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MEGCOM: Minimum-Energy Group
COMmunication in Multi-hop Wireless Networks

Kai Han, Liu Xiang, Jun Luo, and Yang Liu

Abstract—Given the increasing demand from wireless applica-
tions, designing energy-efficient group communication protocols
is of great importance to multi-hop wireless networks. A group
communication session involves a set of member nodes, each of
them needs to send a certain number of data packets to all other
members. In this paper, we consider the problem of building
a shared multicast tree spanning the member nodes in static
wireless networks such that the total energy consumption of a
group communication session using the shared multicast tree is
minimized. Since this problem was proven as NP-complete, we
propose, under our Min-Energy Group COMmunication (MEG-
COM) framework, three distributed approximation algorithms
with provable approximation ratios. When the transmission
power of each wireless node is fixed and identical, our first
two algorithms have the approximation ratios of O (ln(∆ + 1))
and O(1), respectively, where ∆ is the maximum node degree
in the network. When the transmission power of each wireless
node is adjustable, our third algorithm again delivers a constant
approximation ratio. We also use extensive simulations to verify
the performance of our algorithms.

Index Terms—Energy Efficiency, Group Communication, Mul-
ticast, Approximation Algorithms

I. INTRODUCTION

Group communication (or all-to-all multicasting) is a very
important primitive for distributed systems, as a large body
of applications including, among others, social networking,
online meeting, network gaming, resource sharing, and data
management are heavily relying on its service [1], [2]. This
continues to be the case for wireless systems. For example,
wireless users may leverage group communication for video
conferences or online role-playing games, and a group of
rescuers or soldiers may use group communication to share
their local information to facilitate effective decision mak-
ing in crisis management applications. Due to its prominent
importance, the great interests on group communiction and
related problems have never receded ever since the inception
of wireless networks (e.g., [3]–[6]). In a traditional setting,
investigations on group communication focus on the system
reliability in the face of network failures or group member
changes [2], [7]–[9]. As the recent booming of multi-hop
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wireless networks for various purposes (e.g., wireless mesh
networks to allow Internet access in remote areas or wire-
less sensor networks for habitat monitoring) further demands
group communication to work on top of such networks (e.g.,
[10]), group communication is facing a new challenge: energy
constraints for wireless nodes. As it is generally believed
that the continuous development of the wireless technology
will result in more and more wireless applications making
use of group communication primitive (e.g., mobile social
networking and gaming), designing energy-efficient group
communication protocols has become increasingly imperative.

One naive way for designing an energy-efficient group
communication protocol is to employ the existing one-to-
many multicast protocols. In other words, one may construct
an energy-efficient one-to-many multicast tree for each group
member. While this approach may leverage on the abundant
research results on building minimum-energy (one-to-many)
multicast tree in wireless networks (e.g., [11]–[14]), it is not
exactly practical for applications demanding group communi-
cation support. More specifically, applications such as social
networking or online gaming may involve more than one
sender (every node could potentially be a sender in its own
multicast session); this is in stark contrast to, for example,
video streaming where only one session (thus one sender)
exists. Simply combining multiple one-to-many multicast ses-
sions to implement a group communication service would
lead to a huge computation and communication overhead in
maintaining all the resulting multicast trees. Therefore, a more
practical way is to construct one tree spanning the group
members as a shared multicast tree [3].

Surprisingly, although the minimum energy one-to-many
multicasting problem has been studied extensively, there is
little work on min-energy group communication in multi-
hop wireless networks. Similar to the min-energy one-to-many
multicasting problem, the min-energy shared tree multicasting
problem is also NP-hard [3]. Moreover, the problem becomes
more challenging because an optimal tree also depends on
how many packets each group member is about to multicast.
Liang et al. [3] attempted to tackle this problem by proposing
several approximation algorithms. However, the resulting ap-
proximation ratios are far from satisfactory. For example, their
approximation ratios are in the same order of |M |, where M
is set of group members.

In this paper, we study the Minimun-Energy Group COM-
munication (MEGCOM) framework in static multi-hop wire-
less networks. In particular, we seek to minimize the total
energy consumption of a group communication session relying
on a shared multicast tree. As the induced Minimum-Energy
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All-to-All Multicasting (MEAAM) problem is NP-complete,
we propose three distributed approximation algorithms with
guaranteed approximation ratios for MEAAM, under both
cases of fixed transmission power and adjustable transmission
power. Our algorithms exponentially improve the best-known
results of quadratic approximation ratio [3] to constant ap-
proximation ratio. Specifically:

1) When the transmission power of each wireless node is
fixed and identical, our first algorithm has an approxi-
mation ratio of 4 ln(∆+1)+7, where ∆ is the maximum
node degree in the network.

2) When the transmission power of each wireless node is
fixed and identical, our second algorithm delivers a 13-
approximation to MEAAM.

3) When the transmission power of each wireless node
is adjustable, we prove the existence of a constant
approximation algorithm for MEAAM, and we also
show that a straightforward algorithm leads to a constant
approximation ratio of 145.

In the remaining of the paper, we first briefly review
the literature in Sec. II. After formally defining the models
and problems in Sec. III, we present and analyze our three
algorithms in Sec. IV, V, and VI respectively. We also
perform extensive simulations of our algorithm in Sec. VII,
and we briefly discuss some related issues about MEAAM in
Sec. VIII, before finally concluding our paper in Sec. IX. For
clarity, important system variables with their acronyms and
descriptions are presented in Table I.

II. RELATED WORK

There is a large body of literature on group communication
and multicasting, but, given the space limitation, we have to
confine our discussions to those aiming at minimizing the en-
ergy consumption, but to leave out non-tree-based appraoches
such as [15], [16]. As we concentrate on always-active wireless
networks in this paper, we also avoid discussing similar topics
in duty-cycled wireless sensor networks [17]–[19].

The minimum-energy one-to-many multicasting problem
has been studied in [11]–[14]. Wieselthier et al. [11] consider
a scenario where each node can adjust its transmission power
continuously, and propose several greedy heuristics for the
minimum-power broadcast/multicast routing problems. Wan et
al. [12] prove that the heuristics proposed by [11] have linear
approximation ratios, and provide several approximation algo-
rithms with constant approximation ratios for the minimum-
energy multicasting problem based on the approximate mini-
mum Steiner tree algorithm. Liang [13] considers a scenario in
which each wireless node can adjust its transmission power in
a discrete fashion, and the communication links are symmet-
ric. He proposes a centralized approximation algorithm with
performance ratio O(lnK) for building a minimum-energy
multicasting tree, where K is the number of destination nodes
in a one-to-many multicast session. Li et al. [14] consider
a case where all nodes have a fixed transmission power and
the communication links are asymmetric. They convert the
minimum-energy multicasting problem to an instance of the
Directed Steiner Tree problem, and present several heuristics.

TABLE I
SYMBOLS AND NOTATIONS

Notation Description
G The graph representing a wireless network
V Node set of G
E Edge set of G
M Set of group members
εs The energy consumption for transmitting a data packet by any

node
εr The energy consumption for receiving a data packet by any

node
p(u) The number of data packets originated from the group member

u ∈M
k The total number of data packets originated from all group

members in M
∆ Maximum node degree of G
Topt The optimal multicast tree for min-energy group communica-

tion
nd(T ) Set of nodes in tree T
lv(T ) Set of degree-one nodes in tree T
in(T ) Set of nodes in tree T with degree more than one
nb(u,G) Set of neighboring nodes of u in G
nb+(u,G) The union of nb(u,G) and {u}
nb2 (u,G) Set of nodes in G within two hops of u (including u itself)
Ψ(T ) The total energy consumption of realizing a group communi-

cation session using the multicast tree T
TI The multicast tree spanning the nodes in M such that

|in(TI)| is minimized
T−I A tree constructed from TI by pruning all the degree-one

nodes in TI
B The buddy set which is a subset of V and nb(v,G)∩M 6= ∅

for ∀v ∈ B.
C The guardian set found by MEGCOM-LFP
T ∗S Optimal Steiner tree spanning the nodes in C
TA The multicast tree found by MEGCOM-LFP.
C′ The guardian set found by MEGCOM-CFP
T́ ∗S Optimal Steiner tree spanning the nodes in C′

T ′A The multicast tree found by MEGCOM-CFP.
λ(u, T ) The transmission power for u to reach all its neighoring nodes

in tree T
Θ(T ) The summation of λ(u, T ) for all u ∈ in(T )
TW A multicast tree spanning the nodes in M such that Θ(TW )

is minimized
T

(u)
W Euclidean minimum spanning tree of the nodes in {u} ∪

nb(u, TW ) for any u ∈ in(TW )
ζ(T ) The sum of the edge weights of tree T
T̈S A 2-approximation Steiner tree in G spanning the nodes in

M

T̈ ∗S An optimal Steiner tree in G that spans the nodes in M

To the best of our knowledge, the only work that studies
the minimum-energy group communication problem is [3].
In [3], Liang et al. propose to build a shared multicast tree
such that the total energy consumption of realizing a group
communication session using the shared tree is minimized.
They prove that finding such a shared tree is a NP-complete
problem, and use the approximate Steiner tree algorithm
proposed by [20] to solve the problem. When the transmission
power of each node is fixed and identical, they prove that the
approximate minimum Steiner tree has an approximation ratio
of 2(|M |+ 1), where M is the set of group members. When
the transmission power of each node is adjustable, they prove
that the approximate Steiner tree has an approximation ratio
of Ω(8|M |). They also propose a distributed approximation
algorithm with an approximation ratio of Ω(4|M |2).
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III. PRELIMINARIES AND PROBLEM DEFINITION

A multi-hop wireless network is modeled by an undirected
graph G = (V,E), where V is the set of wireless nodes
in the network and E is the set of wireless links. Each
node in v ∈ V has a unique identifer v.id . The nodes in
V are all equipped with an omni-directional antenna. We
assume that the transmission (tx) power of each node can
be either identically fixed or continuously adjustable. When
the tx power is fixed and identical, we use εs to denote the
energy consumption of transmitting a data packet by a node.
When the tx power is adjustable, we assume that the power is
adjusted with respect to links (same as the assumption adopted
in [3]), hence the communication between any two nodes is
symmetric. In this case, the energy required by any node u to
transmit a data packet to another node v can be determined
by the Euclidean distance between u and v. Following a very
common formula, we define such energy consumption to be
dα(u,v), where d(u,v) is the Euclidean distance between u and
v and α is a constant (usually between 2 and 4). In either
case (fixed power or adjustable power), we assume that each
link (u, v) ∈ E is assigned a weight which is the amount
of energy required for u to send a data packet to v (or vise
versa). Following other related proposals such as [3], [21], we
also assume that the receiving (rx) power is always less than
the tx power, and we denote by εr the energy consumption of
receiving a data packet by any node.

In a group communication session, there exists a set of
group members M ⊆ V , and each node u ∈ M needs
to send p(u) data packets to all other nodes in M\{u}.
We denote by k the sum of the numbers of data packets
originated from the group members, i.e., k =

∑
v∈M p(v).

As we have explained in Sec. I, instead of building |M |
multicast trees originated from each node in M , building a
shared multicast tree spanning the nodes in M to support the
group communication session is more convenient in realistic
settings. Therefore, in order to minimize the total energy
consumption of the group communication session, we actually
aim at solving the following Minimum-Energy All-to-All
Multicasting (MEAAM) problem:

Find an optimal shared multicast tree Topt such that
the energy consumption of carrying all k packets
over Topt is minimized.

The hardness of this problem is immediate from [3]:
Proposition 1: The MEAAM problem is NP-complete.
For convenience of description, we define some other nota-

tions here. For any multicast tree T in G, we denote by nd(T )
the set of nodes in T , by lv(T ) the set of degree-one nodes in
T , by in(T ) the set of internal nodes (nodes with degree more
than one) in T , and by Ψ(T ) the total energy consumption of
realizing a group communication session using T . For any
node u ∈ V , we denote the set of neighboring nodes of
u in G by nb(u,G), and let nb+(u,G) = nb(u,G) ∪ {u}
and nb2 (u,G) =

⋃
v∈nb(u,G) nb

+(v,G), where the latter is
the set of nodes in G within two-hops of u (including u
itself). In the following, we present three distributed algorithms
to construct approximate trees for Topt , they respectively
achieve a logarithmic approximation ratio for fixed tx power, a

constant approximation ratio for fixed tx power, and a constant
approximation ratio for adjustable tx power.

IV. MEGCOM-LFP: LOGARITHMIC APPROXIMATION FOR
MEAAM WITH FIXED TX POWER

In this section, we propose a distributed approximation
algorithm for MEAAM with fixed and identical tx power. A
brief introduction on the idea of the algorithm comes first,
followed by detailed algorithm descriptions and a performance
analysis. We also discuss how to maintain the shared group
communication tree in the face of member joining and leaving.

A. Algorithm Principles

Unlike the common wisdom that directly uses a Steiner
tree to approximate Topt , our algorithm has two stages (with
the first one having two sub-stages) to construct a TA that
approximates Topt :
S1-a: Identify a buddy set B ⊆ V such that, for any v ∈ B,

nb(v,G) ∩M 6= ∅.
S1-b: Find a guardian set C ⊆ B for M , such that M ⊆⋃

v∈C nb+(v,G).
S2 : Construct an approximate Steiner tree TS to span the

nodes in C.
As a result, TA is the union of the member set M , the guardian
set C (along with edges it uses), and the Steiner tree TS
that spans C. We term each v ∈ C a guarding node and a
member u ∈ M ∧ u ∈ nb(v,G) the guarded member of v.
The tricky part is that we identify C by only searching among
B that contains nodes having at least one neighbor in M ,
which excludes nodes in M that has no neighbor in M . As
shown in Figure 1, all non-member nodes having at least one

Fig. 1. Examples for the buddy set selection. The black nodes are group
members in M , the grey nodes are the non-member nodes chosen for B. Here
B contains every node having a concentric tx circle surrounding it; the solid
lines indicate edges (or links) implied by those tx circles.

member in its neighborhood belong to B, whereas a member
node belongs to B only if it has at least one other member in
its neighborhood.

The motivation behind our algorithm is that a good ap-
proximation TA should have more nodes in lv(TA) and less
nodes in in(TA), as a node in in(TA) consumes tx power
for all packets and rx power for those not originated from
it, whereas a node in lv(TA) consumes only tx power for
packets originated from it and otherwise consumes only rx
power. We use two examples in Figure 2 to illustrate the
advantages of trees constructed by our algorithm compared
to straightforward Steiner trees that span M . For example,
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we can see that the optimal Steiner tree of Fig. 2(a) is the
tree T1 shown in Fig. 2(b), whose total energy consumption
is larger than that of the multicast tree T2 shown in Fig. 2(c).
Actually, since all data packets must go through the internal
nodes of a multicast tree for group communication and T1
has more internal nodes than T2, the energy consumed by T1’s
internal nodes is already close to the total energy consumption
of T2, which makes T1 less energy-efficient. Therefore, we

1

2 3

4 5

2 3

4 5

1

2 3

4 5

(a) (b) (c)

(d) (e)

Fig. 2. Comparing our algorithm with Steiner tree based on two instances of
MEAAM. In the first example (a)–(c), the set of group members is {2, 3, 4, 5}.
The number of data packets originated from each group member is 50. The
tx power of each node is 10. The reception power at each node is 1. The
optimal Steiner tree T1 in (b) leads to a total energy consumption of 5600,
while our multicast tree (optimal for this case) T2 in (c) gives 4800. The
energy consumed by the internal nodes of T1 and T2 are 4300 and 2200,
respectively. In the second example (d)–(e), a Steiner-based heuristic (d) can
result in 6 nodes in in(TA), whereas our multicast tree (e) only has 5 such
nodes.

argue that a Steiner-based heuristic may not give a proper
approximation to Topt . By far, the best-known centralized
approximation algorithm for MEAAM applies a Steiner-based
heuristic [3], obtaining an approximation ratio of 2(|M |+ 1).
The performance analysis of our algorithm in Sec. IV-C shows
that our algorithm achieves a much better approximation ratio.

B. Algorithm Details

As explained in Sec. IV-A, our algorithm has two stages.
In fact, each node can be in different states in each stage, so
we let each node v ∈ V to maintain a variable v.state in
order to keep track of the algorithm progress. Initially, every
node starts with a state Inactive, and the algorithm terminates
when all members in M are Treed (i.e., join the shared group
communication tree) and all Treed non-members are spanned
by shortest paths to form an approximate Steiner tree. We
show the finite state machine for each node in Figure 3. The

Inactive

Treed

Competing

Connecting Merging

Fig. 3. The finite state machine for each node.

state Competing is involved in the guardian set identification

(S1), while the two states Connecting and Merging are for
approximate Steiner tree construction (S2).

During the execution of our algorithms, some control mes-
sages with specific fields are exchanged between the wireless
nodes, and we illustrate the format of a control message in
Fig. 4. We can see that a control message consists of four
fields: msgType, sid, tid and data. The msgType is a three-
bit long field which indicates the purpose of this message,
and its value can be Compete, CNTReq, Decision, Accept
and Ack. The meanings of these values are closely related to
the process of algorithm execution, and will be shown in the
following paragraphs. The sid field denotes the unique id of
the node from which the message is originated, and the tid
field is the id of the target node. The data field records the
information that the sender node needs to convey to the target
node.

msgType sid tid data

Fig. 4. The fields of a control message.

In the following, we first present the pseudocodes of our
algorithm by Algorithm 1, then we explain the algorithm
execution in details.

As we do not assume that the distributed tree construction
process can start synchronously at all nodes, we set a peri-
odically executed task SCAN() (lines 1 to 18) to drive the
process. This task includes two part: lines 2 to 6 take care
of identifying a guardian set C in a greedy manner, while
other codes are for Steiner tree. In addition, there are four
procedures that respond to different events.

At the beginning of the guardian set identification stage
(S1), every node v with Inactive state records its neighboring
group member nodes with the state of Inactive or Competing
in v.S , and counts the number of nodes in v.S by v.ct (line 5).
Then each node v having at least one member neighbor in
v.S implicitly joins the buddy set B by changing its state to
Competing (line 6), as it has the right to compete for acting
as a guarding node. As the guarded (member) sets do not
intersect if two buddy nodes are more than two hops way
from each other, it is sufficient to confine the competitions
within the two-hop range for each node (line 6). The node
that guards the most wins (line 24); it hence changes its state
to Connecting (thus enter the second stage, line 25) and also
notifies the guarded members to change their states (line 26).
When a guarded member v receives such a notification, it
records its guarding node in v.gd , and changes its state to
Treed (line 37). As a result, the guarded members will not be
counted in later competition since they have the Treed state
(line 4), and the algorithm has already terminated for them.
At the end of S1, all nodes in Connecting state implicitly
compose the guardian set C.

According to the algorithm execution described above, it
can be seen that one necessary condition for any node v to
be a guardian node is that at least one of v’s neighboring
node is in M (otherwise v should not enter the Competing
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Algorithm 1: Finding an approximate multicast tree TA
for the MEAAM problem

Input: The network G = (V,E) and the member set M . For each node v ∈ V ,
v.state = Inactive; v.ns = 0

Output: An approximate multicast tree TA: all the Treed nodes and all the
marked paths/edges

1 task SCAN() /* executed periodically */
2 if v.state = Inactive ∧ ∃u ∈ nb(v,G) : u ∈M then
3 forall the u ∈ nb(v,G) : u ∈M do
4 if u.state = Inactive or Competing then
5 v.S ← v.S ∪ {u}; v.ct ← v.ct + 1

6 if v.ct > 0 then v.state ← Competing;
SENDMSG(′Compete′, v.id, u.id, v.ct) to ∀u ∈ nb2(v,G)

7 else if v.state = Connecting then
8 forall the u ∈M do
9 if u.state = Treed or Connecting then

10 v.S ← v.S ∪ {u.gd}; v.ct ← v.ct + 1
11 v.Path ← v.Path ∪ SP(v ! u.gd)

12 if v.ct = |M | then
13 v.prefer ← argminu{SP(v ! u) ∈ v.Path}
14 SENDMSG(′CNTReq′, v.id, v.prefer .id, v.ld) to v.prefer

15 else if v.state = Treed ∧ v.gd = v then DISCOVER()
16 else if v.state = Merging then
17 if ⇁DISCOVER() then v.state ← Treed
18 else SENDMSG(′CNTReq′, v.id, v.ld) to v.prefer

19 upon RECVMSG(msgType, sid, tid, data) at v with v.id = tid
20 u← the node with id sid
21 switch msgType do
22 case ′Compete′

23 if v.ns = |nb2(v,G)| then
24 if v.ct = maxz∈nb2(v,G)∪{v}{z.ct} then
25 v.state ← Connecting; v.gd ← v; v.ld ← v
26 SENDMSG(′Decision′, v.id,NULL) to ∀z ∈ v.S
27 else v.state ← Inactive
28 v.S ← ∅; v.ct ← 0; v.ns ← 0
29 else v.ns = v.ns+ 1

30 case ′CNTReq′

31 if v.prefer = u then
32 mark the path suggested by the request
33 SENDMSG(′Accept′, v.id,min{v.ld, data}) to u
34 if v.ld < data then v.state ←Merging
35 else v.state ← Treed; v.ld ← data

36 case ′Decision′

37 v.state ← Treed; v.gd ← u; mark the edge to u

38 case ′Accept′

39 mark the accepted path
40 if v.ld ≤ data then v.state ←Merging
41 else v.state ← Treed; v.ld ← data

state according to line 2). This is due to the reason that,
any degree-one nodes in any group communication tree must
be in M , and a guardian node can be intuitively deemed
as a “fringe” internal node in a group communication tree:
it is adjacent to at least one degree-one node in that tree.
As Algorithm 1 employs a greedy strategy to identify the
guardian set, it essentially finds a set of fringe internal nodes
whose cardinality is (approximately) minimized.

A guarding node v that enters the Steiner tree construction
stage (S2) will periodically check whether other members
are guarded and, for an already guarded member u, record
u’s guarding node in v.S and get the shortest path to u’s
guarding node (lines 8 to 11). If the targeted multi-hop wireless
network has a proactive routing protocol (e.g., OLSR [22]),
then a node only needs to check its local routing table.
Otherwise routing queries may need to be sent if the network
uses a reactive routing protocol (e.g., AODV [23] DSR or
[24]). The tree construction starts after all members are either

guarded or have entered S2. Our algorithm is similar to the
Kruskal-based shortest path heuristic proposed in [25]. The
basic idea is to construct a minimum spanning tree over the
extended graph G′(V,E′), where an edge (u, v) ∈ E′ has
a length of SP(u ! v) (the shortest path in G between u
and v). As this heuristic is a distributed implementation of
the 2-approximation algorithm proposed in [20], the resulting
approximation ratio is indeed 2.

The second stage (S2) starts with all the nodes in Con-
necting state, and it gradually finds a tree that spans these
nodes. In order to eventually lead to a minimum spanning
tree over G′(V,E′), only the shortest edge in E′ should be
added each time. This can be easily distributed initially (when
a node is not connected to any other node yet), as the local
information on the shortest paths from a node is sufficient for it
to decide which edge in E′ is to be added (line 13). However,
after some nodes are connected to form several fragments, the
local information is not sufficient anymore, hence we need
a leader (the node in state Merging, chosen by the smallest
id principle in lines 34 and 40, and recorded by v.ld ) and
certain consensus for obtaining a common preferred node to
connect to. This consensus is implemented in the procedure
DISCOVER(). Essentially, this procedure returns true if such
a preferred node can be identified, then the leader (on behalf
of the current fragment) sends a connection request to that
node (line 18). Otherwise the algorithm terminates, as the
approximate Steiner tree has been constructed (line 17).1 It
is important to note that a connection request is accepted only
if both ends consider each other as preferred (lines 14, 18, and
31); this is meant to avoid producing loops.

We further explain the relationship between the algorithm
execution described above and the algorithm motivations de-
scribed in Sec. IV-A as follows. As we have indicated before,
the first stage of Algorithm 1 (S1) essentially identifies all the
fringe internal nodes in TA, while the total number of such
fringe internal nodes is approximately minimized. The second
stage Algorithm 1 (S2) intends to find other internal nodes in
TA to connect the fringe internal nodes identified in S1, and
the number of such newly added internal nodes in S2 is again
approximately minimized thanks to the employed Steiner tree
heuristic. In summary, the whole process of Algorithm 1
focuses on the identification of a minimum set of internal
nodes in the group communication tree, which is exactly the
motivation described in Sec. IV-A.

C. Performance Analysis

We examine the approximation ratio and the complexity
of our algorithm in this section. In particular, we show
that TA resulting from Algorithm 1 is a [4 ln(∆ + 1) + 7]-
approximation to Topt , where ∆ is the maximum node degree
of G. Our result is an exponential improvement to the best
known result [3]. We also show that the complexity of Algo-
rithm 1 is polynomial in |V |.

1Actually, there are some details on pruning overlapping edges of different
shortest paths, but we omit them for brevity.
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1) Approximation Ratio: Our proof for the approximation
ratio is presented in three steps. In Lemma 1, we provide an
upper bound of the number of the internal nodes in TA. In
Lemma 2, we provide two lower bounds of the total energy
consumption of any multicast tree for the MEAAM problem.
These bounds are used by Theorem 1 to finally show the
approximation ratio of Algorithm 1.

Lemma 1: Let TI be the multicast tree spanning the
nodes in M such that the number of internal nodes in
TI (i.e., |in(TI)|) is minimized, we have: |in(TA)| ≤
[4 ln(∆ + 1) + 6] · |in(TI)|.

Proof: Let T ∗S and TS , respectively, be the minimum
Steiner tree and the approximate Steiner tree (produced by
S2 of Algorithm 1) that span the nodes in C. Given the
fact that S2 of Algorithm 1 falls into a minimum spanning
tree based Steiner-heuristic, we can know that TS is a 2-
approximation of T ∗S [20]. Note that all the tree links have
the same weight in the fixed power case. Hence, we get
|nd(TS)| − 1 ≤ 2(|nd(T ∗S)| − 1). Let X = M\nd(TS). We
have nd(TS) ⊆ nd(TA) and X = nd(TA)\nd(TS) according
to Algorithm 1. If X = ∅, then TA = TS . Otherwise,
any node u in X must be guarded by certain node u′ in
C ⊆ nd(TS) according to stage S1 of Algorithm 1, hence u
is only connected to u′ in TA. This means that u is a degree-
one node in TA. Therefore, we know |in(TA)| ≤ |nd(TS)|
and thus:

|in(TA)| ≤ 2|nd(T ∗S)|. (1)

Let T−I be the tree constructed from TI by pruning all the
degree-one nodes in TI (we assume |nd(T−I )| 6= 0, otherwise,
the proof becomes trivial). For any node u which is in C but
not in T−I (i.e., u ∈ C\nd(T−I )), we can find a group member
u1 ∈M such that u is adjacent to u1. This is because that the
guardian set C is a subset of the buddy set B, and any node in
B has at least one neighboring node in M according to S1-a.
If u1 is not in T−I , then there must exist a node u2 in T−I such
that u2 is adjacent to u1, because any group member node in
M is either an internal node in TI or is adjacent to an internal
node in TI . In other words, any node in C\nd(T−I ) can be
connected to T−I by a path whose length is no more than 2.
This means that we can find a tree in G spanning C whose
number of nodes is no more than |nd(T−I )|+ 2|C|. Since T ∗S
is an optimal Steiner tree spanning the nodes in C, we have:

|nd(T ∗S)| ≤ |nd(T−I )|+ 2|C| = |in(TI)|+ 2|C|. (2)

For any node v ∈ B, we define σ(v) = nb+(v,G) ∩M .
Clearly, we have |σ(v)| ≤ ∆+1. Let C∗ ⊆ B be the guardian
set in G that contains the minimum number of nodes. Since
S1 of Algorithm 1 identifies the guardian set C in a greedy
manner, its approximation ratio is the same as that of the
greedy set covering algorithm proposed in [26], hence we
have:

|C| ≤
[
ln

(
max
v∈B
|σ(v)|

)
+ 1

]
· |C∗|

≤ [ln(∆ + 1) + 1] · |C∗|. (3)

Note that nd(T−I ) ∩B is also a guardian set. so

|C∗| ≤ |nd(T−I )| = |in(TI)|. (4)

Summarizing all the results obtained by far, we have:

|in(TA)| ≤ 2(|in(TI)|+ 2|C|)
≤ 2|in(TI)|+ 4 [ln(∆ + 1) + 1] · |in(TI)|
= [4 ln(∆ + 1) + 6] · |in(TI)|,

this bounds |in(TA)| from above by |in(TI)|.
Lemma 2: For any multicast tree T in G spanning the

nodes in M , we have:
1) Ψ(T ) ≥ k · [εs + (|M | − 1) · εr]
2) Ψ(T ) ≥ |in(T )| · (εs + εr) · k

Proof: Each node u ∈ M must transmit its own p(u)
data packets. Therefore, the total energy consumption for
transmitting data packets in a group communication session
is at least

∑
u∈M p(u) · εs = k ·εs. Moreover, the total energy

consumption for receiving the data packets originated from u
is p(u) · (|nd(T )| − 1) · εr. Therefore,

Ψ(T ) ≥ k · εs +
∑
u∈M

p(u) · (|nd(T )| − 1) · εr

≥ k · [εs + (|M | − 1) · εr] .

The total energy consumption for realizing a group com-
munication session using T can also be written as:

Ψ(T ) =
∑

u∈lv(T )
p(u) · (|in(T )|+ 1) · εs +∑

u∈in(T )∩M
p(u) · |in(T )| · εs +

k · (|nd(T )| − 1) · εr
= k · |in(T )| · εs +

∑
u∈lv(T )

p(u) · εs +

k · (|nd(T )| − 1) · εr. (5)

Therefore:

Ψ(T ) ≥ k · |in(T )| · εs + k · (|in(T )|+ |lv(T )| − 1) · εr
≥ |in(T )| · (εs + εr) · k.

These give the two claimed lower bounds on Ψ(T ).
Theorem 1: The multicast tree TA constructed by Algo-

rithm 1 has an approximation ratio of 4ln(∆ + 1) + 7 for the
MEAAM problem.

Proof: As |lv(TA)| ≤ |M |, using (5) we can get:

Ψ(TA) = k · |in(TA)| · εs +
∑

u∈lv(TA)
p(u)·εs +

k · (|nd(TA)| − 1) · εr
≤ k · |in(TA)| · εs +

∑
u∈M

p(u)·εs +

k · (|in(TA)|+ |M | − 1) · εr
≤ k · |in(TA)| · (εs + εr) +

k · [εs + (|M | − 1) · εr] . (6)

According to Lemma 2, we can get:

|in(Topt)| · (εs + εr) · k ≤ Ψ(Topt),

and

k · [εs + (|M | − 1) · εr] ≤ Ψ(Topt).
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On the other hand, according to the definition of TI , we
have:

|in(TI)| ≤ |in(Topt)|.

Let κ = ∆ + 1. Combining the above inequalities with
Lemma 1, we have:

Ψ(TA) ≤ (4lnκ+ 6) · |in(TI)| · (εs + εr) · k + Ψ(Topt)

≤ (4lnκ+ 6) · |in(Topt)| · (εs + εr) · k + Ψ(Topt)

≤ (4lnκ+ 6) ·Ψ(Topt) + Ψ(Topt)

= [4 ln(∆ + 1) + 7] ·Ψ(Topt),

hence the claimed approximation ratio.
2) Algorithm Complexity: The first stage of Algorithm 1

has a time complexity of O(∆), as for every v : nb(v,G) ∩
M 6= ∅, at least one node in nb(v,G) leaves Inactive state
every round.2 In each round, all nodes in nb2 (v,G) sends a
message, so the message complexity is O(∆ · |V |), where we
use |V | to bound from above the cardinality of nb2 (v,G).
The second stage is designed for connecting the nodes in
the guardian set. Its worst-case time complexity and message
complexity are O(D(G) · |M |) and O(|M | · |V |), respectively,
as (i) only one group member leaves the Connecting state in
each round in the worst case (hence |M | rounds in total), (ii)
differing from the first stage where the length of each round
is a constant, this time the length of a round is determined
by the round-trip time of a path (hence bounded by D(G),
the diameter of G), and (iii) the number of messages in each
round is bounded by |V |.

D. Tree Maintenance

We discuss the tree maintenance with respect to the two
individual stages separately. Actually, maintaining the shared
tree simply for allowing the group communication session
to continue is a separate issue that has been tackled in the
literature (e.g., [27]–[29]). Therefore, our focus is only on how
to maintain the proven approximation ratio of the tree.

When a member v joins or leaves the group communication
session, if it has no existing guarding node in nb(v,G)
(for joining) or is the only guarded node (for leaving), then
the impact directly goes to the Steiner tree (which will be
discussed later). Otherwise v could directly join or leave
in a localized manner by notifying its guarding node. The
complication comes when a joining or leaving violates the
greedy cover principle (thus affecting the approximation ratio).
Therefore, we may need to re-execute S1 of Algorithm 1
under those circumstances to maintain the greedy cover, hence
maintain the proven approximation ratio.

If a member joining or leaving does not lead to any changes
in the existing guardian set C, then the approximate Steiner
tree remains intact. If a member joining brings one more node
to C, we may need to re-execute S2 of Algorithm 1 in the
worst case (when this newly joined guarding node results in
several short cuts). Fortunately, we also have another choice
of having this node directly connected to a closest (in terms

2Our algorithm works in asynchronous settings; the concept of round is
used only for evaluating the time complexity.

of shortest path) guarding node. According to [30], this will
lead to a O(log |M |) approximation to Steiner tree, and in turn
a O(ln |M | · ln ∆) approximation to MEAAM. If a member
leaving removes a node from C, it may partition the tree into
several fragments. The existing procedures of Algorithm 1
can take care of this case as far as a new leader is elected
for each fragment, as this is exactly the same as the fragment
merging phase of the Steiner tree construction stage.

V. MEGCOM-CFP: CONSTANT APPROXIMATION FOR
MEAAM WITH FIXED TX POWER

The algorithm proposed in Sec. IV has a relatively high
message complexity as we involve non-members in both
stages. In this section, we propose a simplified algorithm that
only involves group members in the first stage. Interestingly,
we can show that this simplified algorithm has a constant
approximation ratio.

A. The Algorithm

As this new algorithm shares the same second stage (S2)
with Algorithm 1, we only show the updated first stage (S1)
in Algorithm 2 and then explain details accordingly.

Algorithm 2: Finding an approximate multicast tree T ′A
for the MEAAM problem

Input: G = (V,E) and M . For each node v ∈ V ,
v.state = Inactive; v.nb = nb(v,G); v.ns = 0

Output: An approximate multicast tree T ′
A

1 task SCAN() /* executed periodically */
2 if v.state = Inactive ∧ v ∈M then
3 SENDMSG(′Compete′, v.id, u.id,NULL) to ∀u ∈ v.nb

4 upon RECVMSG(msgType, sid, tid, data) at v with v.id = tid
5 u← the node with id sid
6 switch msgType do
7 case ′Compete′

8 if v.state = Inactive then
9 if v.id > sid then

SENDMSG(′Accept′, v.id, u.id,NULL) to u
10 else SENDMSG(′ACK′, v.id, u.id, v.state) to u

11 case ′Ack′

12 if data = Connecting then
13 v.state ← Treed; v.gd ← u; mark the edge to u
14 else if data = Treed then v.nb ← v.nb\{u}

15 case ′Accept′

16 if v.ns = |nb(v,G)| then
17 v.state ← Connecting; v.gd ← v
18 else v.ns = v.ns+ 1

The objective is again to identify a guardian set C ′ for
M , but the algorithm differs from Algorithm 1 in that C ′ is
constructed from M , i.e., C ′ ⊆ M . Similar to Algorithm 1,
all the nodes that eventually change to Connecting state
are in C ′. The competition is again based on the smallest
id principle. A node in Inactive state accepts any neighbor
to be its guardian if its own id is larger (lines 8 to 9). If a
node receives the acceptance from all its Inactive neighbors,
it joins the guardian set C ′ (lines 16 to 17) by changing its
state to Connecting. A node that is not in Inactive state
always acknowledges the competition message by announcing
its current state (line 10). When a node v receives an acknowl-
edgement message from node u that carries a Connecting
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state, it records u in v.gd as its guarding node and changes
its state to Treed (line 13); If the acknowledgement message
carries a Treed sate, v knows that u has already been guarded
by other nodes, hence deletes u from its active-neighbor
table v.nb (line 14). Note that this algorithm only uses one-
hop communications and finds an arbitrary guardian set, and
may degenerate to a Steiner tree algorithm when the group
members are deployed very sparsely in the network. However,
these do not hinder us from deriving a constant approximation
ratio for our algorithm, which exponentially improves the best-
known quadratic approximation ratio proposed in [3]. We will
see this in the next section.

B. Performance Analysis

The approximation ratio of T ′A obtained by Algorithm 2 is
immediate from the following theorem.

Theorem 2: Ψ(T ′A) ≤ 13Ψ(Topt)
Proof: Let TI again be the multicast tree spanning the

nodes in M such that |in(TI)| is minimized. The outcome
of Algorithm 2 implies that the nodes in C ′ are mutually
independent. Therefore, any node in in(TI) can be adjacent
to at most 5 nodes in C ′ [31]. Moreover, as any node u ∈ C ′
is a member of M , u is either in in(TI) or is adjacent to
certain node in in(TI). So we can get:

|C ′| ≤ 5|in(TI)| (7)

Let the optimal Steiner tree and approximate Steiner tree
(produced by S2 of Algorithm 2) spanning the nodes in C ′

be T́ ∗S and T́S , respectively. We have:

|in(T ′A)| = |nd(T́S)| ≤ 2|nd(T́ ∗S)| (8)

Since any node in C ′ is either in in(TI) or is adjacent to
certain node in in(TI), we can find a Steiner tree spanning the
nodes in C ′ whose number of nodes is at most |C ′|+ |in(TI)|.
Therefore, we have:

|nd(T́ ∗S)| ≤ |C ′|+ |in(TI)| (9)

Combining (7)–(9), we can get:

|in(T ′A)| ≤ 2(|C ′|+ |in(TI)|) ≤ 12|in(TI)| (10)

The result by far gives an upper bound for |in(T ′A)|. Now
we can apply Lemma 2 and (6) (similar to the proof of
Theorem 1) to obtain Ψ(T ′A) ≤ 13Ψ(Topt).

We omit the complexity analysis for this algorithm, as it is
very similar to Algorithm 1, except that the constant length
of a round in the first stage becomes shorter, as only one-hop
communications are required. The tree maintenance becomes
simpler, as the guardian set is not constructed in a greedy
manner, the impact of member joining or leaving directly goes
to the Steiner tree.

VI. MEGCOM-CAP: CONSTANT APPROXIMATION FOR
MEAAM WITH ADJUSTABLE TX POWER

When the tx power of each node is adjustable, the idea of
guardian set does not work anymore, as whether a node can
be guarded by another is not known before an actual tx power
is chosen. Even if we have a shared multicast tree for the

group communication session, any node u in a multicast tree
T may need to use the tx power max{dα(u,v)|v ∈ nb(u, T )} to
transmit the data packets. Therefore, different nodes may use
different tx power to forward the data packets. This makes the
MEAAM problem more complicated.

To design an approximation algorithm for the MEAAM
problem in the adjustable-tx-power case, we use a constructive
proof to show the existence of an algorithm with a constant
approximation ratio, which naturally suggests one possible
algorithm to construct the multicast tree. We still try to
build a multicast tree whose sum of tx power of the internal
nodes is minimized, because the internal nodes still have a
heavier forwarding load than the degree-one nodes for any
multicase tree spanning M . Let λ(u, T ) = max{dα(u,v)|v ∈
nb(u, T )}, and let TW be a multicast tree such that Θ(TW ) =∑
u∈in(TW ) λ(u, TW ) is minimized. Our idea is to find a

multicast tree that approximates TW and in turn approximates
Topt . The trick is to identify a quantitative relation between Θ
and Ψ. This is done by Theorem 3, which in turn relies on the
upper bounds of the total energy consumption for transmitting
and receiving data, respectively, derived in Lemma 3 and
Lemma 4.

Lemma 3: For any multicast tree T spanning the nodes
in M , the total energy consumption of transmitting all data
packets using T in a group communication session is at most
2k ·Θ(T ).

Proof: Each internal node in in(T ) must transmit every
data packet sent by each member node. So the total energy
consumption for transmitting data packets by the internal
nodes in T is:∑

u∈in(T )
λ(u, T ) ·

∑
v∈M

p(v) = k ·Θ(T ). (11)

Any degree-one node in T has a unique neighboring node
in T . Therefore, there exists a function f : lv(T ) → in(T )
such that f(u) is the unique internal node adjacent to u : ∀u ∈
lv(T ). Let Z = {f(u)|u ∈ lv(T )}. Clearly, for any degree one
node u ∈ T , we have λ(u, T ) ≤ λ(f(u), T ). The total energy
consumption for transmitting data packets by the degree-one
nodes in T is:∑

u∈lv(T )
λ(u, T ) · p(u)

=
∑

v∈Z

∑
u∈{w|w∈lv(T ),f(w)=v}

λ(u, T ) · p(u)

≤
∑

v∈Z

∑
u∈lv(T )

λ(v, T ) · p(u)

≤ k ·
∑

v∈Z
λ(v, T )

≤ k ·Θ(T ). (12)

Combining (11) and (12), the lemma follows.
Lemma 4: For any multicast tree T spanning the nodes

in M , the total energy consumption of receiving all data
packets using T in a group communication session is at most
Ψ(Topt) + k ·Θ(T ).

Proof: Based on our assumption that ∀v ∈ T , εr ≤



9

λ(v, T ), we can get:

|in(T )| · k · εr = k ·
∑

v∈in(T )
εr

≤ k ·
∑

v∈in(T )
λ(v, T )

= k ·Θ(T ).

The total energy consumption for receiving all the data
packets by the nodes in T is k · (|nd(T )| − 1) · εr, which is
no more than the total energy consumption Ψ(T ) for realizing
a group communication session, because Ψ(T ) is the sum of
the energy consumption for receiving and transmitting all data
packets. Note that T can be any tree spanning the nodes in
M , so we also have:

k · [|nd(Topt)| − 1] · εr ≤ Ψ(Topt).

Combining the above two inequalities with |lv(T )| ≤
|M | ≤ |nd(Topt)|, we can get:

k · (|nd(T )| − 1) · εr
= k · [|lv(T )|+ |in(T )| − 1] · εr
≤ k · [|nd(Topt)| − 1] · εr + k · |in(T )| · εr
≤ Ψ(Topt) + k ·Θ(T ), (13)

hence the claimed upper bound follows.
Theorem 3: Let TW be a multicast tree spanning the nodes

in M such that Θ(TW ) is minimized. For any multicast tree
T , if Θ(T ) ≤ ρ ·Θ(TW ), then Ψ(T ) ≤ (3ρ+ 1) ·Ψ(Topt)

Proof: Since the total energy consumption for transmit-
ting data packets in a group communication session by the
internal nodes in Topt is k · Θ(Topt) (according to (11)), we
have:

k ·Θ(Topt) ≤ Ψ(Topt).

According to the definition of TW , we get:

Θ(TW ) ≤ Θ(Topt).

Then, combining Lemma 3 and Lemma 4 with the above
two inequalities, we have:

Ψ(T ) ≤ 3k ·Θ(T ) + Ψ(Topt)

≤ 3ρk ·Θ(TW ) + Ψ(Topt)

≤ 3ρk ·Θ(Topt) + Ψ(Topt)

≤ (3ρ+ 1)Ψ(Topt), (14)

hence the theorem follows.

Remark: This theorem is itself very important. It shows that, if
we can find a tree T that approximates TW within a constant
ratio, then T is also a constant approximation to Topt.

In this paper, we only suggest a straightforward algorithm
that achieves a constant approximation ratio. In fact, we will
show that, if we apply the distributed Steiner tree algorithm
given in S2 of Algorithm 1 to span M directly, the resulting
tree T̈S approximates TW within a constant ratio.

Lemma 5: Let T̈S be a 2-approximation Steiner tree in G
spanning M , we have: Θ(T̈S) ≤ 48Θ(TW ).

Proof: For any multicast tree T spanning the nodes in
M , we denote by ζ(T ) the sum of the weights (tx power)

of the edges in T . For any node u in in(TW ), we denote by
T

(u)
W the Euclidean minimum spanning tree of the nodes in
{u} ∪ nb(u, TW ). According to [12], we have:

ζ
(
T

(u)
W

)
≤ c · λ(u, TW ), 6 ≤ c ≤ 12. (15)

Let G′ be the graph constructed by superposing the T (u)
W ’s

for all u ∈ in(TW ). Let Tz be an arbitrary spanning tree of
G′. We can get:

ζ(Tz) ≤
∑

u∈in(TW )
ζ
(
T

(u)
W

)
≤ c ·

∑
u∈in(TW )

λ(u, TW )

= c ·Θ(TW ). (16)

Let T̈ ∗S be the minimum Steiner tree in G spanning the
nodes in M . Since T̈S is a 2-approximation Steiner tree and
Tz is also a tree spanning M , we have:

ζ(T̈S) ≤ 2ζ(T̈ ∗S) ≤ 2ζ(Tz). (17)

Note that the weight of any edge in T̈S can be counted at
most twice in Θ(T̈S), so

Θ(T̈S) ≤ 2ζ(T̈S). (18)

The claimed approximation ratio follows by combining all
these inequalities.

Finally, using Theorem 3 and Lemma 5 we can easily get:
Theorem 4: Our distributed Steiner tree algorithm on M

approximates the MEAAM problem under the adjustable tx
power case with a constant approximation ratio of 145.

VII. SIMULATIONS

In this section, we present the simulation results of our
algorithms. We implement a simulator using C++ and use it to
study how the performance of different MEGCOM algorithms
is affected by various network parameters such as the network
size, the node density and the percentage of group members.
In the simulations, the network nodes are randomly deployed
in a square area according to a certain node density, where
the node density is defined as 1 if |V | nodes are deployed
in a

√
|V | ×

√
|V | square. The group members are selected

from V following a Bernoulli distribution, and the number of
packets originated from each group member is chosen from a
uniform distribution U(1, 100). For each setting of the network
parameters, we generate 100 network instances and show the
mean values of the simulation results.

A. Fixed TX Power

We first study the performance of MEGCOM-LFP and
MEGCOM-CFP under the fixed transmission power case with
εs = 200, εr = 20, and the transmission range of each node is
set to 2. For comparison, we build different multicast trees for
the MEAAM problem in the simulations, using MEGCOM-
LFP (Algorithm 1), MEGCOM-CFP (Algorithm 2), the
Shortest Path Tree (SPTF) algorithm, the Steiner Tree algo-
rithm, as well as DISF [3], ASTF [27], and LAMF [28]. In
the SPTF algorithm, a root node is randomly selected from the
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Fig. 6. Comparing different algorithms for building multicast trees with the percentage of group members fixed to be 60%.

group members, and the shared multicast tree is constructed
by aggregating the shortest paths from the root node to other
group members. In the implementation of the Steiner Tree
algorithm, we adopt the approximation algorithm proposed
by [20]; this is the Steiner tree algorithm also used in [3] as
the solution to the MEAAM problem, and used in [12] as the
solution to the min-energy one-to-many multicasting problem.

In Figure 5, the network density is fixed to 1 and the network
size is set to 300, 500, and 700 in Figure 5(a)-(c), respectively.
The percentage of group members scales from 10% to 90%
in Figure 5(a)(c), and scales from 2% to 18% in Figure 5(b).

It can be seen from Figure 5(a) that the SPTF, ASTF,
LAMF algorithms always consume more energy than the
other algorithms. This can be explained by the fact that
trees generated by these algorithms are generally based on
constructing shortest paths from one group member or certain
“rendezvous node” to the other nodes. As a result, these
trees have a large number of internal tree nodes that are not
group members. Meanwhile, we can see that the Steiner tree
algorithm outperforms DISF (hence also outperforms ASTF,
SPTF, LAMF), which is consistent with the fact that the
linear approximation ratio of the Steiner tree algorithm for
MEAAM is better than the quadratic approximation ratio
of DISF. Moreover, we can also see from Figure 5(a)-(c)
that Algorithm 1 and Algorithm 2 both outperform the
Steiner tree algorithm. This phenomenon validates our analysis
on approximation ratios in Section IV and Section V. The
main reason for this phenomenon is that Algorithm 1 and

Algorithm 2 both reduce the internal nodes of the shared
multicast tree, whose energy consumption is the predominant
part of the total energy consumption of a group communication
session. Another phenomenon we observe from Figure 5 is
that our algorithms perform better when the percentage of
group members increases. Actually, when 90% network nodes
become group members, Algorithm 1 saves up to 40% energy
cost compared with the SPTF algorithm in Figure 5(a), or 25%
compared with the Steiner tree algorithm in Figure 5(c). This
can be understood by the fact that more energy are conserved
by our algorithms when more data packets are involved in the
group communication session. Finally, Figure 5(b) reveals that
when the number of group members is very small (down to
about 10 nodes), different multicast algorithms perform closely
on the total energy cost. However, in such a case, the energy-
efficiency problem becomes less of a concern because the total
energy cost achieved by any algorithm is already very low.

In Figure 6, we study the impact of node density on the
performance of different algorithms. This time we remove the
results for the SPTF, ASTF, DISF, LAMF algorithms, as they
are proved to perform worse than the other algorithms in the
previous comparisons. The percentage of group members is
fixed to 60%, and the node density scales from 1 to 5 with
an increment of 0.5. Again, the network size is set to 300,
500, and 700 in Figure 6(a)-(c), respectively. We observe
that Algorithm 1 and Algorithm 2 always perform better
than the Steiner tree algorithm in Figure 6. In particular,
Algorithm 1 saves 15%∼20% energy compared with the
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Fig. 7. Comparing different algorithms for building multicast trees with the network size fixed to be 500-node.
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Fig. 8. Comparing different algorithms under the adjustable power case.

Steiner tree algorithm. This demonstrates that the superiority
of our MEGCOM algorithms persists when the node density
changes. Here we use density as a rough indicator of ∆, as
generating degree constrained networks is non-trivial. And
even if we generated such graphs, they could hardly reflect
any practical WSN deployments.

In Figure 7, we study the joint impact of node density
and group-member-percentage on the energy consumption for
group communication. We fix the number of network nodes to
500, and the percentage of group members is set to 10%, 20%
and 40% in Figure 7(a)-(c), respectively. The node density
scales from 2 to 5 with an increment of 0.5. We can see that
our algorithms outperforms the Steiner tree algorithm more
significantly when the percentage of group members increases.
Even when the percentage of group members is small (such as
in Figure 7(a)), our algorithms still show significant superiority
in densely deployed networks, which is actually a prevailing
deployment pattern in many applications [32], [33].

An interesting fact revealed by the simulations is that
Algorithm 1 almost always performs better than Algorithm 2,
although the latter has a better theoretical approximation
ratio than the former (see Theorem 1 and Theorem 2). One
generally considers a constant approximation ratio to be better
than a logarithmic ratio. However, as an approximation ratio
only serves as a metric to measure the worst case performance
of an algorithm, the average performance of the algorithm in
practice may not be well characterized by its approximation
ratio. We can attribute this effect to the fact that the guardian

set is searched from a larger solution space in Algorithm 1
than in Algorithm 2, which should on average result in less
internal nodes in the shared multicast tree constructed by
Algorithm 1, hence a lower total energy consumption of
a group communication session using the tree and a better
performance of Algorithm 1 in average sense.

B. Adjustable Tx Power

In this section, we compare the performance of MEGCOM-
CAP with the other algorithms under the adjustable transmis-
sion power case, where the transmission power for any node u
to communicate with another node v is set to d2(u,v). The DISF,
LAMF, SPTF, ASTF algorithms are adapted to the adjustable
tx power case, and the adapted algorithms are named DISA,
LAMA, SPTA and ASTA, respectively. More specifically, the
SPTF algorithm is adapted by assigning each edge (u, v) a
weight d2(u,v), and the LAMF (ASTF) algorithms are adapted
by setting the transmission power of any node u in a group
communication tree T to max{d2(u,v)|v ∈ nb(u, T )}, which is
the minimum energy required for u to communicate with its
neighboring nodes in T .

As in Section VII-A, we also study the impact of var-
ious network conditions (such as the percentage of group
members and the node densities) on the performance of
different algorithms, and the network settings in Fig. 8(a)-
(c) are the same with those in Fig. 5(a), Fig. 6(a) and
Fig. 7(a), respectively. Again, we can see from Fig. 8 that
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SPTA, DISA and MEGCOM-CAP all outperform ASTF and
LAMF, while MEGCOM-CAP performs the best among them.
This demonstrates the superiority of MEGCOM-CAP under
the adjustable tx power case.

VIII. DISCUSSION

An important issue we would like to discuss here is multi-
path fading, which is a major contributor to the unreliability
of wireless communication links. In fact, considering multi-
path fading in MEAAM essentially leads to another research
problem, i.e., reliable group communication for wireless ad
hoc networks. Compared with the large body of work on
energy-efficient data transmission in wireless networks where
the wireless links are assumed to be dependable (e.g., [3],
[4], [6], [11]–[14], [21] ), the reliable group communication
problem is relatively less studied. Nevertheless, our work
can be potentially extended to the unreliable link case by
assigning each link a weight which is calculated by the
multiplication of the one-time transmission energy and the
expected retransmission times on that link. Actually, such a
trick is also used in other proposals on one-to-many reliable
multicasting such as [34], and the multicast tree built in [34]
is exactly an approximate Steiner tree. We plan to investigate
the MEAAM problem under the unreliable link case more
thoroughly in the future work.

IX. CONCLUSION

In this paper, we have studied the Minimum-Energy All-
to-All Multicasting (MEAAM) problem in multi-hop wireless
networks, where the transmission power of each wireless
node could be either fixed or adjustable. Since the MEAAM
problem is NP-complete, we have provided a set of distributed
approximation algorithms under our MEGCOM (Minimum-
Energy Group COMmunication) framework. For each algo-
rithm, we have proven its approximation ratio with respect to
the optimal solution. Our approximation ratios are significantly
better than those of the best-known approximation algorithms
for the MEAAM problem. We have further performed exten-
sive simulations to validate our theoretical analysis and also
to confirm the energy efficiency of our MEGCOM algorithms.
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