et al.
[14] designed a FlexRay network parameter optimization

approach that can derive the durations of the static slot
and the communication cycle. Another two papers [11] and
[10] studied the message scheduling problem via nonlinear
integer programming (NIP) techniques for the static and
dynamic segments, respectively. Specifically, [11] utilized a
frame packing technique that packs multiple frames into one
message, while [10] reserved time slots for aperiodic messages
to assure QoS guarantees and flexible scheduling of the
dynamic segment. Martin et al. [12] transformed the message
scheduling problem on the static segment into a bin packing
problem and then utilized ILP to address it. Nevertheless, these
studies only concern on message scheduling and neglected its
task counterpart. Such isolated message-only scheduling may
seriously compromise the overall performance and feasibility
of the applications which comprise both tasks and messages.
In contrast, this study holistically schedules both tasks and
messages on time-triggered avionic systems.

A number of studies on the holistic scheduling of both
tasks and messages in time-triggered systems have also been
reported in the literature [18], [15], [16], [17]. Pop et al.
[18] employed constraint logic programming (CLP) to deal
with the scheduling and voltage scaling issue of low-power
fault-tolerant hard real-time applications. Davare et al. [16]
applied geometric programming (GP) for scheduling tasks
and messages for distributed vehicle systems. Another work
[17] proposed scheduling analysis methods for hybrid event-
triggered and time-triggered systems. All of these studies
relied on mathematical programming techniques and the high
computation complexity of solving mathematical program-
ming thus limits the applicability and scalability of their
methods.

The scheduling of task graphs in multiprocessor system-
s has received much attention in past decades [36], [37],
[38], [40], [39]. One category of classic algorithm that has
been widely applied is list scheduling. A list scheduling
algorithm typically maintains a list of tasks according to
their assigned priorities. It has two phases: the task selection
phase for selecting the highest-priority ready task and the
processor selection phase for selecting a suitable processor
that minimizes a predefined cost function. Some examples
include the Modified Critical Path (MCP) [34], Dynamic Level
Scheduling (DLS) [33], Highest Level First (HLF) [32], and
Heterogeneous Earliest-Finish-Time (HEFT) [20] algorithms.
Since list scheduling heuristics are generally more practical
and provide better performance at a lower scheduling time
than the other categories, our paper presents algorithms based
on list scheduling techniques. Specifically, our proposed SHLF
algorithm attempts to use highest level first policy for node
selection, which is similar to some of the known algorithms
in the literature [32], [20]. Nevertheless, the design of node
assignment in SHLF, as well as RTD and BPP methods, are
the novel contributions of this paper.

Another type of heuristic is clustering [25], [24], [23]. In
this category, tasks are pre-clustered before allocation begins
to reduce the size of the problem. Task clusters (instead of
individual tasks) are then assigned to individual processors.
Dave et al. [25] presented a clustering-based co-synthesis
algorithm, which schedules periodic task graphs for hardware



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 3

n11

n12

ECU3

ECU2

ECU1

Bus

n13

n14n22 n12

n15

n11

n15

n13n23

n14

n21

n25

n24

Time 

(in ms) 0 8 16

ECU3ECU2ECU1ECU3ECU2ECU1 Bus Bus Bus BusHost

Node

Size

n11 n12 n13 n14 n15 n21 n22 n23 n24 n25

11.5 12 1.5 2 21 7 1

Fig. 1. Motivating example.

and software co-synthesis on heterogeneous distributed em-
bedded systems. [24] proposed a period-based approach to
the problem of workload partitioning and assignment for large
distributed real-time systems. [23] designed a static algorithm
for allocating and scheduling components of periodic tasks
across sites in distributed systems. In the problem discussed
in this paper each task must be processed in a specific ECU;
therefore, clustering may be useless since the tasks have been
naturally clustered by their functionality. Accordingly, when
handling the problem discussed in this paper, these clustering
approaches may lose their benefits.

Prior researchers have also proposed optimal approaches for
some class of real-time task graph scheduling problems. Peng
et al. [21] designed an optimal Branch and Bound (B&B)
approach for scheduling periodic task graphs to heterogeneous
distributed real-time systems. Another work [22] proposed an
optimal B&B algorithm for allocating tasks on multiprocessors
subject to precedence and exclusion constraints. Nevertheless,
these optimal solutions are applicable to only small task graphs
consisting of tens or so tasks.

Energy-efficient requirements have also been considered in
real-time task graph scheduling problems [19], [18], [28]. [19]
presented a power-conscious algorithm for jointly schedul-
ing multi-rate periodic task graphs and aperiodic tasks in
distributed real-time embedded systems. [28] proposed static
and dynamic power management schemes that save energy by
exploring the idle periods of processors.

III. MOTIVATING EXAMPLE

Consider two task graphs g1 and g2. The period of g1 is
8ms and the period of g2 is 16ms. Accordingly in one hyper
period two instances of g1 and one instance of g2 are scheduled
together. g1 has five nodes {n11, n12, ..., n15} and g2 also has
five nodes {n21, n22, ..., n25}. These nodes are running in 3
ECUs (ECU1, ECU2, and ECU3) and a bus. The table in Fig.
1 shows the details of all nodes. As ECU1 collects periodic
data, tasks running on it (e.g., n11 and n21) are periodic. For
example, to guarantee the correctness of data collection, the
intervals between the start times of two consecutive instances
of n11 must be 8ms. On the other hand, as other ECUs and
the bus only process and transmit data, other nodes running

on the ECUs and the bus are not periodic, i.e., there is no
constraint regarding the intervals between the start times of
two consecutive invocations of such a node.

In previous studies on multiprocessor scheduling, [21], [22],
[19], [25], [26], there is no constraint on whether an individual
node is periodic and they commonly assume that a task
graph is only periodic in terms of release time and deadlines.
Accordingly, their models do not capture the timing require-
ments of periodic nodes such as n11 and n21 and may cause
erroneous scheduled on safety-critical time-triggered systems.
To guarantee the correctness of periodic nodes (i.e., n11 and
n21), some prior papers (e.g., [15], [16]) simply assumed
that all nodes are periodic and they formulated mathematical
programming to solve their scheduling problems. Based on
this oversimplified assumption, the intervals between the start
times of two consecutive instances of n13 is 8ms and thus n23

cannot be scheduled in a hyper period since the size of n13

is 2ms and the size of n23 is 7ms. Nevertheless, this example
problem actually has a feasible schedule, which is shown in
Fig. 1. In the schedule, two instances of n13 start at 2.5ms and
12.5ms, respectively, and thus n23 can be scheduled at 4.5ms.
Therefore, it is desirable to design an algorithm that is aware
of the periodicity of specific nodes and can correctly schedule
both periodic and aperiodic nodes for periodic time-triggered
applications.

IV. PROBLEM FORMULATION

We consider a FlexRay cluster consisting of a set of ECUs
(i.e., hosts) connected via the FlexRay bus. Fig. 2 shows an
example of such a system on an airplane where the dark
boxes on the plane represent ECUs. The ECUs can process
specific tasks that exchange data via messages transmitted on
the bus. The FlexRay protocol [5] is a time-triggered protocol.
Its operation is based on a repeatedly executed FlexRay cycle
with a fixed duration. Fig. 3 shows the timing hierarchy of 64
FlexRay cycles. A FlexRay cycle comprises a static segment
(SS), a dynamic segment (DS), a symbol window (SW), and
the network idle time (NIT). This paper studies the scheduling
of periodic applications, which only utilizes the static segment.
The organization of the static segment is based on a time-
division multiple access (TDMA) scheme. It consists of a fixed
number of equal size static slots (i.e., communication slots).
Each static slot in each channel of each cycle can only be
uniquely assigned to one ECU to transfer one frame (i.e.,
message), but each static slot can be assigned to different
ECUs in different channels or cycles. Fig. 3 illustrates the
time hierarchy of the static segment. The lengths of static slot
Ts, static segment Tss, and the communication cycle Tc are
assumed to be known to the scheduler beforehand as previous
papers have thoroughly studied how to choose proper values
for these parameters [14], [11].

This paper assumes a periodic real-time task model in which
G = {g1, g2, ..., gJ} is a set of J applications to be processed
in the cluster. Let p(gj) be the period of application gj ∈ G
and P be the least common multiple of all p(gj)s. The interval
[0, P ) is called the hyper period. In one hyper period an
application invokes K(gj) = P

p(gj)
times. Also, one hyper



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 4

Fig. 2. A cluster of ECUs on a plane.

64 communication 

cycles

Static slots in SS

1 communication 

cycle

0 1 2 …... 6362

SS DS SW NIT

ST slot ST slot ST slot…...

Fig. 3. FlexRay timing hierarchy.

period spans multiple communication cycles. It suffices to
analyze the behavior of the whole system only in one hyper
period, since it will repeat for all hyper periods [21].

As shown in Fig. 3, an application can be modeled by
a directed acyclic graph (DAG) comprising multiple nodes
(i.e., vertexes), which are the smallest units to be scheduled,
and edges, which specify precedence constraints. Task graph,
DAG and application terms are interchangeably used in this
paper. A node can be either a task (i.e., computation module)
running on a particular ECU (e.g., a sensor, or an actuator)
or a message (i.e., communication module) exchanged on the
communication bus. Associated with each node ni is its time
cost, denoted by w(ni) which indicates the execution time
on a ECU if the node is task, or the message transmission
time on the bus if the node is a message. In addition, since
each ECU is different and has its specific functions, the hosted
ECU of each task is known beforehand and processor selection
appearing in conventional work is not needed. The host of
node ni is specified as H(ni). Further, messages nodes should
be fit into communication slots on the bus. The transmission
of a message cannot span two or more communication slots.

In a DAG, an edge eij linking two nodes nj and ni

represents the precedence constraint between the nodes, i.e.,
ni should complete its execution before nj starts. The edges
have no time cost. The source node ni and the destination
node nj of the edge eij are named as the parent node and
the child node, respectively. A node which has no parent is
called an entry node while a node which has no child is called
an exit node. Again, once ni is scheduled onto H(ni), the
node scheduled immediately before ni on H(ni) is denoted
as prev(ni) and the node scheduled immediately after ni

on H(ni) is denoted as next(ni). Further, a node np that
must finish computation before the start of another node nq

is called an ancestor of nq and nq is called an offspring of
np. Accordingly, the ancestors of ni’s parents and prev(ni)
are ni’s ancestors. Similarly, the offspring of ni’s children as

N1

N2 N3

N4

N5

N6 N7

N8

ECU 3

ECU 2

ECU 1

ECU 4

Bus

Fig. 4. An example of task graph running on ECUs.

CPL(gi) the critical path length of gj
d(gj) deadline of gj
EST (ni) the earliest start time of ni

gj j-th task graph
gkj k-th instance of j-th task graph
K(gj) the number of instances of gj
LSTmax(ni) the maximum latest start time of ni

ni i-th node
nk
i k-th instance of i-th node

o(gj) the offset of gj
P duration of a hyper period
p(gj) period of gj
priority(gj) priority of gj
rank(gj) the rank of gj
ranku(ni) the upward rank of ni

ST (ni) the start time of ni

w(ni) time cost of ni

TABLE I
NOTATIONS AND TERMINOLOGY

well as next(ni) are also ni’s offspring.
An application gj has an offset o(gj) indicating the start

time of each instance of gj in one hyper period, i.e., the start
time of the k-th invocation of gj is o(gj)+k∗p(gj) where k =
0, 1, ...,K(gj) − 1. The offset of each application is initially
set as zero and will be decided by the scheduling algorithm.
Also, each application gj may have a relative deadline d(gj).
The k-th instance of gj cannot finish after a time d(gj) +
o(gj) + k ∗ p(gj). Notice that possibly d(gj) + o(gj) + k ∗
p(gj) > P , i.e., the execution of an application is allowed
to span multiple hyper periods. Moreover, each application gj
is scheduled K(gj) times in a hyper period. Thus each node
ni has K(gj) invocations in a hyper period. Let nk

i denote
k-th invocation of ni. Let the start time of nk

i be ST (nk
i ).

If ni is periodic, ST (nk
i ) = ST (n0

i ) + k ∗ p(gj). In other
words, the interval between the start times of two consecutive
instances of ni is p(gj) where ni belongs to task graph gj . This
constraint should be respected by the scheduler. Otherwise, ni

is aperiodic and there is no constraint regarding the interval
between the start times of two consecutive instances of ni.

The objective is to schedule all nodes in all instances (i.e.,
to allocate ST (nk

i ) for all nodes) of all applications in one
hyper period to guarantee that all instances of all applications
can meet their respective deadlines. Finally, notations and
terminology are listed in Table I.

V. THE PROPOSED ALGORITHM

The algorithm first orders the graphs and picks each graph
for scheduling. Then the algorithm schedules all nodes in



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 5

each selected task graph. If the algorithm fails to schedule
a node in a task graph gj , o(gj) is modified to a proper value
and all nodes in the task graph are rescheduled. In case that
rescheduling cannot help, the algorithm backtracks multiple
previously scheduled graphs to create space for the failed
graph.

A. Graph Selection

This procedure calculates the priorities of the graphs and
ordering them according to their priorities. The rank of a graph
gj is defined as:

rank(gj) =
2CPL(gj)

p(gj) + d(gj)
(1)

where CPL(gj) is the critical path length of the graph. The
critical path is defined as a set of nodes and edges, forming
a path from an entry node to an exit node, of which the sum
of computation and communication costs is the maximum. To
obtain CPL(Gj), one can recursively calculate the upward
rank of each node in the graph via:

ranku(ni) = w(ni) + max
s∈child(ni)

{ranku(ns)} (2)

where succ(ni) is the set of ni’s children. Basically,
ranku(ni) is the longest distance from ni to the exit node and
CPL(gj) is the largest ranku(ni) of all nodes in the graph. In
other words, CPL(gj) is equal to the rank of the entry node.
The idea to select rank(gj) as the priority is that a longer
critical path length implies that the graph is likely to be more
difficult to schedule within limited room while a longer period
and a longer end-to-end deadline usually indicate larger space
for the nodes in the application to be flexibly scheduled. The
graph list is generated by sorting the graphs by the descending
order of their ranks. The scheduler then selects the application
with the largest rank for scheduling (line 6 of Algorithm 3).

B. Synchronized Highest Level First (SHLF) Algorithm

This subsection details the SHLF algorithm which schedules
all nodes of the selected task graph gj . A priority queue is
maintained to contain all ready nodes at any given instant.
A node becomes ready for scheduling if none of its parents
is unscheduled. At each step, a node ni with the largest
ranku(ni) in the queue is selected from the queue. The node
is then scheduled by procedure schedule(ni)(lines 9-10 of
Algorithm 3).

Algorithm 2 elaborates schedule(ni), which deals with the
node in two cases: the node is periodic, and the node is
aperiodic. To achieve this, the procedure needs to call another
procedure findStartTime(t, nk

i ) (shown in Algorithm 1) that
finds a feasible start time after a given time instant t for node
ni. If the node ni is periodic (lines 2-22 of Algorithm 2), this
procedure searches for K(gj) periodic time slots on H(ni)
to concurrently accommodate K(gj) instances of the node.
Since the scheduling of nodes should preserve precedence
constraints of the task graph, the search of an appropriate idle
time slot for nk

i on H(nk
i ) starts from the earliest start time

of nk
i (denoted as EST (nk

i )), i.e., the time when all nk
i ’s

Algorithm 1 findStartTime(t, nk
i )

1: round← 0
2: ST (nk

i )← t
3: SST ← 0
4: if L(H(nk

i )) is not empty then
5: if ST (nM−1) + w(nM−1)− P > 0 then
6: SST ← ST (nM−1) + w(nM−1)− P
7: end if
8: outerLoop:
9: while ST (nk

i ) < LSTmax(nk
i ) do

10: m← 0
11: while m ≤M do
12: if m < M then
13: SET ← ST (nm) + round ∗ P
14: else
15: SET ← ST (n0) + (round+ 1) ∗ P
16: end if
17: if ST (nk

i ) ≥ SST and ST (nk
i ) + w(ni) ≤ SET

then
18: break outerLoop
19: end if
20: if m < M then
21: SST ← ST (nm) + w(nm) + round ∗ P
22: else
23: SST ← ST (n0) + w(n0) + (round+ 1) ∗ P
24: end if
25: if ST (nk

i ) < SST then
26: ST (nk

i )← SST
27: ST (nk

i ) is mapped to next idle communication
slot if ni is a message

28: end if
29: m← m+ 1
30: end while
31: round← round+ 1
32: end while
33: end if
34: if ST (nk

i ) > o(gj)+k ∗p(gj)+d(gj)− ranku(ni) then
35: δo ← ST (nk

i )− o(gj)− k ∗ p(gj)− d(gj)+ ranku(ni)
36: return -1
37: end if
38: return ST (nk

i )

parents are finished (line 4 in Algorithm 2). The “while” loop
(line 5 in Algorithm 2) then repeatedly searches until K(gj)
periodic slots are found. In Algorithm 2, cnt, x, and y are
local variables: cnt is the number of feasible periodic (i.e.,
synchronized) slots that have been found, i.e., totally a number
of cnt equaling to K(gj) synchronized slots should be found
for accommodating the K(gj) periodic instances; x is the
index of the instance for which (i.e., nx

i ) the first feasible slot is
found and thus the scheduled time of other instances should
be synchronized to this instance; y is the index of another
instance for which (ny

i ) the slot should be synchronized to nx
i .

Accordingly, line 6 in Algorithm 2 attempts to find a feasible
slot for an instance ny

i such that the slot is synchronized to
that of nx

i . In other words, line 6 is repeatly used to search for



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 6

K(gj) synchronized time slots. If the node is aperiodic (lines
23-31 in Algorithm 2), the algorithm separately schedules the
K(gj) instances of the node via the for loop. Line 25 again
calls findStartT ime(EST (nk

i ), n
k
i ) to separately determine

the start time of the instances.
Algorithm 1 returns the earliest feasible start time that

can be allocated to nk
i , i.e., ST (nk

i ). If no feasible start
time can be found, −1 is returned. Suppose totally M nodes
{n0, ..., n(M−1)} have been scheduled on H(ni) in one hyper
period. Within one hyper period, a selected node nk

i may be
scheduled into (M+1) possible time slots i.e., slot m ∈ [0,M ]
between two consecutively scheduled nodes n(m−1) and nm.
Virtual nodes n−1 and nM are used for the convenience of
denoting the first and the last slots. The search of a feasible
slot starts from the slot immediately before n0 of the current
hyper period, i.e., the slot immediately after n(M−1) of the
last hyper period (lines 5-6 of Algorithm 1). For a time slot
m being examined, the start time of the slot, recorded by
local variable SST (line 21 of Algorithm 1), is indeed the
finish time n(m−1); the end time of the slot, recorded by local
variable SET (line 13 of Algorithm 1), is the start time of
nm. The last slot (i.e., slot M ) of the last hyper period is
indeed the first slot of the current hyper period. Accordingly,
the virtual node nM of the last hyper period is indeed the n0 of
the current hyper period. SET and SST for this special slot
are obtained in lines 15 and 23, respectively. The algorithm
searches for the first feasible idle slot that can hold nk

i . That
is, the duration of the time slot should be no shorter than the
computation (or transmission) cost of the node, as shown in
line 17 of Algorithm 1. Since the execution of an application is
allowed to span multiple hyper periods, the procedure searches
for multiple hyper periods until the overall latest start time of
ni, denoted as LSTmax(nk

i ), has been reached, as shown in
the outer “while” loop, line 9 of Algorithm 1. LSTmax(nk

i )
is defined as:

LSTmax(nk
i ) = d(gj) + (k + 1) ∗ p(gj)− ranku(ni). (3)

In this equation, LSTmax(nk
i ) is obtained by assuming

o(gj) = p(gj); therefore, no feasible start time of nk
i can

be greater than LSTmax(nk
i ). Then, for each hyper period

that is being searched, the inner “while” loop (line 11 of
Algorithm 1) searches the (M+1) possible time slots. Further,
if ni is a message, ST (nk

i ) is mapped to the start time of the
next idle communication slot. Further, δo obtained in line 35
of Algorithm 1 will be used by RTD described in the next
subsection.

The worst case time complexity of Algorithm 1 is O(N)
where N is the number of nodes to be scheduled in a hyper
period due to the inner while loop (line 11 in Algorithm 1).
The outer while loop (line 9 in Algorithm 1) will only repeat
for constant (usually very small) times as the maximum value
of LSTmax(nk

i ) is a constant at runtime (usually very small).
The worst case time complexity of Algorithm 2 is also O(N)
due to the while loop of Algorithm 2. For scheduling N nodes
in a hyper period, the worst case time complexity of SHLF is
thus O(N3) as Algorithm 3 will run N times to schedule N
nodes. However, normally Algorithm 1 and Algorithm 2 will

Algorithm 2 schedule(ni)
1: δo ← 0
2: if ni is periodic then
3: cnt← 1, x← 0, y ← 1
4: ∀k ∈ K(gj), ST (nk

i ) ← call
findStartT ime(EST (nk

i ), n
k
i )

5: while cnt < K(gj) do
6: ST (ny

i )← call findStartT ime(ST (nx
i )+(y−x)∗

p(gj), n
y
i )

7: if ST (ny
i ) = −1 then

8: return false
9: end if

10: if ST (ny
i ) = ST (nx

i ) + (y − x) ∗ p(gj) then
11: cnt← cnt+ 1
12: else
13: cnt← 1
14: x← y
15: end if
16: if y = K(gj)− 1 then
17: y ← 0
18: else
19: y ← y + 1.
20: end if
21: end while
22: ∀k ∈ K(gj) schedule nk

i at ST (nk
i )

23: else
24: for k ∈ K(gj) do
25: ST (nk

i )← call findStartT ime(EST (nk
i ), n

k
i )

26: if ST (nk
i ) = −1 then

27: return false
28: end if
29: schedule nk

i at ST (nk
i )

30: end for
31: end if
32: return ture

not run O(N) times and thus the average time complexity of
SHLF should be much lower than O(N3).

C. Release Time Deferment (RTD)

As periodic nodes have more strict timing constraints than
aperiodic nodes, conflict may become common in node as-
signment, especially when the offset (release time/start time)
of task graphs is fixed as zero. Notice that in many previous
papers (e.g., [21], [22], [25]), offsets were simply assumed to
be zero, which may suffer poor performance under complex
timing constraints. If different applications are allowed to
start work from different offsets such that the time assign-
ments of different task graphs can be easily staggered, the
schedulability may be enhanced even under sophisticated time
constraints. Therefore, this study develops the RTD method,
which reschedules conflicted applications with adjusted offsets
to prevent conflictions.

The offset of each task graph is initialized as zero. If
Algorithm 2 fails to schedule ni, conflicts in time allocation
have appeared. To remove the conflicts, RTD reschedules



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 7

Algorithm 3 The SHLF Algorithm
1: compute ranku(ni) for all nodes and compute rank(gj)

for all graphs
2: for all graphs, priority(gj)← rank(gj)
3: sort the applications in a list by decreasing order of

priority(gj) values
4: outerLoop:
5: while any application is unscheduled do
6: pick next application gj from the application list for

scheduling
7: initialize ready nodes
8: while any node in gj is unscheduled do
9: select a node ni with the highest ranku(ni) for

scheduling among all ready nodes
10: call schedule(ni)
11: if it fails to schedule ni then
12: if cntres > maxres or δo = 0 then
13: cntres ← 0
14: if exit conditions are fulfilled then
15: exit without a feasible solution
16: end if
17: cntback ← cntback + 1
18: set backlimit

19: execute long backtrack for gj
20: priority(gj)← 2 ∗ priority(gj)
21: continue outerLoop:
22: end if
23: cntres ← cntres + 1
24: o(gj)← o(gj) + δo
25: backtrack all scheduled nodes of gj
26: continue outerLoop.
27: end if
28: end while
29: end while

gj to a new offset o(gj) such that ni can be inserted into
feasible slots on H(ni). The offset of gj is updated (line 24
of Algorithm 3):

o(g(ni)) = o(g(ni)) + δo (4)

where δo is obtained in Algorithm 1. As shown in step 35
of Algorithm 1, if ST (nk

i ) > o(gj) + k ∗ p(gj) + d(gj) −
ranku(ni), the deadline will be violated. Since ST (nk

i ) is the
start time of the earliest feasible slot for nk

i that can be found
by Algorithm 1, the only way to satisfy the deadline is that
the offset of gj must be delayed so that the entry node can
start at a later time:

δo ← ST (nk
i )− o(gj)− k ∗ p(gj)− d(gj) + ranku(ni). (5)

Afterwards, all scheduled nodes of the task graph are back-
tracked, i.e., they are now unscheduled, and the whole task
graph will be rescheduled by SHLF (lines 25-26 of Algorithm
3).

D. Long Backtrack
If RTD cannot help to eliminate the conflicts, BPP (lines

11-21 in Algorithm 3) will backtrack previously scheduled

applications to create space for the failed application. It may
be noticed that the backtracking is widely applied in exhaustive
approaches such as branch and bound (B&B) [21], [22].
Nevertheless, these approaches are merely useful for small task
graphs. In this case, some previous studies [30], [29] imposed
restrictions on the times or levels of backtracks to reduce
time costs. Such limitations would dramatically undermine the
effectiveness of their methods when the problem scale grows
up.

The proposed BPP policy makes a trade-off between time
and performance in the sense that it may backtrack multiple
task graphs rather than just one node each time. Once the
total number of rescheduling operations (by RTD) for the
failed application gj (denoted as cntres) reaches a given limit
(denoted as maxres) or δo is zero, the scheduler runs a long-
hop backtrack, which backtracks not only gj , but also multiple
previously scheduled task graphs to create space for gj . The
number of task graphs backtracked, denoted as backlimit,
is initialized as 1. It will be doubled if gj has ever failed
previously, and otherwise be reset. All nodes of a backtracked
application are backtracked. A list LS containing all scheduled
task graphs is maintained. The scheduler repeatedly backtracks
scheduled task graphs from the tail of LS until LS is empty
or totally backlimit task graphs have been backtracked. Also,
the priority of gj is updated as:

priority(gj) = 2 ∗ priority(gj). (6)

The intuition is that since gj is probably hard to schedule,
promoting its priority can help to schedule it in the next
run. The algorithm then continues to select applications and
scheduling nodes via SHLF. This method finally ends up with
the cases either a feasible solution is derived or the following
conditions are satisfied: all recently NF failed task graphs have
ever failed in previous runs or the total number of long-hop
backtracks cntback reaches maxback. In our experiments, we
set NF as 5 and maxback as 20.

VI. PERFORMANCE EVALUATION

In order to assess the effectiveness of the proposed schedul-
ing algorithm, this section presents a performance evaluation
study for scheduling a number of real-time applications (i.e.,
task graphs). The major performance metric is success ratio,
which is defined as the number that an algorithm successfully
schedules all applications to the number of total experiments.

Following [15], the system configurations are set as follows:
Synthetic applications with random DAG topologies are gen-
erated for the experiments. The period of each application is
varied among [5ms, 10ms, 20ms, 40ms] to cover a spectrum of
periods in reality. The length of one hyper schedule period is
thus 40ms. The communication bus is configured with a cycle
duration of 5 ms and the duration of the available segment
per cycle is 3.75ms. The duration of a communication slot
is set as 0.0625ms. The average cost of a task is 0.5ms. In
each experiment, a number of applications are scheduled. The
average number of nodes per application is 15. By default, the
DAG topology of applications is randomly mixed with four
topologies, chain, in-tree, out-tree, and fork-join graphs. The



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 8

0

0.5

1

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

θ
Number of Applications

S
uc

ce
ss

 R
at

io

(a) SHLF-RTD-BPP

0

0.5

1

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

θ
Number of Applications

S
uc

ce
ss

 R
at

io

(b) SHLF-RTD

0

0.5

1

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

θ
Number of Applications

S
uc

ce
ss

 R
at

io

(c) SHLF

Fig. 5. Results for random topologies.

0

0.5

1

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

θ
Number of Applications

S
uc

ce
ss

 R
at

io

(a) Linear

0

0.5

1

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

θ
Number of Applications

S
uc

ce
ss

 R
at

io

(b) In-tree

0

0.5

1

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

θ
Number of Applications

S
uc

ce
ss

 R
at

io

(c) Fork-join graph

Fig. 6. Results for specific topologies.

number of applications is varied among [4, 12] and the number
of ECUs is set as twice of the number of the applications. The
probability (denoted as θ) that a task node is periodic is varied
from [0, 1]. When θ is zero, no task is periodic and when θ
is one, all tasks are periodic.

Since the proposed algorithms comprise three major part-
s, SHLF, RTD, and BPP, three algorithm combinations are
therefore generated for evaluation. The first algorithm, denot-
ed as SHLF-RTD-BPP, enables all three parts. The second
algorithm, denoted as SHLF-RTD, enables SHLF and RTD
and disables BPP. The third algorithm, denoted as SHLF, only
enables SHLF and disables both RTD and BPP. Hence the
later two algorithms SHLF-RTD and SHLF can be deemed
as baselines for understanding the merits of RTD and BPP.
Fig. 5 plots success ratio versus number of applications and
θ for the three algorithm combinations, respectively. In Fig.
5(c), when θ is equal to one the results of SHLF is equivalent
to the results of HLF [32] with the oversimplified assumption
that all nodes are periodic.

From Fig. 5 one can observe that SHLF-RTD-BPP outper-
forms SHLF and SHLF-RTD. Also, SHLF-RTD outperforms
SHLF. These demonstrate the effectiveness of RTD and BPP,
respectively. In addition, one can observe that the success
ratio decreases as θ increases or as the number of applications
increases. This is due to the fact that as θ increases or as the
number of applications increases, the problem becomes more
complex and the probability that conflicts on node assignment
occur becomes larger. The results show that the proposed
algorithms can effectively utilize the flexibility in scheduling

offered by aperiodic nodes. Without these, the naive peer
heuristics (e.g., HLF) driven by the oversimplified assumption
that all nodes are periodic will cause poor performance, which
corresponds to the results that θ is equal to one.

Since one may be interested in the performance of the
algorithm on various DAG topologies, for three topologies
(linear chain, in-tree, and fork-join graphs), a number of DAGs
are generated and the corresponding results of SHLF-RTD-
BPP are shown in Fig. 6. The results in Fig. 6 are quite similar
to those of Fig. 5(a), showing that the performance of the
proposed algorithm is influenced little by the DAG topology
of applications.

VII. CONCLUSIONS

This study has investigated the problem of scheduling a
set of periodic applications with both periodic and aperiodic
tasks on the time-triggered systems. Novel models have been
formulated to capture the unique features of the problem. The
SHLF algorithm has been proposed to address the problem. To
further improve schedulability, this study has also presented
the RTD and BPP procedures. Upon a confliction in time
allocation, RTD reschedules the conflicted application with
an adjusted offset (i.e., release time) such that the scheduling
of different applications can be staggered to avoid conflicts.
Once RTD cannot help to eliminate conflics, BPP promotes
the priority of the conflicted application and backtracks previ-
ously scheduled applications to create space for the conflicted
applications. Moreover, the communication models for the
typical time-triggered systems are considered and solutions



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 9

for bandwidth optimization are proposed. To the best of our
knowledge, the study is the first effort to deal with the periodic
applications with both periodic and aperiodic nodes on the
time-triggered systems. Extensive simulation results with vari-
ous test configurations have demonstrated the effectiveness and
competitiveness of our algorithm. The simulation results have
shown that the proposed approaches significantly outperform
the previous algorithms under various settings.

VIII. ACKNOWLEDGEMENT

This work is started when Menglan Hu was a research
fellow at Nanyang Technological University. It was supported
in part by AcRF Tier 1 Grant RGC5/13.

REFERENCES

[1] Avionics Tech Report: Deterministic Net-
works for Advanced Integrated Systems.
http://www.aviationtoday.com/Assets/AVS 120112 TechReport Final.pdf.

[2] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in Au-
tomotive Communication Systems,” Proc. IEEE, vol. 93, pp. 1204-1224,
2005.

[3] CAN in automation. http://www.can-cia.org/can.
[4] TTCAN. http://www.can-cia.org/can/ttcan.
[5] “The flexray communication system specification, version 3.0.1,”

http://www.flexray.com.
[6] A. Albert, “Comparison of event-triggered and time-triggered concepts

with regard to distributed control systems,” in Embedded World, 2004.
[7] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in automo-

tive communication systems,” Proc. IEEE, vol. 93, pp. 1204-1224, 2005.
[8] BMW brake system relies on FlexRay,

“http://www.automotivedesignline.com/news/218501196,” July 2009.
[9] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. IEEE,

vol. 91, no. 1, pp. 1120-126, 2003.
[10] E. Schmidt and K. Schmidt, “Message scheduling for the flexray

protocol: The dynamic segment,”IEEE Trans. Vehicular Technology, vol.
58, no. 5, pp. 2160-2169, 2009.

[11] K. Schmidt and E. Schmidt, “Message scheduling for the flexray proto-
col: The static segment,” IEEE Trans. Vehicular Technology, vol. 58, no.
5, pp. 2170-2179, 2009.

[12] M. Lukasiewycz, M. Glab, J. Teich, and P. Milbredt, “Flexray schedule
optimization of the static segment,” Proc. CODES+ISSS, 2009.

[13] B. Tanasa, U.D. Bordoloi, P. Eles, and Z. Peng, “Scheduling for fault-
tolerant communication on the static segment of FlexRay,” In Proc. RTSS
2010.

[14] I. Park and M. Sunwoo, “FlexRay network parameter optimization
method for automotive applications,” IEEE Trans. Industrial Electronics,
vol.58, no. 4, pp. 1449-1459, APR. 2011.

[15] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems,” In Proc. ASP-DAC, 2012.

[16] A. Davare, Q. Zhu, M.D. Natale, C. Pinello, S. Kanajan, and A.S.
Vincentelli, “Period Optimization for Hard Real-time Distributed Auto-
motive Systems,” In Proceedings of the 44-th annual Design Automation
Conference, 2007.

[17] T. Pop, P. Eles, and Z. Peng, “Schedulability Analysis for Distributed
Heterogeneous Time/Event Triggered Real-Time Systems,” Proceedings of
15th Euromicro Conference on Real-Time Systems, 2003.

[18] P. Pop, K.H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and Voltage
Scaling for Energy/Reliability Trade-offs in Fault-Tolerant Time-Triggered
Embedded Systems,” In Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, 2007.

[19] J. Luo, and N.K. Jha, “Power-conscious joint scheduling of periodic
task graphs and aperiodic tasks in distributed real-time embedded systems,”
Proceedings of the 2000 IEEE/ACM international conference on Computer-
aided design, 2000.

[20] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, MAR. 2002.

[21] D. Peng, K.G. Shin, and T.F. Abdelzaher, “Assignment and scheduling
communicating periodic tasks in distributed real-time systems,” IEEE
Trans. Software Engineering, vol. 23, no. 12, pp. 745-758, DEC. 1997.

[22] T.F. Abdelzaher, and K.G. Shin, “Combined task and message schedul-
ing in distributed real-time systems,” Parallel and Distributed Systems,
IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179-
1191, NOV, 1999.

[23] K. Ramamritham, “Allocation and Scheduling of Precedence-Related
Periodic Tasks,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no.
4, pp. 412-420, Apr. 1995.

[24] T.F. Abdelzaher, and K.G. Shin. “Period-based load partitioning and
assignment for large real-time applications,” IEEE Trans. Computers, vol.
49, no. 1 pp. 81-87, Jan. 2000.

[25] B.P. Dave, G. Lakshminarayana, and N.K. Jha, “COSYN: HardwareC-
Software Co-Synthesis of Heterogeneous Distributed Embedded Systems,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
7, no. 1, pp. 92-104, Jan. 1999.

[26] R.P. Dick, and N.K. Jha, “CORDS: Hardware-Software Co-Synthesis of
Reconfigurable Real-Time Distributed Embedded Systems,” Proceedings of
the 1998 IEEE/ACM international conference on Computer-aided design,
1998.

[27] H. Zeng, , M.D. Natale, A. Ghosal, and A. Sangiovanni-Vincentelli.
“Schedule optimization of time-triggered systems communicating over the
FlexRay static segment,” IEEE Trans. Ind. Informat., 7(1), pp. 1-17, 2011.

[28] R. Mishra, N. Rastogi, D. Zhu, D. Moss, and R. Melhem, “Energy
Aware Scheduling for Distributed Real-Time Systems,” In Proceedings.
International Parallel and Distributed Processing Symposium, 2003.

[29] K. Ramamritham, J.A. Stankovic, and P.F. Shiah, “Efficient Scheduling
Algorithms for Real-Time Multiprocessor Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 1, no. 2, pp. 184- 194, Apr. 1990.

[30] G. Manimaran, C. Murthy, “An efficient dynamic scheduling algorithm
for multiprocessor real-time systems,” IEEE Trans. Parallel Distrib. Sys-
tems. vol. 9 pp. 312C319, Mar. 1998.

[31] H. Jaouani, R. Bouhouch, W. Najjar, and S. Hasnaoui, “Hybrid task and
message scheduling in hard real time distributed systems over FlexRay
bus,” Proc. ICCIT, pp. 21-26, 2012.

[32] T.C. Hu, “Parallel Sequencing and Assembly Line Problems,” Oper.
Research, vol. 19, no. 6, pp.841-848, Nov. 1961.

[33] G.C. Sih, and E.A. Lee, “A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor Architectures.”
IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-187,
Feb. 1993.

[34] M. Wu and D. Gajski, “Hypertool: A Programming Aid for Message-
Passing Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 1,
no. 3, pp. 330-343, 1990.

[35] S. Thiel and A. Hein, “Modeling and Using Product Line Variability in
Automotive Systems”, IEEE Software, 2002.

[36] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Information Sciences, 270 255-287, 2014.

[37] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” IEEE Transactions on Parallel and
Distributed Systems, 2014.

[38] A.E. Gil, K.M. Passino, S. Ganapathy, and A. Sparks, “Cooperative task
scheduling for networked uninhabited air vehicles,” IEEE Transactions on
Aerospace and Electronic Systems, 44, no. 2, pp. 561-581, 2008.

[39] Suresh, Sundaram, C. Run, H.J. Kim, T.G. Robertazzi, and Y. Kim,
“Scheduling second-order computational load in master-slave paradigm.”
IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 1,
pp. 780-793, 2012.

[40] J.T. Hung and T.G. Robertazzi, “Scheduling nonlinear computational
loads,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44,
no. 3 pp. 1169-1182, 2008.

Menglan Hu received the B.E. degree in Electronic
and Information Engineering from Huazhong Uni-
versity of Science and Technology, China (2007),
and the Ph.D. degree in Electrical and Computer
Engineering from the National University of Singa-
pore, Singapore (2012). He is currently an Associate
Professor at the School of Electronic Information
and Communications, Huazhong University of Sci-
ence and Technology, China. His research interests
includes cloud computing, parallel and distributed
systems, scheduling and resource management, as

well as wireless networking.



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. X, MONTH 201X 10

Jun Luo received the B.S. and M.S. degrees in elec-
trical engineering from Tsinghua University, Beijing,
China, in 1997 and 2000, respectively, and the
Ph.D. degree in computer science from the Swiss
Federal Institute of Technology in Lausanne (EPFL),
Lausanne, Switzerland, in 2006. From 2006 to 2008,
he has worked as a Post-Doctoral Research Fellow
with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON,
Canada. In 2008, he joined the faculty of the School
of Computer Engineering, Nanyang Technological

University, Singapore, where he is currently an Assistant Professor. His re-
search interests include wireless networking, mobile and pervasive computing,
distributed systems, multimedia protocols, network modeling and performance
analysis, applied operations research, and network security. He is a member
of the IEEE.

Yang Wang received the BS degree in applied
mathematics from the Ocean University of China in
1989 and the MS and PhD degrees in computing
science from Carleton University and the University
of Alberta in 2001 and 2008, respectively. He is cur-
rently at IBM Center for Advanced Studies (CAS),
Atlantic, University of New Brunswick, Fredericton,
Canada. Before joining CAS Atlantic in 2012, he
was a research fellow at the National University of
Singapore from 2010 to 2012. Before that, he was
a research associate at the University of Alberta,

Canada, from August 2008 to March 2009. His research interests include
scientific workflow computation and virtualization in Clouds and resource
management algorithms.

Bharadwaj Veeravalli received his BSc in Physics,
from Madurai-Kamaraj University, India in 1987,
Master’s in Electrical Communication Engineering
from Indian Institute of Science, Bangalore, India
in 1991 and PhD from Department of Aerospace
Engineering, Indian Institute of Science, Bangalore,
India in 1994. He did his post-doctoral research in
Concordia University, Montreal, Canada, in 1996.
He is currently with the Department of Electrical and
Computer Engineering at the National University of
Singapore, Singapore, as a tenured Associate Profes-

sor. His research interests include Cloud/Grid/Cluster Computing, Scheduling
in Parallel and Distributed Systems, Bioinformatics & Computational Biology,
and Multimedia Computing. He is one of the earliest researchers in Divisible
Load Theory (DLT). He had secured several externally funded projects and
published over 120 papers in high-quality journals and conferences. He has co-
authored three research monographs in the areas of PDS, Distributed Databas-
es, and Networked Multimedia Systems, in 1996, 2003, and 2005, respectively.
He is currently serving the Editorial Board of IEEE Transactions on SMC-
A, Multimedia Tools & Applications (MTAP) and Cluster Computing, as an
Associate Editor. Until 2010 he had served as an AE for IEEE Transactions on
Computers. More information can be found in http://cnl-ece.nus.edu.sg/elebv/.
He is a senior member of the IEEE and the IEEE computer society.


