
Cracking Network Monitoring in DCNs with SDN
Zhiming Hu and Jun Luo

School of Computer Engineering, Nanyang Technological University, Singapore
Email: {zhu007, junluo}@ntu.edu.sg

Abstract—The outputs of network monitoring such as traffic
matrix and elephant flow identification are essential inputs to
many network operations and system designs in DCNs, but most
solutions for network monitoring adopt direct measurements or
inference alone, which may suffer from either high network
overhead or low precision. Different from those approaches, we
combine the direct measurements offered by software defined
network (SDN) and inference techniques based on network to-
mography to derive a hybrid network monitoring scheme in this
paper; it can strike a balance between measurement overhead
and accuracy. Essentially, we use SDN to make the severely low
determined network tomography (TM estimation) problem in
DCNs to be a more determined one. Thus many classic network
tomography algorithms in ISP networks become feasible for
DCNs. By combining SDN with network tomography, we can also
identify the elephant flows with high precision while occupying
very little network resource. According to our experiment results,
the accuracy of estimating the TM is far higher than those
inferred by SNMP link counters only and the performance of
identifying elephant flows is also very promising.

I. INTRODUCTION

Network monitoring tasks such as traffic matrix (TM)
estimation and elephant flow detection in data center networks
(DCNs) are very important for both data center operators and
researchers in this area. On one hand, for the data center
operators, TM estimation and elephant flow detection are
vital inputs for many network operations for example, traffic
engineering [1], scheduling in wireless DCNs [2], [3], as well
as trouble shooting [4]. On the other hand, TMs and elephant
flow distributions reveal the traffic characteristics in DCNs,
which help researchers design and evaluate proposals made
for DCNs. For instance, without good knowledge of the traffic
characteristics in DCNs, researchers may have to use the traffic
characteristics in ISP networks or random TM for evaluations,
which are unfair and may generate misleading results.

Most prior work adopt direct measurements for TM esti-
mation or elephant flow detection in DCNs. These methods
can be roughly divided into two groups. The first group is the
switch-based approaches, which utilize sflow [5], netflow [6]
or openflow [7] enabled switches to record flows that traverse
a switch. They both record flows that pass through a switch
and offer the input for analysis of the traffic, but consume a
lot of network resource in storage and processing when traffic
is high. The second group of methods are server-based [8],
[9]. They commonly modify the OS or hypervisor to support
data collection in each server, which generate a petabytes of
uncompressed data per month as reported in [8]. And it needs
extra bandwidth to collect all the data in all the servers. So
they are more suitable for inspecting individual servers other

than monitoring the whole DCN.
So, why not try some inference technologies such as

network tomography to decrease the measurement overhead?
Having been widely investigated in ISP networks [10]–[12],
network tomography estimates the TM from the ubiquitous
link counters in the network; it would be very convenient if we
can adapt network tomographic methods in DCNs and apply
those state-of-art algorithms. Unfortunately, due to the rich
connections between the switches in DCNs, the number of
end-to-end paths are far more than the number of links, which
makes the network tomographic problem much more under-
constrained than the case in ISP networks. Inference-based
methods also find difficulty to accurately identify the elephant
flows because inference results are not reliable and errors may
not be well controlled.

As network tomography alone can hardly offer accurate
TM estimation and elephant flow detection, and it is also too
costly to instrument an entire data center for direct measure-
ments [13], a better approach should be combining these two
kinds of technologies to reach a balance between measurement
overhead and accuracy [14]. Different from sflow [5] and
netflow [6], software defined network (SDN) is an emerging
paradigm that separates the control plane from the data plane
in the traditional switches. Thus it introduces the centralized
controls and programmability on those network devices. Due
to its programmability, we can flexibly set up the SDN rules to
provide more measurements for network tomography instead
of monitoring every flow. With these extra measurements,
network tomography algorithm may achieve promising results
close to direct measurements.

In this work, we first propose to “reshape” the TM esti-
mation problem in DCNs using SDN rules. To this end, we
formulate and solve an optimization problem aiming to maxi-
mize contribution of SDN rules in improving upon the under-
constrained nature of network tomography. As solving this
optimization problem can be time-consuming, we also propose
a practical solution to set up SDN rules. Furthermore, we apply
network tomographic ideas to identifying the elephant flows,
again assisted by the SDN-enabled measurements. Our main
contributions in this paper are:
• We formulate a new optimization problem to maximize

the identifiability [15] of a network tomography problem
in DCNs given a certain number of SDN rules. As not all
SDN rules may contribute to improve the identifiability,
this optimization problem help to carefully design the
aggregation matrix, which defines which part of paths to
be aggregated to an SDN rule, to maximize the value of

2

SDN rules to a network tomographic problem.
• We propose two systematic and a fast practical solu-

tions for constructing the SDN aggregation matrix. We
first solve the problem directly with two systematic
approaches. We then design a topology-aware heuristic
algorithm to adaptively add SDN rules that improve the
identifiability of the problem.

• We combine network tomography and SDN to identify
the elephant flows. We first use SDN-enhanced network
tomography to find out the “talky” top-of-rack (ToR)
pairs, which substantially narrows the solution space. We
then use network tomographic approach to locate server-
to-server (potential) elephant flows in these ToR pairs.

• We validate our approach through both experiments in a
data center testbed and trace driven network simulations
in ns-3: the performance of both our TM estimation and
elephant flow detection are evaluated against the state-of-
art proposals.

The reminder of this paper is organized as follows. We
introduce the related work in Sec. II and problem formulation
in Sec. III. The design of our system was presented in Sec. IV,
followed by the evaluations of our proposal in Sec. V. Finally,
we conclude our work in Sec. VI.

II. RELATED WORK

In this section, we briefly discuss the most related proposals,
namely those about direct measurements in DCNs and network
inference techniques in ISP networks. Some other recent works
that utilize SDN for control or measurement can be found
in [16]–[18].

For direct measurements in DCNs, it can be achieved by
instrumenting the switches or servers. On one hand, in [1], they
utilize the openflow enabled switches to record the flows in the
DCNs and identify the elephant flows. It sets up a new TCAM
rule for every new flow in the network. However, it may
suffer from short of TCAM rules in DCNs where hundreds
of thousands of new flows are generated every second [19] in
each rack. On the other hand, some proposals [9], [19] monitor
the network by instrumenting the servers. In [19], they install a
shim layer in each server to support identification of elephant
flows. While in [9], the socket lever logs are recorded and
analyzed to get the traffic characteristics in the network.

Network tomography [10]–[12] attracts a lot of attentions
in ISP networks. In [10], it proposes a prior-based network
tomography approach. They adopt gravity model to get the
prior TM and formulate a least square problem to get the
final estimation. A compressive sensing based methods is
presented in [11], which utilizes the spatial and temporal
characteristics of TM and low rank optimization to get their
estimations. In [12], Kalman filter is used for modeling the
traffic in continuous time slices and predicting the traffic in the
next time slice. However, these proposals cannot be adapted
in DCNs directly due to much more severe under-constraint
situation in DCNs [8].

The most related work is iSTAMP [20], which leverages
part of the TCAM rules for aggregation measurements and

Controller

Switch

Switch Switch

SwitchSwitch Switch

Control Plane

Forwarding

Plane

Fig. 1. SDN divides the control plane from the data plane.

another part of TCAM rules for per-flow measurements. It
focuses on building the observation matrix for compressive
sensing network tomography and may encounter the aggre-
gation feasibility problem in DCNs as not all the flows can
be aggregated. We, on the contrary, tackle the basic under-
constraint network tomography problem in DCNs with SDN,
so that traditional network tomographic strategies can be
applied. We take the feasibility of aggregation as a main factor
to be considered when using SDN. We also propose a new
practical elephant flow detection method powered by SDN and
network tomography.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we first explain why we combine the
traditional network tomography with SDN. Then we formally
define our problem.

A. SDN and Network Tomography in DCNs

SDN is a fast evolving network technology and it divides the
control plane from the data plane as we can see in Fig 1. As
a result, new network operation or management applications
can be deployed much easier in the networks without violating
the previous protocols and applications.

If the traffic is not very heavy in the network, SDN is
capable of setting one rule for each flow and counting its
bytes. Unfortunately, this is not a practical way to measure
flows in DCNs due to the huge cost it incurs. On one hand,
there is not enough TCAM space in each SDN switch for now
given the large (median) number of flows generated during a
certain interval in DCNs [19]. On the other hand, hundreds of
controllers are needed for this measurement task, as per new
flow in the SDN switch will trigger a “Packet in” message and
send that message to the controller of SDN [21].

Different from direct measurement offered by the SDN,
network tomography [10]–[12] tries to infer the flow data
through the widely available SNMP link counters. Network
tomography is a mature practice in ISP networks, but it may
not be directly adapted in DCNs for the dense connections
between the network devices in DCNs. In other words, in
DCNs such as fat-tree in Fig 2, there are much more end-
to-end paths (variables) than links (available measurements).
Thus the available measurements do not contain sufficient
information to result in an accurate estimation. For almost the

3

Fig. 2. The simple fat-tree topology (k=4).

same reasons, it is also infeasible for identifying the elephant
flows in DCNs with network tomographic techniques alone.

Fortunately, SDN and network tomography may comple-
ment each other in solving network monitoring for DCNs. On
one hand, setting up a few SDN rules to collect direct mea-
surements can significantly improve the identifiability network
tomography. On the other hand, applying network tomography
to infer network traffics (rather than directly measure them)
can avoid the bottleneck imposed by the network resources de-
manded by SDN. Therefore, combining these two techniques
should definitely benefit network monitoring.

B. System Model and Problem Formulation

We consider a tree-like architecture as shown in Fig. 2,
which is sufficiently representative for nowadays DCN topol-
ogy. Let x(t) = {x1(t) · · ·xn(t)} denotes the volume of traffic
on all the n paths among all the ToRs at time slot t, so the
TM X = {x(1) · · ·x(τ)} represents the traffic in DCNs from
slot 1 to τ , with rows corresponding to the indexes of pathes
and columns corresponding to time slots. Here we refer to a
flow as the volume of traffic on a certain path between two
ToRs during time slot t.

In network tomography, X is what we want and the avail-
able measurements are link counts y(t) = {y1(t) · · · ym(t)}
on m links, respectively. The SNMP link counts can be
polled from the link counters in the switches through SNMP
protocols. Then we take Y = {y(1) · · ·y(τ)} to denote the
link count matrix. The relationship between the unknown flow
data X and available measurements Y in network tomography
can be reflected as follows:

AX = Y, (1)

where A = {aij |i = 1 · · ·m, j = 1 · · ·n} denotes the routing
matrix, which indicates whether a path traverses a link in the
topology. For instance, aij = 1 if the j-th path contains i-th
link, and aij = 0 otherwise.

Though network tomography often entails solving an under-
constrained linear equation system, the under-constrained situ-
ation gets severely exacerbated in DCNs: the number of paths
is always much larger than the number of links in different
scales of DCNs. While the deteriorated situation hurts the
identifiability of TM estimation, we propose to use SDN rules
to improve the identifiability. By setting the wildcard rules in
DCNs, openflow can record the volume of aggregate traffic
on multiple paths. Let Br×n denote the aggregation matrix
indicating if the traffic through a certain path is measured

by a TCAM rule. More specifically, bij = 1, means that the
volume of traffic on j-th path during a certain interval will be
aggregated on i-th TCAM rule, and bij = 0 otherwise.

The new network tomography problem using both SNMP
link counts and openflow wildcard rule counters can be
formulated as follows:(

A
B

)
∗X = D ∗X =

(
Y
Q

)
, (2)

where Qr×τ can be obtained through the SDN counters.
As we can see in Eqn.(2), maximizing the rank of the

measurement matrix D given A implies that B delivers new
measurements linearly independent of the set of available mea-
surements, so it would potentially lead to higher identifiability
and estimation accuracy. So how to determine the aggregation
matrix B in order to to maximize the rank of D is the first
problem we address in this paper. To determine the optimal
aggregation matrix B given a routing matrix A, we formulate
the problem as follows:

maximize Rank(D) (3)
s.t. dij = aij ∀i = 1 · · ·m, j = 1 · · ·n (4)

m+r∑
i=m+1

dij ≤ 1 ∀j = 1 · · ·n (5)

λk ∈ {0, 1} ∀k = 1 · · ·na (6)
di = λk × ck ∀i = m+ 1 · · ·m+ r,

∀k = 1 · · ·na (7)
na∑
k=1

λk ≤ r (8)

The objective function is to maximize the rank of measure-
ment matrix D, thus maximize the identifiability of network
tomography problem in DCNs. The first constraint (4) indi-
cates that the first m rows of D is the same with the rows of
A. The number of times each flow can be aggregated by all
the TCAM rules is refined in (5). Given the current practice
of TCAM, each flow can be mapped into only one TCAM
entry [20]. We introduce binary variables λ in (6) to denote
whether to select the rows in Cna×n as part of D or not,
where C is a binary matrix whose rows indicate all feasible
aggregations of paths in the DCNs. If λk = 1, then the k-th
row of C is attached to D, and λk = 0 otherwise as shown
in (7). Finally, the number of TCAM rules allocated for TM
estimation is constrained in (8) by an upper bound r.

Our second problem is to identify the elephant flows with
limited SDN rules in DCNs, where an elephant flow is the
flow that occupies more than 10% of the link capacity during
a certain interval. Here we refer to a flow as the total volume of
traffic from one server to another. In particular, if the number
of SDN rules for elephant flow detection is nr and the number
of elephant flow is ne, we often have nr ≤ ne. Therefore, we
aim to assign SDN rules to the flows with higher possibilities
to be an elephant flow.

4

Elephant Flow

Detection

D
a

ta
 C

e
n

te
r N

e
tw

o
rk

s

(D
C

N
)

SNMP Link

Counts

SDN

Counters

SDN Enhanced

Tomography
Data

Collection
Algorithm inputs

Traffic engineering,

anomaly detection

Loading balancing,

traffic monitoring

Fig. 3. System Design.

IV. SDN ENHANCED NETWORK TOMOGRAPHY AND
ELEPHANT FLOW DETECTION

In this section, we first present the system overview of
our traffic monitoring system in DCNs. We also explain how
we get the optimal measurement matrix D to improve the
performance of network tomography. We then discuss how to
effectively locate the elephant flows in DCNs.

A. System Overview

Our system is shown in Fig. 3. We collect the SNMP link
counts, which are widely available in the network. We also
set up the SDN rules properly and collect the SDN counters.
After that we can utilize the data for two sorts of network
measurement tasks. Firstly, we propose to combine SNMP
link counts and SDN counters to maximize the performance of
network tomography. We formulate an optimization problem
and propose two systematic algorithms to get the measurement
matrix D, so as to improve the identifiability of our net-
work tomography problem. We also propose a topology-aware
heuristic algorithm to efficiently compute the measurement
matrix D in practice. Secondly, we use SDN counters and
SNMP link counts to identify the elephant flows among
servers. At the first stage, the total volume of traffic among
ToRs (through SDN-enhanced network tomography) help us
to find out the “talky” ToR pairs (the ToR pairs with more
interchange traffic). At the second stage, we can further take
use of SNMP link counts and network tomographic strategies
to identify the elephant flows among servers.

B. Network Tomography with SDN

1) Systematic Measurement Matrix Design: It is well
known that maximum rank matrix completion is a fairly
complicated optimization problem [22], so we choose to han-
dle the rank maximization problem through the widely used
norm minimization approach in compressive sensing [23]. The
idea is to minimize the sum of the squared inner products
of columns in D. More specifically, we seek to minimize
‖DTD− I‖2F to generate more orthogonal columns [23], thus
can increase the rank of D with high probability and in turn
potentially improve the performance of network tomography.

As ‖D‖2F = tr(DTD), it is straightforward to see that min-
imizing ‖DTD−ζ‖2F is equivalent to minimizing tr[(DTD−

ζ)2], where we use ζ because we do not normalize the binary
matrix D as in [23]. It can then be expanded and simplified
in a way similar to [20]:1

minimize
D

m+r∑
i=1

n∑
j=1

(1− 2ζjj)dij

+

m+r∑
i=m+1

n∑
j=1

n∑
p=1,p6=j

dijdip

+

m+r∑
i=1

n∑
j=1

m+r∑
p=1,p6=i

dijdpj

+

m+r∑
i=1

m+r∑
j=1,j 6=i

n∑
p=1

n∑
q=1,q 6=p

dipdiqdjpdjq

+

n∑
j=1

ζ2jj (9)

s.t. (4)− (8)

As the above program is not linear, we can further transfer
it to be an integer linear program (ILP) by introducing new
variables. Given binary variables x, y, z, z = xy implies the
following three constraints: z ≤ x, z ≤ y, z ≥ (x + y − 1).
Hence we take u to denote the elements in D(1 : m+ r, :) =
u = [u1, · · · , u(m+r)n], s = [s1, · · · , sns

] for the multiplica-
tion of two elements, t = [t1, · · · , tnt

] for multiplication of
four elements, where ns = rn(n− 1)+ (m+ r)n(m+ r− 1)
and nt = (m+ r)(m+ r − 1)n(n− 1). So we have:

minimize
u,s,t

m+r∑
i=1

n∑
j=1

(1− 2ζjj)u((i−1)n+j)

+

n∑
j=1

ζ2jj +

ns∑
i=1

si +

nt∑
i=1

ti (10)

s.t. si ≤ uj , si ≤ uk,
si ≥ 0, si ≥ uj + uk − 1 (11)
ti ≤ uj ,
ti ≤ uk, ti ≤ up, ti ≤ uq,
ti ≥ 0,

ti ≥ uj + uk + up + uq − 3 (12)
m+r∑
i=m+1

u(i−1)∗n+j ≤ 1 ∀j = 1 · · ·n (13)

u(i−1)∗n+j = aij ∀i = 1 · · ·m ∀j = 1 · · ·n
u(i−1)∗n+j = λk × ckj ∀i = m+ 1 · · ·m+ r,

∀j = 1 · · ·n ∀k = 1 · · ·na (14)
(6) and (8)

After we transform the non-linear problem in (9) into an
ILP in (10) by setting si = ujuk and ti = ujukupuq and
introducing the constraints in (11) and (12), respectively. We

1Whereas we aim to optimize the aggregation matrix B given the routing
matrix A, B is optimized independently in [20].

5

can now solve it with CPLEX [24]. The computational com-
plexity of inputting this problem to a solver is O((m+r)2n2),
but that of solving it can be exponential [25].

2) Iterative Rank Maximization: As the objective function
in the last section is to minimize ‖DTD − ζ‖2F instead
of directly maximizing the rank of D directly, it may not
obtain an optimal solution in some cases. Therefore, we also
propose an iterative method to construct the matrix D with
guaranteed maximum rank, based on the fast rank computation
algorithm [26]. We gradually pick up a row in C, which
specifies the paths that can be aggregated by a SDN rule,
and add it to D, then we use the algorithm in [26] to
quickly calculate the rank of new matrix and test whether
it increases the rank or not. If it does, and it satisfies other
constraints in the formulation, we then add that row to D.
Otherwise, we continue to try other rows in C until we
tried all the rows in C or the increased rows exceed r. The
fast rank computation algorithm [26] has a time complexity
of O(mn(logmin{m,n})2) and our method invokes this
algorithm at most na times.

3) Feasibility of Aggregations: Eqn.(7) shows that the last
r rows of D must be selected from C that stores all the
feasible aggregations of paths. In other words, the SDN rules
need to be able to measure the aggregation of paths. If we
aggregate the paths randomly, then there is high possibility
that some aggregations of paths cannot be measured by the
current standard of SDN. For the current standard and practice
of SDN (e.g., Openflow), it can only update the counters when
the header of the packet matches the “flow match fields” (srcIP,
destIP, srcPort, destPort, etc.). In this setting, measuring the
volume of traffic on each path may not be feasible unless we
measure every flow in the network and record the route of the
flows, which is too costly. So how to use the SDN counters to
record the aggregations of paths (i.e., how to obtain the row
of C) is very important.

Fortunately, the ip address of the servers in a certain rack are
commonly block based, which means we can set up TCAM
wildcard rules to record the total volume of flows between
two racks. And these flows traverse multiple paths between
these two racks for the multi-path routing strategies such as
ECMP [27]. Then we can utilize the relationship between the
ip address and the location of the ToR to set up the TCAM
wildcard rules and record the traffic on the paths between two
racks. For instance, in the SDN wildcard rule, if we set the
source ip address to be the ip block of the first rack, and the
destination ip address to be the ip block of the third rack,
then the value of the SDN counter for this rule should be the
volume of traffic on all the paths between the first ToR and
third ToR. In this way, we can use the TCAM rules to record
the volume of total traffic of aggregated paths in DCNs. And
the aggregations of paths between any two racks would make
up a SDN rule, which is also one row in C.

4) Topology-aware Efficient Approach in Practice: As the
optimal solutions may be time consuming, in this section, we
propose a topology-aware heuristic, based on two propositions
indicating the cases when we cannot increase the rank of

the measurement matrix given the link counts and previously
installed SDN rules, to avoid setting these SDN rules to
increase the rank of network tomography problem. Here are
the two propositions:

Proposition 1. If we set up the SDN rules for the ToR pairs
within every pod in fat-tree architecture2 first and then the ToR
pairs across different pods both in an lexicographical order,
then the SDN rules for the following ToR pairs would not
increase the rank of the network tomography problem:
• For the ToR pairs within each pod in lexicographical

order, the last pair in each pod.
• The pairs between all the ToRs (except the last ToR) and

the last ToR.
• The pairs between the last ToR in the penultimate pod

and the ToRs in the last pod (except the last ToR, which
is included in the last case).

• The pair between the last ToR in the last third pod and
the last ToR in the penultimate pod.

Proof: For the first case, that is because in the topology
of tree-like topology, we can get the total volume of traffic
that stays in each pod (cluster) by the SNMP link counts.
So the last pair in each pod is not necessary. Because we can
simply compute the volume of traffic for the last pair by using
the total volume stayed in each pod to minus the sum of the
volumes of other internal pairs, which are already known.

The second case happens in the ToR pairs that across
different pods. So for all the ToRs except the last ToR, the
last ToR in the last pod is the last ToR that they may make
up a ToR pair with. And because we have already known the
total volume of traffic between one ToR and all the other ToRs
(through link counts) and the volume of traffic from this ToR
to all the other ToRs except the last ToR. So we can easily
calculate the volume between these ToRs and the last ToR. So
this case cannot bring any new information and thus cannot
increase the rank. The pairs between these ToRs and the last
ToR are also the last pair for these ToRs.

Similar with the previous case, the pairs between the last
ToR in the penultimate pod and the ToRs in the last pod are
the last pairs for the ToRs in the last pod (recall the orders in
our setting). So for the ToRs in the last pod, they can compute
the volume of these pairs by using the total volume (through
link counts) to minus the total volume of traffic between them
and other ToRs.

In the last case, we can consider this ToR pair as the last
pair for the last ToR in the penultimate pod. So this case
would not increase the rank also.

Proposition 2. For a k-ary fat-tree topology3, SDN can
increase the rank by at most k4/8− 3 ∗ k2/4− k.

Proof: The total number of ToRs is k2/2. The number

2For tree architectures, pod is equal to the cluster that consists of two
aggregation switches and four ToR switches. This proposition also applies in
tree architecture.

3The computing process is the same under tree architecture, so we omit
the details.

6

of all the possible ToR pairs is k2/2 ∗ (k2/2 − 1) ∗ 1/2 =
k4/8 − k2/4. Based on Proposition 1, the number of ToR
pairs that could not increase the rank is k2/2 + k. So SDN
rules can increase the rank by at most k4/8−3∗k2/4−k.

According to our experiment results in Sec. V-B, all these
k4/8 − 3 ∗ k2/4 − k rules can be used to increase the rank
of D in practice; this number is about twice of the number
of link counts available in the fat-tree topology. Therefore, as
long as we follow the rules stated in the proposition to set
up the SDN rules, we can guarantee maximizing the rank
of measurement matrix D, thus potentially improving the
identifiability of network tomography problem. The result in
Sec. V-B also shows this topology-aware heuristic approach
can achieve optimal solutions.

C. Identify Elephant Flows

There are mainly two ways of identifying elephant flows.
The first way is to observe all the flows and pick the elephant
flows, which is the expensive way. The second way is to only
keep an eye on the most possible elephant flows. Our approach
belongs to the second way.

We use the following two steps to identify the elephant
flows. Firstly, we divide the total number of SDN rules
allocated for elephant flow detections among ToR pairs based
on the volume of traffic from one ToR to another. This is
possible because we have obtained the total volume of traffic
among ToRs from the SDN-enhanced network tomography.
We also take as a prior that the ToR pairs exchanging more
traffic have greater chance to contain elephant flows. We then
distribute the SDN rules proportionally to the volumes of
traffic from one ToR to another. Secondly, we need to locate
the server pairs under ToR pairs for setting up the SDN rules
to pinpoint the elephant flows. Our currently strategy is to
use the SNMP link counters for calculating (through a low-
level network tomography) the weight of each server pairs
first, which in turn allow us to set up SDN rules in a greedy
manner: rules are set up for server pairs with higher weight
(where we have greater chance to hit elephant flows) first until
we used up all the SDN rules for this ToR pair.

The algorithm details are shown in Algorithm 1, where
ntor and nser are the number of ToRs and servers. We first
divide the total SDN rules proportionally with the total volume
of traffic from one ToR to another in lines 1–4. In line 6,
we calculate the weight for each server pair based on the
throughput of the servers. After that, we sort the server pairs by
weights in a descending order and allocate SDN rules for the
server pairs greedily in lines 7–8 for monitoring. The algorithm
adaptively sets up the SDN rules in each interval. The time
complexity of our algorithm is O(n2tor).

V. EVALUATION

In this section, we first present the experiment settings and
metrics. We then show the performance of rank maximization
of measurement matrix. Furthermore, we discuss about the
performance of TM estimation and elephant flow detection in
our monitoring system.

Algorithm 1: Elephant Flow Detection Algorithm
Input: The volume of traffic from ToRi to ToRj ,

{xij |i = 1, · · · , ntor, j = 1, · · · , ntor}.
The total in/out bytes of servers
{serveroutk , server ink |k = 1, · · · , nser}.
The number of available SDN rules for elephant
flow detection nr.

Output: The set of server pairs P that may have
elephant flows.

1 - The sum of the volume of traffic among the ToR pairs
sx =

∑ntor

i,j=1,i6=j xij .
2 for i = 1 to ntor do
3 for j = 1 to ntor do
4 - Let rij = bxij/sx × nrc denotes the number of

rules for server pairs from rack i to j.
5 if (i¬j) ∧ (rij ≥ 1) then
6 - For all the server pairs (serverg, serverh)

where serverg is under rank i and serverh is
under rack j, we calculate the multiplication
of serveroutg and serverinh for each pair.

7 - We sort these server pairs by the
multiplication results in a descending order.

8 - The first rij server pairs will be added to P
and assigned SDN rule for monitoring.

9 return P

A. Experiment Settings and Metrics

The topologies of DCNs used in experiments and simu-
lations are specified as follows. Our testbed that is shown
in Fig. 4 consists of 10 ToRs, 3 aggregation switches and
1 core switch, which are organized in a tree architecture.

Fig. 4. Inside view of our testbed.

For the simulations, we adopt
both tree architecture and fat-
tree architecture. In tree archi-
tecture, we use the topology
with 32 ToRs, 16 aggregation
switches and 3 core switches.
Each 2 aggregation switches
are connected with 4 ToRs and
all the core switches. In the
fat-tree architecture, we use the
k=8 fat-tree with 8 pods. So it also has 32 ToRs, but has 32
aggregation switches and 16 core switches.

For evaluating the performance of rank maximization of
measurement matrix, we first compare the the number of ranks
that can be improved by the two systematic algorithms and one
heuristic algorithm when the number of SDN rules is increased
one by one. We also compare the max number of ranks that can
be achieved in the SDN-enabled network tomography problem
with the rank of routing matrix in different architectures.

TM estimation is an important application of our moni-
toring system. For the performance of TM estimation, we
choose two state-of-art network tomography algorithms as our

7

baselines. They are Sparsity Regularized Matrix Factorization
(SRMF) [11] and TomoGravity [10], which are widely used
in the network tomography problem. We use the default S
and T as suggested in [11] for SRMF and directly apply
gravity model to get the prior TM for TomoGravity (more
accurate prior TM design in DCNs can be found in [28]).
After that we compare the performance of the two state-of-art
algorithms with our proposals SRMF SDN and Tomo SDN
by both real data center traffic and our trace-driven network
simulation traffic.

The first metric we used for TM estimation is Relative Error
(RE), which is for measuring the gap between ground truth and
estimated value as shown in the following equation:

REi = |xi − x̂i|/xi, (15)

where xi is the ground truth and x̂i is the estimated value.
We also adopt Root Mean Square Relative Error (RMSRE)

for measuring the performance of estimating big flows on the
paths among ToRs. We use γ to denote the threshold of the
size of flows that we may concern. Here is the definition:

RMSRE(γ) =

√√√√ 1

nγ

nx∑
i=1,xi>γ

(
xi − x̂i
xi

)2

, (16)

where nγ is the number flows xi > γ and nx is the number
of flows in the ground truth.

We also investigate the performance of identifying the
elephant flows among servers. Here a flow means the traffic
from one server to another. When its size exceeds a certain
threshold η, which is 10% of the link capacity in our paper,
it is considered as an elephant flow. We use the possibility
of accurate identification ptrue in Eqn.(17) to evaluate the
accuracy of elephant flow detection. And we will see how
it changes with the number of SDN rules that are allocated
for this measurement task.

ptrue = P (x̂i ≥ η|xi ≥ η). (17)

B. Rank Maximization of Measurement Matrix

In this section, let us first look at the performance of maxi-
mizing the rank of the measurement matrix D to maximize the
identifiability of network tomography problem with a certain
number of SDN rules. For the time consuming process of
solving ILP, we design a small tree architecture with eight
ToRs, two aggregation switches and one core switch. The
results of these three algorithms (two systematic and one
heuristic algorithm) is shown in Fig. 5(a). In this figure, we can
see that both the systematic2 (iterative rank maximization) and
topology-ware heuristic approach achieve the optimal solution.
In other words, they can add one rank to the measurement
matrix with each row (SDN rule) because they both ignore
the cases that cannot increase the rank. While systematic1 (the
first systematic approach) gets a near optimal solution, it needs
two more SDN rules to reach max rank. That is because the
objective function is to reduce the coherence of the columns
of the matrix, which would increase the rank of the matrix,
but cannot ensure the max rank.

In Fig. 5(b), we can see the max number of ranks that we
can add to the original routing matrix given the feasibility of
aggregations in SDN. The details of topologies used in this
experiment are presented in Sec. V-A. The blue (left) pillar
represents the rank of routing matrix and the red (right) pillar
denotes the rank of D after we add all the possible constraints
with SDN rules. The rank is about three times to the one
of original routing matrix in the testbed and fat-tree. And it
is about five times to the rank of routing matrix in the tree
architecture case that is because the routing matrix in tree
architecture is more sparse. So as we can see, we can increase
the rank of the network tomography problem in DCNs greatly
and improve the estimation accuracy thereafter, as we will see
in the next section.

0 5 10 15 20 25 30
0

5

10

15

20

The number of SDN rules

T
h

e
 i

n
c

re
a

s
e

d
 r

a
n

k

Systematic1

Systematic2&Heuristic

(a) Increasing the rank with SDN
rules.

Testbed Tree Fat−tree
0

200

400

600

800

R
a

n
k

Rank before

Rank with SDN

(b) The number of ranks before and
after setting up SDN rules.

Fig. 5. The performance of adding the ranks in DCNs.

C. Testbed Evaluation

In this section, we show the TM estimation results with the
data collected from our private operational DCN.

1) Testbed Setup: Our data center testbed hosts a lot of
applications and services such as web services and multimedia
applications. We collect the SNMP link counts and routing
information as the inputs of network tomography. We also col-
lect the SDN counters in the openflow-enabled ToR switches
to get the volume of traffic among racks to add the constraints
for the network tomography problem. We use the linux iptable
(not a scalable approach) to collect all flows as ground truth.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

SRMF_SDN

Tomo_SDN

SRMF

TomoGravity

(a) The CDF of RE

0 2000 4000 6000 8000 10000
0.1

0.2

0.3

0.4

0.5

0.6

γ (Mb)

R
M

S
R

E

SRMF_SDN

Tomo_SDN

SRMF

TomoGravity

(b) The RMSRE under different γ

Fig. 6. The CDF of RE (a), the RMSRE (b) for estimating TM.

2) Testbed Results: In Fig. 6(a), we draw the CDF of RE
for the two state-of-art algorithms both before and after adding
the constraints with SDN rules. As we see in this figure,
both our proposals outperforms TomoGravity and SRMF in
estimation accuracy. Especially for SRMF SDN, after adding
the constraints, it can accurately estimate more 60% of flows
in this case, and most of those entries are zero entries. An
explanation for this is that the SRMF SDN knows whether
there is traffic between two ToRs through SDN counters. If
the volume of traffic between two ToRs is zero, the volumes

8

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

SRMF_SDN

Tomo_SDN

SRMF

TomoGravity

(a) The CDF of RE

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

γ (Mb)

R
M

S
R

E

SRMF_SDN

Tomo_SDN

SRMF

TomoGravity

(b) The RMSRE under different γ

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

n
r
 / n

e

p
tr

u
e

t1

t2

t3

(c) The possibility of true positive.

Fig. 7. The CDF of RE (a), the RMSRE (b) for estimating TM and the performance of elephant flow detection (c) under tree architecture.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

SRMF_SDN

Tomo_SDN

SRMF

TomoGravity

(a) The CDF of RE

0 1000 2000 3000 4000

0.7

0.8

0.9

1

γ (Mb)

R
M

S
R

E

SRMF_SDN

Tomo_SDN

SRMF

TomoGravity

(b) The RMSRE under different γ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

n
r
 / n

e

p
tr

u
e

t1

t2

t3

(c) The possibility of true positive.

Fig. 8. The CDF of RE (a), the RMSRE (b) for estimating TM and the performance of elephant flow detection (c) under fat-tree architecture.

on those paths between the two ToRs are naturally zero. While
for Tomo SDN, it cannot identify those zero entries efficiently
for the way it compute the prior TM, but we can still tell the
improvements with more constraints available.

As the RE shows the estimation errors of separate flows,
we also show the RMSRE of the algorithms, which reflects
overall estimation accuracy changing with the threshold of big
flows, in Fig 6(b). We can easily see that both of our proposals
have much lower RMSRE after adding the constraints and
Tomo SDN has lower RMSRE than SRMF SDN, which are
both consistent with the results in Fig. 6(a). We can also see
that the RMSREs of our two SDN enhanced algorithms are
non-increasing with increasing γ, which means that the two
algorithms are capable of estimating the big flows with even
higher accuracy also.

D. Simulation Evaluation

As the scale of data center testbed is still limited, we con-
duct extensive simulations with ns-3 to validate our solutions.
We evaluate both TM estimation and elephant flow detection
in the simulation.

1) Simulation Setup: We both simulate the tree architecture
and fat-tree architecture with the topologies described in
Sec. V-A. We did not use BCube [29] in this work, which
is server-based and different from the rack-based topology. It
would be interesting to adapt our approach in BCube in our
future work. All the links are 1Gbps.

Similar with Hedera [1], we use both random and stride
pattern in generating the traffic with ns-3. The distributions of
flow sizes follow the characteristics reported in [8], [13]. For
instance, 80% of flows are smaller than 10KB, and most of
the bytes in the network lies in the top 10% of flows. More
specifically, we install both on-off and bulk send applications

in the servers with random and stride while following the
distributions of flow sizes. The packet size is set to be 1400
Bytes. And we use TCP flows for the application layer protocol
and ECMP [27] for routing.

In each test case, we record the size and route of each
flow as the ground truth. We also collect the aggregated link
counts of each link for network tomography. For the purpose
of elephant flow detection, we also record the total in/out bytes
of each server. After we collect all the traffic data, then the
data will be fed to the network tomography algorithms and
elephant flow detection algorithm implemented in Matlab.

2) Simulation Results: The simulation results under tree
architecture is shown in Fig. 7. In Fig. 7(a), we depict the
CDF of RE of the four algorithms. As we can see in this
figure, about 90% of REs in SRMF SDN and Tomo SDN
is lower than 0.65, which is much better than the case with
SNMP only network tomography (SRMF and TomoGravity)
for the extra measurements powered by SDN.

In Fig. 7(b), we draw the figure about how RMSRE changes
with the threshold of flow size γ. First of all, the SDN
enabled approaches (SRMF SDN and Tomo SDN) perform
much better than the SRMF and TomoGravity due to the more
determined solution space. Secondly, all the lines show the
decreasing trends when γ is bigger than 200MB, which shows
higher accuracy for estimating bigger flows.

We show the possibility of accurately identifying the ele-
phant flows (among servers) in Fig. 7(c). nr means the number
of SDN rules for elephant flow detection and ne is the number
of elephant flows. We draw the data for three different time
slices. The step of nr/ne is 0.025. As we can see in this figure,
ptrue is almost equals to the percent of available SDN rules
nr/ne and it reaches almost 100% when nr/ne = 1, which
means that the performance of our approach is pretty close

9

to direct measurements since it can use the SDN counters to
narrow the searching space first, and then adopt tomography
strategies for identifying elephant flows.

We also conduct the simulations under fat-tree architecture
as shown in Fig. 8. More specifically, in Fig. 8(a), we show
the CDF of RE of the four algorithms. We can see that both
SRMF SDN and Tomo SDN achieve better results than the
SRMF and TomoGravity. But we can also see that all the four
algorithms in this case perform worse than the case under
tree architecture, which is because the gap between available
measurements and unknown variables is much bigger due to
the rich connections among switches in fat-tree architecture.
In such cases, the extra measurements are very necessary.

In Fig. 8(b), both SRMF SDN and Tomo SDN show ap-
parent decreasing trends, while SRMF and TomoGravity show
increasing trends with the increasing of γ, which again shows
the necessity of the constraints powered by SDN especially in
the case where the number of unknown variables is far more
than available measurements such as in fat-tree.

We show the performance of elephant flow detection in
Fig. 8(c). Similar to the result under tree architecture, the
performance is also very well under fat-tree architecture. The
step of nr/ne is 0.04. The ptrue also improves gradually
with more SDN rules. And as long as the number of SDN
rules is enough, we can accurately identify almost all the
elephant flows, which is comparable to direct measurements
for elephant flow detection.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a monitoring system com-
bining SDN and network tomography to estimate the traffic
matrix (TM) and to identify the elephant flows effectively
in DCNs. We have introduced both systematic and heuristic
algorithms to maximize the identifiability of network tomog-
raphy problem with SDN rules, under a given routing matrix;
they are shown to be greatly improving the performance of
network tomography in DCNs. We have also designed an
algorithm applying tomographic ideas with SDN counters
to accurately identify the elephant flows in DCNs. Finally,
we have conducted extensive performance evaluation on our
approach through both experiments on a data center testbed
and simulations with ns-3; the results have strongly confirmed
the effectiveness and practicality of our monitoring system.

We are on the way to design more applications such
as traffic engineering and anomaly detection on top of our
monitoring system. We expect to evaluate the performance of
applications based on our monitoring system against on direct
measurements or network tomography alone in DCNs.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Proc.
of USENIX NSDI, 2010.

[2] Y. Cui, H. Wang, X. Cheng, D. Li, and A. Yla-Jaaski, “Dynamic
Scheduling for Wireless Data Center Networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 12, pp. 2365–2374, 2013.

[3] K. Han, Z. Hu, J. Luo, and L. Xiang, “RUSH: RoUting and Scheduling
for Hybrid Data Center Networks,” in Proc. of IEEE INFOCOM, 2015.

[4] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications,” in Proc. of
ACM SIGCOMM, 2011, pp. 350–361.

[5] “Sflow.” [Online]. Available: http://www.sflow.org/
[6] B. Claise, “Cisco systems NetFlow services export version 9,” 2004.
[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
Nature of Data Center Traffic: Measurements & Analysis,” in Proc. of
ACM IMC, 2009, pp. 202–208.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained
Traffic Engineering for Data Centers,” in Proc. of ACM CoNEXT, 2011,
pp. 8:1–8:12.

[10] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast Accurate
Computation of Large-scale IP Traffic Matrices from Link Loads,” in
Proc. of ACM SIGMETRICS, 2003, pp. 206–217.

[11] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
Compressive Sensing and Internet Traffic Matrices,” in Proc. of ACM
SIGCOMM, 2009, pp. 267–278.

[12] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci,
M. Crovella, and C. Diot, “Traffic Matrices: Balancing Measurements,
Inference and Modeling,” in Proc. of ACM SIGMETRICS, 2005, pp.
362–373.

[13] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proc. of ACM IMC, 2010, pp. 267–280.

[14] Q. Zhao, Z. Ge, J. Wang, and J. Xu, “Robust Traffic Matrix Estimation
with Imperfect Information: Making Use of Multiple Data Sources,” in
Proc. of ACM SIGMETRICS/Performance, 2006, pp. 133–144.

[15] Y. Vardi, “Network Tomography: Estimating Source-Destination Traffic
Intensities from Link Data,” Journal of the American Statistical Associ-
ation, vol. 91, no. 433, pp. 365–377, 1996.

[16] Y. Cui, S. Xiao, C. Liao, I. Stojmenovic, and M. Li, “Data Centers
as Software Defined Networks: Traffic Redundancy Elimination with
Wireless Cards at Routers,” IEEE Journal on Selected Areas in Com-
munications (JSAC), vol. 31, no. 12, pp. 2658–2672, 2013.

[17] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in Proc. of USENIX NSDI, 2013, pp. 29–42.

[18] N. van Adrichem, C. Doerr, and F. Kuipers, “OpenNetMon: Network
monitoring in OpenFlow Software-Defined Networks,” in Proc. of
IEEE/IFIP NOMS, May 2014, pp. 1–8.

[19] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead Dat-
acenter Traffic Management Using End-host-based Elephant Detection,”
in Proc. of IEEE INFOCOM, 2011, pp. 1629–1637.

[20] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent SDN
based Traffic (de)Aggregation and Measurement Paradigm (iSTAMP),”
in Proc. of IEEE INFOCOM, 2014, pp. 934–942.

[21] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the Datacenter,” in Proc. of HotNets, 2009.

[22] N. J. Harvey, D. R. Karger, and S. Yekhanin, “The Complexity of Matrix
Completion,” in Proc. of 7th annual ACM-SIAM symposium on Discrete
algorithm. ACM, 2006, pp. 1103–1111.

[23] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Sensing Matrix
Optimization for Block-Sparse Decoding,” IEEE Transactions on Signal
Processing, vol. 59, no. 9, pp. 4300–4312, 2011.

[24] “IBM ILOG CPLEX Optimizer.” [Online]. Available:
http://www.ibm.com/software/integration/optimization/cplex-optimizer/

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide
to the Theory of NP-Completeness. WH Freeman & Co., 1979.

[26] H. Y. Cheung, T. C. Kwok, and L. C. Lau, “Fast Matrix Rank Algorithms
and Applications,” Journal of the ACM (JACM), vol. 60, no. 5, p. 31,
2013.

[27] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” United
States, 2000.

[28] Z. Hu, Y. Qiao, J. Luo, P. Sun, and Y. Wen, “CREATE: CoRrelation
Enhanced trAffic maTrix Estimation in Data Center Networks,” in Proc.
of IFIP Networking, 2014, pp. 1–9.

[29] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. of ACM SIGCOMM,
2009, pp. 63–74.

