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Peer-to-Peer Media Streaming: Insights and New
Developments

Zhijie Shen†, Jun Luo∗, Roger Zimmermann†, and Athanasios V. Vasilakos‡

Abstract—Internet media content delivery started to emerge
roughly a decade ago, and it has subsequently had a major
impact on network traffic and usage. Although traditional client-
server systems were used initially for delivering media content,
researchers and practitioners soon realized that peer-to-peer
(P2P) systems, due to their self-scaling properties, had the
potential to improve scalability compared with traditional client-
server architectures. Consequently, various P2P media streaming
systems have been deployed successfully, and corresponding
theoretical investigations have been performed on such systems.
The rapid developments in this field raise the need for up-to-date
literature surveys to summarize them. In recent years, numerous
technological discoveries have been achieved. The focus of this
report is to survey and discuss these new findings, which include
new technological developments, as well as new understandings of
these developments and of the existing P2P streaming techniques,
through both novel modeling methodologies and measurement-
based studies.

Index Terms—Peer-to-peer media streaming, live streaming,
video-on-demand (VoD)

I. INTRODUCTION

With the emergence of convenient and advanced digital
multimedia capture and production technologies, the amount
of available media contents has increased tremendously. As a
consequence, the Internet traffic caused by content distribution
has grown similarly. Internet video traffic has been measured
at more than one-third of all consumer network traffic in 2009
and is projected to account for 57 percent by 2014, thus being
on track to become the single biggest Internet traffic genera-
tor [10]. This trend significantly challenges content providers
as well as Internet service providers (ISPs) in their quest to
ensure a high quality user experience. Nowadays peer-to-peer
(P2P) media streaming applications have attracted large user
communities. Such popularity can in part be attributed to the
self-scaling properties of P2P: whenever a client participates
in a system to consume streams, its upload capacity also adds
to the overall system resources.
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Peer-to-peer streaming systems emerged originally with
two fundamental architectures. Inspired by the distribution
topologies used in IP multicast, initial systems focused on
tree-based push architectures. Under this scheme, the peers
are organized in a tree-like manner for data dissemination:
each peer has one parent and multiple children. The media
stream is pushed from the tree root (i.e., the stream server)
to all the leaf nodes. One vulnerability of dissemination trees
is their lack of robustness under peer churn. To remedy this
weakness, mesh-based pull approaches were introduced. With
this scheme, the overlay construction is simplified: each peer
node maintains a local connectivity list that contains a number
of partner peers. A node periodically exchanges media data
availability information with its partners and pulls the missing
data from one of its partners.

The studies devoted to the designs of the aforementioned
tree-based push and mesh-based pull schemes have been
discussed in some prior literature surveys [15], [28], [31].
These studies also analytically discussed the pros and cons of
the proposed techniques. More recently, the mesh-based pull
scheme has emerged as a favorite for commercial deployments
and researches have started to focus on other aspects of P2P
systems. Such new issues have not been reported by prior
surveys and hence are the focus of this study. More precisely,
we will cover the following recent developments in this survey.

• Several modeling studies that have attempted to theoret-
ically explain and predict the behavior of P2P streaming
systems [5], [23], [29], [30].

• As a number of real-world systems have been deployed,
various studies have monitored their effects by collecting
traces, diagnosing defects or inefficiencies and proposing
corresponding remedies [14], [35], [56].

• Deployed P2P streaming systems have created random-
ized and far-reaching Internet traffic, seriously concerning
ISPs. Several traffic localization techniques have been
proposed to relieve ISPs from heavy cross-ISP traf-
fic [32], [38], [44], [49], [51].

• Since tree-based push and mesh-based pull schemes
demonstrate complementary advantages, some
researchers have devised hybrid solutions to combine
them in order to obtain both their merits [36], [53], [61].

• Network coding and layered coding have been applied
to P2P streaming systems to improve streaming through-
put and to deal with heterogeneous last-hop bandwidth
capacities [42], [54], [55], [58].

• With the growing popularity of wireless mobile networks,
P2P architectures that were designed for wired networks
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require modifications to adapt to the characteristics of
such new environments [25], [33], [50].

• Last but not least, as multimedia production techniques
have advanced, non-traditional contents such as multiview
video and 3D mesh objects, have become more available
and have required the corresponding streaming techniques
to meet specific properties (e.g., improved user interac-
tions) [8], [17], [24].

As we aim at tracing the latest developments in P2P streaming
technology, we attempt to deliver a comprehensive coverage
on various relevant topics with a proper technical depth for
each topic.

The remaining sections are organized as follows. Section II
reviews background information on P2P media streaming,
including the relationship between P2P and Content Delivery
Networks (CDNs), the comparison between tree and mesh
schemes, the difference between live streaming and video-
on-demand (VoD), as well as the modeling-based analysis of
P2P streaming. Next, we introduce studies that discuss the
new technological developments consisting of all the areas
outlined in the last paragraph (except P2P streaming modeling)
in Section III. Finally, Section IV concludes our survey,
highlights challenges and provides a future outlook.

II. FOUNDATIONS OF P2P MEDIA STREAMING

We first summarize some of the foundations that have been
presented in previous surveys. We also present principles and
guidelines that have recently been discovered through either
measurement-based or modeling/simulations studies. These,
on one hand, serve as a background for our later presentation,
and on the other hand, also help us to highlight the new
developments described later in this survey. We start with
a short introduction of Content Delivery Networks (CDNs),
then we discuss in relative detail the two mainstream P2P
system architectures, a description of two common types
of applications (live and video-on-demand streaming), and
modeling methodologies for performance evaluations.

A. Content Delivery Networks (CDSs)

An immediate idea of supporting media streaming is to
reuse the client-server model that is widely used for Internet
applications. However, the bandwidth-demanding nature of
media streaming almost instantly questions the feasibility of
this approach. As a direct improvement to the conventional
client-server service model, CDNs abide by the same principle
but slightly expands the concept of the “server.” Under the
CDN model, instead of downloading from a video source
server, clients may find a content delivery server that is
close-by and achieve a more efficient download using that
server. The video source server acts as the “server” for the
content delivery servers by pushing video contents to them.
Therefore, the CDN model is effectively a two-layer client-
server model. If the networks connecting the source server
and the content servers are adequately dimensioned and if
the content servers are properly placed at strategic locations,
a CDN-based solution can deliver good services. In fact,

YouTube1, as the largest online video-sharing service, keeps
employing CDNs to deliver its most popular videos to its users,
and Akamai2 runs a profitable business as the world’s largest
CDN service.

The major drawback of the CDN model is its inability
to take advantage of the upload bandwidth of the clients,
which effectively puts all the load onto the CDN infrastructure
(the involved servers and networks). In fact, the bandwidth
provisioning within a CDN has to grow proportionally with
the number of clients, making CDNs an expensive solution
for large client populations. However, the excellent service
quality of an adequately dimensioned CDN is undeniable.
Therefore, a hybrid system combining both CDNs and P2P
has long been envisioned. For instance, LiveSky is such a
P2P-CDN hybrid streaming system designed and deployed
recently [60]. The servers in CDNs are organized in a tree
structure, which consists of, from top to bottom, the source
server owned by content providers, the core service nodes,
and the edge ones. Each edge service node serves the end
users that are usually in the same ISP. The clients form a
tree-mesh combined overlay to forward the received streams.
The P2P-CDN hybrid architecture achieves a better balance
between scalability and streaming quality guarantee, ensures
shorter startup latency and reduces cross-ISP traffic.

B. Two Mainstream P2P System Architectures
P2P media streaming aims at utilizing the uploading band-

width of the clients, hence it has the potential to substan-
tially reduce the traffic load on the server side. In order to
achieve this goal, two mainstream architectures have been
devised: namely tree-based push systems and mesh-based pull
systems3. It is interesting to note that, whereas a media file
is really “streamed” in a push system (i.e., media data are
identified at the overlay by their smallest possible units such
as packets from an underlying transport protocol), it is shared
within a pull system at a coarser granularity, in the sense
that a media file is “chopped” into chunks that contain many
packets and a peer requests chunks instead of packets from
its suppliers. We briefly summarize the main characteristics
of the two architecture types.

Tree-based Push Systems: Initially proposed in a set
of papers including, for example [3], [6], [22], and also
implemented by the end system multicast (ESM) developed
at CMU [9], the tree-based system acts as a natural extension
of CDNs. Instead of only having two layers of the client-server
structure, it has many such layers by allowing every client to
become a potential server to some other clients. The following
advantages are obvious, given such a system construction:

• Compared with CDNs, the client upload bandwidth is
better utilized, and the traffic load on the video server is
significantly reduced, leading to a more scalable system.

1YouTube, http://www.youtube.com/
2Akamai, http://www.akamai.com/
3Although we can, in theory, push media content in a mesh-based system

[39], the lack of a clearly defined parent-child relationship in such a system
may result in blindly pushing media content to a peer already having it, which
wastes the already scarce peer upload bandwidth resource. Therefore, we are
not listing it as a mainstream architecture. However, we will present new
insights on such a system obtained from probabilistic analysis in Sec. II-D1.
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• Within a stable streaming tree, the delay is strictly
bounded: its maximum value is determined by the longest
overlay path from the root (server) to the leaf nodes.

However, the disadvantages due to the rigid tree structure are
also evident:

• The complexity of maintaining a stable tree is high in
the face of peer churn. In particular, when internal nodes
leave, streaming disruptions may happen due to a slow
recovery of the streaming tree.

• The upload bandwidth is not fully utilized, as the leaf
nodes that account for the major part of the system never
share their upload bandwidth.

These later problems can be addressed by introducing multi-
tree streaming (e.g., [6]), but at the expense of further increas-
ing the maintenance complexity.

Mesh-based Pull Systems: Unlike the tree-based push
system, the mesh-based system first appeared as practical
implementations (e.g., PPLive4) and was then investigated
by academia (e.g., [62]). Borrowing existing techniques from
unstructured P2P file sharing system such as Gnutella5, the
mesh-based system requires peers to share the information
about their media repository, which guides a peer to pull
its desired media chunk from others. The pros and cons of
mesh-based systems are pretty complementary to those of tree-
based systems. In particular, the following are the well known
properties of a mesh-based system:

• It is very robust against peer churn, due to the randomness
embedded in the peering procedure and also the high
peering degree in a system.

• The maintenance complexity is low, thanks to its ro-
bustness against system dynamics and also the less rigid
logical structure in the overlay.

• It, however, cannot provide a deterministic delay bound,
as the path from one peer to another can be arbitrarily
long. This results in various unpleasant playback experi-
ences, such as long startup delays and playback freezes.

• Moreover, the suboptimal distribution of chunks due to
random pulling may waste bandwidth to some extent.

• Finally, the system has to strike a compromise between
efficiency and delay.

The very last property stems from the “chunked” nature of
the media data in such a system, which makes the store-
and-forward delay at individual peers non-negligible. Though
protocol efficiency is higher with larger chunk size (as the
overhead can be amortized), the delay does become larger.

C. Two Types of Applications

Applications of media streaming systems can be broadly
classified into two categories, namely live streaming and VoD.
The majority of the studies fall into the former category as live
streaming is considered a more typical application. The recent
insights into the latest version of CoolStreaming exhibit the
basic components of a P2P live streaming system [26]. The
original CoolStreaming had a BitTorrent-like content discovery

4PPLive, http://www.pptv.com/en
5Gnutella, http://rfc-gnutella.sourceforge.net/index.html

mechanism, i.e., random peer selection, chunk availability
information exchange and chunk swapping. However, in the
new version, some important design changes were made:

• The entire video stream is divided into a number of sub-
streams by modular arithmetic rather than by some coding
technique. This change not only improves the streaming
quality but also promotes resilience to peer dynamics.

• In addition to the cache buffer, a group of synchronization
buffers are added for each corresponding sub-stream.

• The pull request actually has become a subscription com-
mand. When one pull request is received, the chunks will
be consecutively pushed to the requesting peer without
further requests. Hence the protocol overhead is reduced.
See Section III-C1 for a detailed discussion.

• A peer monitors the status of the on-going sub-stream
transmissions. Whenever the peer detects an inadequate
streaming rate from a certain parent, it will switch to
another parent selected from its local partner list.

Many of the techniques for live streaming can also be applied
to VoD. Nevertheless, although the two types of applications
are similar to each other, there are still some key differences
that cause special treatments for VoD [20]:

• Whereas live streaming requires clients to be synchro-
nized with the broadcast server (though they may lag
slightly behind the server), VoD allows individual clients
to watch whatever contents they want whenever they
want it. Therefore, due to the asynchronous viewpoint,
discovering the peers that hold the required contents is
more challenging in VoD. PPLive employs three content
discovery mechanisms: tracker-based lookup, distributed
hash table (DHT)-based lookup and gossip-based noti-
fications. Trackers keep the freshest content distribution
information in a centralized manner; DHT is leveraged to
balance the tracker load and to back up a possible tracker
outage; and gossip enables peers to autonomously ex-
change content availability information, further reducing
the workload imposed upon trackers.

• While the contents of live streaming are generated in
real-time, those of VoD are usually prepared in advance.
Moreover, VoD clients contribute some secondary storage
(e.g., 1 GB of disk space), where the watched contents
are cached to serve the later peers watching the same
contents. For this reason, the available peer resources are
always more versatile in VoD. Given limited storage, to
ensure efficient data replication, PPLive has tried several
strategies and has adopted the available-to-demand strat-
egy that keeps the number of replications to the number
of demanding peers around a certain ratio. Meanwhile,
caching of multiple videos is applied as it is more flexible
than single video caching. These strategies significantly
lower the server workload. In contrast, prefetching is not
employed as the benefits and risks are not confirmed yet.

• VoD should allow more user interactions, such as pause
and random seek. These Video Cassette Recording (VCR)
operations introduce more dynamics to overlay networks.
The key challenge is to quickly locate the other peers
that possess the required stream data when a peer seeks
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to a new position, such that less extra workload will
be transferred to stream server and playback will restart
more quickly. Recent studies on P2P VoD target on this
problem. Vratonjić et al. [52] proposed to use DHT to
store the meta-data about the locations of the chunks.
When a peer seeks to a new position, it first checks
whether its current partners have the chunks it needs.
If they do not, it relies on the DHT to find the qualified
peers. Meanwhile, in order to increase the data replica-
tions among the peers, the proactive downloading strategy
is leveraged, i.e., spare bandwidth is used to prefetch
the inadequately replicated chunks. Yang et al. [59] also
proposed a fast content lookup technique that, in contrast,
is tracker-based. They devised a smart data structure
and algorithms to search for peers at the same playback
position and those having reached that position before.
Other similar studies can be found in [7], [46].

D. Modeling Methodologies for Performance Evaluation

As has happened in many other fields of computer science,
P2P media streaming started with pure system implementa-
tions. However, at some point in time, theoretical guidelines
are necessary to provide general insights of system behavior
and also to suggest possible directions for optimizing sys-
tem performances. The modeling techniques developed for
P2P streaming can be roughly classified into two categories:
stochastic modeling (e.g., [5], [23]) and combinatorial model-
ing (e.g., [29], [30]). While the former delivers insights into
the asymptotic or “average” behavior of a system, the latter
focuses on the best or worst case system performances. In this
section, we discuss a few proposals that make use of these
modeling techniques, with an emphasis on the insights that
resulted from the respective analyses. Note that, due to the
complex behavior of P2P streaming systems, all the modeling
techniques are based on some relatively strong assumptions.
Consequently, the insights obtained from analytically models
are either rather intuitive or need to be carefully interpreted
before being used as design guidelines.

1) Stochastic Models: As a networking problem, P2P me-
dia streaming lends itself to queueing theory based stochastic
analysis. Kumar et al. [23] were among the first in apply-
ing queueing theory to obtain insights on P2P streaming
performance. In particular, they aim at understanding how
system throughput is affected by peer churn and by system
settings (e.g., peers composition and buffer size). Assuming
a server upload rate us, a video bit rate r, and a two-level
peer composition (i.e., super peers with high-speed access
and ordinary peers with residential broadband access) with
respective upload rates u1 and u2 (u1 > r > u2), the
maximum achievable streaming rate ϕ(n1, n2) is obtained for
a churnless system with n1 super peers and n2 ordinary peers:

ϕ(n1, n2) = min

{
us,

us + n1u1 + n2u2

n1 + n2

}
(1)

Based on this result, a system with peer churn is investigated
to derive the universal streaming probability, i.e, the fraction of
time when ϕ(n1, n2) ≥ r. Since the system is now dynamic,

n1 and n2 become two M/G/∞ processes P1(t) and P2(t),
and super peers (resp. ordinary peers) are assumed to have
an arrival rate of λ1 (resp. λ2) and an expected sojourn time
µ−1
1 (resp. µ−1

2 ). It is pretty clear that IE(Pi) =
λi

µi
≡ ρi, i =

1, 2. The universal streaming probability P , in an asymptotic
regime with ρ1 = Kρ2 + β

√
ρ2 and ρ2 → ∞, depends on a

critical parameter c = r−u2

u1−r :

P =


1 K > c

F
(

−β√
c+c2

)
K = c

0 K < c

(2)

where 1− F (·) is the cumulative distribution function of the
standard normal distribution. The following observations are
immediate from the two equations:
(1) Peer churn (the changes in n1 and n2) introduces fluctu-

ations in the system throughput.
(2) Whether a system offers satisfactory throughput strongly

depends on the composition ratio (in terms of ρ1

ρ2
).

In [23], a fluid queueing model is further used to de-
rive the benefits of buffering: it mitigates the effects of a
fluctuating ϕ(P1(t), P2(t)). In addition, a similar model is
extended to investigate multi-channel P2P live streaming in
[57]. In particular, two systems, namely the isolated channel
design (ISO) and the view-upload decoupling (VUD), are
compared. While ISO considers a multi-channel system as
multiple single-channel systems, VUD not only requires each
peer to upload the viewing channel, but also assigns other
channels to a peer to enable cross-channel resource sharing.
The queueing model helps to demonstrate the benefits, in
system throughput, of VUD, and also suggests efficient VUD
design guidelines. Readers are referred to [57] for the detailed
modeling technique.

One drawback of a fluid model is its inability to characterize
delay, whereas there is a common desire to understand the
performance tradeoff between throughput and delay. To this
end, Bonald et al. [5] make use of large deviation theory
to provide bounds (in probability) on the delay of P2P live
streaming systems applying an epidemic-style dissemination
mechanism. Their results establish the throughput-delay opti-
mality of a so called random-peer, latest-useful-chunk (rp/lu)
dissemination mechanism, in the sense that rp/lu achieves an
optimal throughput, as well as a delay within a constant term
from the optimal value. More precisely, assuming that the
arrival rate of media chunks (at the server) is λ < 1, there
exists a constant γ such that for all m ≥ 1 the following large
deviation bound holds for the chunk dissemination delay D:

Pr (D ≥ log2 N +m) ≤ γ

m
for sufficiently large N .

2) Combinatorial Models: In order to perform stochastic
analysis, one has to assume either an ideal dissemination
mechanism (e.g., [23]) or a randomized one (e.g., [5]). There-
fore, such analysis may not suggest to us practical system
design methodologies, in particular how to construct dissemi-
nation tree(s) for media streaming6. In this section, we discuss

6Although only a push system is specified to use tree to perform media
streaming, a pull system, in its steady state, also streams media contents
along certain tree(s) [61].
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two proposals [29], [30] that apply combinatorics to design
streaming trees with specific (optimal) performances. Note that
these proposals do not solely rely on combinatorics, mean field
approximations are also used to bring system dynamics into
the picture (but this latter technique is not our focus here).

One of the main contribution of [30] is an analytical delay
comparison between single-tree, multi-tree (with degree m),
and a newly proposed snow-ball dissemination. This snow-
ball dissemination requires each peer to keep pushing a
received media chunk to other peers until the chunk is fully
disseminated within the system. Consequently, the number of
peers receiving a chunk increases as a geometric progression
with base two, which in turn leads to a logarithmic delay. The
comparison provides the following expressions for the average
delays of disseminating one chunk in a system of N peers:

N + 1

2
single-tree

m+ 1

2 log2 m
log2 N + o(1) multi-tree

⌈log2 N⌉+ 1 snow-ball

This obviously shows that snow-ball has the best perfor-
mance, which is actually the minimum delay as proven in
[30]. Note that the extension from single-chunk dissemination
to multi-chunk streaming is highly non-trivial. As [30] shows
only the existence of such an extension based on a noncon-
structive proof, we will discuss a recent algorithm construction
to this end in Section III-C3.

A similar analytical framework is also considered in [29]
to investigate the server load and delay performance in trees.
The objective of minimizing server load s for a given system
throughput r is actually the dual problem of maximizing
system throughput r under a given server load s (which has
been studied in [30]). However, there are two major differences
between [29] and [30]. Firstly, while [29] deems propagation
delay as the dominating effect, [30] considers “chunked”
media contents for which the transmission delay becomes
more prominent. Therefore, the minimum delay dissemination,
as proven in [29], relies on multi-tree pushing with each tree
having a depth of two and a degree of m = N − 1 in a
system of N peers. Secondly, [29] takes one step further by
investigating the case where peer selection is constrained, such
that the degree of a tree can only be smaller than N − 1. Two
major results from this analysis are:

• The constraint on the tree degree does not affect the
minimum server load, and hence the system throughput.
An algorithm is proposed to construct degree-constrained
trees to achieve the minimum server load.

• There is a tradeoff between the server load smin and the
minimum delay (or tree depth) Dmin , i.e,

Dmin ≥

⌈
N⌊
smin

r

⌋⌉
III. NEW TECHNOLOGICAL DEVELOPMENTS

In this section, we discuss several technological develop-
ments of P2P streaming in the last few years. These are new
technologies that, we believe, should serve as the driving force
to future developments.

A. Overlay Network Monitoring and Diagnosing

The cost-efficiency of P2P streaming has significantly in-
terested industry. As a consequence a number of commercial
P2P streaming systems have attracted large user communities
in recent years. For large-scale deployments, it is crucial to
be able to monitor the behavior and the performance of the
considerable number of peers. The monitoring information
interests the following stakeholders:

• High quality service is critical to attract users. System
operators must know clients’ performance in detail and
across time. For instance, the statistics of peers’ receiving
rates may help to determine how much server capacity
should be provided.

• Third-party companies require this knowledge to launch
credible assessments or advertisements, and to provide
users with a constructive recommendations for selecting
an application.

• Researchers are also eager to gain insights into real
systems, thus enabling solid evaluation of the various
designs and algorithms. Furthermore, they would like
to diagnose the deficiencies in order to inspire future
research work.

In this section, we introduce three exemplary real system
measurement studies, as well as the system optimizations
based on them.

1) Inferring Network-Wide Quality: While streaming qual-
ity seems clearly an important characteristic that requires mon-
itoring, what exactly are the most appropriate and measurable
indicators to infer network-wide quality is not that obvious.
Hei et al. [14] have advocated the buffer map, which is used
by peers to advertise the video chunk availability to each other,
as a quality indicator. In their study, they verified and discussed
the correlation between the buffer map and the network-wide
quality by measuring PPLive.

The first task was to acquire the traces of peers’ buffer
maps. A straightforward method would be to set up monitors
on each peer to collect the related data and report it to a
central server for post-processing. However, this approach
is only feasible for the system operator who is allowed
to modify the software. Usually, researchers need to come
up with indirect and ingenious ways. The authors set up
buffer map crawlers, organized in a master-slave architecture.
The crawlers contacted a number of peers to request their
buffer map information, following the protocol of PPLive.
Understanding the protocol was the most difficult task because
of its proprietary nature.

With the collected traces, the authors derived two correla-
tions between quality and buffer maps:

• The buffer map width and the number of continuous
available chunks from the beginning of the buffer map
are two consistent metrics to infer playback continuity in
terms of the frequency of playback freezes and playback
reboots. Specifically, the two events occur when the
buffering level declines. Furthermore, a reboot is always
coupled with a large fluctuation of the advance rate of
the buffer map.

• The buffering level can also determine the startup latency,
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because the system always sets a threshold for the number
of buffered chunks; video may be played back only if this
threshold is reached.

Having determined these correlations, the authors further in-
spected the network-wide quality of PPLive:

• During a period of playback continuity decline, the
crawlers setup up on Hong Kong campus, New York
campus and at cable networks all detected buffering level
degradations and the fluctuation of the advance rate of the
buffer map. The relationship indicates that the proposed
correlations are network-wide consistent. Additionally,
the performance degradation is likely to be the result of
a peer population increase.

• Peers’ latencies in the same channel are similar to each
other. Moreover, the lag of a peer is rather stable during
its session.

• The buffer maps of all the concurrent peers can also
be used to infer the chunk retrieval ratio, the evolution
of which experiences a knee point (a chunk is swiftly
disseminated to a proportion of peers and then gradually
to all). Moreover, the life time of chunks at a peer or of
network-wide scale is rather stable, and most chunks are
available at the majority of the participating peers.

2) Identifying Superior Peers: Another issue related to real
system deployments is dealing with peer heterogeneity, i.e.,
different upload bandwidths and session lengths. P2P systems
always prefer peers that can provide a higher upload bandwidth
and stay longer in the system since this group of peers
improves system scalability (see Section II-D1 for details).
Liu et al. [35] analyzed the traces from UUSee, a popular
commercial P2P-TV application, and utilized a number of
statistical methods to identify desirable peers, which were
named superior peers. Furthermore, the authors proposed a
superiority index as a valuable indicator for peer selection to
improve streaming quality.

Their first insight from the traces was the negative corre-
lation between the streaming quality and the peer population.
Aware of this problem, the authors proposed to attract the
high-bandwidth-contribution peers to stay longer by providing
them with better download rates. Therefore, they investigated
the factors that influence peer session lengths, and obtained
the following conclusions:

• The peers that enjoy better streaming quality tend to stay
in the system for a longer time. The streaming quality
here is inferred from the average or initial buffering level,
which has been discussed in Section III-A1.

• The peers joining the system in the evening stay longer
than those joining at other times.

• The peers in the popular channels tend to stay longer than
those in the non-popular channels.

Next, by leveraging a regression model, the authors quan-
tified the session lengths based on these three factors. The
authors checked the correlation between the session lengths
and the bandwidth contributions. However, no remarkable
correlation was identified. In other words, stable peers may not
contribute more bandwidth. Instead, the investigation revealed
that the bandwidth contribution is positively correlated with

the streaming quality (indicated by the initial buffering level).
Finally, to integrate a peer’s session length and bandwidth

contribution, the authors of [35] defined the superiority index
as follows

superiority index = session length × upload bandwidth. (3)

The session length and upload bandwidth are predicted based
on measurable metrics, i.e., the initial buffering level, the
peer population and the join time. According to the index,
the authors improved the peer selection algorithm; this new
algorithm awards higher bandwidth to the peers having larger
index values. The authors’ trace-driven simulations have con-
firmed a streaming quality improvement achieved by their peer
selection algorithm.

3) Refocusing on Servers: While most research on P2P
streaming has focused on peer-side optimizations, Wu et
al. [56] sought to improve the efficiency of server bandwidth
provisioning. Through the analysis of 400 GB and 7-months
worth of traces from UUSee, the authors found that the
server bandwidth provisioning became inadequate with an
increase in channel numbers. This motivated the authors to
investigate how to allocate the limited sever bandwidth among
the concurrent channels to maximize overall streaming quality.
In addition, there was also an interest in keeping the solution
ISP-friendly, for which we will give a detailed discussion in
Section III-B.

One of the contributions of the study presented by [56] was
insights into several important metrics of a real system. The
authors’ analysis of the traces from UUSee can be summarized
as follows:

• With the growth of the number of channels, the server
bandwidth requirement increases as well, whereas the
streaming quality declines. As an example, during a
Chinese New Year flash crowd, the streaming quality
abruptly dropped because of a significant upload band-
width deficit.

• The traffic originating from servers and peers increases
over time when the number of channels rises.

• At a short-time scale (3-hour period), the streaming
quality was observed to be positively proportional to the
server bandwidth supply, but it was negatively propor-
tional to the peer population.

Based on the observations outlined above, the authors
proposed an online server bandwidth provisioning algorithm
named RATION as follows. First, the problem was formulated
into a linear program, which aims to maximize the overall
streaming quality with each channel assigned a weight. Here
the solution must be computed in advance, hence the peer
number needs to be estimated. The authors adopted the auto-
regressive integrated moving average model (ARIMA) to
predict the future population. Moreover, the streaming quality
is interpreted from the product of the server bandwidth supply
and the peer population, and linear regression is applied
to estimate the parameters according to the recent status.
Then, the authors proposed a water-filling approach to achieve
the optimal bandwidth provisioning. Instead of re-computing
values every round, the algorithm repeatedly moves the over-
provisioned bandwidth to the channel that has the maximum
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Fig. 1. Exhibition of the difference between overlay and underlay routing.
The background is the organized AS-level structure. The solid lines are
the consumer-provider relationships while the dashed lines are the peering
relationships. The red lines represent the one-hop overlay connections, which
respectively traverse 2, 3 and 5 inter-AS links.

marginal utility, until all the channels have the same marginal
utility. The algorithm can be carried out on a per-ISP basis to
restrict cross-ISP traffic.

Finally, the authors evaluated their algorithm on a group
of high-performance computers, which emulated the stream
servers. To be realistic, they extracted the peer behaviors
from the traces and entered them into the simulation. The
experimental results demonstrated a good streaming quality
experience, especially for the non-popular channels.

B. Traffic Locality in P2P Streaming

The distributed nature of P2P streaming has resulted in
randomized, wide-reaching traffic. A prior measurement study
[21] shows that more than 70% of the contents residing on
topologically close peers was downloaded from distant peers
in BitTorrent. As the traffic volume rises, traffic routing inef-
ficiencies become more prominent and is raising considerable
challenges for network resource management.

Specifically, the long-distance traffic intensifies the stress
on network infrastructures and consumes excessive network
capacity that could have been used in support of other ap-
plications. The biggest trouble is the cross-ISP traffic, which
disturbs the traffic engineering of ISPs, increases the con-
gestion levels at the gateways between them, and probably
raises their operating cost. Aware of these challenges, ISPs
have resorted to throttling cross-ISP links by dropping P2P
packets, which might degrade the user experience. Meanwhile,
deploying some caching proxies is an alternative solution.
However, this approach would still increase operating costs
and is likely to involve thorny copyright issues for ISPs.

Recently, researchers have begun to diagnose the cause
of the traffic routing inefficiencies. They found that the ex-
isting P2P systems employ a peer-selection strategy which
is unaware of the network underlay information, resulting
in a largely random connection topology. For example, in
Fig. 1, the connections a, b and c which are of different
underlay distances are regarded equally distant (1-hop) from
the prospective of the overlay. A number of application-
layer solutions have been proposed to either skew the peer

selection strategy or the media chunk scheduling mechanism
such that partner nodes within close proximity are preferred.
Nevertheless, only a few of the proposed techniques focus on
live streaming systems [32], [38], [44], [49], [51], with most
others pertaining to file sharing applications. While the two
types of systems share some common characteristics, there still
exists important difference. File sharing systems can accept
flexible downloading rates, whereas live streaming requires
a sustained level of packet traffic, such that chunks can be
retrieved before their playback deadlines. Therefore, traffic
locality is more difficult in the streaming scenario. Here we
will discuss the studies focusing on live streaming systems.

1) Measurements on PPLive: Since the traffic locality
degree in existing P2P live streaming systems had not been
well understood, Liu et al. [32] conducted measurements on
PPLive and found that in general, PPLive naturally exhibits
a fluctuating traffic locality ranging from close to 0% to
about 90%. This traffic locality seems to be a side-effect
of the skewed ISP-size distribution. The authors also noted
the potential for further improvements with some proactive
techniques.

For the measurements, 8 hosts with PPLive V1.9 installed
were deployed in 4 ISPs, i.e., China Telecom, China Netcom
(Unicom now), China Education and Research Network (CER-
NET) and George Mason University, USA. The measurements
lasted 4 weeks, and more than 130 GB UDP packets were col-
lected with Wireshark7. Afterwards, a peer list was extracted
from the raw data, the Team Cymru service8 was leveraged to
obtain the peers’ home autonomous system (AS) information,
and the chunk requests and responses were mapped. Through
the analysis, the authors concluded the following findings.

• Most chunks requested by a peer are downloaded from
peers in the same ISP. Therefore, in some extreme cases,
the traffic locality degree can reach about 90%. This is
a major finding, which has not been discovered in prior
studies. This phenomenon is partly determined by the
peer distribution among the ISPs. As was shown by Liu
et al. [32], most of the peers reside in China Telecom and
Netcom so that the peers in these two ISPs can obtain
enough local peer resources. In contrast, the peers from
George Mason University, USA cannot. That is why the
observed traffic locality there was not as high as that from
the others.

• Partners from the same ISP respond faster to the request-
ing peer. This is a reasonable phenomenon because the
responses originated from the same ISP traversed through
fewer physical links. Therefore, peers prefer this group of
partners. According to the measurement results, most of
the requested chunks are replied from the peer’s top 10%
of the partners, which have smaller RTT to the requesting
peer. This serves as another reason for the natural traffic
locality.

2) ISP-Friendly Chunk Scheduling: Whereas the natural
traffic locality was observed [32], Picconi et al. [44] developed
an ISP-friendly chunk scheduling technique to proactively

7Wireshark, http://www.wireshark.org
8Team Cymru, http://www.team-cymru.org/Services/ip-to-asn.html
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promote the locality degree. The core theory behind the
technique is that chunks are allowed to be downloaded from
distant peers only when the video data buffer is in danger of
being drained. To implement this, the authors proposed a two-
level partnership: a peer maintains two partner lists, one of the
peers from the same ISP and the other of the peers from the
remaining ISPs. In most cases, a peer requests chunks from
the peers in the former partner list. As the buffer window
containing the active chunks advances, if a chunk reaches the
first half of the window but is still missing, an early starvation
signal (ESS) will be generated. Detecting the ESS, the chunk
scheduler will assign more chunk requests to the peers in the
latter partner list. Conversely, if no ESS is detected during a
predefined interval, the chunk requests assigned to the peers in
the latter partner list will be decreased. The workload adjust-
ment adopts a multiplicative-increase/multiplicative-decrease
strategy. With this scheduler, the amount of chunks down-
loaded from distant peers dramatically decreases while the
streaming quality remains roughly unaffected.

Furthermore, the authors analyzed the efficiency of their
heuristic. The cost of inter-ISP and intra-ISP traffic are denoted
by c and c, respectively, while the streaming rate and the rate at
which the streaming server injects data directly into peer i are
denoted by di and λi, respectively. As a result, the aggregate
rate into an ISP from the streaming server becomes λJ =∑

i∈J λi, where J indicates an ISP (hence all peers belonging
to it), and

∑
J λJ = di. Consequently, the cost of satisfying all

the peers in one ISP with adequate download rates is bounded
from below by

c(J) = (di − λJ )c+ di(n(J)− 1)c, (4)

where n(J) represents the number of peers in J . As all the
content must reach ISP J , at least di − λJ inter-ISP rate is
required to import a complete copy of the stream into an ISP
while the remained download rate can be supplied locally. The
lower bound of the overall cost of all the ISPs becomes

c∗ =
∑
J

c(J) = di(|J | − 1)c+ di(n− |J |)c, (5)

where n is the number of all the peers and |J | is the number
of the ISPs. Finally, the authors proved that if the peers are
uniformly distributed among the ISPs and the ingress rates
from the stream server into each ISP is equal, the traffic cost
can be no larger than c∗ + o(di|J |c); otherwise, the cost is
restricted within c∗ +O(di|J |c).

Meanwhile, Magharei et al. [38] proposed a similar chunk
scheduling, named OLIVES. The authors started from theoreti-
cally analyzing the impact of traffic locality on P2P streaming.
Based on the scheduling proposed in their prior study [37],
they determined the theoretically maximal and the feasible
amounts of cross-ISP connections to ensure the streaming
quality. Then, it was pointed out that the feasible amount of
connections still cannot preserve the streaming quality due to
connection misallocations caused by sub-optimal scheduling.
Hence the minimal required redundancy of the cross-ISP
connections was derived. With this knowledge, a two-tier
scheduling strategy was proposed. The inter-ISP scheduling
is enforced on some boundary peers, which are designated to

download a complete copy of stream. The local tracker for
each ISP coordinates the boundary peers to avoid misalloca-
tion. Meanwhile, all the peers use an intra-ISP scheduling that
aims to disseminate the streams from the boundary peers to
the internal ones. Additionally, there is another study falling
into this category. Tomozei et al. [51] recently proposed an
intriguing flow control theory based on the Implicit-Primal-
Dual scheme. With this theory, a distributed rate allocation
based on local information was devised. Incorporating network
coding, the algorithm can achieve near-optimal cross-ISP
traffic restrictions.

3) ISP-Friendly Peer Selection: While the three solutions
introduced above [38], [44], [51] focus on optimizing chunk
scheduling, Shen et al. [49] only modified the peer selection
mechanism, which affects few of the internal components of
a P2P application, resulting in a solution that is lightweight to
implement on real systems.

It is well known that the naive peer selection method
originally proposed for file sharing applications is not suitable
for streaming applications, because the hard configuration of
the number/ratio of the local partner nodes may cause the QoS
decline for streaming systems. Fig. 2 shows the tradeoff be-
tween traffic locality and streaming quality guarantee. A peer
needs to download at rate of 20 to receive an uninterrupted
stream. If 80% of the partners must be selected from the same
ISP, as the partnerships in figure (a) show, the peer’s streaming
demand cannot be satisfied. In contrast, the partnerships in (b)
can achieve the rate requirement by sacrificing a portion of the
traffic locality. Network conditions such as shown for AS2 are
possible. For example, ISPs provide the poor bandwidth to the
subscribers or there are too many peers competing for the peer
upload capacity locally.

Recognizing this tradeoff, Shen et al. [49] proposed an
adaptive peer selection mechanism which adapts the locality
degree according to the streaming quality feedback: if the av-
erage streaming rate provided by topologically close partners
is smaller than that of all the partners, the neighborhood will
be updated to be less biased to topologically close partners
in the next round; otherwise, it will be updated to be more
biased to close partners. Furthermore, the neighborhood update
is conducted in the distributed manner to avoid overwhelming
the tracker server. Each peer only maintains a partial view
of the participating peers and knows the network distance to
the partners in this view. To introduce possible close peers
to each other, peers utilize biased gossip, i.e., they prefer a
close partner to communicate with and acquire that partner’s
close partners. This is based on the knowledge that if peer
a is close to peer b and peer b is close to peer c, peers
a and c are close with high probability. Therefore, with the
aforementioned techniques, a QoS-preserved, local-clustering
overlay can be achieved in an adaptive and dynamic manner.

C. Hybrid P2P Infrastructures

As mentioned in Section II-B, the two mainstream system
architectures for P2P streaming have very much comple-
mentary pros and cons. Therefore, it is natural to believe a
combination of both may achieve the best of both worlds.
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Fig. 2. Demonstration of the tradeoff between traffic locality and streaming
quality guarantee. The number in each PC icon means the upload capacity.
Assuming download rate 20 is required for an uninterrupted stream, the
partnership in (a) cannot satisfy the rate requirement whereas the partnership
in (b) can.

We discuss here a few proposals aiming at improving P2P
streaming performance by using a hybrid system architecture
that marries push and pull.

The idea of a hybrid P2P streaming appeared almost at the
same time when the mesh-based pull system started to attract
the attention of academia [64]. In general, most proposals since
then take a mesh-based pull system as the basis, and their
common goal is to “distill” push trees out of the mesh structure
and to optimize the performance of these trees. We will focus
on a few contributions that deal with the following three issues
on the push trees:

• Push trees with stable links [61]
• Push trees with stable peers [53]
• Push trees with optimal delay [36]
1) A Pull-Push Hybrid Approach: As commonly recog-

nized in the P2P community, a tree-based architecture has
excellent performance in terms of delay of media delivery,
if the overlay structure can be held stable. In the approach
proposed by Zhang et al. [61], the link stability is considered
as the criterion to switch from (mesh-based) pull to (tree-
based) push.

The authors of [61] started by investigating the mesh-based
pull approach, based on simulations (including experiment on
PlanetLab) and analysis. The protocol under scrutiny does not
come from any commercial product such as PPLive, but it has
most of the crucial components of a pull system, including in
particular:

• Periodically buffer maps are exchanged among neighbor-
ing peers.

• Media contents are pulled from peers that are supposed
to have them (according to the up-to-date buffer map).

• Unreliable transportation mechanisms (UDP or TCP with
very short buffers) are used for media content delivery.

The outcome of this investigation confirms that a pull system
is near-optimal in terms of bandwidth efficiency, in the sense
that the upload capacity of peers is almost fully utilized
and maximum system throughput is nearly achieved. Another
observation made by the authors, albeit with a lack of a
concrete justification, is that, though the mesh-based pull
system is initially self-organized into an unstructured random
mesh, the steady state of the system (if it is ever reached) is
actually a set of packed spanning trees.

Based on the aforementioned observations (in particular the
second one), the hybrid system takes the following steps to
smoothly meld push with pull.

1) Consecutive media chunks9 are first grouped into chunk
groups, and consecutive chunk groups are further
grouped into chunk parties.

2) The buffer map is explicitly requested by the peers,
instead of periodically pushed to peers in a common pull
system. This allows the receivers to control the switching
between push and pull.

3) Peers initially pull chunks from other peers according to
the received buffer map. However, if a chunk belonging
to the first chunk group of some chunk party is received,
the receiver will send the sender a sub-stream subscrip-
tion, which allows the rest of the chunks in the same
party to be pushed directed to the receiver. This is the
first stage push.

4) Once over 95% of the received packets at a peer are
pushed directly from its neighboring peers, this peer will
stop pulling buffer maps. This brings it into the second
stage push. If the chunks delivery ratio drops below 95%
or a peer that provides a significant among of media data
quits, the receiving peer will fall back to the first stage
push as described in the previous step.

The thresholds applied to decide whether to switch to a
certain stage of the hybrid operations serve as implicit tests
that identify the stability of chunk input from certain links to a
given peer. Once certain stability level is reached, more pushes
kick in to reduce the protocol overhead. Otherwise pulls are
invoked to cope with system dynamics. As we discussed in
Section II-C, a similar technique was later applied to the new
version of CoolStreaming [26].

One potential problem with this proposal is the stability
of the system itself. As the peer stability is not tested, it
is possible that peer churns may lead to frequent switches
between different stages, resulting in extra overhead and delay
in coping with data outages. In addition, as also observed in
[61], pull systems can have a significant playback delay: 25
seconds for a relatively small system (size ranging from 0 to
10,000). Therefore, the push trees used in this proposal is not
delay-optimal.

2) A Two-Tier Hybrid Approach: In order to avoid con-
structing volatile trees, it is the peer stability (rather than
the link stability) that should be tested. This is the proposal
presented by Wang et al. [53]. The general idea is to construct
a two-tier media streaming system, with a tier-1 backbone that
applies a push system in trees consisting of stable peers and
a tier-2 pull system to accommodate instable peers.

The first major contribution of [53] is a study that demon-
strates the significance of stable peers and an algorithm to
identify them. Using a trace-driven study based on PPLive,
the authors of [53] conducted a statistical analysis on the
significance of stable peers. According to their definition, peers
are considered stable if their lifetime exceeds 40% of the

9The original literature uses the term “packets”, but they are actually
super packets that are packed with 1250-byte streaming data. To unify the
terminology, we use “chunks” to refer to these super packets.
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observed period (about four hours). It stems from a well known
observation that the longer a node resides in a channel, the
more it is likely to stay longer [4]. This study concludes that:

Although the fraction of stable peers is insignificant
among the whole observed peer population (5.5% to
15.4%), they constitute a significant portion (> 70%
in every snapshots of the system.

This conclusion is not hard to understand, as far as one
realizes that the node lifetime follows a heavy tail distribution.
Knowing the significance of the stable peers, a randomized
algorithm is devised to identify them. The algorithm is based
on the s-Index defined as

SI =

{
2s
L−t if s ≤ L−t

2

1 otherwise
(6)

where SI is the value of s-Index, s is the node duration in
a session so far, t is its arrival time, and L is the session
length. Basically, the s-Index is set to 1 if a peer stays 1

3 of
the residual session time since its arrival; otherwise the value
increases linearly with the node duration s. Given an s-Index
of a certain peer, a hard threshold H could be used to judge
whether the peer is stable or not, but a randomized threshold
is more robust against peer dynamics. In particular, a peer
is identified as stable in the s-th time slots after its arrival
with probability 2/ [(L− t)(H − SI ) + 2]; this produces a
promotion probability that increases linearly over time.

The other contribution of [53] is a tree construction al-
gorithm, LBTree, that organizes the stable peers into a tier-
1 backbone. The two main ideas involved in constructing
LBTree are the following:

• Locating peers with higher stability closer to the media
source, and involving the tree structure towards a bal-
anced one with information exchanges.

• Establish side links to connect peers in different branches
of a tree; a peer is connected with peers either at the same
level or at higher levels, as far as they do not share any
ancestor except for the root.

As the tree construction of LBTree is based on pure heuris-
tics, no guarantee can be promised either on throughput or on
playback delay.

3) A Hybrid Approach with Delay Optimal Push: Though
the two-tier infrastructure proposed in [53] appears to be
promising, the drawback of LBTree motivates one to think
about an optimal tree construction for the tier-1 backbone.
Here we briefly discuss a recent proposal on building delay
optimal push trees [36].

The tree construction algorithm presented in [36] is ac-
tually inspired by the principle of minimum delay chunk
dissemination proposed in [30]. We refer to Section II-D2 for
more detailed discussion on [30]. In a nutshell, the snow-ball
streaming for single-chunk dissemination can be summarized
as follows [30]:

After receiving a new chunk, a peer keeps pushing
that chunk to other peers who have not received it,
until every peer has received the chunk.

By doing this, the number of peers receiving a certain chunk
increases exponentially in time. Consequently, the mechanism

produces a delay logarithmic in the system size, which is
proven to be optimal. Unfortunately, though it is trivial to
implement this principle for single-chunk dissemination, it
becomes highly nontrivial when it comes to multi-chunk dis-
semination (i.e., chunk streaming). Only the existence of such
an algorithm is shown in [30], while the main contribution of
[36] is to devise such an algorithm.

The first observation made in [36] is that the single-chunk
dissemination procedure can actually be represented by an
unbalanced push tree (called snow-ball tree or SBT), as shown
in Fig. 3 for a 16-peer system. Basically, the peers that receive

1

2

34

56 78

910 1112 1314 1516 D tmax = 4( + )d

1 2 4 8 16

d

t

0-th

1-st

2-nd

3-rd

4-th

Fig. 3. The SBT of single chunk dissemination. We illustrate both maximum
delay calculation and the geometric progression nature of Rk in the figure.

the chunk in the k-th time slot are put at the k-th level of
the tree. The geometric progression nature of Rk (the number
of peers that receive the trunk at the end of kth time slot)
guarantees that each peer at the k-th level definitely has a
parent in the previous levels. As illustrated in Fig. 3, the
maximum delay in the SBT is indeed logarithmic in the system
size up to some constant.

In order to extend the SBT for multi-chunk streaming, one
needs to achieve the following:

A set of SBTs such that, if the server takes turns to
push chunks to their roots in a round-robin fashion,
the minimum delay streaming is achieved in every
involved SBT.

Obviously, this is a scheduling problem. Given certain con-
straints on the schedulability of tree links belonging to a
certain number of consecutive SBTs, the problem can actually
be represented as a maximum independent set problem in a
graph induced by those schedulability constraints. Fortunately,
we do not need to resort to the solution technique to this NP-
hard problem to address delay optimal multi-chunk streaming,
thanks to the special structure of SBT. The major result of
[36] is that, by periodically assigning peers to consecutive
SBTs and by taking different periods for different levels of
the trees, the resulting multi-SBT structure does achieve the
design goal.

D. Coding Enhanced P2P Streaming
Whereas coding techniques (e.g., the H.263 standard) were

widely used since the inception of video streaming over
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IP to efficiently compress the media contents, P2P media
streaming incurs new issues that demand the application of
novel coding mechanisms. On one hand, relaying on many
low bandwidth peers (instead of a few high bandwidth servers)
to deliver media contents requires a coding mechanism that
collects sufficient media chunks before the playback deadline
while avoiding redundant transmissions. On the other hand,
the heterogeneity of the peers’ upload bandwidth demands
a flexible coding technique to deliver adaptive media quality
based on the available bandwidth. To this end, network coding
[1] and layered coding [48] are intensively used recently to
improve the performance of P2P streaming. In this section, we
discuss a few up-to-date proposals about applying these coding
techniques, either separately or jointly, to P2P streaming.

1) Random Push with Random Network Coding: Network
coding was initially proposed within an information theoretical
framework [1], but its advantage in terms of throughput over
conventional flow network has since been demonstrated under
practical network settings (e.g., [16]), and in particular for
P2P content distribution (e.g., [13]). The intuition behind
this coding advantage is that, as network coding equalized
the importance of different content blocks, the bottleneck
resulting from the existence of “rare blocks” are eliminated.
However, the requirements of P2P media streaming differs
significantly from conventional content distribution, in that
there is a stringent deadline for delivering each media chunk in
order to maintain smooth playback. Therefore, it becomes less
obvious whether network coding may still be advantageous
for P2P media streaming, as the incurred non-elastic traffic
demands not only long term throughput, but also instantaneous
deliver rate.

In order to confirm the advantage of network coding in P2P
streaming, Wang and Li [54] performed a fair comparison
between using and not using network coding, based on a
mesh-based pull system similar to PPLive. The following
conclusions were drawn in [54]:

• Network coding is advantageous when the supply of the
upload bandwidth barely exceeds the bandwidth demands
in the session.

• Network coding maintains stable buffer levels when peers
are volatile.

• The computation costs introduced by network coding are
very low with typical media streaming rates.

Based on these observations, the authors were also motivated
to redesign the P2P streaming strategies to better leverage on
network coding. This led to the R2 design [55], where random
(mesh-based) push are combined with random network coding,
which we briefly discuss in the following.

In order to take full advantage of network coding, R2 adopts
a mesh-based push rather than pull, and the push is random
in the sense that two distributions are used to control which
chunk10 is to be pushed to a downstream peer. There are three
critical components of this random push:

• Event triggered buffer map exchanges: A peer sends its
buffer map to its neighbors upon playing back a chunk
or downloading a new chunk. The buffer map is either

10It is actually termed “segment” in [55].

piggybacked with an outgoing transmission if possible,
or sent separately. This serves as a timely notification
of missing chunks and also as a stop sign of completed
chunks.

• Randomized push within priority region: A priority region
of length τ is set immediately after the playback time of
a peer, and a chunk is uniformly (the first distribution)
chosen to be pushed to other peers.

• Randomized priority after priority region: If no missing
chunks are in the priority region for a downstream
peer, the pushing peers will choose chunks out of the
priority region. The priority of such a choice follows a
Weibull distribution with PDF k

λ

(
x
λ

)k−1
e−(x/λ)k ; this

gives preference to chunks that are earlier in time.
Apparently, what R2 adopts is not a pure push, as the
buffer maps are still exchanged, which is similar to a pull
mechanism. However, it does differ from mesh-based pull in
that the sending of a chunk is randomized, in contrast to the
deterministic sending in response to a pull. Note that, even
though R2 appears to have a higher buffer map exchange
rate than traditional push mechanisms, it actually has a lower
overhead due to the use of much larger chunks, which is in
turn the result of applying network coding, as we will discuss
in the following.

The networking coding technique used by R2 is the Chun-
ked Codes proposed by Maymounkov et al. [40]. Basically,
each chunk is further divided into n blocks, and the coding is
only applied with each chunk. The goal is mainly to reduce
the coding complexity. Upon choosing a chunk p to push,
the peer generates i.i.d. coding efficient [cp1, c

p
2, · · · , cpm] with

m ≤ n and randomly chooses m blocks [bp1, b
p
2, · · · , bpm] to

produce a coded block x as follows:

x =
m∑
i=1

cpi b
p
i

For the need of decoding, the coding efficient has to be sent
along with the coded block in some form. R2 suppresses this
overhead by only sending the seed for generating the i.i.d.
sequence [cp1, c

p
2, · · · , cpm] rather than the sequence itself. The

decoding is done through Gauss-Jordan elimination, which
can be performed progressively while receiving new coded
blocks. Upon receiving a total of n blocks, the original chunk
can be recovered. Applying network coding also allows R2

to use UDP instead of TCP (required by most mesh-based
pull systems) as its transport protocol. This stems from the
inherent error resilience of random network coding, and using
UDP helps to further reduce the streaming overhead.

2) Pull Scheduling for Layered Streaming: Bandwidth het-
erogeneity has been a “pain” to P2P streaming systems since
the very beginning, as many protocols that should theoretically
work well under the assumption of homogeneous bandwidth
among all peers have a substantial performance degradation
when facing real-world realities. A rather natural solution to
this problem to to adapt the service quality to the available
bandwidth: peers that have limited bandwidth would get a
lower quality service (e.g., in terms of video bit rate). The
enabling technology to achieve this goal can either be layered
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coding11 (LC) or multiple description coding (MDC), but LC
is generally preferred due to its higher coding efficiency. Quite
a few proposals have been concerned with applying LC to P2P
streaming (e.g., [12], [45]), but we only focus on a very recent
one [58].

The main challenge brought on by adopting LC in P2P
streaming is a need for more complex chunk scheduling
algorithms. Whereas a scheduling algorithm for non-layered
streaming only is concerned with throughput maximization,
scheduling layered streaming has to take other constraints into
account. For example, scheduling a higher layer to be delivered
in addition to a lower layer may render a vain transmission if
packet loss occurs in the lower layer. Therefore, the LayerP2P
proposed in [58] aims to tackle the following three problems:

• Fetching as many data blocks as possible with the latest
playback times (maximizing instantaneous data rate).

• Ensuring the integrity of video chunks by subscribing
to appropriate layers upon approaching their respective
playback time.

• Compensating the absence of blocks in subscribed layers
when facing a sudden bandwidth drop.

Motivated by all these requirements, LayerP2P comes with
a 3-stage model for data scheduling. In particular, a video
steam is encoded into several layers by LC, and each layers is
partitioned into chunks (similar to a traditional pull system).
Layers and chunks are identified by their respective IDs. Each
node has a buffering window that contains the interested
chunks, and the window slides forward periodically. Apart
from the left-most part of the window that have just been
played or will be played very soon, the rest of the window
is partitioned into 3 stages: remedy stage, decision stage, and
free stage.

• Remedy stage: Chunks in this stage are very close to
their playback time, so they should get very high priority
compared with others in terms of bandwidth allocation.
The tricky part is to decide the width of this stage: a
too small value does not give enough time to request
the missing chunks, whereas a too large value leads to
a large startup latency. LayerP2P sets this value to be
proportional to the bandwidth variation ratio, i.e., the
variation divided by the bandwidth after drop, which
should allow just enough time to request the missing
chunks.

• Decision stage: The decision to be made during this
short stage is which layer(s) to subscribe to. Basically,
the decision is made based on the availability (in the
current peer and also its neighbors) of the chunks in a
certain layer. A layer is subscribed only if all its lower
layers are subscribed. In addition, if the availability goes
beyond a certain threshold, the layer is subscribed for
sure, otherwise a randomized choice is made based on
probability. We omit the detailed discussion on how to
measure the availability here.

• Free stage: This is a stage is very similar to a traditional
pull system, where chunks can be freely pulled from

11It is also known as scalable video coding (SVC), which is an extension
of H.264/MPEG-4 AVC video compression standard.

neighbors. However, the pull is confined by the current
layer subscription: no chunks beyond the subscription are
pulled.

3) Layered Streaming with Network Coding: Since both
network coding and layered coding may benefit P2P streaming
systems from different aspects, a desired development would
be to combine them such that we may obtain “the best of both
worlds.” However, as network coding equalizes video chunks
while layered coding prioritizes video contents, combining
them is actually a challenge. We hereby discuss a very recent
proposal, Chameleon [42], that tackles this challenge.

As Chameleon adopts SVC (rather than a theoretical coding
algorithm) as its LC component, the protocol is specified
according to the SVC standard. An SVC video consists of a
sequence of coded picture sets, with each set termed group
of pictures (GOP) and each coded picture in a set termed
access unit (AU). Note that each GOP consists of one base
layer AU and higher layer AUs that allow refinements. In
order to adapt to the streaming system and also to facilitate
further combining with network coding, Chameleon applies a
three-stage data structure. At the first stage, an SVC stream
is divided into segments, which consists of an integer number
of GOPs. At the second stage, the segment is further divided
into chunks. However, this is not just a simple partition, as the
AUs of all the GOPs in a segment are re-arranged such that
each chunk contains AUs from the same layer. In particular,
chunk 1 of each segment contains the base layer AUs and
is necessary for every peer, while other chunks are delivered
according to different subscription requirements. Apparently,
this second stage data structure is dedicated to facilitate the
underlying mesh-based pull streaming system. Finally, each
chunk is divided into blocks in the third stage, and random
network coding is applied to blocks within each chunk. As
this stage is very similar to that of R2 (see Section III-D1),
we do not discuss it in details.

In general, Chameleon can be considered as a mesh-based
pull system complemented by network coding and SVC.
Therefore, it has most features of a traditional pull system.
However, new components are also introduced due to the
integrating of network coding and SVC. We list a few in the
following:

• Quality adaptation: Chameleon uses two thresholds,
add threshold and drop threshold to control the quality
level of the video requested by a peer. If the buffer
level goes below (resp. beyond) drop threshold (resp.
add threshold), the quality level will be decreased (resp.
increased). This is intuitive as low (resp. high) buffer
level is a sign of bandwidth scarcity (resp. abundance)
and hence the peer should obtain a lower (resp. higher)
quality of service.

• Receiver-driven peer coordination: The pull message sent
by a receiver differs from a traditional one in that the
request is at the layer level (rather than at the chunk level)
and starts from the lowest available layer. In addition,
several senders may receive the same pull message, and
they collaboratively serve the receiver (which is possible
due to the use of network coding). Similar to R2, a stop
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notification should be sent to the senders upon finishing
decoding to avoid redundant transmissions.

E. Streaming Across Heterogeneous Networks

With the growing adoption of 3G networks and the tech-
nological improvements of mobile handsets, the mobile video
market is rapidly expanding. Cisco is tracking these devel-
opments by publishing forecasts about global mobile data
traffic [11]:

Globally, mobile data traffic will double every year
through 2014, increasing 39 times between 2009 and
2014. Almost 66 percent of the world’s mobile data
traffic will be video by 2014.

Aware of this trend, the major Internet video companies have
provided client software on different mobile platforms, such
as Android, iOS, BlackBerry OS and Symbian.

Nevertheless, the Internet video companies that rely on P2P
architectures, such as PPLive and PPStream, have been slow
to embrace the mobile market. Both companies introduced
mobile apps only in 2011. One possible reason is that even
though the P2P paradigm has demonstrated great success in
delivering videos over the wired Internet, its extension to
mobile wireless networks is hindered by particular network
characteristics and the limited capacity of mobile handsets.
Several prominent challenges have emerged:

• Compared with wired networks, the aggregate bandwidth
of wireless networks is still limited. As the number of
mobile video users grows, the bandwidth of access points
(AP) and cellular base stations is quickly exhausted.
Furthermore, wireless links can be unstable and are
vulnerable to interference. This complicates the assurance
of streaming quality.

• Video streaming is a bandwidth-intensive application,
which consumes a considerable amount of energy through
radio module usage. A P2P architecture worsens the
energy consumption situation because the peers have to
take on the additional task of uploading video data.

• Mobile handsets can move (e.g. on a car, bus, or train
[63]). Unlike devices connected to the wired Internet,
handsets change their connected AP from time to time so
that their IP addresses are dynamic. This difference may
complicate the traditional method of using IP addresses to
distinguish peers. Moreover, connections between peers
become fragile, and are likely to break during AP han-
dovers [41].

• From a non-technical perspective, mobile users are some-
times charged for data usage. Hence, there may be
reluctance to upload a stream.

We focus on a few studies that have investigated these
challenges [25], [33], [50] in this section. It may be note-
worthy that future trends provide an interesting environment
for wireless techniques. With the upgrade from 3G to 4G, the
peak data rate per device will increase manyfold. However, the
overall spectrum efficiency of 4G, i.e., the aggregate available
bandwidth as compared with 3G, is expected to rise only by
about a factor of 1.2 to 4.8 over the next 10 years [47].

Therefore solutions that efficiently use and share bandwidth
will be of importance.

1) P2P-Friendly Infrastructure Upgrade: As mentioned
earlier, APs tend to become bottlenecks when the number
of wireless users increases. Tan et al. [50] noticed that the
current wireless networks (WiFi in their study) are not P2P-
friendly because, unlike the traditional clients in a client-server
topology, peers need to upload massive amounts of data. The
authors summarize the problems of significant upload traffic
in wireless networks as follows:

• An AP is likely to be congested with the upload traffic
and the dependent peers in other parts of the Internet may
be affected.

• The channel sharing nature of WiFi indicates that peers’
upload traffic can jam their download link as well,
interfering with the streaming quality itself.

• The extra upload traffic can increase the number of
transmission errors, degrading the signal quality and the
streaming quality as a consequence.

Recognizing the challenge, Tan et al. [50] set out to reduce
the upload traffic of P2P live streaming over wireless networks.
They began by conducting a measurement study to understand
the traffic patterns of wireless local area networks (WLAN)
and found that

on average, for P2P-based streaming, there are more
than 80% duplicated data packets in successive
down- and upload data streams.

The high duplication rate opens a significant opportunity
for reducing the upload traffic. To exploit this potential, the
authors propose a caching middleware deployed on an AP. The
middleware caches a copy of the downloaded packets, which
are identified with the Rabin fingerprinting scheme. The peers
connected to the AP do not upload the entire data packets, but
upload an identity tag, which is small in size. Therefore, the
upload traffic within the WLAN greatly decreases. When the
AP receives a tag, it will find the corresponding packet and
send it to the destination. The authors implemented a prototype
of this solution, named SCAP. The experimental results show
that SCAP improves the throughput of the WLAN by up to
88% with a decrease of the response delay to the peers outside
the AP as a bonus.

2) Collaborative Video Streaming Among Mobiles: One
aspect Tan et al. [50] did not exploit is the multi-radio feature
of mobile devices. With the evolution of mobile technology,
increasingly mobile handsets are equipped with more than
one network interface. In addition to the master interface
for telecommunication (e.g., 3G), the handsets also support
WiFi and Bluetooth as secondary interfaces for short-range
data exchanges. Witnessing this hardware trend, Leung et
al. [25] proposed an innovative collaborative streaming among
mobiles (COSMOS) protocol, which is similar to a traditional
P2P architecture but leverages one of the secondary interfaces,
incorporates the simulcast technique and adopts the multiple
description coding (MDC) technique.

Overall the COSMOS protocol operates in a way that some
peers, denoted as pullers, download a sub-stream from a
content provider through the master network interface, and



14

the obtained sub-stream is then re-broadcast among peers
through the secondary network interface. The protocol aims to
utilize the free-of-charge secondary radio interface to reduce
the bandwidth consumption cost of the master interface. The
experimental results exhibit an appealing bandwidth usage
reduction of the master network interface (over 50% in most
cases).

The major challenge of this solution is to minimize the
number of pullers while keeping streams still reachable for
every peer (i.e., each peer is either a puller or within a puller’s
broadcast range). The authors show that the challenge is
equivalent to the minimum connected dominating set problem,
and is hence NP-hard [25]. Therefore, they proposed two
heuristics: one is peer-density-aware while the other is not. The
peer-density-unaware solution works as follows. Whenever a
peer obtains a packet, it checks the time-to-live (TTL) flag. If
the TTL is greater than zero, the peer will reduce it by 1 and re-
broadcast the packet. Otherwise, there will be no forwarding.
The TTL is initialized by the pullers to fix the broadcast scope
(2 in their study). However, the authors detected a problem
with the unaware heuristic in the non-uniform peer density
scenario [25]:

When user density is high, using a fixed broadcast
scope leads to high packet redundancy in the wire-
less channel. On the other hand, when user density
is low, it may be beneficial to extend the broadcast
scope to reduce the streaming cost.

Hence the authors improve the protocol by allowing a peer
to re-broadcast a packet only when few of its neighbors have
received it before. To enable this protocol, peers exchange data
availability periodically. To quantify the potential gain of a re-
broadcast, a peer computes the fraction of the peers that have
obtained the same sub-stream from it or have not received the
sub-stream yet. If the fraction is above a certain threshold, the
peer will re-broadcast the packet.

Another challenge of this solution is to balance the cost of
streaming through the master network interface. To achieve
fairness, the puller can stop pulling from the content provider
when it has received all the sub-streams. Before the puller
stops, it will broadcast a switch flag embedded into its packets.
When a non-puller receives the flag and no longer receives
the sub-streams for some period, it will become the puller.
According to the experimental results, the COSMOS protocol
achieves a satisfactory fairness.

3) Optimization versus Energy Consumption: Energy effi-
ciency is a major issue for any mobile application as it affects
a device’s battery life. While Leung et al. [25] proposed a
collaborative streaming over mobile wireless networks, they
omitted the optimization of the handsets’ energy consumption.
To prolong the battery life, Liu et al. [33] proposed an energy-
aware collaborative streaming method that incorporates a burst
transmission scheme. The general idea is similar to that of
Leung et al. [25]: the participants of a cooperative group
alternately download the video stream in terms of a series of
bursts through a wireless metropolitan area network (WMAN),
and then broadcast the stream to others in the group through a
WLAN. The energy saving originates from the different data
rates: the rate of WMAN is usually smaller than that of WLAN

Fig. 4. Visualization of the data rate impact on the length of idle time.

due to the larger area to cover. Therefore, as Fig. 4 presents,
the idle time between two sequential bursts is longer in the
WLAN environment if the stream is transmitted at full speed,
and longer idle time indicates less energy consumption. The
simulation-based experiments show that the method proposed
in [25] can achieve a high energy savings up to 70%.

The approach faces two technical issues. The first is how to
elect an agent to download the stream from the WMAN. The
method should be robust and fair. To achieve this, the authors
devised a distributed algorithm:

1) Each participant of the cooperative group maintains
a contribution list that records the accumulated data
quantity of the stream relayed to each participant over
the WLAN.

2) Subsequently the sender’s contribution is updated on all
the participants during each burst round. The lists on all
the participants are supposed to be consistent.

3) The list is then sorted. The participant who relays the
least amount of data is designated as the agent to
download the stream from the WMAN in the next burst
round.

4) Apart from the agent, the next k participants who relay
the least amount of data are designated as the backups,
in case that the agent leaves or fails before completing
the next burst round.

This algorithm ensures that the workload enforced on each
participant is similar and the communication protocol is re-
silient to participant dynamics.

The second issue is how to synchronize the wake-up time.
In other words, the participating handsets need to know the
start of each burst round. The video delivery over WMAN uses
the MPEG-2 Transport Stream (TS) standard. The TS packets
are embedded with the information about the start time of the
next burst round and are sent to the agent. When the agent
receives the time, it broadcasts this information to others in
the cooperative group over the WLAN.

One bonus benefit of this communication protocol is the
quick channel switching. As a WLAN covers a smaller area
than a WMAN, the transmission delay is less significant
over WLAN. Moreover, the collaborative nature enables a
newcomer to quickly get a unicast stream from the group
instead of waiting until next burst round. The experimental
results demonstrate an up to 98% reduction of the channel
switching delay.
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F. Media Streaming Beyond 2D Video

Using the P2P paradigm to stream media beyond traditional
2D video is another interesting topic. In recent years, some
new applications, such as multiview videos and networked
virtual environments12 (NVE) have emerged. These applica-
tions may consume much more bandwidth than traditional 2D
videos. Let us examine multiview video as an example:

Even after state-of-the-art compression, multiview
representations are very data intensive: 38dB PSNR
at about 5 Mbps is a common operating point for a
704 × 480, 30fps, 8 camera sequence with multiview
video encoding [24].

Such a considerable bandwidth consumption is more likely to
exhaust content providers’ bandwidth resources with a client-
server architecture. Therefore, since the P2P paradigm has
exhibited great success in delivering 2D videos, several studies
have extended its application to beyond-2D media streaming.
Here we introduce three representative studies of this category:

• Multiview video streaming [24],
• 3D mesh object streaming [8],
• 3D content streaming in NVE [17].
1) Multiview Video Streaming: Multiview (or free-

viewpoint) video streaming is a new multimedia application
that allows the user to interactively control the viewpoint
and to dynamically generate new views of the scene. To
obtain realistic views for free-viewpoint rendering, multiple
cameras are set up with careful calibration. In addition, ef-
ficient coding techniques are required to achieve good video
compression rates – the codec used is often compatible with
the H.264/MPEG-4 AVC standard. The part that concerns
us in this survey, i.e., media streaming, also becomes more
challenging owing to the higher bandwidth consumption and
more interactivity.

Kurutepe et al. [24] conducted a preliminary study of
applying the P2P paradigm to streaming multiview video. They
investigated the approach of a multi-tree based overlay incor-
porating the MDC technique proposed by Castro et al. [6], and
discovered the similarity to the P2P multiview video streaming
if each captured view is encoded independently. Therefore, as
shown in Fig. 5, the authors proposed a solution where a multi-
tree overlay is constructed for multiview video dissemination,
and each tree is responsible for one captured view.

It is noteworthy that this study was among the earliest ones
on this topic, and it focused on demonstrating the feasibility
of P2P multiview video streaming. However, the proposed
solution is far from satisfactory. For instance, usually a subset
of views are enough to support the users’ viewpoint while
downloading the remaining views is unnecessary. Therefore,
an interesting problem is how to selectively stream multiview
videos with a P2P architecture.

2) 3D Mesh Object Streaming: Another type of state-of-
the-art multimedia content is polygon meshes, which use a

12Unlike the traditional massively multi-player online game (MMOG)
where the contents are pre-installed or added by patches, modern NVEs such
as Second Life allow users to create objects, scenes, etc.. Certain contents are
streamed to users on demand, usually when they are within the users’ region
of interest (ROI).

Fig. 5. A sample multi-tree overlay to disseminate two independent views
where each peer is an internal node of just one tree.

collection of vertices, edges and faces to model 3D objects.
Recently, mesh object creation techniques have experienced a
rapid development.

For example, the Stanford model of the David statue,
containing 28 million vertices and 56 million trian-
gles, is still 70 MB in size even with state-of-the-
art compression and requires around 10 minutes to
download at 1 Mbps [8].

Potential application contexts of mesh objects may be vir-
tual art galleries, virtual museums, virtual auctions, geometry
videos, etc. Users may inspect objects with interactive op-
erations: zooming in to view fine details, rotating an object
back-and-forth to examine all facets. One potential challenge
in transmitting mesh objects is still the heavy bandwidth
consumption, even though progressive streaming techniques
can be leveraged.

To overcome the challenge, Cheng et al. [8] proposed a P2P-
based solution. They introduced a new content organization
method which is different from that of P2P video streaming.
The vertices are organized in a tree structure and are assigned
an ID each. The child vertices are the refined representation
of the parent vertex. The technique adopts a receiver-driven
approach where the client determines which vertex is required
according to the user’s viewpoint and requests it from the
potential sender. The authors also summarize the other distin-
guished differences between progressive mesh streaming and
live video streaming:

• Unlike live video streaming that has stringent playback
deadlines, mesh streaming is a delay-tolerant application.

• While the peers in a live video streaming session have
almost synchronized data access patterns, peers inspect
mesh objects in a rather random manner.

• The session length of the mesh streaming is often much
shorter than that of live video streaming.

These differences imply that a good content discovery mech-
anism is crucial to mesh streaming. The authors proposed two
methods. The first one employs a lookup server that is set up
to record the vertex ownership. For a small group of users
the overhead is acceptable and this method is able to achieve
high efficiency owing to its global knowledge. However, as the
number of users grows, the server tends to be a bottleneck.
Therefore, to ensure scalability, the authors also proposed a
hierarchical lookup method, where one of the owners of a
vertex is elected as the leader that traces the ownership of this
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vertex. The leadership is also organized in a tree structure as
well, rooted at the lookup server. A peer first finds the leader,
who will in turn select a sender for the peer. That peer then
requests the vertex from the sender, and it hence becomes a
member of the owner group of this specific vertex.

The authors conducted trace-driven simulations, and the
results show that their proposed solution reduces the server
overhead by more than 90%, keeps control overhead below
10%, and achieves lower average response time.

3) 3D Content Streaming in NVE: While Cheng et al. [8]
focused on single 3D mesh object streaming, NVEs actually
contain a massive amount of 3D data of various types, such
as meshes, textures, animations, and scene graphs. With the
growing size of 3D content, the pre-installation and patching
method becomes unsuitable for setting up NVEs on PCs. Hu
et al. [17] use two examples to corroborate this point:

The social MMOG Second Life13 depends on 3D
streaming to deliver over 34 TB of user-created
models, textures and behavior scripts.
Google Earth14 and NASA World Wind15 currently
consist of terabytes of data (70TB and 4.6TB, re-
spectively).

These systems resort to streaming to make the contents ac-
cessible to users on demand. P2P is again considered as a
good paradigm for content delivery in NVEs. Hu et al. [17]
proposed such a prototype, named FLoD, concerning com-
prehensive design issues. To begin with, the authors analyzed
the differences among live streaming, video-on-demand (VoD)
and NVEs, which are summarized in Table I.

TABLE I
SUMMARY OF THE DIFFERENCES AMONG LIVE STREAMING,

VIDEO-ON-DEMAND (VOD) AND NVES.

Live VoD NVE

Start position same arbitrary arbitrary
Access pattern linear linear non-linear
Transmission sequence same same unique
Group switching infrequent infrequent frequent

The authors also discussed a key design issue, i.e., how to
construct a dissemination overlay. One of the implied assump-
tions in NVEs is that logically-close peers may have and also
request similar content. Hence it is reasonable to construct
an overlay according to peers’ logic locations, and the VON
overlay, proposed in an early study [18], was leveraged here.
The VON overlay organizes peers according to a Voronoi
diagram, ensuring that each peer connects directly with its
Area of Interest (AOI) neighbors (the interested reader may
refer to [18] for detailed explanations).

Additionally, there is a graphics module that decides which
data are to be downloaded. Pre-fetching and prioritization
are employed to improve the user experience. There is also
a networking module to determine which peers to contact.
Before sending out a request, the peer communicates with its

13Second Life, http://secondlife.com/
14Google Earth, http://earth.google.com/
15NASA World Wind, http://worldwind.arc.nasa.gov/

neighbors first to understand the content distribution. Then,
the node randomly chooses among the peers that own the
requested data to balance the workload. The downloaded data
are locally cached to serve other peers.

The authors evaluated their solution through both real-
world and simulation-based experiments. The results show
that the server workload significantly drops with the P2P
solution, and that both the fill ratio and the latency, which
are both concerning the QoS, are also improved. One problem
of the solution is the high protocol overhead of the VON
overlay, which grows logarithmically with the peer population.
Recently, Ke et al. [27] proposed a lightweight game-theoretic
peer selection strategy which achieves a good tradeoff between
performance and complexity. This algorithm efficiently utilizes
the bandwidth of peers in a fully decentralized manner by
enabling each peer to quickly select its content providers that
can satisfy its requests within the latency constraint of the
content.

IV. CONCLUSIONS AND CHALLENGES

In this paper, we have surveyed the latest developments
in P2P media streaming, covering a wide range of topics:
modeling- and measurement-based system performance anal-
ysis, traffic localization, advanced network coding techniques,
hybrid overlays and heterogeneous networks, beyond-2D me-
dia streaming. Whereas numerous technological advances in
P2P streaming have been made in the past few years, there
are still several major problems that deserve further attention
and investigation.

One of the major obstacles of making P2P streaming a
well accepted Internet service is its contention with ISPs.
Although recently proposed traffic locality techniques (see
Section III-B for details) have demonstrated the promising
confinement of cross-ISP traffic, it is not well-understood yet
whether traffic locality may have a positive impact on the other
two stakeholders, i.e., the content providers and end users.
For example, since the delay between topologically close
peers is usually small, will the video lag decrease with the
traffic locality techniques? As one of the few investigations,
Huang et al. [19] used a simple scenario to show that ISP-
friendly peer-assisted VoD may still benefit (at least partially)
content providers by reducing their operating costs. However,
as the evaluation is based on a conservative inference of AS
relationships, it stays at a qualitative level. A quantitative
evaluation will be necessary to better understand how to strike
a balance among these three stakeholders.

For a given P2P system, especially those involving a hy-
brid overlay infrastructure, numerous system parameters are
involved. By far, there is a lack of understanding on the
fundamental trade-off among different system parameters, as
most modeling or measurements papers are focusing on a
small set of parameters. This is particularly important for
systems operating under adverse network conditions: though
we know some systems tend to perform better than some
others [2], it is not yet clear why that is happening. One
hindrance to the development on this aspect is the lack
of open platforms: many current investigations are done by
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taking the proprietary platforms as black boxes and infer
information through their input and output (see Section III-A1
for some discussions). Of course, open platform would allow
selfish behaviors to interfere with the system performance.
Fortunately, the community is on the way to tackling this issue
(e.g., [34]), though there are still a lot to be accomplish on
this direction.

Although it is commonly agreed that a hybrid CDN-P2P
may result in good performance, it would often be very costly
for small startups to build their own CDN infrastructure from
scratch. Fortunately, resorting to cloud services (e.g., Amazon
S316) may allow content providers to construct their own
CDNs without actually owning the hardware [43]. There are
quite a few research problems induced by these so-called
content delivery clouds. First of all, as cloud services are
traditionally built for computing or storage instead of pro-
viding high bandwidth network access, media content should
be dynamically (re)placed for load balancing purpose, hence
introducing the problem of optimal control for content migra-
tion. Secondly, the computational power of the cloud should
be better utilized. For example, transcoding (for supporting
scalable streaming) can be performed by the cloud in a
parallel manner. Also, content delivery clouds may greatly
facilitate the beyond-2D media streaming in the sense that
certain computing intensive operations (e.g., rendering) can be
done in the cloud. Thirdly, leveraging on the elastic resource
provisioning of a cloud service, fine-tuning server bandwidth
(as suggested by [56]) can be readily transformed into a
resource allocation problem in the cloud. Therefore, existing
P2P scheduling techniques need to be re-engineered to take
into account the resource scheduling at the server side.

Last but not least, delivering media content in mobile and
wireless environments will continue to be a challenge. Though
the role and advantage of P2P systems in these environments
may not be as prominent as in the wired Internet, it is
reasonable to believe in their potential in balancing load
and improving system scalability. While applying successful
developments in the Internet (e.g., coding schemes) to mobile
and wireless environments is definitely a way to proceed, we
should also take the particularities of wireless communication
systems into account, and construct the overlay network jointly
with the underlying supporting mechanisms.
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