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Abstract—Finding available parking spaces in dense urban
areas is a globally recognized issue in urban mobility. Whereas
prior studies have focused on outdoor/street parking due to a
common belief that parking garages are capable of delivering
real-time occupancy information, we specifically target at (in-
door) parking garages as this belief is far from true. This problem
is very challenging as all the infrastructure supports (e.g., GPS
and Wi-Fi) assumed by existing proposals are not available to
parking garages, so counting how many vehicles are using a
parking garage by crowdsensing can be extremely difficult.

To this end, we present ParkGauge, a method to gauge the
occupancy of parking garages, along with a reference system pro-
totype for performance evaluation; it infers parking occupancy
from crowdsensed parking characteristics instead of counting
the parked vehicles. ParkGauge adopts low-power sensors (e.g.,
accelerometer and barometer) in the driver’s smartphone to
determine the driving states (e.g., turning and braking). A
sequence of such states further allows the inference of driving
contexts (e.g., driving, queuing and parked) that in turn
yield temporal parking characteristics of a parking garage,
including time-to-park and time-in-cruising/queuing. Mining
such mobile data opportunistically collected from a crowd of
drivers arriving at various garages yields a good measure of
their occupancies and hence useful recommendations can be
generated (in real-time) to inform drivers coming toward these
venues. Through extensive experiments, we demonstrate that our
method fully explores these parking characteristics to efficiently
infer occupancies of parking garages with high accuracy.

I. INTRODUCTION

With a rapid economic growth, the vehicle population in
dense urban areas has been witnessing a drastic rise around
the world; this has led to a higher demand on parking in-
frastructure especially in mega-cities. While on-street parking
has led to serious traffic congestion due to vehicles cruising
in searching for parking places [1], multi-storey car parks
(aka, parking garages), which are the major urban parking
facilities for mega-cities, can also produce serious on-road
congestion because of long queues of vehicles waiting to enter
them, even though their total capacity may be sufficient to
meet the parking demands. A reason for this paradox is that
the occupancy information measured at the garages (if any)
is mostly displayed only locally, rather than published online
and available to drivers in advance. As illustrated in Figure 1,
our study on the central business district (CBD) of Singapore
during the year 2014 shows that, out of 360 garages, 28%
have no occupancy monitoring system installed and 93% do
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Fig. 1: Parking garages in the CBD area of Singapore, with
percentages of the types of occupancy monitoring shown on
the left. Garages with online occupancy information and on-
street parking are marked in green and purple, respectively.

not publish the real-time occupancy information online, which
can cause waiting queues as shown in Figure 2.

Vehicles waiting to get parked also cause environmental
issues, as their emissions produced during cruising/braking
result in serious air pollution [2], [3]. Many cities try to
control the problem by establishing road-side parking guidance
systems, adding occupancy sensor infrastructure, and even
enforcing special policies (e.g., a dynamic parking pricing
scheme) to discourage people from driving into a CBD, but
they all need heavy investments to get fully deployed and some
of them actually increase the overall carbon footprint. In fact,
the majority part of the parking problem can be tackled if
the occupancy information is available to drivers in advance,
enabling them to drive towards less congested venues or re-
plan their trips. Our studies reveal that some popular parking
garages may remain full for several hours with acute queuing
during peak hours, while close-by ones possess surplus, as
shown by the two garages A and B shown in Figure 3.

Fig. 2: Queuing in front of parking garages: examples from
Singapore on the left and Dortmund, Germany on the right.
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Fig. 3: Parking availabilities for two close-by parking garages
A and B during a day.

Existing infrastructure-based systems deployed to collect
parking occupancy data often require occupancy sensors and
wireless beacons at parking lots (e.g., SFpark [4]) or extra
sensors on vehicles (e.g., ParkNet [3]), making them expensive
and not very scalable. Consequently, it would be very helpful,
from both economic and environmental points of view, if the
crowdsensing ability [5], [6] of the driving population can be
exploited to tackle the parking problem in an infrastructure-
free manner. Inertial sensing has been widely used for human
gesture and transportation mode detection (e.g., [7], [8], [9],
[10], [11], [12]) without depending on any infrastructure sup-
port, but it is extremely hard to infer occupancy information
from direct inertial sensor readings: inertial sensing may well
suggest driving states such as braking and turning, but such
events are seemingly unrelated to parking occupancy unless
certain inference mechanisms are in place to establish the
necessary connections.

In this paper, we propose ParkGauge, a method to gauge
the occupancies of parking garages in urban areas. In order to
apply inertial sensing for this purpose, ParkGauge innovates in
using (temporal sequences of) driving states (e.g., braking and
turning) to infer parking characteristics (e.g., time-to-park,
time-in-queuing) that are in turn exploited to deduce garage
occupancies. To the best of our knowledge, ParkGauge is the
first crowdsensing method 1 that uses temporal information
to efficiently and effectively indicate parking occupancy for
indoor parking garages. The primary contributions of this work
are summarized as follows:
• We propose a fundamentally new idea to measure the

occupancy of parking garages, exploiting seemingly ir-
relevant but readily available mobile sensing data.

• We develop a full sensing framework in order to complete
the transformation from (mostly) inertial sensor readings
to temporal parking characteristics.

• We identify, combine and re-engineer machine learning
algorithms in a hierarchical manner, aiming to guarantee a
highly effective inference process on the diverse datasets
typically obtained through a crowdsensing system.

• We demonstrate the efficiency and effectiveness of Park-
Gauge with extensive experiments in several parking
garages, using a prototype implemented on Android.

It is worth noting that, unlike existing crowdsensing-based
parking systems that directly count the available parking lots,

1A poster abstract of this work [13] explores the potential of using Simple
Linear Regression to infer discrete occupancy levels from time-to-park.

ParkGauge does not require a “crowd” (hence high penetration
of the application) for sensing individual parking garages.
Instead, a minimal amount of sensing data acquired from a
small number of users for each parking garage would be
sufficient for ParkGauge to deliver useful information, whereas
the “crowd” is needed only for covering many parking garages
across a large urban area.

The rest of our paper is organized as follows. We first
discuss the related proposals that lead us to the design of
ParkGauge in Section II, followed by an overview of the
architecture and key concepts in Section III. We further present
the technical details of ParkGauge methodology in Section IV
and our extensive experiment results in Section V. Finally, we
discuss potential extensions and conclude the paper.

II. RELATED WORKS

In this section, we motivate ParkGauge by showing the
mismatches between existing literature on parking occupancy
inference/activity recognition and the actual challenges of the
indoor parking problem.

A. Parking Occupancy Inference

ParkNet [3] initiates the idea of crowdsensing-assisted park-
ing availability detection, but its reliance on extra sensors
(i.e., ultrasonic range finders) installed on ParkNet vehicles
has tagged it with a more infrastructure-dependence nature.
Instead, a few of the recent parking systems, PhonePark [14],
ParkSense [15] and PocketParker [16], have taken more advan-
tage of the driver-vehicle crowdsensing ability: they combine
smartphone sensors and localization techniques to detect park-
ing and unparking events and to infer the availability of park-
ing spaces. ParkSense [15] relies on the ubiquitous presence
of Wi-Fi beacons in urban areas to detect unparking events,
while the detection procedure is initiated by a phone-based
parking payment system and keeps working until an unparking
event is detected. Focusing on outdoor parking areas (surface
lot), PocketParker [16] requires GPS or Wi-Fi to roughly
locate a parking vehicle and further applies a probabilistic
inference mechanism to account for non-participating vehicles.
It utilizes accelerometer to deduce transitions between driving
and walking and thus to detect parking and unparking events.
PhonePark [14] proposes a similar approach to build up a
historical parking availability profile, while additionally ex-
ploiting the pay-by-phone parking system and bluetooth sensor
to detect parking and unparking events.

Though relying on GPS, Wi-Fi, or a payment system is
plausible for outdoor parking, it is often not feasible for
indoor parking: while both GPS and Wi-Fi are often not
accessible, a payment in garage typically happens at the
departure time. Also, ParkSense [15] requires the system to
keep Wi-Fi sensing between a pair of parking and unparking
events, potentially increasing the overall energy consumption
of the smartphone. Moreover, inferring occupancy from a
subset of parked vehicles (as suggested by PocketParker [16])
may not work well in a garage, simply due to its much



larger capacity than an outdoor parking area. Crowdsourcing
applications are available for drivers to report the occupancy
information (e.g., Google OpenSpot). Such approaches often
lack proper incentives to stimulate driver participations [15],
because a driver would deem it too troublesome to input data
manually. In addition, we note that existing vehicle navigation
systems provide a useful feature called estimated time of
arrival (ETA) at destination. However, if a parking system
only delivers the number of available parking lots, a driver
has insufficient information at his disposal to plan the arrival
at the final destination.

B. Activity recognition

Existing literature on human activity and transportation
mode detection is bountiful [7], [8], [17], [9], [10], [11],
[18]. These proposals often have a low-power profile due
to the use of inertial sensing techniques. However, it is
almost impossible to directly apply inertial sensing to de-
rive occupancy information. Fortunately, recent advances in
machine learning and data mining techniques allow indirect
inference to be performed when proper logical correlations
can be identified [19]. Previous studies [20] have also explored
the feasibility of using hierarchical Bayesian non-parametric
methods for mobile context discovery from raw sensor data.
Therefore, it is potentially feasible to avoid the sensing-
prohibitive parking lot counting and still gauge the occupancy
information with seemingly irrelevant sensor readings.

III. BACKGROUND / OVERVIEW

This section explains the design rationale of ParkGauge,
followed by an overview of the architecture.

A. Design Rationale

Whereas counting the available parking lots is not feasible
for indoor parking garages, it is not effective either because the
crowdsensing application has to be adopted by most (if not all)
drivers. Therefore, ParkGauge aims to gauge the occupancy
evaluation from a different perspective. In particular, if we
deem a parking garage as a queueing system, the occupancy
determines its service rate, which is functionally related to the
waiting time in the queue. In the parking context, we term
this waiting time time-to-park and consider it as a temporal
parking characteristic; it is composed of other parking charac-
teristics such as time-in-cruising and time-in-queuing. While
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Fig. 4: Parking occupancy and time-to-park at a popular
shopping mall: a negative correlation is obvious.
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Fig. 5: Architecture of ParkGauge.

time-to-park is defined as the time span from a vehicle’s
arrival at a parking garage till it gets parked, time-in-cruising
and time-in-queuing measure the time spent in looking for
a free parking lot and that for waiting in a stationary state,
respectively. From the data that we have collected shown in
Figure 4, there exist strong correlations between occupancy
and time-to-park.

Using parking characteristics such as time-to-park to infer
occupancy can also satisfy our other design objectives. First
of all, these characteristics can be detected mostly by inertial
sensing techniques (if properly used), making the system
both autonomous and energy-efficient. Secondly, it is scalable
to very large metropolitan areas: since only a few tens of
samples (so as to reach certain statistic significance) need to
be obtained for each parking garage, a small number of Park-
Gauge equipped drivers/vehicles would be able to cover a very
large area. Thirdly, the data used for inferring occupancy can
extend to serve other purposes, including a more accurate ETA
indication. Finally, the system is self-incentivizing: if drivers
wish to get the occupancy information for their respective
destinations, they would enable the ParkGauge application to
share their data in the first place.

B. System Architecture

ParkGauge runs as an application in a driver’s smartphone
that is assumed to be taken along with the driver upon
completing a parking. The architecture of ParkGauge has a
3-layer presentation shown in Figure 5, so that connections
between the seemingly unrelated sensing data and our gauging
objectives can be made through a multi-stage inference. Sens-
ing functions are performed at the lowest layer (the Sensing
Layer), where ParkGauge collects data using several sensors
embedded in the smartphone, including mainly gyroscope,



accelerometer, and barometer for continuous sensing in a
parking garage, as well as 3G, GPS, and Wi-Fi only for
determining the starting context of a parking process. Features
extracted from the sensor data collected within a sliding
window are fed into a Random Forest-based classifier that
estimates the driving state. The outputs of this layer are the
driving state, such as accelerating, braking and turning.

The Context Layer applies a Hidden Markov Model (HMM)
to represent the relation between the input (driving state) and
the output (driving context), where driving states are treated
as observable states and the parking-relevant driving contexts
are the hidden ones to be inferred. As the HMM factors in the
temporal correlations between consecutive driving contexts, it
may potentially counteract the errors in classifying the driving
states. Note that a few driving contexts require direct sensor
inputs, resulting in direct connections that bypass the HMM.

At the Presentation Layer, parking characteristics are de-
rived from driving contexts. For example, the time span
between start-parking and parked is counted as time-to-
park, whereas a brake count counts the number of brakings.
Some of these characteristics can be used directly (e.g., to
improve ETA estimations), but inferring the occupancy of a
parking garage requires an independent learning module based
on regression. Using the historical data, we build a regression
model to represent the relation between occupancy and the
derived parking characteristics, so that ParkGauge can infer the
occupancy in real-time. To perform regression on our diverse
crowdsensed data, we employ Support Vector Regression
(SVR) with a universal kernel function based on Pearson VII
function (PUK) [21]. As all the learning models are trained
offline, the online inferring process run by ParkGauge client
involves only low complexity arithmetic operations, making it
both time and energy efficient to be hosted in commercially-
available smartphones.

IV. METHODOLOGY

We explain the key aspects of our methods in this section.
We first present two direct-sensing components of ParkGauge,
namely parking-arrival and floor-change detectors. Subse-
quently, we focus on the driving context detection and explain
how we learn the HMM model from observed sensor data
and infer the driving contexts. We finally discuss the novel
aspects on utilizing the various parking characteristics to infer
occupancy of a parking garage.

A. Parking-Arrival Detector (PAD)

As the contexts to set and reset a gauging process, start-
parking and give-up-parking need to be captured in order for
ParkGauge to decide whether to start or to end. ParkGauge
relies on a low-energy 3G-based location detector to roughly
indicate if the geo-fence (e.g., a 500m circle around a parking
garage near the destination is entered. If true, ParkGauge starts
the GPS-based localization to capture either start-parking or
give-up-parking context. If the vehicle further approaches the
garage within a small circle (e.g. 50-75m, empirically very

close to the entry point), the start-parking context is signaled
and ParkGauge starts its gauging process. The current time
is recorded as the candidate Parking Arrival Time, and the
Driving Context Detector (DCD) is invoked. Note that the
thresholds (50-75m, 500m, 60s) are configurable for individual
locations or garages.

Under a normal situation, the false-positive rate of detecting
a start-parking is low, as the chance of a vehicle slowly ap-
proaching a parking garage but bearing no intention of entry is
very small. However, we have observed a few vehicles driving
near a parking garage but hit by a traffic jam, causing a false
alarm. Fortunately, ParkGauge is robust to such anomalies, as
the recorded Parking Arrival Time is only a candidate; it
can be canceled if a give-up-parking is signaled, either due
to the vehicle exiting the geo-fence or as a result of the driving
context signaled by DCD (c.f. Sec. IV-C).

B. Floor-Change Detector (FCD)

This detector primarily operates on the barometer sensor
data to indicate relative height variations and thereby detects
floor changes during a vehicle’s parking process. Detecting
floor-change context allows ParkGauge to reinforce its belief
in an ongoing parking process, and it also facilitates deriving
parking characteristics for individual floors within a park-
ing garage (e.g., time-in-cruising for basement 2), so that
ParkGauge can provide fine-grained parking characteristics
desirable for users who, for example, prefer to park at a floor
close to their favorite shops.2

While the gradual increase in barometer reading is the
consequence of the vehicle’s cruising along a spiral ramp,
the overall variations clearly indicates the floor changes:
the altitude variation is inversely proportional to that of the
pressure with a slope of roughly 0.12mp/m. The patterns
are consistent for each parking garage and that helps Park-
Gauge offer repeatable floor detection performance even in the
presence of long-term pressure fluctuations [22]. ParkGauge
obtains barometer readings at 1Hz frequency and it applies
a 10s window to check if the readings are sufficiently stable,
i.e., variance below a threshold (e.g., 0.1mb). Whenever stable
readings are identified, their average value is then compared
with that of the previous one. If the resulting altitude difference
falls within a pre-determined height interval applicable for
the parking garage structure (normally around 3.3m) or its
multiples, a floor-change context is signaled.

C. Driving Context Detector (DCD)

DCD is the core of ParkGauge for inferring the driving
contexts of a vehicle. We first briefly introduce the basic
models. Then we explain the feature selection and driving
state classification at the sensing layer. Finally, we present
the learning process for the HMM (context layer).

2Such profile information can be of interests to other mobile applications
such as advertisement pushing or coupon distribution.



1) Modeling a Parking Process: We use O and C to
represent observation (or driving state3) and driving context
respectively. The time-granularity of inference is quantified
using a window of size W . We use the subscript t to denote
the time index of the state and context for a window. Except
for the 3 direct-sensed contexts discussed in Sec. IV-A and
IV-B, the relation between observation (driving state) and
driving contexts are modeled as an HMM with standard first-
order Markov assumptions made for the temporal sequence
of driving contexts. This can be specified by: (1) stationary
context distribution, Pr(C1), (2) context transition model,
Pr(Ct|Ct−1), and (3) observation model, Pr(Ot|Ct).

When a stream of driving states [O1, O2, · · · ] are estimated
by the sensing layer, ParkGauge takes them for inferring the
t-th driving context Ct, where the correlation between con-
secutive contexts has been implicitly considered by involving
the previous context as an input. Table I lists all the driving
contexts and observations considered by ParkGauge.

TABLE I: List of driving states and contexts.

Driving state Driving context

a. proceeding i. driving
b. accelerating ii. cruising
c. decelerating iii. parked
d. turning iv. queuing
e. braking v. start-parking
f. pausing vi. give-up-parking
g. walking vii. floor-change

2) Feature Extraction and Classification of Driving States:
As shown in Figure 5, we mainly use the accelerometer and
gyroscope for driving context detection. Whereas barometer
may be used for this purpose with even lower energy con-
sumption [23], our current implementation avoids using it
due to its longer detection latency. Next, we describe how
features suitable for ParkGauge are extracted and used to train
a classifier that estimates driving states.

ParkGauge uses a sampling frequency of 20Hz to collect
sensor readings through Android SensorManager API. The
driving state is determined by collecting these readings in an
interval of W seconds and feeding it to a classifier. By default,
W = 10s and we justify this choice through experiments
in Sec. V-D. Raw acceleration values are pre-processed by
applying a low-pass filter to estimate the gravity component
that is removed to obtain linear acceleration values. These
values are further smoothed (to mitigate noise) by applying a
5-term moving average, and the results are processed to extract
the time-domain and frequency-domain features mentioned in
Table II. Similarly, raw gyroscope readings are also smoothed
and processed to extract the specific angular time-domain
features listed. Figure 6 shows examples of raw sensing
readings corresponding to the driving states considered by
ParkGauge. Clearly, the aforementioned features characterize
these states sufficiently.

3We shall hereafter use these two terms in an interchangeable manner.

TABLE II: Features used in classifying driving state.

Acceleration-based Gyroscope-based

Time-domain Frequency-Domain Time-domain

Mean Peak Frequency Mean
Variance FFT-Peak Variance
Range FFT-0,1,2,3,4Hz Range
Gradient Energy Peak Count

Using a dataset obtained from our experiments (c.f.
Sec. V-A), we train a Random Forest based classifier [24]
offline that enables ParkGauge to efficiently and accurately
estimate the driving state from sensor data readings at run-
time. The training dataset consists of the aforementioned
features extracted for a sliding window of size W and 50%
overlap. Each data record is labeled with corresponding actual
driving states. The Random Forest algorithm fits randomly
selected samples from the labeled training data to multiple
decision trees using the principle of bootstrap-aggregating. It
further predicts the class labels for unseen data by taking a
majority vote among the trained decision trees and thereby
offers better generalization performance over a single decision
tree. The ParkGauge implementation incorporates a rather
modest set of 10 trees with a maximum depth of 3 each.
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Fig. 6: Visualizing driving states by raw data.

3) Learning and Using the HMM Parameters: Given the
observations made online, the HMM shown in Figure 5
allows us to infer the (hidden) driving contexts, if the HMM
parameters discussed in Section IV-C1 are fully specified. We
briefly explain how we learn the HMM parameters (offline)
based on the driving/sensing data collected in advance, as
well as how to use them for online inference. For learning
the HMM model, we apply the backward-forward recursion
similar to Baum-Welch EM algorithm [25], but we opt for the
Gibbs Sampling [19] technique for a more robust estimation:
it makes better use of our dataset with driving states manually
labeled and corresponding observations recorded.



Given the dataset obtained through our intensive tests, we
apply common statistics to derive initial values for the model
parameters defined in Sec. IV-C1. For example, the stationary
probability of Pr(C1 = cruising) is obtained by looking at the
frequency of the cruising context out of all observed driving
contexts. Now given a sequence {o1, o2, · · · , oT } of observed
driving states, the forward-backward procedure is used to
compute the forward posterior probability and the backward
posterior probability. The model is iteratively updated based
on these probabilities and repeated until convergence to stable
estimations of the model. To apply this model for inferring
the driving contexts online, we make use of a modified Viterbi
algorithm [26]; it identifies the most likely sequence of hidden
driving contexts from a sequence of observations (driving
states). At runtime, whenever a change of context is signaled,
the timestamp is also recorded. In particular, the Parked Time
is recorded if the context cruising changes to parked.

D. Gauging Occupancy using Parking Characteristics

Given the context changing times recorded, we can compute
the parking characteristics. While time-to-park is the dif-
ference between Parked Time and Parking Arrival Time,
time-in-cruising and time-in-queuing simply accumulate the
time spent in the corresponding contexts. In the following, we
present how these characteristics can be used to gauge the
parking occupancy.

1) Gauging the Occupancy: As explained in Section III-A,
there exists an implicit functional relationship between time-
to-park and occupancy. Instead of deriving this function
analytically, we use regression to fit this function based on
our labeled datasets (c.f. Section V-F). As a result, whenever
ParkGauge obtains an estimated time-to-park, it can infer the
corresponding occupancy. Such occupancy estimations can be
averaged over a sliding time interval (for example, 20 minutes
duration in our reference implementation) and reported to
users in real-time. Figure 7 illustrates this relation using real-
world data collected from a popular parking garage during
a working day (10:00 to 16:00) with at least 1 observation
recorded every 10 minutes. It can be observed that lower
time-to-park is observed during periods of high parking space
availability and vice-versa. When such high-quality data are
available, a simple linear or quadratic regression fits a model
that can operate with reasonably low estimation errors.
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Fig. 7: Training the regression model to fit the relation between
occupancy and time-to-park.

TABLE III: Features used to infer parking occupancy.

Parking characteristics: input features for regression

time-to-park day of week turn count
time-in-queuing arrival time brake count
time-in-cruising

However, in a practical mobile crowdsensing system, it
may not be feasible to obtain high quality data for every
parking garage and this may limit the quality of the parking
occupancy inference. To address this issue, we propose to
use additional parking characteristics that are obtained from
the lower layers of ParkGauge and use them to improve the
inference accuracy for garages having a lower number of
observations per day (due to a lower penetration of ParkGauge
users visiting the garage). Specifically, we propose to exploit
the ability of ParkGauge to extract the features (regressor
variables) in Table III for each parking session and utilize
them offline to train a robust regression model.

In order to choose a robust regression model using these
features, we propose to use the well-known Support Vector
Regression (SVR) with an appropriate kernel function selected
through experimental evaluation (see Section V-F).

2) Support Vector Regression: There has been extensive
literature on Support Vector Regression [27] and hence we
only briefly describe the relevant concepts here. Given a
training data set of n observations D = (xi, yi), i = 1, 2, ..., n
with x ∈ Rd representing the d input features obtained from
each parking session and y ∈ R representing the corresponding
output parking occupancy to be inferred, SVR tries to find
the function f(x) : Rd → R mapping the input training data
features x to output y, that produces estimation of y which is
the closest to the corresponding true values in D.

The problem belongs to Reproducing Kernel Hilbert Spaces
(RKHS) H and can be formulated as

f∗(x) = argmin
f∈H

(
C

l∑
i=1

V (f(xi), yi) + 0.5||f ||2H
)

(1)

where C is a parameter controlling the relative weight of the
loss function and the regularization penalty ||f ||2H. The loss
function in our case is V (f(x), y) = |round(f(x))− y|.

3) Choosing Kernel Function: Apart from SVR, kernel-
based methods have become highly popular in solving regres-
sion and classification problems and several kernel functions
have been proposed. Kernel functions help to transform the
input data space into a Hilbert Space. (i.e. a space which
is spanned by distance-based functions or inner-products of
the input feature data vectors ∈ Rd) Some of the popular
kernel functions are Linear kernel, Polynomial kernel and
Radial basis function (RBF). Recently, [21] proposed as a new
alternative, the Pearson VII Universal kernel (PUK) function
which is basically the Pearson VII function developed in 1895
by Karl Pearson [28]. PUK can be regarded as a universal
kernel function since it can handle linear, polynomial and RBF



based feature mappings. PUK function possesses the flexibility
to vary between Gaussian and Lorentzian shapes and more,
thereby offering more robust mapping capability and enabling
it to deal with a broad spectrum of data and problems. Since
PUK can help avoid the tedious process of selecting kernel
functions, the model building process can be made simpler
and computationally efficient. The Pearson VII function can
be understood in the general form

H[
1 +

(
2(x−x0)

√
2(1/ω)−1)
σ

)2
]ω .

(2)

where x is the regressor variable and H represents the maxi-
mum height of the peak of x (i.e., the value of y observed at
its center x0). The half-width and tailing factor of the peak are
controlled by the parameters σ and ω. The function is flexible
to vary from Gaussian (ω ≈ ∞) towards a Lorentzian (ω ≈ 1)
shape by varying the parameter ω. This property enables PUK
to fit peaks of a variety of line widths and shapes, thus helping
to serve as a universal kernel function.

V. EMPIRICAL EVALUATION

In this section, we describe the evaluation procedure, setup
for data collection and parking experiments using our Park-
Gauge prototype, as well as evaluation results.

A. Data Collection and Experiment Setup

For an effective evaluation, we have implemented Park-
Gauge as an Android-based application along with a back-end
server. While the model learning procedure is done offline in
the server using the collected dataset, all the online detections
are performed by the ParkGauge client application running (at
the background) in a smartphone, which periodically reports
data to the server.

Our experiments involved five different phones: Samsung
Galaxy S4, HTC One M8, LG Google Nexus 5, Samsung
Galaxy S3, and HTC One X. All these phones possess both
accelerometer and gyroscope, while the first three of them also
have a barometer. The last two phones were chosen to test how
the ParkGauge system would work without the barometer. To
validate the inter-floor height calculated by the barometer, we
used a Bosch laser rangefinder DLE40 to obtain the ground
truth. We collected data for two months in two different cities
(Singapore and London), during which about 120 traces were
gathered, including 62 self-parking sessions. Six drivers of
different nationalities and diverse driving habits contributed to
this dataset and both petrol (Toyota WISH, VW Polo, Mazda
3) and electric (BMW i3) cars were used.

The parking garages in our experiments are specifically
selected to be attached to popular shopping malls, so that we
do get significant fluctuations in their occupancies during a
day. These garages published their occupancies online, which
we collect and use as ground truth for our inference. We
performed two categories of designed experiments: i) parking

among a few close-by garages in a sequence, and ii) parking
in a single garage in a cyclical manner, i.e. enter, park, walk,
unpark, exit, and repeat. On one hand, the former helps us
to evaluate the robustness of ParkGauge in accommodating
different parking situations: these garages were quite different
in terms of number of floors (ranging from 3 to 12 floors),
underground or aboveground, floor area and capacity per floor
etc. On the other hand, the latter category enables us to
evaluate the consistency of ParkGauge and also to verify the
characteristics measured by ParkGauge against the ground
truth during the same period of time. Each parking session
took roughly 10 to 25 minutes, depending on the occupancy
at that time. To capture the fluctuations in the demand for
parking, the data collection was performed around the peak
hours, i.e., 10:00-16:00 and 18:00-20:00.

B. Data Pre-Processing

We work with 2 kinds of data: (1) sensor data collected
from smartphones during parking sessions, (2) parking char-
acteristics determined by ParkGauge users.

1) Pre-processing Raw Sensor Data: The sensor data ob-
tained from the different phones are cleaned and smoothened
to remove noise and outliers, as already described in Section
IV-C2. The cleaned data is used to extract features and train
the driving state classifier, and subsequently, the HMM driving
contexts. 10-fold cross-validation is performed to ensure good
generalization performance of these methods.

2) Pre-processing the Parking Characteristics Dataset:
This dataset included both (a) a feature-rich set of park-
ing characteristics computed by the ParkGauge clients and
validated against corresponding ground truth, as well as (b)
(availability, time-to-park) data pairs collected at few garages
through manual observation. The former dataset is richer in
features and very diverse since they are from different days and
involving different drivers, albeit the number of observations
per driver or vehicle and per garage and per day are small.
However, since this is crowdsensed and inferred data, there
are some chances of errors. The latter data is collected for
a specific garage for a long duration (e.g. 10:00-16:00) and
recorded at least once in every 10 minutes, and this resulted in
data of high quality and reliability, and nearly identically and
independently distributed (i.i.d). This dataset is very important
since it is used to construct a regression model and infer
the parking occupancy. Therefore, the dataset is first cleaned
to remove extreme values or outliers. We first calculate the
Inter-Quartile Ranges (IQR) on all records and then filter and
eliminate the values in 25% and 75% quartiles that exceed
the IQR. Subsequently, we normalize all the numeric features
in all the data records using min-max normalization process
before applying the regression process.

a) Feature Selection: After pre-processing, we apply a
feature selection algorithm to identify a significant feature
subset i.e., the best features useful for inferring parking occu-
pancy. Although this could be performed by a filter or wrapper
method, we employ Correlation Feature Selection (CFS), a
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Fig. 8: Raw data traces corresponding to two parking trials with short and long time-to-park. We only provide full labels to
the long trace for better readability, but the feature-context correspondence can be easily discerned for the other trace also.

correlation-based feature subset selection method for machine
learning [29]. This method evaluates the inference quality of
a subset of attributes by evaluating the individual predictive
ability of each feature in addition to the degree of redundancy
between these features. Running the CFS algorithm on our
training dataset with 10-fold cross validation helped to arrive
at the 7 features listed in Table III. In our original dataset,
additional fine-grained feature attributes were available such
as the number of floors traversed, left turns count, and right
turns count. However, these attributes were excluded since they
did not possess significant predictive ability within our dataset.
With larger datasets arriving from a large-scale crowdsensing
deployment, such feature selection is useful.

b) Splitting The Dataset for Training and Testing: After
pre-processing, we evaluate several regression methods. For
each method, we train the model using our training dataset and
perform 10-fold cross validation to understand their general-
ization performance. Finally, we test the trained model with a
testing dataset and report the performance.

For this paper, we evaluated the methods with data for dif-
ferent days from the same driver and different drivers. Finally,
we intentionally mixed the ParkGauge-reported data from
actual parking sessions with the manually observed dataset,
since this approximates the data inputs with a real-world
crowdsensing system. This dataset consists of 78 records, of
which 37 records are manual observations with a high fidelity
and the rest are crowdsensed by ParkGauge during parking
experiments. The manual observations had empty features
which were marked as missing values, but valid features were
still considered. This dataset was further divided into training
data and testing data. We performed both 10-fold and leave-
one-out cross validation approaches to ensure generalization
performance. The testing data was obtained by randomly
sampling 10 observations without replacement, resulting in a
10-record testing dataset and a 68-record training dataset.

C. Inferring Driving States and Contexts from Sensor Data

To provide a rough idea about how ParkGauge operates
in field, we use two sets of raw sensor readings plotted

in Figure 8 to demonstrate the inferred driving states and
contexts. These two parking trials differ in their values of
time-to-park reported by ParkGauge: (1) The left one took
only 140 seconds as the vehicle arrived at a parking garage
with a rather low occupancy (in the morning), and most of
the time was spent mainly on cruising and going two-levels
downwards (indicated clearly by barometer readings). (2) The
right case was a long parking trial. The vehicle arrived at the
parking garage with almost full occupancy, so it was first hit
by a long queue at the entrance, then it spent quite a long
cruising time in finding a parking lot even after getting three
levels down. This trial took place during the peak hour when
people drive to the shopping mall to get their lunch.

D. Accuracy of Driving Context Inference

We omit the performance evaluation for driving state infer-
ence and directly evaluate the accuracy of estimating driving
contexts. This is because driving contexts are directly related
to ParkGauge’s final performance in deriving parking charac-
teristics and thus gauging the occupancy. To evaluate the ac-
curacy of estimating a certain driving context, we first identify
the time intervals spent in that context according to our ground
truth observation. Then, we check the output of ParkGauge
to see the percentage of these time intervals when ParkGauge
has made a correct estimation. Assuming an ergodic stochastic
process behind the estimation, this percentage exactly indicates
the success rate in detecting this driving context. Due to space
limit, we choose to show evaluation results for three contexts,
namely driving, parked, and cruising.

The other goal of this evaluation is to choose the best
window size W used for estimating driving state and context.
In fact, we initialize W to 5s, as this is the smallest value to
accommodate a certain driving state (e.g., turning). Then, we
try different values of W that are all multiples of 5s. As shown
in Figure 9, while it is expected that the latency grows almost
linearly with W , the highest accuracy is achieved at W = 10s.
The accuracy first increases with W as ParkGauge gets more
information to make a decision, but it starts to decrease later
as the “cost” of making a wrong estimation grows with W .
As a result, we fix W = 10s in our final implementation.
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E. Accuracy of time-to-park Estimation

Estimating time-to-park is an important functionality of
ParkGauge. As shown in Figure 10, the estimation errors range
from 5s to around 30s. While extreme values are rare, most
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Fig. 10: CDF for the estimation errors of time-to-park

errors are around 18s. Given that the normal values of time-
to-park are in the order of minutes (or tens of minutes in the
worst case), we deem ParkGauge’s performance in estimating
time-to-park very accurate. In fact, as the error mean is related
to the window size W (it is systematically biased due to the
detection latency), we could further reduce the estimation error
by subtracting W from each estimated time-to-park. This
would bring the error down to the range of (−5, 20)s.

F. Performance in Occupancy Gauging

As explained in Section IV-D1, we use regression to recover
the functional relationship between occupancy and temporal
parking characteristics time-to-park extracted from the data.
To perform the evaluation, we use the training and test datasets
described in Section V-B2b. We compare four regression
approaches, namely: (1) Simple Linear Regression (SLR) with
only time-to-park feature, (2) Multiple Linear Regression
(MLR) with all 7 features listed in Table III, (3) Artificial
Neural Network (ANN) using 10 hidden layers, and (4) SVR
with 5 different kernel functions, namely Linear, Polynomial
(quadratic, cubic), RBF and PUK.

To compare the different regression methods, we use the

Normalized Root-Mean Squared Error,

NRMSE =

√∑n
i=0(pi − ai)2

n
, (3)

the square root of the mean of squares of errors between the
normalized actual values {ai} (as discussed in Section V-B2)
and the corresponding inferred values {pi}.
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Fig. 11: Comparison of different regression methods

From Figure 11, one observes that linear regression ap-
proaches (MLR and SLR) performed reasonably well. The
NRMSE is high, but it is still comparable with SVR. ANN
does not perform very well with this dataset. Using the hidden
layers, it seems to over-fit the model to the training data
and hence the test data results in higher errors. However,
SVR provides good performance with different kernel func-
tions. Linear kernel offers slightly worser error performance,
whereas Polynomial (both Quadratic and Cubic) and RBF
kernel functions offer superior performance. But, it is clear
that SVR with PUK kernel offers the lowest NRMSE (0.0993)
and hence, the best generalization performance.

A key observation from this evaluation is that SLR performs
decently (NRMSE 0.2106) even when using time-to-park as
the only input feature. However, the accuracy obtained is
more than doubled (NRMSE 0.0993) when we perform SVR
with PUK kernel on a higher-dimensional training data with
additional features such as time-in-queuing as listed under
Section IV-D1. This justifies the multi-layered hierarchical
methodology adopted by ParkGauge.

G. Tuning The Parameters of SVR(PUK)

Since we have convincing results that help us choose
SVR(PUK) as the preferred approach to infer parking occu-
pancy, we now tune the parameters of the PUK kernel function,
namely ω and σ, that control its shape and thereby affects
the inference output of SVR(PUK). We vary each parameter
across a range of 0 to 100 while keeping the other parameter
fixed at a value 1. In each iteration, we train a SVR(PUK)
model and check its generalization performance using 10-fold
cross validation. In Figure 12 (left plot), one observes that the
lowest NRMSE is obtained at ω = 2 when σ is fixed at 1. In
the right plot, one observes that the best performance (0.0993)
is obtained at σ = 1 when ω is fixed at 1. Thus, we choose the
common point σ = 1 and ω = 2 as the Pearson parameters for
SVR(PUK) in inferring parking occupancy for ParkGauge.
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VI. CONCLUSION AND DISCUSSIONS

Based on the observation that indoor parking garages may
lack real-time occupancy information, we set out to develop a
new mobile parking data collection, processing, and inference
method, ParkGauge; it delivers real-time occupancy informa-
tion to its users. As indoor parking garages differ in many
aspects from outdoor parking places, the method adopted by
existing proposals for directly counting occupied parking lots
are infeasible. To this end, our design of ParkGauge innovates
in using inertial sensing data to infer parking occupancy with
reasonably low errors. Inspired by queueing theory, ParkGauge
computes parking characteristics such as the time spent to park
a vehicle and the time it spends in queuing and cruising, the
brake count and number of turns made during the parking
process, and uses SVR to infer parking occupancy.

In future, we plan to make a large-scale deployment of
ParkGauge and analyze the crowdsensed parking character-
istics inferred by ParkGauge. For a real deployment of mobile
crowdsensing system to be successful, energy management
is also crucial. For this purpose, the application can adopt
a strategy utilizing operating modes such as a very-low-power
idle mode, a short but energy-hungry prepare mode utilizing
high-power sensors such as GPS only when necessary to detect
start/give-up-parking, and a low-power active mode utilizing
only low-power sensors to compute the parking characteristics.
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