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Abstract—Inspired by the recent invention of a high efficiency
Wireless Power Transfer (WPT) technique, we propose in this
paper the Perpetual Wireless Networks (PWNs) as a novel wireless
networking paradigm. Similar to the conventional wireless (data)
access point, a PWN has a power access point, from which
electrical power is injected and distributed into the network in
a form of multi-hop transfer. Consequently, we lay our focus
on this new type of multi-hop flow problems concerning not
data but power. We formulate and analyze a set of such power
flow problems (some are joint with data flow), and we devise
algorithms to solve them. The intriguing insights obtained from
solving these optimization problems offer instructive guidance
for future studies on real PWN constructions.

I. INTRODUCTION

Wireless networks always have limited lifetime ever since
they came into use. As users of wireless nodes expect them
to be tetherless, i.e., wireless in terms of not only data
communications but also power supplies, batteries are unani-
mously used as the power sources for these nodes. Therefore,
network lifetime is heavily restricted by the battery capacity.
Though networkers and system designers have been striving
for energy efficiency, wireless networks are still far from being
long-lived. As battery capacity is finite, power demands for
data communications will eventually exhaust the batteries.
Subsequently, the networks need to be either re-deployed or
re-charged by getting a mobile charger to approach a wireless
device or vice versa. Obviously, these subsequences all lead
to big inconveniences and potentially huge costs.

The aforementioned issues could be solved if we can
charge the network nodes continuously. Apart from the heavily
studied energy harvesting mechanisms [7], [12], the recently
developed Wireless Power Transfer (WPT) technique [4], [5]
suggests yet a new potential. The idea of the WPT reported in
[4] is based on magnetic resonant coupling. In a nutshell, if
a power sender and the receiver(s) have the same resonant
frequency, the energy can be transferred with rather high
efficiency, as the dissipation to extraneous off-resonant objects
is negligible. Although this technique is still in experimental
phase, research proposals in our networking community al-
ready start to reap the potential harvest [6], [14]. However,
these proposals still confine themselves to a stereotype of
moving chargers to deliver energy to the network nodes.
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National Natural Science Foundation of China under Grant 60903193.

In this paper, we aim at fundamentally re-generating the
idea of applying WPT to fuel wireless networks. We propose
to equip individual nodes with WPT capability and to inject
power into the network as flows, similar to data flows in con-
ventional networking sense. Like data dissemination, injected
power can be carried through multi-hop distribution. Under the
new Perpetual Wireless Network (PWN) paradigm, a network
may have infinite lifetime if the power consumption incurred
by data flow can be compensated by the injected power flow.

This fundamentally new wireless networking paradigm also
brings us new challenges. Specifically, we need to tackle a new
type of network flow problems: power flow problems. Taking
into account the inherent broadcast nature of WPT, we formu-
late a set of power flow problems, and we propose algorithms
to solve them based on a detailed analysis on the problem
structure. Moreover, using wireless sensor networks (WSNs)
as the scenario, we further investigate the joint data and power
flow problems. Applying the proposed algorithms, we obtain
extensive numerical results on the optimal configurations of
power flow and joint data/power flows, which yield instructive
insights on practical system constructions. To the best of our
knowledge, we are the first to make all these contributions.
Our PWN paradigm, on one hand, complements the existing
technologies to realize long-lasting wireless networks in an
energy efficient manner, and on the other hand, it may redefine
various system design aspects (e.g., data routing) given the
need for power transfer awareness.

The remaining of our paper is organized as follows. We
first discuss the background for WPT and present model
definitions for PWNs in Sec. II. We investigate pure power
flow problems in Sec. III and extend them to joint data and
power flow problems in Sec. IV. In Sec. V, we report the
extensive numerical results along with their implications. We
finally conclude our paper in Sec. VI.

II. BACKGROUND AND MODELS

In this section, we first overview the background of wireless
power transfer, then we introduce the model definition for
perpetual wireless networks.

A. Background of WPT

Being an emerging technology, wireless power transfer
(WPT) based on resonant magnetic induction has initiated
its commercial use. As it is omni-directional irrespective of
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the geometry of the surrounding space, and it can reach to
meters without much loss into the off-resonant objects [4],
WPT through resonant coupling becomes a proper technique
for energy distribution in wireless networks. We may further
expect that if multiple receivers are arranged to “attract” the
power, a higher power transfer efficiency can be achieved. This
has indeed been proven by experiments recently [5]. Therefore,
the energy distribution performed in PWN should mostly take
a (local) broadcast form in order to gain higher efficiency. But
it is intrinsically different from Wireless Broadcast Advantage
(WBA) [15] in 1) data can be replicated but power cannot, and
2) number of receivers affects the efficiency of power delivery
but not that of data delivery.

B. Model Definition for PWNs

Basically, there are two components for a PWN: a power
network and a data network. We first present the model defini-
tion for pure power network, then we add in data transmission
models for the joint flow problems.

1) Model for Power Network: Suppose there is a power
distribution network whose nodes are equipped with WPT
capabilities, we name it static energy distribution network
(SEDN). Given a SEDN with node set V and WPT range
ri : i ∈ V , an edge set E is defined such that (i, j) ∈ E ⇔
d(i, j) ≤ ri for i, j ∈ V . Obviously, each edge indicates a
potential power transfer link, which is directional and can be
asymmetric (unless ri is identical for all nodes). Although each
link should have a capacity (the maximum transferable power)
in theory, we omit this constraint in our later formulations, as
the current WPT technologies allow for a capacity of tens
of Watts while the consumption of wireless devices is often
far lower than that. In fact, applying capacity constraints for
individual links does not change the complexity of a power
flow problem. Each SEDN is equipped with a power access
node s ∈ V .1 It is connected by wire to a power grid, and it
injects power into the SEDN.

We denote by ηi < 1 the efficiency ratio of the power
transfer at node i, i.e., for power pi transferred by i, only
ηi·pi can be collected by a receiver (or receivers). According to
Sec. II-A, ηi increases with the number of receivers involved in
a transfer. We also make the assumption that, for m receivers,
ηi(m)
m is decreasing in m. This is reasonable because ηi(m)

should be a concave function given that ηi(1) ≈ 0.5 [3] and
ηi < 1. We further assume that the resonant coil of a node can
be “turned off” (or made off-resonant) such that the node can
stop receiving power. This is important as the essential way of
controlling power flow is to schedule the on-off of receiving
nodes for each power transfer.

2) Model for Data Network: We specifically assume a
WSN under PWN paradigm, where sensor nodes are equipped
with both WPT and wireless communication capabilities. The
sink s ∈ V is now in charge of both data collection and power

1We use the symbol s as it will become clear later that s can also be the
sink of a WSN. Similar to the multi-sink case of WSNs, a SEDN can also
have multiple power access nodes. However, we only focus on the single
access node case for this initial study.

injection. The assumptions for power flow part are the same
as those described in Sec. II-B1.

The data communications are governed by another graph
G̃(V, Ẽ) where each link ` ∈ Ẽ is identified by the following
physical parameters:
o(`), t(`): the origin and the target nodes of `.
P`: the transmit (tx) power used by the (single) radio of

o(`). We assume P` ∈ [0, Pmax], where Pmax is a
network-wide upper bound for tx powers.

c`: the link rate in bits per second. It takes its value
from a finite set C. We assume that a particular rate
can only be obtained from one modulation/coding
scheme that has a unique signal to noise ratio (SNR)
threshold β(c`).

This virtual link model stems from [8]–[10], it allows us
to represent the power control and rate adaptation abili-
ties of modern radios. Any link ` ∈ Ẽ characterized by
(o(`), t(`), P`, c`) has to meet the SNR condition:

SNR` =
G`P`
N0

≥ β(c`) (1)

where G` denotes the channel gain on ` and N0 is the average
thermal noise power in the operating frequency band. We also
define f(·) as the rate-power conversion, it is a fixed and
known map from a link rate c` and the Euclidean distance
d` between o(`) and t(`) to the required tx power P`. Let x`
be the data rate over `; it is constrained by the c`. We also
denote by di the data generating rate at node i.

III. POWER FLOW PROBLEMS

In this section, we focus on power flow problems in SEDNs.
We formulate two power flow problems. We also derive
efficient solution techniques for these problems based on a
detailed dual analysis.

A. Two Flow Problems

Similar to data flow problems, power flow also has its
specific min-cost flow and maximum flow formulations. We
present their formulations in the following.

1) Minimizing Total Power (MTP): Given a power demand
pdi at each node i, MTP is meant to minimize the total
power injection at s while satisfying all demands {pdi }i∈V .
Obviously, these power demands correspond to the power
required for the PWN (which is supported by the SEDN under
consideration) to carry its data traffic loads.

A Direct Formulation. Following the conventional flow
conservation law, we get a seemingly simple problem formu-
lation for MTP.

minimize
∑

j:(s,j)∈E

psj (2)

∑
j:(j,i)∈E

ηjipji −
∑

j:(i,j)∈E

pij ≥ pdi ∀i ∈ V \{s} (3)

1 > ηij ≥ 0, pij ≥ 0 ∀(i, j) ∈ E (4)

where pij is the power flow through a link (i, j). The objective,
summing over all nodes that are directly charged by the s, is
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the total power injection. The constraint (3) requires, for each
node, that the difference between all the injected power and
all the transferred power to be larger than the power demand.
Here ηij represents the equivalent power transfer efficiency
ratio for link (i, j). According to Sec. II-B1, this equivalent
ratio is a variable affected by two factors: (i) the number of
times this link is used in power transfer and (ii) the number
of receivers involved in each transfer. Therefore, this is a non-
convex problem that is far from trivial.

A Linear Programming (LP) Formulation with Virtual
Nodes. Let us introduce some virtual nodes representing dif-
ferent power transfer schedules for a certain node. Specifically,
a virtual node v(i, {j1, . . . , jmv

}) denotes a local schedule that
transfers power pv from vo = i to vd = {j1, . . . , jmv

} concur-
rently, where vd is a set of mv nodes within i’s WPT range.
We use a simple claw graph to illustrate this idea in Fig. 1.
Obviously, each virtual node has a corresponding efficiency

Original node

Virtual node

(a) Original graph (b) Extended graph

Fig. 1. As each virtual node is representing a power transfer schedule, there is
an edge between the original source node and each virtual node, and a virtual
node is connected to a subset of receiver nodes according to the schedule it
represents. For example, the leftmost virtual node indicates a schedule that
the source only transfers power to the leftmost receiver.

ratio ηv that is determined by the number of receivers mv .
We define the per-node efficiency ratio θv = ηv

mv
for a power

transfer schedule represented by v. Then the MTP problem
can be formulated into an LP:

[MTP] minimize
∑
v:vo=s

pv (5)∑
v:i∈vd

θvpv −
∑
v:i=vo

pv ≥ pdi ∀i ∈ V \{s} (6)

pv ≥ 0 ∀v ∈ S (7)

where S is the set of all virtual nodes. The difference between
(6) and (3) is that the former uses virtual nodes to represent
incoming and outgoing flows. Although this is a standard LP
problem, the number of variables involved is exponential in
the graph degree ∆, because the number of virtual nodes
introduced for each real node i is exponential in δi, the degree
of node i in G(V,E). Therefore, directly solving MTP is
practically ineffective on all but very small-scale problems;
we will need a more efficient solution for it. Fortunately, as
will be shown in Sec. III-B2, there exists a polynomial time
algorithm to solve this problem.

2) Maximizing Charging Ratio (MCR): While MTP can
be deemed as a min-cost power flow problem, we are also
interested in a max-flow power problem. However, directly

maximizing total received power is meaningless due to the
lossy nature of WPT: the trivial solution is to allow only s to
transfer to all its neighbors. In other words, the maximization
is meaningless without incorporating a certain level of fair-
ness. Therefore, we formulate the problem by following the
maximum concurrent flow problem [13].

Using a similar graph extension idea explored in
Sec. III-A1, we can directly put MCR into an LP form:

[MCR] maximize τ (8)∑
v:i∈vd

θvpv −
∑
v:i=vo

pv ≥ τpdi ∀i ∈ V \{s} (9)∑
v:s=vo

pv ≤ P (10)

τ ≥ 0, pv ≥ 0 ∀v ∈ S (11)

where the objective is the maximum charging ratio τ that can
be achieved for every node.

B. Analysis and Solutions

We first acknowledge that MTP and MCR share a similar
problem structure, and they are actually equivalent.

Proposition 1: Let
∑
v:vo=s

p∗v be the optimal value of
MTP. If we take the same demands {pdi } and P̂ =

∑
v:vo=s

p∗v
as the input of MCR, we obtain an optimal value τ̂ = 1.
Conversely, let P̂ be the total injected power that results in
the optimal value of MCR τ̂ = 1, then P̂ is the optimal value
of MTP under the same demands {pdi }, i.e., P̂ =

∑
v:vo=s

p∗v .
In the following, we rely on a dual analysis to get more

insights on the problem structure of MTP, which motivates
polynomial time solutions. Note that the analysis and solution
are analogous to MCR.

1) Dual Analysis: Let λ = {λi} be the dual variables for
(6) and (9), the dual problem for MTP is:

[MTP-Dual] maximize
∑

i∈V \{s}

λip
d
i (12)

θv
∑
i∈vd

λi ≤ 1 ∀v ∈ S : vo = s (13)

θv
∑
i∈vd

λi − λvo ≤ 0 ∀v ∈ S : vo 6= s (14)

λi ≥ 0 ∀i ∈ V \{s} (15)

If we deem λi as the cost of transferring a unit of power from a
node i, θv

∑
i∈vd λi−λvo becomes the reduced cost of flowing

a unit of power through a virtual node v, or using the power
transfer schedule represented by v. Note that the reduced cost
incurred by a node receiving power within a schedule v is
discounted by θv , indicating the loss in WPT. Therefore, for
MTP problem to be optimal, the dual problem suggests that
the reduced cost by each schedule is non-positive.

2) Solving MTP with Cutting Plane Method: We initialize
the algorithm with a feasible schedule S ′ = S0 ⊂ S. Solving
this restricted problem leads to a set of (restricted) dual solu-
tions λ′. If the problem is not solved to optimal, some schedule
v ∈ S\S ′ must bear positive reduced cost, i.e., (14) is violated.
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We simply need to check whether the separation oracle [11]
ρ(λ) ≡ maxv∈S ρv(λ) = maxv∈S

(
θv
∑
j∈vd λj − λvo

)
=

maxi∈V [maxv:i=vo ρv(λ)] is positive. The pseudo-code is
shown in Algorithm 1, which includes an inner descending
sorting and an outer linear search. As a byproduct, we can
also claim that MTP/MCR can be solved in polynomial time
since the separation oracle has a polynomial time complexity
O(∆|V |), or equivalently O(|V |2).

Algorithm 1: MTP Solver

1 S ′ ← S0
2 repeat
3 λ′ ← solveMTP

(
{pdi }i∈V ,S ′

)
4 forall the i ∈ V do
5 {j1, . . . , jδi} ← sortDescent

(
{λ′j}(i,j)∈E

)
6 vd ← ∅; k ← 1
7 repeat
8 vd ← vd ∪ {jk}; k ← k + 1
9 until ρi = θv

∑
j∈vd λ

′
j − λ′i is maximized;

10 end
11 v ← arg max(i,vd) ({ρi}i∈V,ρi>0); S ′ ← S ′ ∪ {v}
12 until S ′ remains unchanged;

IV. JOINT DATA AND POWER FLOW PROBLEMS

With a better understanding of the power flow problem, we
are ready to tackle the joint data and power flow problem. As
a PWN loses power due to carrying data traffic while gaining
power from its SEDN, there is a necessity to balance the gain
and loss. From the optimization point of view, we may either
minimize the total injected power required to support a given
set of data flows, or maximize data flows under a fixed amount
of power injection.

A. Problem Formulations

We directly use the extended graph for the problem formula-
tion. We only need to extend the power transfer graph G while
keeping the data communication graph G̃ intact. The following
J-MTP is the min-cost version of the joint flow problem.

[J-MTP] minimize
∑
v:vo=s

pv (16)∑
o(`)=i

x` −
∑
t(`)=i

x` ≥ di ∀i ∈ V \{s} (17)

∑
v:i∈vd

θvpv −
∑
v:i=vo

pv ≥ pdi ∀i ∈ V \{s} (18)

pdi −
∑
o(`)=i

x`
c`
f(c`,d`) ≥ 0 ∀i ∈ V \{s} (19)

x` ≤ c` ∀` ∈ Ẽ (20)∑
o(`)=i

x`
c`

≤ 1 ∀i ∈ V (21)

x` ≥ 0, pv ≥ 0 ∀` ∈ Ẽ,∀v ∈ S (22)

Constraints (17) and (18) are data and power flow conservation
laws, respectively. (19) states that the total consumed power of
a node has to be compensated by the power demanded from the
SEDN; the power demand pdi is now an optimization variable
rather than a fixed value as in MTP. Note that the power
consumed in operating a link ` depends, besides f(c`,d`), also
on the time fraction ` is active, hence we compute this fraction
by normalizing the flow rate x` against the corresponding link
capacity c`. While (20) is a trivial link capacity constraint,
(21) needs further elaboration. With the power control and
rate adaptation abilities, a node (or the radio of the node) can
operate multiple virtual links in a time-division manner (i.e.,
the node may operate on different physical parameter tuples
(t(`), P`, c`) at different times). As any flow problem focuses
on a snapshot within one time unit and each node only has
one radio, the active time fractions for all virtual links sharing
the same origin should at most sum to 1. We deliberately omit
the interference constraints for data flow, as the current studies
focus on power flows.

Similarly, we may also have the max-flow version denoted
by Joint Maximizing Delivery Ratio (or J-MDR), where we
maximize the minimum data delivery ratio.

[J-MDR] maximize τ ′ (23)∑
o(`)=i

x` −
∑
t(`)=i

x` ≥ τ ′di ∀i ∈ V \{s} (24)

(18), (19), (20), (21)∑
v:s=vo

pv ≤ P (25)

τ ′ ≥ 0, x` ≥ 0, pv ≥ 0 ∀` ∈ Ẽ,∀v ∈ S (26)

Here we use τ ′ as the lower bound of the data delivery ratio.
Unlike the direct correspondence between MTP and J-MTP,
the relation between MCR and J-MDR is less straightforward,
given the implicit function relation between di and pdi . Nev-
ertheless, it can easily shown that the technique introduced in
Sec. III-B2 can also be used to tackle these two problems.

V. NUMERICAL RESULTS AND IMPLICATIONS

Aiming at revealing insights into optimal power flows, we
perform extensive numerical computations on the four power
flow problems. We report the results in this section, and we
also discuss their implications.

A. Setting Parameters

We consider arbitrarily deployed networks with size varying
from |V | = 50 to 200. We scale the network area in proportion
to the number of nodes so that the node density is always the
same. For each network, there is a power access point s, and it
also serves as data collection sink for the joint flow problems.

For power flow, the WPT range is set as 4 meters. As
existing sensor nodes do not have rate adaptation ability, we
take these parameters from IEEE 802.11n. This is a common
practice for simulations involving rate adaptation in WSNs
(e.g., [2]). With these parameters, the rate-power conversion
can be represented as P` = f(c`,d`) = β(cl)

(
d`

d0

)α
N0,
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where d0 = 0.1m is the close-in reference distance and α = 3
is the path loss exponent.

Our solver for the power flow problems is developed in
C++, using GLPK [1] as the LP solver. Each data point in our
later plots is obtained by solving 100 problem instances, so
we use either empirical cumulative distribution, or boxplot, or
error bars (for standard deviations) to represent the variances
in these computations.

B. Experiencing MTP

We perform extensive experiments on the MTP problem,
in order to reveal the impact of demand distributions on the
power flows and the features of optimal power flow in an
SEDN. Given the strong correlations between MTP and MCR
(Proposition 1), we omit the results of MCR for brevity.

What we are first interested in is the impact of the demand
distribution pattern on the required injection power. As we
have only one power access point in an SEDN, we have three
typical demand patterns:
• Uniform: every node raises the same demand.
• Near-High Far-Low (NHFL): nodes closer to the access

point have higher demand than nodes that are further.
• Near-Low Far-High (NLFH): nodes closer to the access

point have lower demand than nodes that are further.
In Fig. 2, we compare the optimal values of MTP un-

der these three patterns, with the same total demand that
is proportional to the network size. We first observe that
the power injection required by NHFL is about 2 to 4
dB (1.6 to 2.5 times) of the total demand. This appears
to be a much affordable value, compared with the cost of
re-deploying or re-charging the network nodes. It is quite
intuitive to see that NHFL leads to the lowest injection power,
but Uniform performs only marginally better than NLFH.
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Fig. 2. Comparing the minimum in-
jected power for three demand patterns.

If the SEDN is used in
a PWN with two sepa-
rated sub-systems, the de-
mands are governed by
the wireless data network.
Therefore, if energy ef-
ficiency is the main ob-
jective for this PWN, the
deployment and/or opera-
tions of the data network
should aim at producing
an NHFL pattern. If the
PWN combines both sub-
systems, then the data flow may naturally result in a certain
power demand pattern on the PWN itself. For ad hoc or mesh
networks, it is well known that the network center has the
highest load (thus highest power demand). For networks with
a convergecast pattern (e.g., WSNs), the nodes close to the sink
bear the highest load. Therefore, these hotspots are where we
should put the power access point.

Next, we want to understand how optimal power transfers
behave, mainly in terms of (i) how many schedules are used
by each node and (ii) how many destinations are involved in
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(a) Statistics on the number schedules
used by a node

(b) Statistics on the number destinations
involved in a schedule

Fig. 3. Statistics on power transfer schedules in 100-node PWNs.

each schedule. In Fig. 3, we plot the empirical cumulative
distribution functions of these two quantities, with respect to
the three demand patterns respectively. Two observations can
be immediately drawn from the plots:

1) The statistics on optimal power transfers are rather
independent of the demand distribution pattern.

2) Majority (around 85%) of the nodes that indeed transfer
energy use only one schedule.

These are good news for practical algorithm designs. A practi-
cal power routing mechanism, on one hand, may be designed
independent of the demand pattern (though the outcome of
performing routing differs). On the other hand, it may incur
simple scheduling at each nodes, as only one power transfer
schedule is required under most circumstances.

The number of destinations involved in each schedule,
shown in Fig. 3(b), appears to be rather concentrated on
values around the middle of the maximum and minimum
degrees. This shows that the optimal schedules manage to find
a balanced broadcast advantage between less loss in transfer
(involving more destinations) and less waste in charging
(involving only destinations that demand power).

C. Minimizing Power Injection

We hereby compare the energy efficiency of the following
four different operation modes of a PWN-WSN:
• MH+MTP: data collection in the WSN is done through

min-hop routing with a fixed rate.
• MH-RA+MTP: data collection in the WSN is done

through min-hop routing with adaptable rates.
• MCF+MTP: data collection in the WSN is based on the

optimal solution of a min-cost (data) flow problem.
• J-MTP: data and power flows are jointly routed based on

the optimal solution of J-MTP.
Three comparisons are shown in Fig. 4. Obviously, using

min-hop routing with a fixed rate leads to a significantly
higher demand in power injection, especially for large net-
works. Though adding rate adaptation may improve the power
efficiency, the injection is still far higher than the minimum
injection that is obtained by J-MTP. Interestingly, the power
injection resulting from the third mode is only marginally
higher than the minimum injection. This latter observation
suggests that, in practice, we may apply the decoupled min-
cost data flow and min-cost power flow (MTP) to operate a
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Fig. 4. Comparing total power injected at the sink under four data and power routing modes.

PWN, which requires less intensive computation compared
with J-MTP, only at the cost of a slightly worse power
efficiency.

D. Maximizing Concurrent Throughput
In this section, we demonstrate the relation between the

optimal delivery ratio τ ′ (obtained from J-MDR) and the
optimal charging ratio τ (obtained from MCR). Basically, we
solve a sequence of J-MDR with a fixed set of demand {di}
and an increasing power injection P . As a result, we get a
sequence of increasing values of τ ′. Then we use the data
routing mechanisms involved in the first three modes described
in Sec. V-C to route the demands {τ ′di}, and we check the
deficit in terms of power supply by solving MCR with P and
the resulting power demands {pdi } as input.
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Fig. 5. Comparing the charging ratios under a fixed power injection and
different data routing mechanisms.

As shown in Fig. 5, the power charging rate for MCF
is almost a constant (around 95%, i.e., 5% deficit) when
we increase τ ′. This again confirms the near optimality of
separately optimizing data and power flows, as already shown
in Sec. V-C. As expected, min-hop routing performs far
worse than MCF, though applying rate adaptation gains slight
improvements under large values of τ ′. Since min-hop routing
is commonly used for data flows due to its simplicity, our
results actually argue against it: under the PWN paradigm,
some form of min-cost flow has to be applied to route both
(yet not necessarily jointly) data and power flows if energy
efficiency is a big concern.

VI. CONCLUSION

In this paper, we have proposed Perpetual Wireless Net-
works (PWNs) as a new wireless networking paradigm, mo-

tivated by the recent invention of a high efficiency Wireless
Power Transfer (WPT) technique. Rather than re-engineering
the conventional mobile energy delivery approach, our pro-
posal has made a significant innovation by delivering power to
network nodes through a form of multi-hop wireless transfer.
We have studied a new type of multi-hop flow problems
concerning not data but power. We have provided novel
formulations and algorithms for these problems. Based on the
numerical results, we have obtained very constructive insights
on real PWN implementations.
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