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Abstract—The recent development of 60GHz technology has
made hybrid Data Center Networks (hybrid DCNs) possible,
i.e., augmenting wired DCNs with highly directional 60GHz
wireless links to provide flexible network connectivity. Although
a few recent proposals have demonstrated the feasibility of this
hybrid design, it still remains an open problem how to route
DCN traffics with guaranteed performance under a hybrid DCN
environment. In this paper, we make the first attempt to tackle
this challenge, and propose the RUSH framework to minimize the
network congestion in hybrid DCNs, by jointly routing flows and
scheduling wireless (directional) antennas. Though the problem
is shown to be NP-hard, the RUSH algorithms offer guaranteed
performance bounds. Our algorithms are able to handle both
batched arrivals and sequential arrivals of flow demands, and
the theoretical analysis shows that they achieve competitive
ratios of O(logn), where n is the number of switches in the
network. We also conduct extensive simulations using ns-3 to
verify the effectiveness of RUSH. The results demonstrate that
RUSH produces nearly optimal performance and significantly
outperforms the current practice and a simple greedy heuristics.

I. INTRODUCTION

With the proliferation of cloud computing as an on-demand
network service, the supporting infrastructure, data centers, has
attracted great attentions. In particular, as tens to hundreds
of thousands of servers may potentially work together in a
data center and coordinate with each other through underlying
networks, the Data Center Network (DCN) becomes the core
component of offering qualified cloud computing services. Im-
proving the DCN performance is one of the primary research
issues for the networking community [1]–[5]. Although inter-
connecting co-located servers may appear to be trivial given
the extensive deployments of local area networks, the huge
number of servers connected by a DCN and the tremendous
amount of network traffic they produce make the construction
of efficient but low cost DCNs a challenging problem.

While early DCNs apply tree-structured topologies involv-
ing Ethernet switches for low-cost interconnections of a rel-
atively small number of servers, the growth in the scale of
DCNs pose very heavy load on some links in the tree topology
(oversubscription by a factor of 2.5 to 8 is possible [1]).
More recent research efforts tend to introduce complicated
topologies to address the traffic concentration problem [1]–
[3]. While FatTree [1] and VL2 [2] both follow the Clos-type

of topology but differ in whether a few faster (non-commodity)
switches are used, BCube [3] innovates in abandoning the
hierarchal structure and using hosts to relay traffic, which
results in a hypercube-like topology.

While all the wired topologies offer a large range of choices
to balance between the needs of efficiency and low cost,
their flexibility is always a questionable issue (besides other
drawbacks such as unnecessary cost to suppress oversubscrip-
tion) [4], [5]. More specifically, modifying the topology of
an already deployed DCN is very complex and may incur
high cost, due to the multi-staged design and the physical
constraints on arranging the wires (e.g., the bundled feature of
fibers). Consequently, several recent research proposals have
started to explore the possibility of using wireless networks
(operating in the 60GHz band) to offload the traffic in wired
networks [4]–[6]. The flexibility of having a hybrid DCN
is evident: the wireless links can be established in an on-
demand manner that exactly suits the on-demand feature of
the supported cloud computing services. While the relatively
theoretical work in [6] applies a genetic algorithm to perform
channel allocations to wireless links in a hybrid DCN, the
practical deployments demonstrated in [4], [5] mainly aim
to confirm the feasibility of hybrid DCNs with directional
antennas, without actually taking care of the optimal flow
scheduling issue. As optimally scheduling flows (hence the an-
tenna directions for wireless links) is crucial for improving the
DCN performance, a relevant question now is whether we
can perform joint (flow) routing and (antenna) scheduling
for hybrid DCNs with directional antennas while providing
a certain level of guarantee on performance.

To answer this question, we present in this paper RUSH
as a practical optimization framework for fast or online flow
scheduling in hybrid DCNs. We inherit the basic setting of
a hybrid DCN from [4]. Briefly, the base wired network
follows a hierarchical topology1 and is provisioned for average
case. In addition, each Top-of-Rack (ToR) switch is equipped
with one 60GHz wireless device. Also, a central scheduler is
available to monitor the traffic and schedule both flow routes
and wireless antenna directions. RUSH bears an optimization

1RUSH is rather independent of the wired topology, so one may potentially
choose any type of topology available.
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objective of minimizing the maximum congestion level in all
links, which is a desirable feature for DCNs [4]. To achieve
the objective, our RUSH framework includes two optimiz-
ers: RUSH-Batch for handling batched arrivals of the (flow)
routing requests and RUSH-Online to deal with sequential
arrivals in an online manner. Both algorithms have a provable
competitive ratio of O(log n), where n is the total number
of switches deployed in a hybrid DCN. They also entail low
computation complexity and can hence be performed in a fast
or online manner.2 We perform extensive simulations with ns-
3 to confirm the effectiveness of the RUSH algorithms.

The remaining of our paper is organized as follows. We
discuss the background and system models in Sec. II, and
we also define the optimization objective and formulate the
optimization problem in the same section. Then we present
the two RUSH algorithms in Sec. III and Sec. IV, respectively.
We also report the results of our numerical computations and
simulations in Sec. V. We finally discuss the relate work in
Sec. VI, before concluding our paper in Sec. VII.

II. BACKGROUND, MODELS AND PROBLEM
FORMULATIONS

In this section, we first briefly describe the design of hybrid
DCNs, then we present our model for the 60GHz wireless
links used in hybrid DCNs. Finally, we define our optimization
objectives and formulate our problem.

A. Hybrid DCNs Overview and Network Model

We use Fig. 1 to illustrate the design of a hybrid DCN. The
upper part of Fig. 1 shows a common 3-stage multi-rooted tree
topology for the wired DCN, while the lower part emphasizes
(through a top view) that each ToR is equipped with a
60GHz direction antenna. Although our RUSH framework
is independent of the wired topology, we prefer this simple
topology over other more advanced designs [1]–[3] for the
ease of exposition. We only consider a DCN at the granularity
of ToR, as the links among servers under each ToR (belonging
to the same rack) are rarely saturated [7]. Therefore, we will
model a DCN as a set of n nodes, each corresponding to a
switch (it can be a ToR, aggregation, or core switch), where
traffic may enter or leave only at ToR switches. We assume
that a central controller exists to coordinate the network traffic;
this can be achieved by an extension of OpenFlow-enabled
switches [8]. Basically, each switch maintains statistics about
flows passing through, and the controller can query existing
flow entries, perform optimization based on our RUSH, and
schedule paths for each arriving flows.

Almost all the recent proposals on hybrid DCNs suggest
using 60GHz wireless technologies, mainly because they offer
the advantage of larger bandwidth (data rate) and lower
interference (due to beamforming). Also, radios that operate
in 60GHz unlicensed band are available, with directional
antennas that can be steered mechanically or electronically [4],
[5]. Therefore, we also assume 60GHz wireless links for our

2As pointed out by [7], fast route computation is crucial given the scale of
today’s data centers.
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Fig. 1. A hybrid data center network. The red sectors represent the directional
antennas of the wireless devices co-located with ToRs.

hybrid DCN design. Our RUSH framework aims to schedule
flows for minimizing the congestion, which in turn implies
steering directional antennas to select proper wireless links
that can offload the congested wired links.

Combining the wired and wireless part, we model a hybrid
DCN as a graph G = (V,E), where V is the set of n nodes
and E is the set of communication links. The set V consists
of two disjoint subsets: VR includes all the low tier (or ToR)
switches and VH contains the other switches. According to
our discussion in Sec II-A, flows may start or end only at VR.
The links in E are also divided into two disjoint subsets ED
and EW : ED is the set of wired links and EW is the set of
wireless links. As only nodes in VR can operate wireless links,
we also call these nodes wireless nodes. For any link e ∈ E,
the capacity of e is denoted by c(e). The set of all wireless
links incident to a node v ∈ VR is denoted by ∂(v).

As the nominal capacity of a single 60GHz wireless link can
be very high in an indoor environment (≈ 6Gbps according
to [4]), we can afford to run it at a much lower rate (e.g.,
1Gbps) that makes individual links very robust against SINR
interferences, while we conservatively assume that all other
interfering links are transmitting concurrently. Actually, such
a conservative SINR interference (rate selection) model is also
adopted in [4], [9], and its feasibility is further corroborated
by the highly directional antennas and the newly devised
3D beamforming approach [5], as well as the availability of
three orthogonal channel under the 60GHz band (which can
be allocated to reduce interference through simple heuristics
given the regular node deployment in a hybrid DCN).

B. Joint Routing and Scheduling for Hybrid DCNs

We assume that there are a set of routing requests R =
{r1, r2, ..., rK} injected into a hybrid DCN G through VR,
where ri = (si, di, bi) and si, di, bi are the source node, the
destination node and the traffic demand of ri, ∀1 ≤ i ≤ K,
respectively. Each request is followed by a flow (a TCP
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session), and we only focus on flows that have significant
volumes (which can be detected by, for example, [10]).

As concentrating these mega flows may severely congest
some link(s), existing approaches such as ECMP (Equal-Cost
Multi-Path forwarding [11]) apply only local decisions (at
each switch) to balance the traffic loads. Such traffic-oblivious
mechanisms may work well for wired networks, but they
face difficulties in a hybrid DCN due to the existence of
directional wireless links. In particular, while there are many
possible outgoing wireless links from a node equipped with
a directional antenna, one will be fixed for a certain time
period once a routing decision is made, and hence the later
routing requests cannot be oblivious to this earlier decision.
For example, as shown in Fig. 2, once the two links (7, 11)
and (12, 13) are set up, it may not be possible to set up link
(7, 12) anymore. To tackle this problem, we aim to mitigate
the occupation level of each link by employing a joint routing
and (antenna) scheduling scheme from a global perspective.
More specifically, we identify a low-congestion routing path
for each request. If several routing paths share a common
60GHz directional radio, we need to schedule the orientations
of this radio and assign proper working times for them, such
that the maximum congestion on all links is minimized.

1
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Fig. 2. An example for the joint routing and scheduling problem in a hybrid
DCN. A wireless link exists between two antennas facing each other.

We formally define the joint routing and scheduling problem
in hybrid DCNs by Definition 1-3:

Definition 1: (Feasible Schedule) Given a hybrid DCN
G = (V,E), a feasible schedule τ for the wireless links in G is
a set {τ(e)|e ∈ EW } such that ∀v ∈ VR :

∑
e∈∂(v) τL(e) ≤ 1.

The value τ(e) is called the fractional time scheduled by τ on
e, ∀e ∈ EW .
This means that, while we can steer a directional antenna to
select different wireless links at different points in time, the
time fractions allocated to different links should not overlap.

Definition 2: (Link Congestion) Given a hybrid DCN G =
(V,E), a feasible schedule τ for EW and a set ` = {`(e)|e ∈
E} of traffic loads on the links in E. The congestion on any
e ∈ E with respect to 〈`, τ〉 is defined as:

Cτ` (e) =

{
`(e)/c(e) e ∈ ED
`(e)/[c(e) · τ(e)] e ∈ EW

As c(e) (resp. c(e)·τ(e)) is the effective capacity of a wired
(resp. wireless) link given τ , reducing the congestion of links

in G will leads to fewer “bottlenecks” in the network. This
has the potential to improve throughput while reducing delay.

Definition 3: (JRSH: Joint Routing and Scheduling for
Hybrid DCN) Given a hybrid DCN G and a set of routing
requests R, the JRSH problem seeks a path pt∗i for each
ri(1 ≤ i ≤ K) and a feasible schedule τ∗ for the wireless
links in G such that Zopt = maxe∈E Cτ

∗

`∗ (e) is minimized,
where ∀e ∈ E : `∗(e) =

∑
i:e∈pt∗i

bi.
In short, the objective of JRSH is to minimize the maximum

link congestion in the whole DCN. This, to some extent,
represents the overall throughput performance of the DCN.

We explain the above definitions by a few simple examples
based on Fig. 2. Suppose that the capacity of each link (wired
and wireless) is 1 and we have three routing requests r1 =
(7, 8, 0.5), r2 = (13, 14, 0.5) and r3 = (8, 13, 0.5). If we only
rely on wired DCN, then the best solution is to route the three
requests by the paths pt1 = 7→ 3→ 8, pt2 = 13→ 6→ 14
and pt3 = 8→ 3→ 2→ 6→ 13, resulting in the maximum
congestion of 1 on link (8, 3) and (13, 6). Using a wireless
link 8 99K 13 to replace pt3, we end up with a better solution
with the the maximum congestion reduced to 0.5.

According to Definition 3, we can formulate the JRSH
problem as follows:

Minimize Z [JRSH-1]∑
e:e∈out(si)

f ie =
∑

e:e∈in(si)

f ie + 1 ∀i (1)

∑
e:e∈in(w)

f ie =
∑

e:e∈out(w)

f ie ∀i,∀w /∈ {si, di} (2)

∑
i
f ie · [bi/c(e)] ≤ Z ∀e ∈ ED (3)∑

i
f ie
/
c(e) ≤ te · Z ∀e ∈ EW (4)∑

e:e∈∂(v)
te ≤ 1; ∀v ∈ VR (5)

f ie ∈ {0, 1} ∀i,∀e ∈ E (6)
0 ≤ te ≤ 1 ∀e ∈ EW

In the above formulation, the integer variable f ie : ∀e ∈
E∧1 ≤ i ≤ K indicates whether link e is used for routing ri,
and the variable te : ∀e ∈ EW corresponds to the fractional
time scheduled on the wireless link e ∈ EW . Constraints (1),
(2) and (6) ensure that a single path is used for routing
each request3, where out(v) and in(v) denote the sets of
outgoing links from v and incoming links to v, respectively.
Constraint (3) and (4) bound the congestions on the wired and
wireless links respectively, and constraint (5) guarantees that
{te|e ∈ EW } is a feasible schedule.

The hardness of JRSH is immediate:
Theorem 1: The JRSH problem is NP-hard.
For the convenience of further descriptions, we denote

by bmax and bmin the maximum and the minimum traffic
demands among all the requests, respectively, and denote by

3Multi-path routing can cause the problem of packet-reordering, hence is
not considered in this paper.
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cmax and cmin the maximum and the minimum link capacity
among all links in E, respectively.

III. AN ALGORITHM FOR BATCHED REQUEST ARRIVAL

JRSH-1 apparently belongs to the class of Mixed-Integer
Nonlinear Programming (MINP) problems [12], which are
usually very difficult to solve. In this section, we first convert
JRSH-1 to an equivalent but more tractable form, then we
propose RUSH-Batch as a fast approximation to tackle the
problem, assuming that the requests in R arrive in a batch. To
transform JRSH-1, we bring forward the following theorem.

Theorem 2: Given ` = {`(e)|e ∈ E} as an arbitrary set of
traffic loads on E and Λ as the set of all feasible schedules
on the wireless links in EW , we have:

min
τ∈Λ

max
e∈EW

Cτ` (e) = max
v∈VR

∑
e∈∂(v)

`(e)

c(e)
(7)

The proof of Theorem 2 actually reveals that, once the
traffic loads on the wireless links in EW are determined, we
can find an optimal feasible schedule such that the maximum
congestion on any e ∈ EW is minimized. Hence, if we
consider the value of

∑
e∈∂(v)

`(e)
c(e) as the “node congestion”

of any wireless node v with respect to `, then bounding the
congestion of wireless nodes is equivalent to bounding the
congestion of wireless links. Based on this observation, we
convert JRSH-1 into the following equivalent Integer Linear
Programming (ILP) problem:

Minimize Z [JRSH-2]∑
e:e∈out(si)

f ie =
∑

e:e∈in(si)

f ie + 1 ∀i (8)

∑
e:e∈in(w)

f ie =
∑

e:e∈out(w)

f ie ∀i,∀w /∈ {si, di} (9)

∑
i
f ie · [bi/c(e)] ≤ Z ∀e ∈ ED (10)∑

i

∑
e:u∈e

f ie ·
bi
c(e)

≤ Z; ∀u ∈ VR (11)

Z ≥ bmax/cmax (12)
f ie ∈ {0, 1}; ∀i,∀e ∈ E (13)

We can see that constraint (11) is set up in JRSH-2 to
replace constraint (4) and constraint (5) in JRSH-1, and we
completely removed the variables te : e ∈ EW . According
to the proof of Theorem 2, we can get the optimal routing
and scheduling solution to the JRSH problem once JRSH-
1 is solved. However, directly solving JRSH-2 can be time-
prohibitive, since the JRSH problem is NP-hard. Hence, we
seek to find an approximate solution to JRSH-2 by using a
randomized rounding method, shown in Algorithm 1. To do
this, we need a redundant constraint (12) in JRSH-2, which
will be useful for bounding the integrality gap of the LP-
relaxation of JRSH-2.

We relax JRSH-2 by replacing constraint (13) with f ie ∈
[0, 1]; this LP-relaxation can be solved by a standard LP-
solver. Its (optimal) fractional solution is taken as input to

Algorithm 1: RUSH-Batch
Input: Request set R, the solution to the LP-relaxation

of JRSH-2 {f ie|e ∈ E, 1 ≤ i ≤ K}
Output: Routing paths {pt i}i=1,··· ,K as well as a

feasible schedule of wireless links {te}e∈EW

1 for i = 1 to K do
2 Γi ← ∅
3 while ∃e : f ie 6= 0 do
4 Find h ∈ E s.t. f ih = min{f ie|e ∈ E ∧ f ie > 0}
5 Find a single path pt from si to di that contains

h from the edge set {e ∈ E|f ie > 0}
6 ξ(pt)← f ih; Γi ← Γi

⋃
{pt}

7 forall the e ∈ pt do f ie ← f ie − ξ(pt)
8 Pick a path pt i from Γi such that the probability of

selecting any pt ∈ Γi is ξ(pt)
9 forall the u ∈ VR do l(u)← 0

10 for i = 1 to K do
11 Let W be the set of all wireless links in pt i
12 ∀u ∈ e ∈W : l(u)← l(u) + bi/c(e)

13 lmax ← max{l(u)|u ∈ VR}
14 The fractional time scheduled on any wireless link e is

set to te =
∑
i:e∈pti

bi/(c(e) · lmax)

our RUSH-Batch algorithm, and we randomly choose routing-
paths according to the fractional solution (lines 1-8). More
specifically, we construct a set Γi of candidate paths for each
request ri, and each path pt ∈ Γi is associated with a path
probability ξ(pt) (lines 2-7). According to constraint (8) of
JRSH-2, we have

∑
pt∈Γi

ξ(pt) = 1, and hence we can pick
one path from pt ∈ Γi according to the path probabilities
(line 8). After choosing all the paths, we calculate the node
congestions of all wireless nodes (lines 9-12) and then find
a feasible antenna schedule for the wireless links using the
method provided in the proof of Theorem 2 (lines 13-14).

Lines 1-8 of Algorithm 1 can be implemented in
O(K|E|(|V | + |E|)) time. Lines 9-14 of Algorithm 1 can
be implemented in O(K|E| + |V |) time. Hence the time
complexity of Algorithm 1 is O(K|E|2). To bound the quality
of the solution, we define the Competitive Ratio (CR) of
any algorithm A for the JRSH problem as the ratio of the
maximum link congestion resulting from A to Zopt , and prove
the CR of Algorithm 1 by Lemma 1 and Theorem 3:

Lemma 1: Let X1, X2, ..., Xk are independent random
variables such that ∀1 ≤ i ≤ k : Prob{Xi = 1} = pi and
Prob{Xi = 0} = 1 − pi. Let Y =

∑
1≤i≤k aiXi where

ai : 1 ≤ i ≤ k are non-negative real numbers. Let m be any
positive number which satisfies m ≥ max{ai|1 ≤ i ≤ k}.
Suppose E(Y ) ≤ S, then for any δ ≥ 0 we have: Prob{Y ≥
(1 + δ)S} ≤

[
eδ(1 + δ)−1−δ] S

m

Theorem 3: The competitive ratio of Algorithm 1 is 1 +
γ lnn with high probability, where γ = max{ 3cmax

cmin
, e2},

where e is the base of natural logarithms.
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IV. AN ONLINE COMPETITIVE ALGORITHM

The RUSH-Batch algorithm we have proposed in Sec. III
assumes that the routing requests arrive in a batch. However,
it is also possible that the requests arrive in a sequential
manner. If we start to make the routing/scheduling only after
all the requests have arrived, the earlier requests will suffer
a high delay. Therefore, we provide an online algorithm,
RUSH-Online, to solve JRSH and also to handle requests in a
timely manner. We provide the pesudocode of RUSH-Online in
Algorithm 2, and we also explain the basic principles behind
the algorithm design.

The idea of RUSH-Online is to route the requests according
to a special weight assigning method and a global parameter
θ, which is an estimation of the optimal solution Zopt . We
maintain a global variable P as the set of paths for already
routed flows. Initially, P is an empty set and θ is set to a
constant a (line 1, and we will explain later how we choose
a). We also maintain a global variable ge for each e ∈ ED
and a global variable tv for each v ∈ VR; they are the current
congestion values (normalized by θ) of e and v, respectively.
We reset both ge and tv to 0 if either the request is the first
one or the estimation of Zopt is updated (lines 5-6).

The execution of RUSH-Online may consist of several
rounds (line 3). In each round, the algorithm calculates the
weights of the wired links and the wireless links according to
two special exponential functions (lines 8-9), and then find
a shorted path pt i from si to di according to the weight
assignment as the tentative routing path for ri (line 10). After
that, the algorithm calculates the (tentative) maximum new
congestion values of each wired link and of each wireless
node in pt i (lines 11-12). If either value exceeds a predefined
threshold (line 13), the algorithm judges that the tentative path
pt i may bring too much congestion and cannot be output as
a result. This leads to a doubling of the estimation of Zopt

(i.e., doubles θ), and the algorithm starts another round to
process ri. Otherwise if pt i passes the test in line 13, we
accept pt i as a valid path for ri, re-schedule the wireless links
in current known paths (line 17), and revises the congestion
values accordingly (lines 18-22).

We obtain the competitive ratio of Algorithm 2 using a
method of amortized analysis. More specifically, we define a
potential function:

Π(i) =
∑
u∈VR

λtu(i)(2− t∗u(i)) +
∑
e∈ED

λge(i)(2− g∗e(i))

where tu(i),∀u ∈ VR and ge(i),∀e ∈ ED are the current
(normalized) congestion values if pt i is selected, whereas
t∗u(i) and g∗e(i) are the corresponding congestion values in
the optimal solution. We first prove in Lemma 2 that Π is
actually a decreasing function when λ = 4

3 . Moreover, we use
Lemma 2 to prove that Algorithm 2 can process all requests
without changing θ, as shown by Lemma 3.

Lemma 2: If Zopt ≤ a and θ does not change, then Π(i)
is a decreasing function.

Lemma 3: If Zopt ≤ a, then Algorithm 2 can process all
the requests without doubling θ.

Algorithm 2: RUSH-Online
Input: Request ri, and global variables P , θ, {ge}, {tv}
Output: Routing path pt i and a feasible schedule τP for

all paths in P
1 if i = 1 then P ← ∅; θ ← a
2 changed ← false; λ← 4

3
3 repeat
4 if i = 1 ∨ changed then
5 forall the e ∈ ED do ge ← 0
6 forall the v ∈ VR do tv ← 0

7 forall the e ∈ E do δe ← bi/[c(e) · θ]
8 forall the e ∈ ED do w(e)← λge+δe − λge
9 forall the e ∈ EW do

w(e)← λtu+δe + λtv+δe − λtu − λtv , where u and v
are e’s two endpoints

10 Find a shortest path pt i for routing ri using w
11 z1 ← max{ge + δe|e ∈ pt i

⋂
ED}

12 z2 ← max{tu + δe|u ∈ e ∧ e ∈ pt i
⋂
EW }

13 if max{z1, z2} > 3 logλ n then
14 θ ← 2 · θ, changed ← true
15 else changed ← false
16 until ¬changed ;
17 P ← P

⋃
{pt i}; Find a feasible schedule τP for the

wireless links in
⋃

pt∈P (pt ∩ EW ) using the same
method with lines 9-14 of Algorithm 1

18 foreach e = (u, v) ∈ pt i do
19 if e ∈ ED then
20 ge ← ge + δe
21 else
22 tu ← tu + δe; tv ← tv + δe

Now the problems left are how to choose a and how to
get the CR of Algorithm 2. Since Zopt is unknown, we
cannot guarantee that an initially chosen a is larger than
Zopt , hence Algorithm 2 may run several rounds to get
the right estimation of Zopt . Fortunately, Lemma 3 actually
guarantees that Algorithm 2 terminates in finite time: at most
O(log(Zopt)) rounds no matter what initial value is chosen
for a. Also, we can use Lemma 3 to choose a suitable a to
bound the CR of Algorithm 2 no matter how many times θ
doubles itself, which results in Theorem 4.

Theorem 4: If a ∈ (0, b1
cmax

], then the competitive ratio of
Algorithm 2 is 12 logλ n where λ = 4

3 .
Note that the interval (0, b1

cmax
] can be determined once

the first request r1 shows up, hence Algorithm 2 works
in a pure online fashion, i.e., processing ri without the
knowledge of any future requests. According to Lemma 3,
there are at most O(log(Zopt)) rounds in Algorithm 2. In
each round, the time used for processing request ri is at most
O(|E| + |V | log |V |). On the other hand, lines 17-22 can be
implemented in O(|E|+ |V |) time. Hence the total time com-
plexity of Algorithm 2 for processing all K requests is at most
O(K(|E|+ |V | log |V |) log(Zopt)) = O(Kn2 log(Kbmax

cmin
)).
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V. EVALUATING RUSH

We report our evaluation of RUSH in this section. We
first introduce the configurations of the simulator. Then we
compare the performance of our own algorithms and choose
one to conduct the remaining simulations. Finally, we choose
three typical traffic patterns to evaluate our RUSH-Online
algorithm in middle scale hybrid DCNs.

A. Simulation Settings

We implement RUSH in ns-3 and use CPLEX [13] as the
ILP/LP solver. In the simulations, we create DCN topologies
based on [14] (similar to that in Fig. 1). For the wireless
models, simulations and the layout of racks, we mimic those
used in [4], and the rates of wireless links are selected based on
the conservative SINR model adopted in [4]. The rates of the
wired links under a ToR are set to 1Gbps, and links at higher
stages are configured to obtain a suitable oversubscription
ratio. Similar to [1] and [15], we generate two types of routing
requests: i) Stride-i flows: where a server with id x sends
data to the destination server with id (x+ i) mod n, and ii)
Random flows: where each server randomly selects another
server as the destination. In either case, we generate flows
whose start time follows a Poisson arrival process with a given
mean.

We study the performance of five algorithms in our sim-
ulations, namely: RUSH-OPT, RUSH-Batch, RUSH-Online,
Greedy, and ECMP. RUSH-OPT is the optimal solution of
the JRSH problem, i.e., the results of solving JRSH-2 using
an ILP-solver. Due to the high time complexity of JRSH-2,
we only run RUSH-OPT for small scale hybrid DCNs and
use it as a benchmark. RUSH-Batch and RUSH-Online are
our algorithms described in Section III and Section IV, re-
spectively. The Greedy algorithm corresponds to the heuristic
provided in [4], which offloads the congested wired links using
the available wireless links in a greedy manner. Finally, ECMP
is the algorithm widely adopted by commercial DCNs. Among
all these algorithms, only ECMP runs on purely wired DCNs,
and we use it as a benchmark to show how much performance
gain we can obtain by employing wireless links.

Although our algorithms all aim at minimizing link con-
gestion, it is hard to measure link congestion in practice (in
simulations or experiments). Therefore, we actually measure
the throughput and the average per packet delay of the
flows, and we normalize the two quantities against those of
a non-oversubscribed (wired) DCN. As many flows are under
evaluation, we plot their normalized throughput/delay in the
form of empirical Cumulative Distribution Function (CDF).

B. Simulation Results

We first compare RUSH-OPT, RUSH-Batch, RUSH-Online
and ECMP in small scale DCNs. Due to the high complexity
of RUSH-OPT, we can only have DCNs with 28 switches
(16 ToRs, 8 aggregations, and 4 cores) and 48 flows. The
link rates are set to make the wired DCN 1:2 oversubscribed.
The simulation results are shown in Fig. 3. It is not a
surprise that all the three RUSH algorithms outperform the

ECMP algorithm, proving the advantage of using wireless
links to improve the DCN performance. While RUSH-OPT
does appear to be better than both RUSH-Online and RUSH-
Batch, the difference is too small to warrant its complexity.
In the remaining simulations, we will use RUSH-Online as a
representative to compare with other algorithms.
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Fig. 3. Comparing the RUSH algorithms with ECMP.

Now we switch to middle scale DCNs with 56 switches
(32 ToRs, 16 aggregations, and 8 cores) and 192 flows, and
the link rates are still set to make the wired DCN 1:2 over-
subscribed. Considering three flow patterns: Stride-6, Stride
12, and Random, we compare RUSH-Online with Greedy and
ECMP under each pattern, and also investigate the traffic load
of each link under both ECMP and RUSH-Online for Stride-6.
We first show the comparison under Stride-6 in Fig. 4(a) and
Fig. 4(b). Apparently, RUSH-online and Greedy outperform
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Fig. 4. Comparing RUSH-Online with Greedy and ECMP under Stride-6.

ECMP in terms of both throughput and delay, as they both take
the advantage of wireless offloading. However, RUSH-Online
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surpasses Greedy significantly: about 35% of the flows routed
by RUSH-Online achieve a normalized throughput of at least
1, whereas only less than 12% of flows routed by Greedy
achieve the same throughput. This can be explained by the
reason that the Greedy algorithm lacks of a flexible antenna
scheduling scheme and selects fixed wireless links based on a
local-optima-searching method for any given batch of flows,
hence can not fully explore the power of wireless-offloading
to balance the network traffic as RUSH-Online does. In fact,
Greedy needs to let every flow run in order to identify which
one(s) should be offloaded to wireless links. On the contrary,
RUSH-Online determines the path for a flow before sending
it into the network.

The wireless offloading achieved by RUSH-Online is very
evidently shown by Fig. 4(c) and Fig. 4(d), where the color at
i-th row and j-th column of a matrix indicates the traffic load
on the link between a switch i and another switch j. As the
switches are indexed such that the first 32 are ToRs and the
last 8 are cores, the upper-left corner of a matrix represent the
wireless links, whereas the rest portions represent the wired
links. As ECMP only use wired links, bottlenecks are shown
to be at the core switches. Instead, RUSH is able to spread
the load on both wired and wireless links, leading to a lower
congestion on links.

We further compare RUSH-Online with Greedy and ECMP
under two other flow patterns: Stride-12 and Random; the
results are shown in Fig. 5 and Fig. 6. In these cases, the
superiority of RUSH-Online persists. As the queueing delay
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Fig. 5. Comparing RUSH-Online with Greedy and ECMP under Stride-12.
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Fig. 6. Comparing RUSH-Online with Greedy and ECMP under Random.

in a DCN appears to be minor and the transmission delay is the
dominating factor, RUSH is able to improve both throughput

and average (per packet) delay. However, as throughput is
a cumulative quantity whereas delay is measured for every
packet, the improvements in throughput often appear to be
more prominent.

VI. RELATED WORK

A huge body of work has been done for improving the
performance of DCNs during the last couple of years; we
only survey a few here for brevity. FatTree [1], Portland [16]
and VL2 [2] have leveraged FatTree or Clos-type topologies
to improve the routing efficiency in DCNs. Building upon a
FatTree topology, Hedera [15] collects the flow information
in DCNs to a central controller and optimize the flow routing
using a simulated annealing method. BCube [3] and DCell [17]
further allow servers to communicate directly and use highly
connected network structures to improve routing performance.
There are quite some drawback with all these purely wired
DCN topologies (we refer to the comments in [4], [5] for de-
tails); a prominent one is their inflexibility in accommodating
topology modifications or upgrades.

Recently, the hybrid DCNs with wireless links have started
to attract attentions. The survey paper [18] gives a com-
prehensive analysis on the challenges of wireless DCNs,
which greatly motivates potential research directions in this
area. The work in [4], [5] has used both simulations and
system implementations to demonstrate the feasibility of aug-
menting wired DCNs with 60GHz wireless links formed by
highly directional antennas, but neither of them has provided
joint routing and scheduling schemes for hybrid DCNs with
provable performance bounds. In [6], the channel allocation
problem in wireless DCNs has also been investigated and
some novel algorithms are provided to efficiently increase the
network throughput and reduce the job completion time.

The related disjoint-paths searching and congestion-aware
routing problems were also studied in [19]–[22]. However,
these proposals all work for static network graphs and can
only be applied to traditional wired networks. Moreover, there
are also a large number of proposals for routing and schedul-
ing using directional antennas in wireless ad hoc networks,
e.g., [23]–[25], but they focus on the specific features and
optimization goals for wireless ad hoc networks (such as
lifetime and coverage), which are essentially different from
those in hybrid DCNs.

VII. CONCLUSION

In this paper, we have studied, from a system perspective,
the network flow optimization problem in hybrid CDNs, where
highly directional 60GHz wireless antennas are deployed for
augmenting the wired infrastructure of traditional DCNs. We
have proposed our RUSH framework for joint routing and
scheduling directional wireless antennas in the hybrid DCNs,
and present algorithms to deal with both the batch-arrival
and the sequential-arrival of network flow demands. These
algorithms all offer provable performance guarantees in terms
of the network congestion. We have implemented the RUSH
framework in ns-3, and by using the implementations, we
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have conducted extensive simulations in ns-3 to compare
RUSH with existing proposals. The results have strongly
demonstrated the superiority of our approach.
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APPENDIX

Proof of Theorem 1: The NP-hardness of the JRSH
problem can be easily proved by a reduction from the the
Edge-Disjoint Paths with Congestion problem, which is NP-
hard even on planar graphs [22]. Hence we omit the proof
details due to page limits.

Proof of Theorem 2: Let the righthand of equation (7)
be B. Firstly we’ll prove that we can find a feasible schedule
τ1 ∈ Λ such that maxe∈EW

Cτ1` (e) ≤ B, which leads to
minτ∈Λ maxe∈EW

Cτ` (e) ≤ B. The feasible schedule τ1 can
be constructed as follows. For any link e ∈ EW , the fractional
time scheduled by τ1 on e is set to τ1(e) = `(e)/(c(e) · B).
Clearly, Cτ1` (e) ≤ B. Meanwhile, for any v ∈ VR, we have:∑

e∈∂(v)
τ1(e) = (1/B) ·

∑
e∈∂(v)

[`(e)/c(e)] ≤ 1,

which indicates that τ1 is a feasible schedule for EW and
satisfies maxe∈EW

Cτ1` (e) ≤ B.
Let v∗ be the specific node in VR such that the maximum

value (i.e., B) of the right side of equation (7) is achieved.
Now we’ll prove minτ∈Λ maxe∈EW

Cτ` (e) ≥ B. To prove
this, it is sufficient to prove I(τ) = maxe∈∂(v∗) Cτ` (e) ≥
B (∀τ ∈ Λ). This can be proved by observing that, for
any feasible schedule τ ∈ Λ, we have

∑
e∈∂(v∗) τ(e) ≤ 1

and ∀e ∈ ∂(v∗) : Cτ` (e) = `(e)/[τ(e) · c(e)] ≤ I(τ), hence
B/I(τ) =

∑
e∈∂(v∗) `(e)/[I(τ) · c(e)] ≤ 1.

Proof of Theorem 3: For each e ∈ E and each i(1 ≤
i ≤ K), define a random variable Y ie such that: if the link
e is selected for routing ri, then Y ie = 1, otherwise Y ie = 0.
Hence we have E(Y ie ) =

∑
e:e∈p∧p∈Γi

ξ(p) = f ie. For any link
e ∈ ED, let Xe =

∑
i
bi
c(e) · Y

i
e be the congestion on e. Let

Z∗ be the optimal solution to the LP-relaxation of JRSH-2.
Clearly, E(Xe) =

∑
i f

i
e · bi

c(e) ≤ Z
∗.

Let α = γ · lnn and m = bmax/cmin. Using Lemma 1 and
Z∗ ≤ Zopt , we have:

Prob{Xe > (1 + α) · Zopt} ≤ Prob{Xe > (1 + α) · Z∗}

≤
{
eα(1 + α)−1−α}Z∗

m ≤
{

(α/e)−α
}Z∗

m

On the other hand, since γ = max{3cmax/cmin, e2}, we have
ln
(
α
e

)α
= γ lnn(ln γ + ln lnn − 1) ≥ 3cmax

cmin
· lnn, hence

(α/e)α ≥ n
3cmax
cmin . Combining all these inequalities with

Z∗ ≥ bmax/cmax, we can get Prob{Xe > (1 + α) · Zopt} ≤
n
− 3cmax

cmin
·Z∗

m ≤ n−
3cmax
cmin

· bmax
cmax

· cmin
bmax = n−3. Finally, according

to the Boole’s inequality we have Prob{∃e ∈ ED : Xe >
(1 + α) · Zopt} ≤ |ED| · Prob{Xe > (1 + α) · Zopt} ≤ 1/n,
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which means that the congestion on any wired link is no
more than (1 + γ lnn)Zopt with high probability. Similarly,
we can prove that the congestion on any wireless node is no
more than (1 + γ lnn)Zopt with high probability. According
to Theorem 2, Theorem 3 follows.

Proof of Lemma 1: The lemma is actually a generaliza-
tion of the Chernoff bound [26]. Let t = ln(1 + δ). For any
variable x, let x = x/m. Using Markov’s inequality, we have

Prob{Y ≥ (1 + δ)S} = Prob{Y ≥ (1 + δ)S}
= Prob{etY ≥ et(1+δ)S}
≤ E(etY )/et(1+δ)S = E(

∏
1≤i≤k

etaiXi)/et(1+δ)S

=

∏
1≤i≤k E(etaiXi)

et(1+δ)S
=

∏
1≤i≤k[1 + pi(e

tai − 1)]

et(1+δ)S

Since ai ∈ [0, 1] (∀1 ≤ i ≤ k) and t ≥ 0, we have: 1 +
pi(e

tai − 1) ≤ 1 + piai(e
t − 1) ≤ epiai(e

t−1), Therefore

Prob{Y ≥ (1 + δ)S} ≤ e
∑

1≤i≤k[piai(e
t−1)]

et(1+δ)S

≤ eS(et−1)e−t(1+δ)S =
(
eδ(1 + δ)−1−δ) S

m

Proof of Lemma 2: Let Π1(i) =
∑
u∈VR

λtu(i)(2−t∗u(i))
and Π2(i) = Π(i)−Π1(i). Let pt∗i be the path for request ri
in the optimal solution. Let E1

W be the set of wireless links
in pt i+1 but not in pt∗i+1. Let E2

W be the set of wireless links
in both pt i+1 and pt∗i+1. Let E3

W be the set of wireless links
in pt∗i+1 but not in pt i+1. We have:

Π1(i+ 1)−Π1(i)

=
∑

u:u∈e∈E1
W

(λtu(i+1) − λtu(i))(2− t∗u(i))

+
∑

u:u∈e∈E2
W

[λtu(i+1)(2− t∗u(i)− δe(i+ 1))−

λtu(i)(2− t∗u(i))]−
∑

u:u∈e∈E3
W

λtu(i) · δe(i+ 1)

=
∑

u:u∈e∈pti+1

⋂
EW

(λtu(i+1) − λtu(i))(2− t∗u(i))

−
∑

u:u∈e∈pt∗i+1

⋂
EW

λtu(i+1) · δe(i+ 1)

≤
∑

u:u∈e∈pti+1

⋂
EW

2(λtu(i)+δe(i+1) − λtu(i))

−
∑

u:u∈e∈pt∗i+1

⋂
EW

λtu(i) · δe(i+ 1), (14)

where (14) holds because tu(i+1) ≥ tu(i) and t∗u(i) ≥ 0(∀u ∈
VR). Similarly, we can get:

Π2(i+ 1)−Π2(i)

≤
∑

e:e∈pti+1

⋂
ED

2(λge(i)+δe(i+1) − λge(i))

−
∑

e:e∈pt∗i+1

⋂
ED

λge(i) · δe(i+ 1),

hence

Π(i+ 1)−Π(i)

≤
∑

e:e∈pt∗i+1

⋂
ED

2(λge(i)+δe(i+1) − λge(i))

+
∑

u:u∈e∈pt∗i+1

⋂
EW

2(λtu(i)+δe(i+1) − λtu(i))

−
∑

e:e∈pt∗i+1

⋂
ED

λge(i) · δe(i+ 1)

−
∑

u:u∈e∈pt∗i+1

⋂
EW

λtu(i) · δe(i+ 1) (15)

=
∑

e:e∈pt∗i+1

⋂
ED

λge(i)[2(λδe(i+1) − 1)− δe(i+ 1)]

+
∑

u:u∈e∈pt∗i+1

⋂
EW

λtu(i)[2(λδe(i+1) − 1)− δe(i+ 1)],

where (15) holds because that pt i+1 is a shortest path ac-
cording to the weight assignment method in lines 8-9 of
Algorithm 2. Now, since δe(i + 1) = bi+1/(c(e) · θ) ≤
Zopt/a ≤ 1 (∀e ∈ pt∗i+1), we know 2(λδe(i+1) − 1) −
δe(i+ 1) ≤ 0 (λ = 4

3 ,∀e ∈ pt
∗
i+1), which indicates that Π(i)

is a decreasing function.
Proof of Lemma 3: Suppose θ remains to be a after

i requests are successfully processed. Clearly this holds for
i = 0. Now suppose that we are going to process ri(i ≥ 1).
Since t∗u(i) ≤ Zopt/θ = Zopt/a ≤ 1(∀u ∈ VR) and similarly
g∗e(i) ≤ 1(∀e ∈ ED), we have Π(i) ≥

∑
u∈VR

λtu(i) +∑
e∈ED

λge(i). According to Lemma 2, if we choose pt i for
ri then we have:

tu(i) = logλ(λtu(i)) ≤ logλ Π(i)

≤ logλ Π(0) = logλ 2(|VR|+ |ED|)
≤ logλ 2n2 ≤ 3 logλ n (∀u ∈ VR)

Similarly, we can also get ge(i) ≤ 3 logλ n (∀e ∈ ED).
This means that Algorithm 2 won’t execute line 14, hence
can successfully process ri without changing θ.

Proof of Theorem 4: Suppose that Algorithm 2 doubles
θ for k(k ≥ 0) times to process all requests. Hence we can
divide the execution history of Algorithm 2 into k+ 1 stages
such that each stage has the same value of θ. Let the maximum
congestion of any wired or wireless link accumulated in the
ith stage be T i. According to Algorithm 2, we have T i ≤
3 · (logλ n) · (2i−1a); (1 ≤ i ≤ k + 1).

Let Tfinal be the maximum congestion of any wired or
wireless link when all the requests are processed. Note that
a ≤ b1/cmax ≤ Zopt . So if k = 0, then we have

Tfinal = T 1 ≤ 3 · (logλ n) · a ≤ 12 · (logλ n) · Zopt

Now assume k ≥ 1. According to Lemma 3, this implies
Zopt > 2k−1a. Hence, we also have

Tfinal/Zopt ≤
∑

1≤i≤k+1

T i/Zopt

≤
∑

1≤i≤k+1 3 · (logλ n) · (2i−1a)

2k−1 · a
≤ 12 logλ n


