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Abstract—We present MaWi - a smart phone based scalable
indoor localization system. Central to MaWi is a novel framework
combining two self-contained but complementary localization
techniques: Wi-Fi and Ambient Magnetic Field. Combining the
two techniques, MaWi not only achieves a high localization
accuracy, but also effectively reduces human labor in building
fingerprint databases: to avoid war-driving, MaWi is designed to
work with low quality fingerprint databases that can be efficiently
built by only one person. Our experiments demonstrate that
MaWi, with a fingerprint database as scarce as one data sample
at each spot, outperforms the state-of-the-art proposals working
on a richer fingerprint database.
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I. INTRODUCTION

As increasing urbanization forces people to stay more
often at indoor environments, locating and navigating people
in complex constructions (e.g., airports and shopping malls)
becomes a crucial problem. Furthermore, government and
business also benefit from accurate user location information
in precise information pushing. Luckily, rapid spread of high
performance smart phones and wide 3G/Wi-Fi network access
have caused an explosion of mobile sensing applications. Since
smart phone has become an indispensable device in people’s
daily life, an indoor localization service through smart phone
sensing can be handily deployed without extensive efforts.

To address the challenge of indoor localization, many sys-
tems have been proposed in recent years [1], [2], [3], [4], [5],
[6]. However, smart phone based systems achieving both scal-
able and high accuracy are still missing. On one hand, while
high accuracy has been achieved by some fingerprint-based (or
empirical) systems [1], [2], they share the common prerequisite
to entail heavy labor in building fingerprint database (a set of
spots with associated signal fingerprints). Such a laborious spot
survey process hinders the scalability in deployment. On the
other hand, model-based systems [3], [4], [5], [6] avoid the
spot survey by using propagation model to infer distances and
trilateration to locate users. Unfortunately, these systems have
either low accuracy [3] or high computational/infrastructrual
demand: [4] requires the knowledge of the distances between
all users and all Wi-Fi access points (APs) to computes a single
user’s location; [5] demands software access to all APs; and
[6] relies on a deployment of dedicated acoustic beacon.

Because spot survey (deemed necessary for achieving high
accuracy) hampers scalable deployments, crowdsensing is in-
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troduced by recent proposals [7], [8], [9], [10] to distribute the
intensive labors to a crowd. Whereas such technologies make
large deployment possible, opportunistic spot survey cannot
warrant fingerprint quality: insufficient samples at spots and
low density in sampled spots are both potential problems,
which could result into low accuracy in localization.

In this work, we propose MaWi, a crowdsensing spot
survey based indoor localization system. MaWi makes use of
both Magnetic field and Wi-Fi signal as fingerprints. Because
these two types of fingerprints have nice complementary
performance in locational discrimination while magnetic field
has an outstanding temporal stability, they should be used in
a “duet” manner such that they offset the weaknesses of each
other and thus improve their respective effectiveness. Through
a smart combination of these two types of fingerprints, MaWi
imposes a rather low demand on the volume of its fingerprint
database. Therefore, MaWi achieves a scalable deployment by
employing crowdsensing without intensive spot survey, while
getting very competitive localization accuracy compared with
state-of-the-art systems.

Our major contributions in designing MaWi are: 1) We
analyze properties of Wi-Fi signal and ambient magnetic field,
and we, for the first time, identify their complementarity in
indoor localization. 2) We present a scalable indoor localiza-
tion system with crowdsensing spot survey process, MaWi,
aiming to reduce the deployment cost for better scalability and
to achieve high localization accuracy. 3) We deploy MaWi
in large indoor areas with complicated floor plans, and our
extensive experiments demonstrate a low deployment workload
and high localization accuracy.

We organize the subsequent sections as follows. We first
study the complementary natures of Wi-Fi signal and ambi-
ent magnetic field as localization fingerprint in Section II.
Basing on our studies on Wi-Fi signal, we formulate zone
discrimination problem and propose an algorithm to address it
in Section III. Then we present the main idea and design of
MaWi in Section IV. In Section IV-H, we discuss the system
structure of MaWi in detail, along with other implementation
issues. Our extensive experiments are reported in Section V,
before concluding this paper in Section VII.

II. FINGERPRINT STUDIES

In this section, we present our studies on Wi-Fi and
Magnetic field in both time and space dimensions. This serves
as the major motivation of our proposal. Our test region is an
800 m2 office area shown in Figure 1.
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Fig. 1. Test region for fingerprint studies.

A. Wi-Fi Signal

According to [11], two main factors hamper localization
accuracy of fingerprint-based systems: 1) similar signals at
multiple locations, and 2) transient measurement of signals
at the same location. High signal similarity reduces locational
discrimination, and transient measurement weakens the ability
of properly classifying on-line observed fingerprints. While
the former is caused by particular deployment of APs and
indoor structures, the latter mainly attributes to limitations of
measuring devices. Our studies intend to reveal how exactly a
Wi-Fi localization approach is affected by these two factors.
To the best of our knowledge, no extensive study has been
performed in this aspect. Following conventions, we define Wi-
Fi fingerprint as a vector of RSSs (Receive Signal Strength)
from detectable APs, easily measurable by smart phones, and
we measure similarity by negative Euclidean distance.

1) Single Concurrent Sample per Spot: We evaluate the
fingerprint similarity with respect to the number of APs in
Figure 2. Color temperature is proportional to the fingerprint
similarity between the location marked by the pentagram and
the remaining area. Interfered by indoor construction, the
area bearing similar fingerprints (the red area) for one AP
appears like an irregular ring. With the increase of APs, the
red area shrinks to a small zone nearby the pentagram. This
experiment shows that given sufficient APs, similar fingerprints
are prone to be observed in close-by location. Therefore, we
may effectively tell two distant locations from each other using
Wi-Fi fingerprints.

1 AP 3 AP

20 AP5 AP
Fig. 2. Fingerprint similarity with one sample per spot given different
numbers of APs.

2) Multiple Samples per Spot: Since fingerprints in
database and those collected on-line are sampled at different

times, we also extend our study to the time dimension by
sampling fingerprint at each spot for 30 minutes at a rate of
10 samples per minute. The five typical sampling spots are
shown in Figure 1. We use confusion matrix in Figure 3(a)
to illustrate fingerprint similarity of different locations and
times. Due to space constraints, the time dimension is only
represented by five arbitrary samples within the 300 samples at
each location. As we expected, higher similarity exists between
nearby locations (e.g., L4 and L5); it is so high that Wi-Fi
fingerprint can hardly tell close-by locations from each other.
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(a) Confusion matrix for five loca-
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Fig. 3. Wi-Fi locational discrimination.

To further demonstrate the relation between fingerprint
similarity and location accuracy, we plot in Figure 3(b) the
similarity between fingerprints collected at L1 and locations
of varying distances from L1. In the worst case, fingerprint
collected at 12 meter away can still be mistaken classified as
L1, shown by the overlapping in similarity ranges. Obviously,
Wi-Fi fingerings cannot support a fine-grained location differ-
entiation.

B. Ambient Magnetic Field

Geomagnetic Field, ”twisted” indoor by building struc-
tures and forms unique ambient magnetic field, exists ubiq-
uitously [12]. Ambient magnetic field signal can be sensed
by magnetometer embedded in smart phones, hence can be
used as fingerprint for indoor localization. We define magnetic
fingerprint as a tuple (x, y, z), the three dimension vector of
magnetic flux. Similarity of magnetic fingerprints is computed
as cosine similarity. In this section, we analyze the comple-
mentary natures of ambient magnetic field to Wi-Fi signal,
demonstrating its precious value in indoor localization.

1) Temporal Stability: In contrast to Wi-Fi, ambient mag-
netic field shows great stability in time dimension. We perform
studies in the same office area to compare the temporal stability
of Wi-Fi with that of magnetic field. We choose 10 locations
and collect both Wi-Fi fingerprint and magnetic fingerprint for
5 minutes, and we repeat this for ten rounds spreading over
five different days. We define mean

standard deviation as the stability
index. In Figure 4, we compare the stability indices of Wi-
Fi and magnetic fingerprints in terms of their average values
over ten rounds. It is obvious that even the most unstable case
of the magnetic fingerprint is far better than that of Wi-Fi
fingerprint. Such a difference obviously stems from the sources
that generates these two types of signals.

2) Advantage in Differentiating Close-by Location:
The superiority of magnetic field in temporal stability
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Fig. 4. Temporal stability comparison.

suggests that it may have an advantage in locational
discrimination, as the distributions of fingerprints sam-
pled at different locations would have far less chances
to overlap. Moreover, the similarity of magnetic field
is not correlated with distance, as shown by Figure 5,
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Fig. 5. Magnetic field confu-
sion matrix.

where similar magnetic finger-
prints are observed at L1 and
L4, rather than at L1 and L2.
This can be somewhat explained
by that tiny construction differ-
ences may drastically re-shape
the magnetic field.

To further demonstrate the
different characteristic of Wi-Fi
signal and magnetic field in dif-
ferentiating close-by locations,
we apply spatial tessellation to
visualize difference. We sample Wi-Fi signal and magnetic
field from 50 spots (the black dots in Figure 6(a)) within the
test region shown in Figure 1.

Then we build a triangle mesh graph through Delaunay
Triangulation with sample spots as vertices. For every edge
(v1, v2) in the graph, we make a confusion point (the blue
dots in Figure 6(a)) and assign its value as the percentage of
cases where fingerprints sample from v1 are wrongly classified
to v2 and vice versa. Color temperature in Figure 6(b) and 6(c)
represents the values of those confusion points. We can see that
magnetic fingerprint shows much lower confusion in close-
by locations than Wi-Fi, which makes it a better method to
differentiate such locations.

3) Fingerprint Similarity in Far Apart Location: Ambient
magnetic field is naturally not scalable to large indoor areas. In
a complex indoor structure, a few similarly constructed areas
that are far apart from each other may lead to similar magnetic
fields, which can attributes to that magnetic fingerprints only
contain three components, as opposed to the many compo-
nents of the multi-dimensional Wi-Fi fingerprints. Although
employing sequence of magnetic sample data collected from
a trajectory instead of a spot as fingerprint may mitigate
the problem to some extent, it cannot eliminate all similar
fingerprints from far apart locations. For example, Figure 7
shows two magnetic signal sequences collected from two far
away corridors with similar structure.

III. ZONE DISCRIMINATION

Inspired by our analysis in Section II-A, we define zone
discrimination problem in this section and propose an algo-
rithm to solve the problem, fully exploiting the advantage of
Wi-Fi fingerprint in coarse-grained indoor localization.
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Fig. 7. Magnetic signal sequences collected by a walking user holding smart
phone in hand in two corridors.

A. Problem Formulation

Consider an ideal fingerprint database recording all pos-
sible fingerprints that can be observed and their observation
probability for every location. For each incoming fingerprint
sample, there exist an area Ao where the fingerprint sample
may be observed with possibility of p (confidence coefficient).

To obtain an “nearly” ideal war-driving database, e.g., with
100 samples per survey spot, and survey spots arranged 1
meters apart in a 100×100m2 area, one need to work without
any sleep or rest for more than one month1. To improve
the deployment scalability, we need an algorithm working
with a light-weight fingerprint database containing sparser
survey spots and far fewer (e.g., one) fingerprints sampled
at each spot, and minimizing the difference between A and
the optimal solution Ao, which translates into maximizing: 1)
Safety = |Ao∩A|/|Ao| and 2) Effectiveness = |Ao∩A|/|A|.

B. Circle Algorithm (CA): A Naive Approach

Before introducing our proposal, we give Circle Algorithm
as baseline. This naive approach finds a survey spot that
contains the most similar fingerprint compared with the on-
line sample, and defines A as a circle area centered at that
spot. The radius of circle is a parameter set according to p.
This algorithm utilizes local similarity feature of Wi-Fi signal
(see Section II-A1), but it is inflexible because the shape of A
is defined universally rather than basing on environment.

C. Similarity Voronoi Algorithm (SVA)

Now we propose Similarity Voronoi Algorithm (SVA).
SVA generates a Voronoi graph on the surveyed area with
survey spots as Voronoi sites, and it returns A as a union of
carefully chosen Voronoi cells. SVA takes similarity threshold
θ as a parameter to decide which cell to be put into A.
Algorithm 1 shows the main steps of SVA. Line 1 builds
Voronoi graph with survey spots as sites. After that, SVA
adds a cell Vs into A if the the similarity between an on-line
fingerprint F and the fingerprint F (s) associated with site s
goes beyond θ (line 2).

1The highest Wi-Fi RSS sampling rate on average that can by achieved by
a most up-to-day smart phone (e.g., Samsung Galaxy S3) is 0.33 Hz.
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Fig. 6. Locational fingerprint similarity.

Algorithm 1: Similarity Voronoi Algorithm (SVA)
Input: Survey spot set S, on-line fingerprint F ,

similarity threshold θ
Output: Similarity zone A

1 {Vs}s∈S ← Voronoi(S); A ← ∅
2 forall the s ∈ S do
3 if similarity(F, F (s)) > θ then A ← A∪ Vs

D. Comparing CA with SVA

We evaluate safety and effectiveness of both CA and SVA
under different radius (CA), θ (SVA), and p. The results
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Fig. 8. Wi-Fi spacial discrimination.

are shown in Figure 8. The intersection point of safety and
effectiveness denotes the highest performance that algorithms
can achieve under their parameters. Under both cases of
p = 0.5 and p = 0.8, SVA significantly outperforms CA as
SVA reaches up to 0.8 for both safety and effectiveness while
CA only achieve less than 0.4. We choose one case to illustrate
the similarity zone generated by SVA and circle algorithm in
Figure 9. Color map shows the appearing frequency of the
on-line fingerprint. Red dashed area is the similarity zone
generated by SVA, which is much smaller than the black
dashed circular area by CA, and is also more reasonable
according to fingerprint appearing frequency.

For evaluation purpose, optimal solution Ao is obtained
by an algorithm running on a real war-driving fingerprint
database. To get the database, we select survey spots at 1
m interval within the test region and sample 1200 Wi-Fi
fingerprints (in 1 hour) for each spot.

CA
SVA

Fig. 9. A of SVA and CA when p = 0.8 and safety is tuned to 0.8. Appearing
frequency of fingerprint is plotted in background.

IV. MAWI: A HYBRID LOCALIZATION APPROACH

Equipped with SVA as a coarse-grained localization
method, we are now ready to present the design of MaWi
localization algorithm in this section.

A. How to Utilize Fingerprints?

We propose a revised particle filter to make the best use of
the complementary nature of Wi-Fi and magnetic fingerprints.
When using particle filter [13] for locating an object, particles,
designed to model the states of the object, are a set of tuples
(l, v, w), where l denotes location, v denotes velocity, and w
denotes the weight of the particle. The particle weight stands
for the probability that a particle correctly traces object, and
it is periodically updated by similarity between observations
(on-line fingerprints) and records in the (fingerprint) database.

Whereas of both Wi-Fi and magnetic fingerprints are
collected on-line by MaWi, Wi-Fi’s poor temporal stability
(as evaluated in Section II-A2) may harm the stability of
the filtering process. Moreover, the survey spots sparsity also
makes Wi-Fi fingerprints inadequate to serve as observations2,
as survey spots can be too sparse to infer a meaningful location
of the object. For these reasons, our revised particle filter
updates particles according to 1) similarity between on-line
magnetic fingerprints and records in database, and 2) whether
the particles locate within certain similarity zones generated
by SVA (with Wi-Fi fingerprints as input). Through this
design, we exploit both the stability of ambient magnetic field
and the Wi-Fi’s coarse-grained location discrimination. In the
following, we first present a basic version of our particle filter
method in Section IV-B, then we introduce the full version
involving Wi-Fi fingerprints in Section IV-C.

B. Revised Particle Filter: A Basic Version

Particle Generation: Initially, particles are generated
at magnetic survey spots with different velocity in both

2As opposed to 0.33 Hz of Wi-Fi scanner, magnetometer has sampling rate
up to 50Hz. Consequently, magnetic field survey spots are much denser than
Wi-Fi survey spots even in a light-weight fingerprint database.



forward and backward directions. By taking both location
and velocity as state of particles, MaWi does not make any
assumption on whether the object moves or not. Details are
summarized as follows: 1) At each magnetic survey spot l,
generate five particles with five different velocities: {(l, v)|v ∈
{2v′, v′, 0,−v′,−2v′}, v′ denotes velocity taken in survey
process, and 2) assign weight w uniformly for all particles.

Particle Updating: Particle updating is activated when
new on-line magnetic fingerprint (an observation) Fm arrives.
In every updating, we update location of particles according
to their last location l and velocity v, and we update weights
of particles as:

w = η × similarity(Fm, Fm(l))× w′,

where Fm(l) denotes the magnetic field in fingerprint database
collected at location l, w′ denotes the current weight,
similarity(Fm, Fm(l)) computes the similarity between Fm

and Fm(l), and η is a normalization factor. After every updat-
ing, MaWi returns an estimated location le: the location of the
particle with the highest weight. With increasing observations,
le should gradually go close to object’s ground truth location.

C. Particle Updating with Zone

We now upgrade the basic version by incorporating SVA
into particle updating. Apart from Fm, an observation may
also include Fw as an on-line Wi-Fi fingerprint. Taking Fw as
an input, SVA will returns a zone A(Fw). Given that particles
are generated randomly in a large number, density of particles
can be considered uniform. According to the definition of zone
discrimination (Section III-A), the sum of weight of particles
insideA(Fw) should be p percent of the total weight, and those
outside should be 1− p. So we update the particle weight by
adding a new parameter δ:

w = η × similarity(Fm, Fm(l))× w′ × δ, (1)

where δ = p/ωin if l ∈ A(Fw); otherwise δ = (1− p)/ωout .
We use ωin (resp. ωout ) to denote the sum of weights of
particles located inside (resp. outside) A(Fw). Through the
new updating equation, we involve Wi-Fi zone discrimination
as a probabilistic constraint on the basic particle filter to com-
plement the observations solely based on magnetic fingerprints,
hence increasing localization accuracy.

D. Confidence Coefficient

From Section IV-C, we see that the confidence coefficient
p ∈ (0, 1] is a crucial parameter. On one hand, if p = 1,
A(Fw) becomes very large, containing every possible location
of the object. So MaWi becomes a particle filter localization
approach relying almost solely on magnetic field. On the other
hand, p → 0 makes an empty A(Fw), since it is almost
impossible to have an on-line fingerprint exactly the same as
records in database, given the instability of Wi-Fi signal. All
particles keep the weight updated by magnetic fingerprints,
which makes MaWi, again, a localization approach relying
solely on magnetic field. In order to makeA(Fw) small enough
to utilize Wi-Fi’s coarse-grain location discrimination ability,
while at the same time, large enough to tolerate the Wi-Fi’s
instability, we have to set p moderately. In our experiment we
find that p = 0.8 generates the best localization performance.
Therefore we set p = 0.8 by default.

E. Particle Re-Sampling

To trace an object when it changes velocity, and also
to remove particles of very low weight (i.e., no need to be
updated) for computation efficiency, we need to periodically
re-sample particles. In re-sampling, we randomly select a
certain number of locations according to the weight of previous
particle that are located around. In other words, locations near
a higher weight particle get more chance to be selected. New
particles share weight with previous particles at the same
location; other steps are the same as the particle generation
phase (see Section IV-B).

F. Algorithm Description

We summarize MaWi localization in Algorithm 2. MaWi
initializes particles according to particle generation process in
Section IV-B, and puts them into set P (lines 1 to 1). An update
process is triggered by new observation (line 4), and similarity
zones are computed accordingly (line 5). During the updating
process (lines 6 to 12), MaWi first updates particles’ locations
according to the movement model, then it adjusts all particle
weights according to Equation (1). Periodically, the quality of
the particles is verified, and if necessary, MaWi performs a
particle re-sampling based on existing particles (line 13). The
updating process continues until certain convergence condition
is satisfied (line 13). The convergence condition can be based
on a threshold on the particle weight (i.e., triggered by an
event that certain particle weight goes beyond that threshold),
or it can be triggered by a timeout (e.g., a few seconds). Upon
completion, MaWi returns the location of the particle whose
weight is the largest to indicate an estimated location (line 14).

Algorithm 2: Localization Algorithm
Input: Wi-Fi survey spot set Sw, magnetic survey spot

set Sm, confidence coefficient p
Output: Estimated location le

1 forall the l ∈ Sm do
2 P.add([(l, 2× bachward , 1

5|Sm| ),

(l, bachward , 1
5|Sm| ), (l, static,

1
5|Sm| ),

(l, forward , 1
5|Sm| ), (l, 2× forward , 1

5|Sm| )])

3 while true do
4 Fw ← getOnlineWiFi(); Fm ← getOnlineMagn()
5 A ← SVA(Sw, Fw, p); ωin ← 0; ωout ← 0
6 forall the o ∈ P do
7 o.updateLocation()
8 o.w ← o.w × similarity(Fm, Fm(o.l))
9 if o.l ∈ A then ωin ← ωin + o.w else

ωout ← ωout + o.w

10 forall the o ∈ P do
11 if o.l ∈ A then o.w ← o.w×p

ωin
else

o.w ← o.w×(1−p)
ωout

12 P ← normalize(P)
13 if needResample then P ← resample(P) if

converge then
14 oe ← arg maxo(o.w|o ∈ P); return le ← oe.l



G. Crowdsensing based Spot Survey

To enable a scalable deployment, MaWi has a simple
spot survey mechanism basing on crowdsensing. We define
“user” as people who installed MaWi APP client in their
smart phones, and “surveyor” as users who are employed to do
spot survey. In envisioned system, MaWi client records user’s
location so that only users nearby the deployment place will be
employed as surveyors. Every surveyor is assigned a portion
of the deployment area to survey. A surveyor indicates the
trace he/she will take to collect fingerprint before survey starts.
During the survey, smart phone records the fingerprints while
surveyor walks. Assuming surveyor walking in uniform speed,
MaWi uniformly arranges along the trace all the survey spots
associated with fingerprints. Wi-Fi fingerprints are collected at
0.33 Hz, which is the highest frequency achievable by normal
smart phones. Magnetometer records ambient magnetic field at
5 Hz. With a normal human walking speed of 1 m/s, Wi-Fi and
magnetic field is recorded every 3 m and 0.2 m respectively. In
our experiment, by such survey process, a surveyor can survey
a 22500m2 indoor region in less than one hour.

Because MaWi has very loose requirements on fingerprint
databases that it work with, it is compatible with legacy
databases generated for other indoor localization approaches,
such as [14], [1], [2]. Furthermore, MaWi’s spot survey can
be further enhanced (hence being more time efficient) through
crowd-sourcing, a method already proposed in [7], [10], [9].

H. System Overview

As illustrated in Figure 10, MaWi has two types of user:
Surveyor who supplies fingerprint data, and Strayer who
needs self-locating. Fingerprints from surveyor are labeled by
Fingerprint Labeling Module, and then stored into Fingerprint
Databases. On receiving a localization request, Revised Par-
ticle Filter draws fingerprints from databases and estimates a
strayer’s location based on on-line fingerprints.

Wi-Fi Fingerprint 

Database

Magn Fingerprint 

Database

Similarity Zone 

Module (SVA)

Magnetometer
Wi-Fi 

Scanner

Revise 

Particle Filter

Fingerpint Labeling 

Module

Wi-Fi 

Scanner
Magnetometer

Spot Survey Localization

Surveyor Stray People
Location

Fig. 10. System architecture.

V. EVALUATION

We evaluate the performance of MaWi in this section, and
we also compare it with Horus [1], a well known indoor
localization system, in terms of localization accuracy.

A. Experiment Setup

We deploy MaWi in three test sites: an office area (Fig-
ure 1), a library (Figure 11(a)), and a shopping mall (Fig-
ure 11(b)). The dimensions of these sites and the number of

available APs at each site are summarized in Table I. We
develop an Android application as the MaWi client (interface
illustrated in Figure 12). In both survey and localization
phases, we employ two smart phone models: Samsung Galaxy
S2 and S3. In each test sites, three surveyors are employed
to survey the area. After areas are fully surveyed, we have
one user hold smart phone and walk randomly. Every ten
seconds we measure and record the real location of the user
as ground truth. We have chosen the time period such that the
test sites are not very crowded to avoid bringing artifacts int
our experiments.

60 m

60
 m

(a)

250 m

15
0 

m

(b)

Fig. 11. Floor plans of a library (a) and a shopping mall (b).

Fig. 12. MaWi localization on a client. Sizes of red dots denote particles’
weights, and time sequence is indicated at the upper-left corner of each
figure. Obviously, the weight eventually concentrates at a single particle, which
happens to be the user’s ground truth location.

We show a real localization process on our MaWi client for
five seconds in Figure 12. User stands still during the whole
procedure at the lower side of the library (indicated by the
particle at the 5-th second).

B. Light-Weight Survey Phase

We count the time we need to build a fingerprint database
that can satisfy the requirement of MaWi. We employ only one
surveyor holding smart phone to walk around the deployment
area, while recording the fingerprints of both Wi-Fi and
magnetic field at passed location. The results in Table I show
that, even for a large area of 22500 m2, we only need no more
than 1 hour to get a usable database for localization.

TABLE I. TEST SITES AND SURVEY TIMES

Area Size Wi-Fi APs Time (min)
Office 800 m2 18± 5 6

Library 3100 m2 43± 9 28
Shopping Mall 22500 m2 27± 7 55
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Fig. 13. SVA under different p and θ. Best result of SVA is achieved when θ changes linearly with p. At the same time Safety and Effectiveness are both
relative high.

C. Further Evaluations on SVA

As SVA takes confident coefficient p as input, we need to
know how to derive a proper similarity threshold θ according
to it for better performance. Generally, safety decreases with p
and θ (Figure 13(a)), and effectiveness increases with p and θ
(Figure 13(b)). Besides safety and effectiveness, we consider
another metric deviation, which is the size of difference area
between optimal solution and SVA: |Ao

⋃
Asva−Ao

⋂
Asva|.

We plot the relation between deviation, p, and θ in Fig-
ure 13(c). In all the three figures, we see that the best
performance emerges at a strip area indicated by black dashed
lines. In other words, θ should be set linearly according to p.

To analyze the relationship between SVA and MaWi’s
performance, we run MaWi under different p and θ and plot the
localization errors in Figure 14. Comparing it with Figure 13,
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Fig. 14. Localization error under different p and θ.

we see obvious correlation: higher localization accuracy is
achieved when SVA has smaller deviation, and higher safety
and effectiveness (e.g., p = 0.8, θ = −50). In our experiment,
average localization error of MaWi is lower than 2.5m when
deviation is below 0.3. Therefore, a good performance of SVA
is crucial to the location accuracy of MaWi.

D. Performance Comparison with Rich Database

To demonstrate MaWi’s advantage in localization accuracy,
we compare MaWi with a proposal relying on rich databases.
We choose Horus [1] as our rival; it is said to be the most
accurate fingerprint-based localization system [15]. Horus uti-
lizes multiple samples to model the distribution of Wi-Fi RSS
as a Gaussian distribution for every survey spot and takes it as
fingerprint. To collect such rich fingerprints for the database,
we regularly choose survey spots and employ several surveyors
to collect fingerprints for 10 minutes at every spot. We compare
MaWi working on low quality database with Horus working

on richer ones in Figure 15(a). Even when sample number
increases to 100 (5 minutes survey time) at each survey spot,
Horus’s performance is still worse than MaWi.

E. Localization Time Limit

In Algorithm 2, we can use timeout to force the con-
vergence of the localization process. Longer time limit gives
MaWi more chances to make particle weight converge, there-
fore should result in higher accuracy. We set the timeouts as 5s,
8s, and 10s, respectively, and plot CDF of localization errors
in Figure 15(b). MaWi’s performance improves as the time
limit increasing, which confirms our expectation.

F. Wi-Fi Access Point Number

Generally MaWi makes use of all detectable AP, but
the number of detectable APs is determined by a particular
venue. In Section II-A1, we shows that a better locational
discrimination can be achieve with more APs. So the question
is how much the performance of MaWi is affected by the
number of APs. We run MaWi in environments with 5 to 20
detectable APs and plot the localization error in Figure 15(c).
Surprisingly, we find that median localization error decreases
only slowly with number of APs (only decreasing 0.1 meter
with 15 APs added), but the variance is much better controlled
with more APs. So MaWi benefits more in stability than
median error from increasing APs.

VI. RELATED WORK

In the last decade, indoor localization has attracted so
much attention that numerous systems have been proposed.
Among them, systems involving mobile devices took a large
proportion [14], [1], [4], [16], [6], [10], [7], [9], [8], [11], [12],
[2], [3]. This can be explained by the two main objectives of
indoor localization services: 1) helping people localize and
navigate themselves and 2) pushing location based services to
users. Obviously, implementing localization systems on mobile
devices has a potential to unify these two objectives.

Existing proposals can be roughly put into three categories:
empirical, model-based, and dead reckoning. Empirical ap-
proach (a.k.a. fingerprint-based) [1], [16], [10], [7], [9], [8],
[2] collects fingerprints around the deployment area in the
initial phase to assist later (empirical) localization. Model-
based approach [4], [6], [11], [3], [5], [17] employs specific
devices to measure an object’s relative location to anchors
or to other objects and then infers the object’s absolute
location using these information; it usually entails a pre-
deployed infrastructure. As a relative localization approach,
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Fig. 15. Localization accuracy evaluation results

dead-reckoning [18], [19] normally needs to work along with
either of the previous approaches, otherwise the cumulative
errors generated by inertial sensors could render the estimated
locating meaningless.

As proved by [14], empirical approach can deliver high
accurate localization. However the labor-intensive survey pro-
cedure (a.k.a. war-driving) has greatly hampered a wide de-
ployment of these systems. To this end, crowd-sourcing is
adopted by recent proposals [10], [9], [7], [20], [21]. Whereas
crowd-sourcing distributes survey load among the crowd, it
provides no quality assurance for the generated fingerprint
databases. Relying only on light-weigh fingerprint databases,
our MaWi achieves scalable deployment by significantly re-
ducing the efforts required to build those databases.

A new branch of indoor localization system follows the so-
called device free approach [22], [23]. Since wireless signal
is interfered by moving objects, this approach infers the loca-
tion(s) of object(s) by analyzing the signal variance. However,
as one important objective of indoor localization is to help
delivering location based services, a personal mobile device
would anyhow be needed.

VII. CONCLUSIONS

In this paper, we propose MaWi, a smart phone based
indoor localization system for high accurate localization and
scalable deployment. Combining Wi-Fi signal and ambient
magnetic field as its fingerprints, MaWi is able to work
with a light-weight fingerprint database while achieving high
localization accuracy, hence unifying the two objectives that
have long be contradicting each other. We implement MaWi
on smart phones and deploy it in multiple venues; all the
experiments have strong confirmed its promising performance.
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