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M 3: Multipath Assisted Wi-Fi Localization with a
Single Access Point

Zhe Chen, Guorong Zhu, Sulei Wang, Yuedong Xu∗, Jie Xiong, Jin Zhao, Jun Luo, Xin Wang

Abstract—Owing to the ubiquitous penetration of Wi-Fi in our daily lives, Wi-Fi indoor localization has attracted intensive attentions in
the last decade or so. Despite some significant progresses, the high accuracy of existing systems is still achieved at the cost of dense
access point (AP) deployment. The more practical single AP localization is largely left as an open problem, because the
hardware-induced time delay “contaminates” the measurement of signal propagation time in the air. In this paper, we design and
implement M3 to tackle this challenge with commodity Wi-Fi cards. M3 exploits a multipath-assisted approach that turns the harmful
multipath from foe to friend to enable single AP localization: a device can be pinpointed through the combination of azimuths and the
relative time of flight (ToF) of Line-of-Sight (LoS) signal and reflection signals, eliminating the need for multiple APs along with their
absolute ToF measurements. M3 further utilizes frequency hopping to combine multiple channels to form a virtually wider-spectrum
channel for higher ToF resolution. As a prominent feature of M3 , the channels do not need to be adjacent. Comprehensive
experiments demonstrate that M3 outperforms the state-of-the-art systems and achieves a median localization accuracy of 71 cm in
three environments with a single AP.

Index Terms—Wi-Fi Localization, Multipath, MIMO, Multi-channel, Channel Estimation
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1 INTRODUCTION

LOCATION information is the key component for
many applications including navigation [1], vir-

tual/augmented reality [2], robotics [3], and security
surveillance [4]. In outdoor environments, Global Position
System (GPS) has achieved a big success in offering meter-
level localization accuracy. However, in indoor environ-
ments, GPS signals, after penetrating through walls, become
too weak to be utilized for localization due to the high
attenuation. Consequently, many technologies have been
explored for indoor localization, including sound [5] [7],
infrared [8], visible light [9] [10], and RF [11] [12] [13] [14]
[15] [16] [17] [18]. Among these technologies, Wi-Fi based
solutions [11] [13] [14] [19] are particularly promising as Wi-
Fi infrastructure has been ubiquitously deployed.

Wi-Fi based localization systems can be broadly grouped
into three categories: fingerprint-based [20], angle-of-
arrival (AoA)-based [11] and time-of-flight (ToF)-based [13].
Fingerprint-based solutions require readings from multi-
ple APs, yet collecting the fingerprints is extremely labor-
intensive. Furthermore, due to the rich mutipath indoors
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and shadowing effects, the accuracy of fingerprint-base
solutions is usually low. AoA-based solutions need to syn-
thesis angle information from multiple APs for localization,
but this requirement can not be fulfilled at home and small
business environments that usually have only one AP. ToF-
based localization is popular with ultrawide band (UWB)
but not Wi-Fi because of the small Wi-Fi channel bandwidth
(20-80MHz) [13] [14].
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Fig. 1: An example for multipath-assisted Wi-Fi device lo-
calization

Our target in this work is to design a single AP local-
ization system while maintaining the sub-meter accuracy
in a rich multipath environment. Different from traditional
approaches that consider multipath harmful, ourM3 system
harnesses multipath for localization. Essentially, M3 pin-
points the relative location of a target device with respective
to a given AP. If the exact position of the AP is known
beforehand, the absolute position of the target device can
thus be obtained. The major obstacle is that, when there is
only one AP, the AoA information alone is not sufficient to
localize the device; location can be pinpointed only if both
the angle (AoA) and propagation time (ToF) are available.
However, without a nanosecond-level time synchronization
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between the AP and device, it is impossible for us to accu-
rately obtain the absolute signal propagation time between
the two devices.

To overcome this obstacle, we exploit multipath to help
localization, whose rationale is illustrated in Figure 1. With
multiple antennas at both sides, we can obtain AoA in-
formation at the receiver and angle-of-departure (AoD)
information at the transmitter. With AoA and AoD, we are
still not able to uniquely determine the device’s location
as shown in Figure 1 (e.g., not able to differentiate A, A’,
A”), yet a single reflected path may help. Without time
synchronization, though it is challenging to get the absolute
propagation time, the relative time difference between the
direct path and reflection path signals can be obtained. With
AoA, AoD and this time difference, the reflection point can
be uniquely determined and the target location can thus
be estimated. Note that here we only show one reflected
path. In reality, we may have multiple reflected paths and
they can all be utilized to further improve the location
accuracy. The opportunity here is that with the popularity
of MU-MIMO [22], both the AP side and the receiver side
have multiple antennas. The latest smart devices such as
HUAWEI [21] have 4 antennas built in. For larger size Pads
and laptops, antenna array can easily be built in. The next
generation Wi-Fi protocol is considering to include 60GHz
besides the current 2.4GHz and 5GHz bands and thus we
expect an even smaller wavelength and larger number of
antennas to be equipped in a single device in the future.

To realize this idea in practice, multiple challenges need
to be tackled. First of all, commodity Wi-Fi cards usually
have only 3-4 antennas. With a limited number of anten-
nas, the AoA and AoD estimates are coarse. A even more
challenging issue is that with a small 20MHz channel band-
width, the basic resolution of time measurement is 50ns. This
means that if the time difference is below this resolution, a
naive sampling cannot obtain the time difference precisely,
thus degrading the localization performance.

Inspired by [44], we jointly estimate AoA, AoD and ToF
in frequency domain with a modified version of the SAGE
algorithm [43]. The channel state information on each of
Wi-Fi OFDM subcarrier contains the AoA, AoD and ToF
of the propagation path. Mathematically, each subcarrier
contributes a nonlinear equation to resolve the channel
parameters. The more equations we have, the better the ToF
resolution we can achieve, even though the equations origi-
nated from the same channel are correlated to a large extent.
Our algorithm refines the channel estimation iteratively, out-
performing the traditional subspace based approach such as
MUSIC [11] and ESPRIT [24] with one-shot estimation.

To increase the time domain resolution, we combine
multiple channels to form a virtually wider-spectrum chan-
nel for higher resolution. Different from the state-of-the-art
system ToneTrack [13] that only combines adjacent channels,
our approach is able to handle non-adjacent channels. This
is particularly useful, as hopping to adjacent channels is not
always feasible in reality due to crowded Wi-Fi channel
usage. However, since the initial phase caused by each
channel hopping may vary, we cannot perform one-time
calibration. Instead, we require an extra Wi-Fi card only to
calibrate initial phases several times in a AP.

To summarize, our main contributions of this paper are

as follows.

• We propose a novel approach to concatenate non-
adjacent Wi-Fi channels to increase time resolution,
and accordingly improve the accuracy of channel
parameters (AoA, AoD, and ToF) estimation in fre-
quency domain.

• We present a simple geometry method that uses
multipath channel parameters to realize localization
with only a single Wi-Fi AP.

• Our system, M3 is implemented and evaluated with
commodity Intel 5300 Wi-Fi cards. Extensive exper-
iments demonstrate a high accuracy and significant
performance improvement over the state-of-the-art
systems.

• We propose the concept of mutual localization that
has many real-life applications.

The rest of this paper is structured as follows. The
overview of M3 is provided in Section 2, and the detail of
system design is presented in Section 3. The implementation
detail and extensive experiments are discussed in Section 4
and Section 5, respectively. We summarize the related work
of indoor localization in Section 6, before concluding our
paper in Section 7.

2 SYSTEM OVERVIEW

2.1 Important Concepts

In a typical indoor environment, the multipath signals are
complicated as shown in Figure 2. All light-of-sight (LoS)
and non-light-of-sight (NLoS) signals have different channel
parameters. We explain each channel parameter here.

AoA

AoD

NLoS ToF

Fig. 2: Multipath signals in a typical indoor environment

Angle of Arrival (AoA). AoA means the direction of incoming
signal at the receiver with an antenna array. The resolu-
tion of multipath signals is dependent on the number of
antennas. With more antennas, higher angle resolution can
be achieved. However, for a mobile device, the number of
antennas is limited by the size of the device.
Angle of Departure (AoD). AoD is the direction of outgoing
signal at the transmitter with an antenna array. Similar to
AoA, the resolution of AoD is decided by the number of
antennas at the transmitter.
Time of Flight (ToF). ToF is the signal propagation time from
the transmitter to the receiver. ToF can be easily converted
to the propagation distance by multiplying the signal speed
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in the air. It is well known that the channel bandwidth is
inversely proportional to the resolution of ToF. With a larger
channel bandwidth, a higher ToF resolution can be achieved.
Complex Attenuation. When wireless signal propagates from
transmitter to receiver through different paths, both the am-
plitude and phase get changed accordingly. For each path,
the complex attenuation contains both the amplitude and
phase changes. The LoS signal usually experiences a smaller
attenuation and thus is stronger than the multipath (reflec-
tion) signals. Moreover, the material of the reflector can also
affect the complex attenuation [32]. Note that it is possible
for the Wi-Fi signal to reflect more than once before reaching
the receiver.

A:Device

B:Real AP

B’: Mirror AP

C

𝜙2𝜙1

𝜃2
𝜃1

𝜙3

𝛾

Reflector

Fig. 3: Multipath-Assisted Device Localization

Different from conventional geometry methods for local-
ization that require two or more APs, our solution leverages
above geometric features of multipath, as well as LoS chan-
nel parameters to localize the target device. From Figure
3, if the AP knows AoAs (θ1, and θ2), AoDs (φ1, and
φ2), relative distance calculated by relative ToF, and the
speed of radio, the solid red line triangle is determined.
Moreover, the reflector is also determined via reflection
principle. Therefore, we can figure out a geometric approach
to estimate the location of the target device. For example,
the NLoS path is treated as a mirror AP to localize the
target device along with the real AP. We will explain the
design and implementation details of M3 for device-based
localization in the next several sections.

2.2 System Components
We hereby briefly describe the system components of M3 .
We modify the SAGE algorithm to jointly estimate AoA,
AoD and ToF in frequency domain, enabling a high accu-
racy single AP localization system. We control the channel
hopping following the Wi-Fi hopping protocols [14] [17] and
collect CSI readings at each channel from commodity Intel
Wi-Fi card. We describe the key components of M3 below.

• Super-resolution channel parameter estimation: As
the prerequisite of localization, channel parameters
of both LoS and NLoS paths must be extracted from
the CSI readings. To achieve this goal, we modify the
SAGE algorithm to jointly estimate AoA, AoD and
ToF of all paths.

• Multi-channel concatenation: The resolution of ToF
estimation is inversely proportional to the available
channel bandwidth. Therefore, we propose a novel

channel concatenation scheme to stitch channels, so
as to improve the ToF resolution. With the proposed
method, even non-adjacent channels can be stitched
together to form a virtually larger channel band-
width for a higher time resolution.

• Multipath-assisted device localization: With the
channel parameters of the LoS and reflection paths,
we derive a mathematical model to obtain the loca-
tion estimation for the target device with respect to
the AP. For multiple candidate positions calculated
from multiple reflection paths, we propose an op-
timization algorithm to determine the final location
estimation.

3 SYSTEM DESIGN

In this section, we design a unified approach to jointly
estimate AoA, AoD and relative ToF that are the core-stones
of the single-AP enabled indoor localization.

3.1 Wireless Channel Model
To begin with, we describe the wireless channel model that
captures the propagation of waves in the air. Considering
a transmitter (device) with M antennas and a receiver
(AP) with N antennas. Each channel is partitioned into a
set of K subcarriers where the carrier frequency is f and
the kth subcarrier frequency is fk for all 1 ≤ k ≤ K.
The rich reflections in indoor environments yield P major
propagation paths between the transmitter and the receiver.
The wireless channel on path p is represented by a four-
parameter tuple ηp = {αp, θp, φp, τp}, where αp denotes the
complex amplitude, θp denotes the AoA to the receiver, φp
denotes the AoD from the transmitter and τp is the ToF. Let
s(f) be the transmitted signal to the AP at the frequency
domain, and let y(fk, ηp) be the vector of received signal at
the kth subcarrier on the pth path. Denoting λ as the wave
length and d as the spacing between two adjacent antennas.
d is set as λ/2 to avoid spatial aliasing. We thus obtain:

y(fk; ηp) = H(fk; ηp) + N(f)

= αpc(θp)g
T (φp)e

−j2πτpfks(f) + N(f), (1)

where

c(θp) := [1, e−j2πd cos(θp)/λ, · · · , e−j2πd(N−1) cos(θp)/λ]T ;

g(φp) := [1, e−j2πd cos(φp)/λ, · · · , e−j2πd(M−1) cos(φp)/λ]T .

We also denote H(fk; ηp) = αpc(θp)g
T (φp)e

−j2πτpfk . In
practice, the received signal on subcarrier k is the ag-
gregation of signals from all the paths, i.e., y(fk) :=∑P
p=1 y(fk; ηp).
Our single-AP localization enforces a rather simple logic:

the AP estimates the direction of the device and the wave
propagation delay from the device to the AP.

3.2 Super-Resolution Channel Parameters
The subspace-based approach such as MUSIC [11] extracts
the path parameter of multipath in one shot by decompos-
ing the covariance matrix of the signal into a signal subspace
and a noise subspace. SAGE algorithm [44] further pursues
the optimal estimation of channel parameters in an iterative
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Fig. 4: The signal flow graph of M3 at (µ + 1)th iteration.
The symbol x(f,η) represents the input variables.

approach. Our design is also inspired by [44] designed
in time domain, but we extend their SAGE algorithm to
SAGE+ in frequency domain for our purpose.

The flow chart of parameter estimation is shown in Fig-
ure 4. To avoid local minimum issue of SAGE+ algorithm,
we utilize a one shot estimation approach based on the
subspace method (in Section 3.2.2) to find proper starting
points. After initialization, the coarse channel parameters
of each path are injected to SAGE+ algorithm for a finer
estimation (detailed in Section 3.2.1).

3.2.1 Maximum Likelihood Estimation
According to [43], [44], we can obtain the following likeli-
hood function in frequency domain:

z(τp, θp, φp) =

K∑
k=1

cH(θp)xp(fk; ηp)g
?(φp)e

j2πτpfk , (2)

where the symbol ? means conjugation operation, and xp
represents the pth signal, such as CSI. Therefore, the SAGE+
algorithm can iteratively estimate ηp by maximizing the
following equation:

(φ̂p, θ̂p, τ̂p)est = arg max
φp,θp,τp

|z(φp, θp, τp)|. (3)

From Eq. (1) and (3), the amplitude αp can be derived

α̂p =
1

K ·N ·M
z(φp, θp, τp). (4)

With the above steps, we can adopt P paths channel pa-
rameters η̂ = {η̂1, η̂2, · · · , η̂P } to reconstruct an “expected”
single path signal. The single path is expressed as

x̂p(fk; η̂p) = x
′

p(fk; η̂p) +βp

[
x(fk; η)−

P∑
p=1

x
′

p(fk; η̂p)

]
(5)

where x(fk; η) =
∑P
p=1 Hp(fk; ηp) represents the original

input signals.
For further reducing the complexity, we employ a

coordinate-update approach instead of exhaustive search
[43], [44]. The coordinate-update approach for each path
signal executes as following:

(θ
′′

p )est = argmax
θp
|z(τ

′

p, θp, φ
′

p)|, (6)

(φ
′′

p )est = argmax
φp

|z(τ
′

p, θ
′′

p , φp)|, (7)

(τ
′′

p )est = argmax
τp
|z(τp, θ

′′

p , φ
′′

p )|. (8)

In other words, we only search one parameter in each
iteration, while fixing the other two parameters. In this way,
the search space dimension is reduced from Tθ × Tτ × Tφ
to Tθ + Tτ + Tφ. The above SAGE algorithm still performs
the expectation step Eq. (5), and the maximization step Eq.
(3) and (4). Therefore, this iterative process is essentially an
Expectation Maximization (EM) algorithm, and the conver-
gence can be guaranteed [57]. The cost of this approach is
that we cannot guarantee the global maximum. For exam-
ple, if there are two similar signals merged together, and
there is no a priori knowledge, the algorithm probably falls
in local minimums. However, with a good starting point,
the risk of missing the global maximum is very low.

3.2.2 Subspace Estimation
The above algorithm relies on a good starting point to initi-
ate; otherwise it may either have a slow convergence rate or
be trapped into local minimums [57]. Therefore, we utilize a
3D subspace-based approach to provide a rough estimation
of channel parameters first. These initial estimations are
then used to initialize the SAGE+ algorithm that refines the
estimation step by step.

The subspace approach requires the construction of the
auto-correlation matrix of signals. To achieve this goal, we
vectorize H(η) from a M × N × K dimensional channel
matrix into a vector with Γ = M ·N ·K complex elements:
u(η) = vec(H(η)). The auto-correlation matrix of the CSIs
is calculated as Ru = uHu. According to [12], the noise
subspace and the signal subspace are orthogonal in the
auto-correlation matrix. Hence, we adopt the singular value
decomposition method to extract the signal subspace for
the estimation of multi-path channel parameters. Given P
paths between the AP and the device, the noise subspace
matrix denoted by En has the dimension of Γ · (Γ − P ).
Denoting by e(τ), the K×1 vector in which the kth element
is ej2πfkτ , we then formulate an optimization problem to
estimate {η1, · · · , ηP } as the following:

{η1, · · · , ηP }est = arg min
φ,θ,τ

∣∣(g(φ)
⊗

c(θ)
⊗

e(τ)
)H

En
∣∣2,
(9)

where the symbol
⊗

represents the Kronecker product
operator. Similar to [12], [15], we also perform smoothing
operation via subsets of transmit antennas, receive antennas,
and sub-carriers. Note that the above optimization problem
cannot be used to estimate the complex attenuation α in
each path. After each (ηp)est being estimated, we calculate
the complex attenuation (αp)est with Eq. (4), and recon-
struct the signal according to Eq. (1). Finally, the vectors
of multi-path parameters {η1, · · · , ηP } are chosen as the
starting point of the EM iteration procedure. We only use
the subspace estimation results once for initialization in a
base channel but not all hopping channels. Furthermore,
there are approaches with reduced complexity to accelerate
the subspace estimation, such as [65], [66], making subspace
estimation for initialization feasible.

3.3 Multi-Channel Concatenation
The indoor localization is a nice example of “Bucket The-
ory”, that is, its precision is determined by the channel
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parameter with the worst resolution. The relative ToF is the
most difficult parameter to be accurately estimated because
even an error of merely 1ns corresponds to a propagation
distance of 0.3 meter. The resolution of ToF estimation relies
on a large spectrum width, usually much larger than a
single 20MHz Wi-Fi channel. This motivates our design to
concatenate multiple channels for improving ToF resolution.

3.3.1 Multi-Channel Concatenation vis Channel Hopping
Channel hopping provides a possibility to augment spec-
trum width for improving ToF estimation, while complying
with 802.11 specifications. For instance, [13] and [33] utilize
channel hopping to collect CSIs from a set of adjacent
channels and merge them to refine ToF resolution. However,
augmenting spectrum via channel hopping often has a strin-
gent requirement that all the hoppings need to be completed
within the coherence time (e.g.,∼ 10ms indoors). If hopping
has to take a predefined sequences (e.g., adjacent channels),
it is much more likely to hop into a channel occupied by on-
going transmissions, causing CSIs measurement duration to
exceed the coherence time. In view of this limitation, it is
crucial to devise a more flexible scheme able to make use of
arbitrary channels.

According to [32], only the complex attenuation of the
received signal changes after the coherence time when the
device is not moving and the environment remains the
same. This property allows us to synthesize the CSIs of
arbitrary channels under the EM framework regardless of
the violation of coherence time.

3.3.2 Multi-Channel Concatenation Approach
We reformulate the objective function Eq. (2) of our multi-
dimensional estimation problem so as to incorporate the
CSIs of multiple channels. Denoting by I the set of available
channels used for localization. The new likelihood function
is given by

z(τp, θp, φp) =
∑
i∈I

K∑
k=1

cH(θp)H(fi,k; ηp)g
?(φp)e

j2πτpfi,k ,

(10)
where fi,k, with certain abuse of notation, is the frequency
of the kth subcarrier on channel i. The benefit brought
by this modification is that we acquire more samples of
channel impulse response but with the same number of
unknown parameters. The more channels being used, the
more equations will be involved in Eq. (10) and hence the
more accurate estimation of ToF can be achieved.

We conduct a set of controlled experiments to verify the
feasibility of non-continuous channel concatenation. Two
RF cables are used to emulate two propagation paths in a
wireless channel. We adjust the difference of their lengths to
mimic different multi-path environments. Given the wave
propagation rate of 2×108m/s in copper cables, the relative
ToFs are 13.5ns, 23.5ns, and 38.5ns when the path length
differences are 2.7m, 4.7m and, 7.7m respectively. Up to
ten channels at 5GHz band are concatenated. Figure 5.
illustrates the outcomes of our multi-dimensional estimation
with the different number of channels, where x-coordinate
represents the value of ToF and y-coordinate represents its
likelihood. Basically, a peak indicates the emergence of an

0 50 100
0

0.5

1

1
 c

h
a

n
n

e
l

13.5ns (2.7m)

0 50 100
0

0.5

1

1
0

 c
h

a
n

n
e

ls

0 50 100
Time (ns)

0

0.5

1

1
5

 c
h

a
n

n
e

ls

0 50 100
0

0.5

1
23.5ns (4.7m)

0 50 100
0

0.5

1

0 50 100
Time (ns)

0

0.5

1

0 50 100
0

0.5

1
38.5ns (7.7m)

0 50 100
0

0.5

1

0 50 100
Time (ns)

0

0.5

1

44.2

42.5

35.7

26.7

26.2

17.7

10.2

Fig. 5: Relative ToF estimation with multiple non-adjacent
channels.

identifiable propagation path. When the distance difference
is 2.7m, only one dominant ToF is observed in the single
channel case, hence the two paths cannot be separated. With
10 channels concatenated, the second peak appears with a
relative ToF of 17.75ns, though still bearing a big gap to
the ground truth. Further concatenating the 15 channels,
the relative ToF between two paths exhibit a lower error of
3.25ns. When the distance difference is 7.7m, the two paths
can be separated even with a single channel, but the relative
ToF becomes more accurate with the measured CSIs in 15
channels. Therefore, concatenating multiple non-continuous
channels will improve the ToF resolution especially in the
situations where the multi-path distances are relatively close
to each other.

3.4 Multipath-Assisted Device Localization

Recall that the exact ToF cannot be accurately estimated
because of the extra delay introduced at the circuit modules
of the transmitter and the receiver. This physical constraint
causes an over-estimation of the propagation distance. We
hereby explore the geometric pattern of multi-path reflec-
tions to localize the device using the relative ToFs instead of
the exact ones.

We employ a simple example to illustrate the principle
of multi-path assisted device localization in Figure 3. The
A and B denote the locations of the device and the AP, re-
spectively, and these exist a direct LoS path and a reflection
path between A and B. Moreover, B’ is the mirror of B with
respect to the reflector. The location of the AP is assumed
to be the origin, and the location of the device is denoted
by (xA, yA). The AoA and the AoD of the direct path are
θ1 and φ1, and those of the reflection path are θ2 and φ2.
Let dAB′ (resp. dAB′ and dBB′ ) be the distance of the line
segment “AB” (resp. “AB

′
” and “BB

′
”). The relative ToF

between the direct path and the reflection path is (τ2 − τ1),
equivalent to the wave propagation time for a distance of
(dAB′ − dAB). Therefore, the indoor localization reduces
to a simple geometry problem: Given θ1, θ2, φ1, φ2 and
(dAB′ − dAB), how can the distance dAB be derived?

After certain manipulations, the angle γ is expressed as

γ =
π − (φ1 − φ2)− (θ2 − θ1)

2
.
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We then draw a perpendicular line from A toward the line
“B’B” with the foot C, which further gives:

φ3 =
π

2
− γ − (φ1 − φ2);

dAB′ sin(γ) = dAB cos(φ3);

dAB′ − dAB = (τ2 − τ1) · c.

Combining the above equations together, we obtain the
distance dAB as follows:

dAB =
c(τ2 − τ1) sin(γ)

cos(φ3)− sin(γ)

=
c(τ2 − τ1) cos( (θ2−θ1)+(φ1−φ2)

2 )

2 cos( (θ2−θ1)
2 ) cos( (φ1−φ2)

2 )
(11)

From Eq. (11), dAB depends only on AoAs (θ1, θ2),
AoDs (φ1, φ2), and relative ToF (τ2 − τ1). Consequently,
the need for absolute ToF measurement is totally re-
moved, and the coordinate of the device is computed as
(dAB cos(θ1), dAB sin(θ1)). In this way, our system pin-
points the relative position of the target device. If the
position of AP is known in advance, the absolute location
of the target device can be obtained.

Relying on only one reflection path is prone to be cor-
rupted when the parameter estimation of this path happens
to be poor. Incorporating more reflection paths will improve
the robustness of the localization. With P paths (a direct
path and P − 1 reflection paths), one may obtain P − 1
locations of the AP. Denote by (Apx, A

p
y) the coordinate of

the device determined by the pth reflection path and the
direct path. The optimal localization problem is to search the
coordinate (A∗x, A

∗
y) that minimizes the aggregate Euclidean

distance from the P − 1 estimated locations to it.

3.5 Filtering Higher Order Reflection
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Our system utilizes only first order reflections for lo-
calization while treating the higher order reflections as
interference, because the signal strength of higher order
reflections is usually weak. In some situations, the higher
order reflections can be identified, but their relative ToFs
can often be much larger than those of the first-order re-
flections, since the reflected signals traverse a much longer
distance. Therefore, the higher order reflections either barely
influence the accuracy or can be readily ruled out.

The most distinctive characteristic of high-order reflec-
tion paths, due to their large relative ToFs, is that the
localization assisted by them often leads to larger errors. We
conduct experiments to validate our claim. We extract the
path parameters of direct path and several reflection paths

in a multipath-rich environment, and use them to estimate
positions accordingly. We show the localization results for
each reflection path and LoS in Figure 6. Since the AoA of
LoS is unique, all the localization results lie in a single line
in experiments. The localization results closest to the ground
truth forms cluster 1, while the far larger relative ToF values
(potentially indicating high-order reflections) lead to other
clusters far away from cluster 1. Such a discrepancy might
stem from the fact that the first order reflection geometry
model does not fit the higher order reflections [64]. We
also plot the CDF of distances dABs’ estimation errors in
Figure 7. Obviously, only about 7% estimated distances are
much larger, showing that the majority of reflections are still
the first order reflection.

In reality, we indeed apply a clustering method to
exclude the higher order reflections from participating in
estimating the device location. Basically, after estimating
the location of target device based on all NLoS and LoS
signals via the method discussed in Section 3.4, we employ
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [36], a non-parametric algorithm, to cluster all
location points. Provided with a set of estimated locations
in a space, DBSCAN algorithm can group points closest to
each other, and exclude outlier points that are in low-density
regions. In most of indoor environments, there often exist a
number of dominant reflectors, and first order reflections are
usually much stronger than higher order reflections thanks
to channel attenuation. Therefore, we still can utilize the
majority of location estimations to synthesize the final esti-
mation. We leave some further discussions to Appendix C.

4 IMPLEMENTATION

We implement M3 on the off-the-shelf Intel 5300 Wi-Fi
card. The CSI TOOL [58] is used to measure channel state
information on 5GHz Wi-Fi bands. Although Wi-Fi card
transmits over 128 OFDM subcarriers at 40MHz, the CSI
TOOL only provides 8-bit quantized real and imaginary val-
ues on 30 subcarriers. Therefore, we interpolate the missing
CSI on the remaining subcarriers.

Our system consists of several laptops equipped with
Intel 5300 cards. The laptop is configured with 4GB Random
Access Memory (RAM), 500 GB hard disk and Intel Core
i7-4500U 1.80GHz CPU. All these laptops operate at the
monitor mode. Each antenna is placed with a spacing of 2.7
cm (nearly 1

2 wavelength of 5GHz band), which is shown
in Figure 8. With such a small antenna spacing, the antenna
array can be readily integrated in up-to-date mobile devices.
A practical challenge of M3 indoor localization is that the
raw phases of signals cannot be applied directly to estimate
AoA, AoD and ToF, as they are impaired by distortions of RF
oscillator offset, Sampling Timing Offset (STO) and Packet
Detection Delay (PDD). In what follows, we show how the
raw phases are cleaned to obtain the “true” phases of the
reflecting multipath signal propagations.

Calibration for AoA and AoD. RF oscillator phase offset
always exists. Each RF chain is locked by phase-locked
loops (PLL) at different phase offsets. In general, these phase
offsets do not change until the reset of Wi-Fi oscillator. The
existence of phase offsets causes the miscalculation of phase
changes of signal propagation in the air. Therefore, the phase
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Fig. 8: The length of linear antennas is shorter than a
smartphone

calibration is a preliminary step of state-of-the-art indoor
localization systems [11], [12], [15], [17], [29]. In this paper,
we propose a separated calibration scheme, but we leave the
details to Appendix A.

Sanitizing ToF. ToF estimation on commodity Wi-Fi is
also contaminated by random phase shift due to sampling
time offset (STO) and packet detection delay (PDD). The
STO and PDD have the same impacts on all links, because
the radios on the same transceivers are time-synchronized.
Therefore, a ToF sanitization algorithm similar to that in
[15] is applied to remove the phase offset introduced by
hardware.

5 EVALUATION

5.1 Experiments Setup
5.1.1 Deployment
We deploy our system in a variety of indoor environments
including rooms of different sizes and different amounts of
multipath. Figure 9 shows the layouts of four scenarios: the
first is a small-size conference room (3.2×2.8m2) with strong
multipath reflections; the second is a median-size meeting
room (6.5×4.8m2) with moderate multipath reflections; the
third is a large-size classroom (13.5× 6.3m2) with few mul-
tipath reflections; the fourth is the corridor (10.5 × 2.2m2)
with irregular walls and corners. The snapshots of these
experimental environments are also shown in Figure 9.
The target locations are marked as blue circles and the AP
locations are marked as a small red rectangle. Our system
hops over fifteen channels in 5GHz frequency, and the set
of channels are indexed as {36, 44, 48, 52, 60, 64, 100, 108,
116, 120, 124, 132, 136, 149, 157}. In each channel, the packet
transmission rate is set to 200pkts/s. Moreover, the height
of the device is fixed in all experiments except for studying
the impact of heights in Section 5.3.8.

5.1.2 Compared Approaches.
We compare M3 with the state-of-the-art Wi-Fi CSI-based
localization systems. For the micro-benchmark evaluation,
we implement a modified version1 of SpotFi [15] to estimate
AoD and ToF together. We further extend SpotFi from two-
dimensional MUSIC (MUSIC-2D) to three-dimensional MU-
SIC (MUSIC-3D) [63] to jointly estimate AoA, AoD, and ToF.
We use laser meter along with building layout to measure all
ground truth locations and orientations. For ToF benchmark

1. The original SpotFi estimates AoA and ToF simultaneously. We
modify it to estimate AoD and ToF.

comparisons, we implement Chronos [14], the best-known
ToF-based localization system. Chronos employs a different
method to combine non-adjacent Wi-Fi channels to obtain
more accurate ToF estimates. We do not compare the local-
ization accuracy directly with Chronos because it requires a
30 cm spacing of pairwise antennas, thus not working with
a 2.7 cm spacing in our system.

5.2 Micro-benchmark
Before presenting the localization accuracy, we conduct
micro-benchmark experiments to show how well our system
can perform in estimating each channel parameter. These
results will help us to understand and appreciate the effect
of each component of our system.

5.2.1 Accuracy of AoA estimation
We first compare the accuracy of direct path AoA of our sys-
tem with SpotFi and MUSIC 3D. Figure 10 shows that our
system outperforms MUSIC 3D and SpotFi. M3 achieves
a median AoA accuracy of 5.2 degrees, while those of
MUSIC 3D and SpotFi are 8.6 and 9.6, respectively, in the
same settings. Both M3 and MUSIC 3D achieve a better
accuracy than SpotFi because these two approaches jointly
estimate three-dimensional channel parameters (AoA, AoD,
and ToF) while SpotFi only estimates two-dimensional pa-
rameters (AoA and ToF). M3 outperforms MUSIC 3D for
that the former employs the maximum likelihood approach
and the extended SAGE algorithm to refine channel estima-
tion iteratively, while the latter adopts the subspace based
approach for a one shot estimation that may experience
serious performance degradation with low SNR [11]. It is
worth noting that, as all the experiments are conducted
on the same and the single channel for fair comparison,
the performance gain of M3 mainly comes from maximum
likelihood approach that is nearly optimal.

5.2.2 Accuracy of AoD estimation
We also evaluate the accuracy of direct path AoD estimation
in Figure 11. M3 achieves a median AoD accuracy of 7.9
degrees compared to 12.8 degrees of MUSIC 3D and 13.2 de-
grees of SpotFi. This improvement is due to the same reason,
that is, the three-dimensional joint channel estimation with
iterative refinement. However, no matter which approach
is applied, accuracy of AoA estimation outperforms that
of AoD estimation. One reason lies in the different ways
of acquiring signals for AoA and AoD estimation. In Wi-
Fi communication, AoA is estimated using the phases of
received signal at the same slot, while AoD is estimated
using the phases of consecutive time slots. Therefore, any
subtle misalignment undermines the accuracy of AoD es-
timation. The other reason is that we estimate AoA before
AoD, so the error propagates from AoA to AoD, and hence
get amplified.

5.2.3 Accuracy of reflected AoA and AoD estimation
Measuring the ground truth of AoA and AoD is easy for the
directed path, while it is extremely difficult for the reflecting
paths on the contrary. To assess the performance of path
separation, we conduct a set of controlled experiments with
two single reflecting paths. Two commodity Wi-Fi cards
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are used as the transmitter and the receiver, connected
by different coaxial cables using three different RF chains.
We vary the lengths of three cables to emulate different
propagation time in the air. To emulate one AoA LoS path
and two AoA reflected paths, we use nine coaxial cables in
total since there are three RF chains in a commodity Wi-
Fi card. For emulating three AoDs, the number of coaxial
cables is same as AoAs. Figure 12 demonstrates the CDF
of AoA and AoD errors of the reflecting path. We observe
that the median errors of two reflected AoAs are around
2.5 and 3.4 degrees, respectively, and the median errors of
two reflected AoDs are 4.9 and 6.2 degrees. Therefore, it is
reasonable to conclude that our system achieves a highly
accurate estimation of the channel parameters of reflecting
path(s).

5.2.4 Accuracy of Relative ToF estimation
We select the most outstanding Chronos system for compar-
ison. Because it is extremely difficult to create a reflection
path that the signal propagates along a predetermined angle
and is reflected at a predetermined point, we let the signal
go through cables of different lengths to mimic the direct
and the reflecting paths. The differences between two cables
are chosen to be 2.7m, 4.7m and 7.7m, respectively. Chronos
utilizes 20 Wi-Fi channels, while M3 tries 10, 15 and 20
channels, respectively. Figure 13 shows that even with 10
channels, M3 achieves a better accuracy of the relative
ToF than Chronos. The reasons for such an improvement
are two-fold. On one hand, Chronos adopts Inverse Non-
uniform Discrete Fourier Transform (INDFT) approach to
compute the relative ToF. It requires that the channels are
separated sufficiently in the Wi-Fi unlicensed spectrum, i.e.,
some of them in 2.4GHz and some others in 5GHz band.
When all the channels are sampled from either 2.4GHz

or 5GHz, the accuracy of Chronos degrades considerably
and that of M3 is unaffected. On the other hand, INDFT,
being a sparse compressive approach, can be inferior to the
maximum likelihood approach in principle [43].

5.3 Accuracy of Localization

In this subsection, we evaluate the end-to-end localization
accuracy of our system in different scenarios.

5.3.1 Overall Performance
We compare the accuracy of localization with state-of-the-
art algorithms in different indoor environments (conference
room, meeting room, and classroom) in Figure 14. In our
experiments, we fix the same height for both device and
AP. The target system for comparison is MUSIC 3D [63], a
premier algorithm that uses a subspace approach to jointly
estimate AoA, AoD and relative ToF. We have carefully
chosen the sysem to compare with, as M3 and MUSIC
3D can fairly operate in the same scenario. We do not
compare M3 with SpotFi because SpotFi requires multiple
APs. We do not compare M3 with Chronos either because
Chronos demands a wide range of channels ranging from
2.4GHz to 5GHz, and hence performs poorly with chan-
nels selected only from 5GHz. Figure 14 shows that more
hopping channels yield a better accuracy of localization for
M3 . When 1, 5 and 15 channels are employed, the median
localization errors are 100 cm, 81 cm and 71 cm, respectively.
This demonstrates that our channel combination scheme
has indeed taken effect. We can also see that M3 is still
better than MUSIC 3D with a single channel. This is because
the proposed EM-based super-resolution algorithm is more
efficient: even when the received signals are close to each
other, there is still a high chance to separate them.
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Fig. 15: CDF of localization error for LoS
and NLoS (with 15 channels)

5.3.2 Evaluation in LoS and NLoS scenarios

To demonstrate this part, we measure the localization error
in the NLoS scenario. NLoS means the direct path is not
always stronger than other paths, and it is not blocked
totally. To create the NLoS condition, we use a wood brick
(height: 50 cm; width:30 cm; thickness: 10 cm) to block the
LoS signal, and conduct the localization experiments in the
meeting room. From Figure 15, we can find that the median
error of NLoS scenario (105 cm) is indeed larger than LoS.
The reason is when we block the LoS signal, the direct path
becomes weak, and is hard to be distinguished accurately
from strong multipath signals. Therefore, it can introduce
more errors in AoA, AoD and ToF estimations, and hence
degrade overall localization performance.

5.3.3 Impact of Environments

Here, we illustrate the impact of different environments in
Figure 16. In this experiment, we employ fifteen 40MHz Wi-
Fi channels in the 5GHz band. In the conference room, M3

achieves the best performance with a median localization
error of 33 cm. The reasons are two-fold. One is that in a
small room, the SNR is large and multipaths are rich. Both
high SNR and rich multipaths help to improve accuracy.
The other reason is that the localization error has an almost
linear relationship with distance when AoA and AoD are
employed. So a smaller room with short distances can thus
achieve higher localization accuracy. We further observe that
the localization errors in the meeting room and classroom
are close to each other. The median localization error in
the corridor is 95 cm, larger than those in the conference
room, meeting room, and classroom. The reason lies in that
the multipaths of wireless signals are more complicated in
the corridor because of the doors, windows, and irregular
walls (as shown in Figure 9). For instance, a device close to
walls and corners may lead to larger errors in the channel
parameter estimation phase of our system.

5.3.4 Impact of Moving Objects

We hereby evaluate the impact of moving objects on the
accuracy of localization. Two volunteers are asked to walk
randomly with normal speeds in the meeting room that
generates irregular interfering reflection paths. Figure 17
plots the CDF of localization accuracy with walking persons.
The median error increases by 28 cm compared with that
without moving objects. The main reason for the degraded
accuracy is that the estimates of AoA, AoD and relative ToF
are impaired by the uncertain and time-varying reflection
paths. However, such a gentle degradation reflects the ro-
bustness of M3 in an adversary environment.

5.3.5 Impact of Moving Device
To understand how M3 is influenced by the mobility of
device, we evaluate the accuracy of localization when the
volunteer holding the device walks for about 4 meters at
a normal speed (e.g., 0.8m/s to 1m/s). For the purpose of
proving the concept, only a single channel is used in this
experiment. The benchmark experiments without device
mobility are conducted by assuming that the device is
randomly placed on the trajectory of movement. Figure 18
shows the cdf of localization accuracy where the median
error increases from 120 cm to 138 cm on a single chan-
nel. When more channels are concatenated by the moving
device, the accuracy of localization is better than that with-
out channel concatenation. Nevertheless, static device has
better improvement via channel concatenation than moving
device. Therefore, in order to achieve higher accuracy of
localization, the user should move slowly. The movement of
the volunteer causes the change of multipath propagations,
thus reducing the accuracy of estimating AoA, AoD, relative
ToF, and in turn the accuracy of final localization. Our
experiments show that M3 is only moderately affected by
device movement at a normal speed.

5.3.6 Impact of Number of Packets
We evaluate the performance of localization with different
number of packets. Figure 19 shows that with increasing
number of packets from 1 to 30, the median localization
error are decreased slightly from 71 cm to 63 cm. It indicates
that more packets can improve the localization performance,
because a higher time diversity may help to reduce errors.
In reality, using more packets do not introduce a large over-
head in 802.11ac with 80MHz bandwidth, so we recommend
to use at least 20 packets for each location estimation.

5.3.7 Impact of Distances
The impact of distances between AP and target device on
the localization error is evaluated. We let the target device
move along a corridor to vary the distance from 100 cm to
800 cm at a step size of 100 cm. We repeat the experiments 50
times at each location and average the results. The localiza-
tion errors are shown in Figure 20. It is clear to see that the
error grows with an increasing distance. We attribute this
error growth to the lower receiving SNR caused by longer
distances.

5.3.8 Impact of Heights
In this set of experiments, we evaluate the accuracy of local-
ization by changing the height of the device. Our purpose
is to mimic a wide range of realistic situations including
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Fig. 21: Impact of heights between AP
and target device (with 15 channels)

that the device is hold by users of different heights, and the
device is placed on a table or a chair. The height of the AP is
fixed to be 0.8m above the ground since it is usually placed
on a table or a cabinet at home. The height of the device in
our experiments changes from 0.4m to 1.2m with a step size
of 0.2m. Figure 21 shows the average localization error for
each height. When the height of the device is 0.8m, i.e., on
the same plane as the AP, the average error is the smallest.
The localization error increases as the device deviates from
the horizontal plane of the AP’s antenna array. At the height
of 0.4m, the device can be positioned with a mean error of
96 cm, only 10 cm larger than that at the height of 0.8 cm.
Therefore, M3 is robust even when the AP and the device
are not exactly at the same height.

5.3.9 Channel Parameters Changes with Time

We change the total multipaths from 2 to 10 in a room.
However, we cannot ensure all paths can be estimated, even
we have set the number of multipaths. The reason is that the
energy of residue signals can be too low to extract a path. We
also find that in many cases, five paths can be estimated in a
room. Hence, we place the target device in a fixed location,
and let it transmit signals. The channel parameters of top-5
paths are estimated and the variances of those are calculated
in Figure 22. The LoS path and the strongest path hold more
stable parameters in AoAs, AoDs, and ToFs. We also plot
the channel parameter of the LoS and the strongest NLoS
path, including their AoA, AoD and relative ToF between
the two paths in Figure 23 to 25. The results demonstrate
that the AoA and AoD estimations are stable apart from
contaminated packets (less than 5 packets out of 100). The
relative ToF estimation results fluctuate between 3 and 6
nanoseconds for most of the packets, which leads to some
minor localization errors. Moreover, the abnormal relative
ToFs, AoAs, and AoDs likely occur in the same packet.

Those abnormal packets are easy to remove in our system
by comparing with several neighboring packets.

5.3.10 The Spatial Distribution of Localization Results
The localization dots in a typical indoor environment are
shown as scattering points in Figure 26. Each colorful dot
represents a location estimate using a single packet, and
the black dot indicates the ground truth location. In Figure
26, the dotted line is employed to represent the line-of-
sight AoA of the device to be pinpointed. One can observe
that most of the dots are spatially distributed along this
dotted line, yet their distances to the origin (0, 0) vary.
We can conclude that the estimation of AoA is sufficiently
accurate over time while the errors in AoDs and ToFs cause
a balanced scattering of the estimations on both side of the
ground truth along the AoA direction.

5.3.11 Impact of Different Initialization Approaches
To demonstrate the effectiveness of subspace based ini-
tialization, we conduct the channel parameter estimation
and the device localization under different initialization
approaches: i) subspace based initialization (introduced in
Section 3.2.2), ii) random initialization, and iii) fixed value
initialization (with AoA and AoD being 0◦ and ToF being
10 ns). The resulting localization errors are shown in Figure
27. We can observe that the subspace based initialization
outperforms the random and the fixed value initializations.
The reason lies in that an improper initialization might lead
to local minima, regardless of how many rounds of itera-
tions are executed. The local minima channel parameters
will further cause the localization results deviate far away
from the real target location.

5.3.12 Time Consumption Analysis
The details of execution time in each step are shown in
TABLE 1. The time costs of channel hopping and packet
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Fig. 22: The variances of AoA, AoD and relative ToF of top-5 paths.
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reception modules in M3 are negligible. The average switch
time of pe42442 chip is only 0.33µs. In each channel, it
takes only 1ms to catch a packet and extract effective CSI
if the transmitter is configured to send 1000 packets in each
second. Therefore, the total time consumption for channel
hopping and packet reception is 1ms, 5ms, and 10ms if
1 channel, 5 channels and 10 channels are utilized respec-

tively. The SAGE+ channel parameter estimation procedure,
currently executed on a computer using MATLAB software,
costs 0.24s, 1.03s and 2.09s on average when CSI from 1
channel, 5 channels, and 10 channels are fed respectively.
The time consumption of SAGE+ would be much smaller if
it is implemented in binary code. For example, the authors
in [44] demonstrate the original SAGE algorithm (one Wi-Fi
channel) can achieve less than 0.1s in commercial AP.

6 RELATED WORK

Fingerprint based localization. RADAR [20] is a fingerprint
mapping system based on Receive Signal Strength (RSS).
The target is localized by mapping the RSS readings from
multiple APs with the RSS fingerprint database collected
beforehand. Horus [35] improves RSS-based fingerprinting
with probabilistic methods, achieving an average of 0.6
meters accuracy. Nonetheless, fingerprint based methods
require a RSS database, while collecting fingerprints at many
locations entails a large overhead. The work [37] proposed
a method to train fingerprints for overhead reduction and
quick mapping. The data collection overhead is further re-
duced via crowd-sourced measurements [37]. Mathematical
models are also employed to reduce the overhead [52] [53]
[34], but the model-based methods are vulnerable to rich
multipaths, thus the localization accuracy is downgraded.

AoA based localization. The work [12] firstly presented
ArrayTrack, an AoA based Wi-Fi localization system. For

# Channels Channel Hopping Packet Reception SAGE+
1 0µs 1ms 0.24s
5 1.65µs 5ms 1.03s
10 3.30µs 10ms 2.09s

TABLE 1: Time consumption analysis
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a certain AP equipped with multiple antennas, the AoA
spectrum is estimated through MUSIC algorithm [38]. The
target is localized by combining the spectra of multiple
APs. SpotFi [15] designed a novel MUSIC algorithm to
obtain AoA and ToF information from OFDM subcarriers
simultaneously. AoAs and ToFs from multiple three-antenna
APs are synthesized to determine the coordinate of target
device. MaTrack [19] proposed a novel Dynamic-MUSIC
method to extract reflection path for accurate AoA esti-
mation in device-free localization. PinPoint [28] integrated
AoA estimation with cyclo-stationary analysis. Phaser [29]
contributed on enabling real-time AoA estimation on com-
mercial off-the-shelf (COTS) wireless devices. Side channel
information including acceleration and angular momentum
is also applied for accurate localization. Ubicarse [27] en-
ables devices to emulate a synthetic aperture radar (SAR).
CPUID [16] distinguishes Line-of-Sight (LoS) and non-LoS
with data traces from inertial sensors. The authors in [46]
make use of the sampling of temporal or spatial wide sense
stationary (WSS) signals and utilize a co-prime pair od
sparse samples for beamforming and AoA estimation.

However, the aforementioned AoA based localization
systems all rely on multiple APs, which is impractical in
household and office environments. Besides, the sensor-
aided schemes are not ubiquitously applicable because they
are hardware-dependent.

Time based localization. Time-based localization with a sin-
gle AP is quite challenging. Chronos [14] acquired accurate
ToF estimations through hopping to plenty of Wi-Fi chan-
nels on both 2.4GHz and 5GHz bands. The channel hopping
is time-consuming and blocks regular data communication.
Sensors of target are also combined with ToF measurements
for localization [30]. The authors in [59] proposed a novel
ToF estimation scheme and achieved sub-meter localization
accuracy on a single three-antenna AP without channel
hopping. Time difference of arrival (TDoA) of distributed
anchors can also assist Wi-Fi localization. ToneTrack [13]
combines CSIs of continuous channels for higher TDoA
resolution. Other work [39] [40] [41] can achieve sub-meter
level location accuracy at the cost of deployment and syn-
chronization of multiple anchors.

Time based localization schemes do not need APs
equipped with a large antenna array, but a large bandwidth
is required to refine ToF or TDoA measurements.

Multipath assisted localization and Tracking. Multhpath
signal propagation is usually the “enemy” of Wi-Fi indoor
localization, hence most of existing systems try to mitigate
the reflecting paths. Nevertheless, iLocScan [56] pioneered
in exploiting multipath assisted AoA, but the system is built
upon USRP and requires eight antennas. The authors in [69]
also discussed the powerful multipath assisted localization
technology, and its applications in 5G systems. The work
[70] proposed a unified theoretical framework to quantify
multipath-assisted localization, using the concept of equiva-
lent Fisher information. Lately, MonoLoco [63] presented a
multipath assisted localization system that extracts AoA,
AoD and ToF information of both LoS and NLoS paths
using MUSIC algorithm. Authors in [62] formulated a model
for joint estimation of AoA, ToF and Doppler shift. The
multipath channel information is leveraged to track the

locations (movement) of a device.

Non-Wi-Fi based localization. We also brief on non-Wi-
Fi based localization technologies hereby. RFID based tech-
nologies including [18] [42] [47] [48] [49] can achieve a high
accuracy, but the tag readers are expensive. Acoustic signal
processing technologies can also be applied for wireless
localization, including audible sound [45] and ultrasonic
sound [5] [7]. AALTS [6] utilizes distributed acoustic anchor
nodes to locate passive mobile devices. Visible light based
localization systems [10] [9] [50] are also proposed. The
above works all require additional hardware deployment,
hence none of them is ever likely to totally replace the
ubiquitous Wi-Fi AP enabled localization.

60GHz based localization. Millimeter Wave (mmWave)
such as 60GHz is also a promising solution for indoor local-
ization. The authors in [71] proposed the system based on
COTS 60GHz devices that only use coarse CSIs to achieves
a sub-meter accuracy. The authors in [72] extended their
localization system using the COTS 60GHz devices from 2D
to 3D plane, and the results demonstrated a good accuracy
too. However, the 60GHz signals are easy to be blocked due
to their very short wavelength. Therefore, their applicability
may be limited.

7 CONCLUSION

In this paper, we have designed and implemented M3 , a
Wi-Fi localization system capable of achieving decimetre-
level accuracy with just a single commodity Wi-Fi access
point. We have presented a super-resolution algorithm
SAGE+ to jointly estimate channel parameters including
AoA, AoD, and relative ToF. We have also proposed a
novel scheme to combine non-adjacent channels, so as to
create a large virtual channel for achieving a higher ToF
resolution and accordingly a higher localization accuracy.
With the AoA, AoD, and ToF information obtained for each
signal path, we have leveraged multipath, albeit tradition-
ally considered “detrimental”, to help localize the target
device. Extensively experimental results have demonstrated
the high localization accuracy of our system in different
environments, outperforming the state-of-the-art systems.
We believe that the proposed non-adjacent channel com-
bination scheme can benefit a large range of localization
and sensing applications requiring a higher time domain
resolution. We also present some extended applications of
M3 in Appendix B.
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APPENDIX A
CALIBRATION SCHEMES FOR AOA AND AOD
The basic calibration scheme, also called local calibration, is
inspired by some recent work [12], [29], [73]. The transmitter
and the receiver are put together and are connected via
RF cables to measure the phase offsets of RF chains, as
shown in Figure 28. We start from a simple scenario with
two transmit antennas and two receive antennas for ease of
interpretation. The phases of received signal at the receiver
is given by

d =

{
a1 + b11 + c1 a2 + b12 + c1
a1 + b21 + c2 a2 + b22 + c2

,

}
(12)

where ai denotes the phase of the ith transmit antenna, ci is
that of the ith receive antenna, and bij is the phase rotation
between the ith transmit and the jth receive antennas in
cables, for i, j ∈ {1, 2}, respectively. Due to spatial multi-
plexing issues, same length for each coaxial cable will make
Wi-Fi cards failed to decode packets. Therefore, the channel

phase matrix b =

[
b11 b12
b21 b22

]
is tuned by configuring the

different lengths of coaxial cables. The channel phase matrix
is known beforehand and the purpose of phase calibration
is to resolve the unknown phases of the transmit and re-
ceive antennas. After removing the known b from d and
cancelling out the first element subsequently, we obtain an
alternative matrix of phase offsets by

dc =
{

0 a2 − a1
c2 − c1 a2 − a1 + c2 − c1

}
. (13)
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Fig. 28: The local (traditional) calibration scheme

As a practical limitation of local calibration, both the
transmitter and the receiver should be placed together when
either of them is powered on or reset. Therefore, we present
a separated calibration scheme to reduce the burden of cal-
ibration. We use a pair of Wi-Fi cards, instead of one, at the
transmitter and the receiver as shown in Figure 29. One Wi-
Fi card is the main card for positioning and communication,
the other is auxiliary and used for calibration so that the
calibrations of AoA and AoD are executed separately. The
matrix of phase offsets at the transmitter is expressed as

dtc =

{
0 a2 − a1

cc2 − cc1 a2 − a1 + cc2 − cc1

}
, (14)

where cci is the phase of the ith receive antenna of the
auxiliary Wi-Fi card for i ∈ 1, 2. Similarly, the matrix of
phase offsets of the receiver is expressed as

drc =

{
0 ac2 − ac1

c2 − c1 ac2 − ac1 + c2 − c1

}
(15)

where aci is the phase of the ith transmit antenna of the
auxiliary Wi-Fi card. Given dtc and drc , the second and the
third elements of dc are obtained directly, and the last
element is obtained by subtracting the first column of drc

Auxiliary Wi-Fi card:
AoD calibration

Main Wi-Fi card

Auxiliary Wi-Fi card:
AoA calibration

Main Wi-Fi card

Transmitter Receiver

Fig. 29: The separated calibration scheme

from the first row of dtc. This linear operating approach can
be easily generalized to any N×N MIMO system. The main
advantage of separated calibration is relieving the burden of
local calibration that may need to move transmitter and the
receiver in each RF reset. Although the phase calibration
introduces extra operations, it can be solved simply using
an inexpensive RF switch such as F2933 chipset (designed
by Integrated Device Technology, Inc.).

APPENDIX B
EXTENDED APPLICATIONS

B.1 Mutual Localization

We hereby propose to generalize M3 to mutual localization,
a new application enabling multiple devices to pinpoint
each other’s relative positions without the support of in-
frastructure. The mutual localization has a great potential in
robots positioning where the neighbouring devices need to
gauge their relative distances. We conduct the first mutual
localization study using Wi-Fi.

Our system M3 can be directly applied to mutual local-
ization by swapping the transmitter and the receiver. We
consider a more promising scenario where two neighbour-
ing devices can communicate with each other for collabo-
rative localization. According to Subsection 5.2.1 and 5.2.2,
the estimated AoA is intrinsically more accurate than the
estimated AoD. Therefore, if the estimated AoD of a link
is substituted by the estimated AoA of its reverse link, a
more accurate positioning is likely to be reached. We test
25 locations in the meeting room (Figure 9) and plot the
CDF of localization accuracy in Figure 30. Here, AoA AoD
indicates the original approach in M3 and AoA AoA in-
dicates the approach of AoD replacement. We observe that
the latter improves the median error of localization by 15 cm
compared with the former. One take-home message is that
the mutual localization can benefit from the cooperation of
both devices.

Fig. 30: Performance of mutual localization with and with-
out AoD replacement
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A common mutual localization scenario usually involves
more than a single pair of devices. Here, we consider a more
complicated square “topology” with four devices labeled as
A, B, C and D In Figure 31. Each edge is 4 meters long in the
meeting room. When one of the devices transmits signal, all
the other three estimate its relative locations. These devices
act as the transmitter sequentially and the AoD replacement
is adopted to improve the accuracy of localization. Figure
31 illustrates the estimated positions of A where different
marks refer to the positioning at different receiving devices.
For each set of estimated locations by a receiver, we simply
use K-means approach to cluster them into two groups.
The clustering center that covers a majority of locations is
deemed as the estimated location of the device. We then
take the average of three positions of A estimated by B, C
and D to finally pinpoint the location of A. Figure 31 shows
the estimated topology through mutual localization. The
estimated topology almost retains the original square shape
and only gently deviates from their ground truth locations.

Fig. 31: The estimated topology through mutual localization.

B.2 Wi-Fi Geo-Fencing
The competent performance of M3 may also enable us to
create a virtual (indoor) Geo-Fencing for various public
areas where free Wi-Fi is available. M3 can measure the
location of every person’s distribution in the room and
count the most popular area of this place. We divide a
classroom into four areas and conduct 50 experiments to
illustrate the capability. And in these experiments, we place
the antennas at a randomly chosen location in the classroom
(Figure 9). According to the results, We find that M3 can
achieve an average of 88% detection accuracy. According to
our investigation, most of errors appear if the transmitters
are placed near to the boundaries of the areas.

APPENDIX C
DISCUSSIONS

While M3 can achieve a nice performance, some limitations
still exist and need to be discussed.

Localizing in NLoS condition. One limitation of M3 is
that it relies on the direct path between transmitter and
receiver. According to Section 5, the evaluation shows that
M3 can perform well even in NLoS scenarios (blocked by
wood bricks) where the direct path is attenuated by the

obstacles. However, if the direct path disappears, M3 will
fail to locate the target device. Actually, dealing with the
no direct path scenario is a common challenge for all Wi-
Fi based localization systems, and how to overcome this
limitation is still an open problem [12], [17], [63].

Coordinating multiple APs is able to solve the above
problem. The device to be located can be heard by all
APs even it does not connect to all of them. Then, we can
choose one of the strongest signal among all APs or combine
multiple signals from APs to perform localization.
Localizing in First Order Reflection Blockage. We leverage
the first order reflection to assist localization in our system.
Generally, there may exist more than one first-order reflec-
tions in a room. If one of them is blocked, we may still have
the chance to identify the other first-order reflection paths.
Moreover, the user can move slightly to “create” more first
order reflections with little effort.
Localizing in 3D space. Our current work only considers
localization in a 2D space instead of a 3D space. We present
the reason below and discuss how to achieve localization
in 3D. Mobile devices including smartphones, laptops, and
tablet computers are equipped with a few antennas (e.g.
three antennas) because of the limited size of devices. As a
result, the 3-element linear antenna array can only estimate
the horizontal azimuth plane, but not the vertical azimuth
plane [68]. To achieve 3D localization, more antennas are
needed. To build a 3D localization system, we can use a
2D antenna array such as a circular array, or rotate a linear
antenna array manually. Owing to the limitation of com-
modity Wi-Fi cards (i.e., few antennas and linear antenna
array), we do not consider 3D localization in this work. Our
future study will employ a software defined radio (SDR)
platform to assess the accuracy of 3D localization that can
be equipped with more antennas and hence support more
complicated antenna arrays.




