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Abstract Although stateless greedy routing is well

investigated in 2D wireless sensor networks (WSNs), it is

widely believed to be impossible in 3D. In this paper, we

aim at overcoming the impossibility through a distributed

parametrization that equips a WSN with virtual coordinates

favoring greedy routing. We propose a fundamentally new

parametrization to embed the network domain, the result-

ing embedding domain allows greedy routing to have

guaranteed delivery. We also present localized algorithms

to realize this map in WSNs. To combat the load concen-

tration caused by greedy routing that applies the distance

greedy principle, we further propose tunable greedy rout-

ing, which relies on tuning a parameter in the greedy

objective to naturally balance routing load. These two

proposals form our Greedy Routing through dIstributed

Parametrization (GRIP). We prove the correctness and

efficiency of GRIP and use simulations to evaluate its

performance in terms of complexity, load balancing, and

energy efficiency.

Keywords Wireless sensor networks � Geographic

routing � 3D networks � Distributed parametrization

1 Introduction

Motivated by applications such as underwater surveillance

and atmospheric monitoring, the demand in deploying

sensor nodes in three-dimensional (3D) spaces becomes

increasingly keen. Notably, these 3D wireless sensor net-

works (WSNs) do not just occupy a 3D surface; their nodes

may instead form 3D volumes. This new feature brings

several potential challenges to the protocol designs (e.g.,

in-network data management [16, 24]). In this paper, we

investigate the possibility of enabling greedy routing in 3D

WSNs.

Greedy (geographic) routing has long been considered

as a scalable data delivery mechanism in large scale multi-

hop wireless networks, due to its dependence only on local

information [1, 8]. In a nutshell, knowing the geographic

location of the destination, the routing decision selects,

among all the one-hop neighbors of a forwarding node, the

one that is the closest to the destination. Such a protocol is

stateless as the routing decision is made upon information

local to the forwarding node.

Although stateless greedy routing could fall into local

minimum due to the existence of communication voids (or

holes) in a network [3], combining it with face (or perim-

eter) routing (which relies on a planarized connectivity

graph [1, 8] or well detected hole boundaries [3]) may still

guarantee data delivery. Unfortunately, as 2D structures

such as face or perimeter cannot be trivially extended to
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3D, routing decisions relying only on local information

cannot guarantee delivery for 3D networks in general [2].

Another body of research works looked at whether

stateless greedy routing may work under a certain

embedding of a connectivity graph [10, 17]. When exists,

such an embedding is termed greedy embedding. In par-

ticular, Kleinberg [10] shows that every finite connected

graph has a greedy embedding in the hyperbolic plane.

However, embedding the combinatorial structure of a

network requires the embedding to be substantially

revamped upon any change in the network, making such a

scheme impractical [4].

Our approach in this paper extends the idea of mapping

a geometric space rather than embedding a combinatorial

structure (e.g., [19]). This is motivated by the fact that, in a

densely deployed WSN, the space covered by the network

is much more stable than the connectivity graph of the

network. While the existing proposals only work for 2D

spaces due to their reliance on conformal structure (com-

puted by, for example, Ricci flow [6]) that exists only on

surfaces [19, 22], we propose a fundamentally new geo-

metric map valid in both 2D and 3D, and we also propose

localized algorithms to perform this map in WSNs.

In terms of performing greedy routing in an embedding

domain, existing approaches either stick to the distance

greedy principle (leading to an unbalanced load distribu-

tion [10, 19]) or rely on complicated transformations to

produce multiple routing paths [22]. Our approach, in

contrast, only relies on a tunable greedy objective to nat-

urally generate routing path diversity. In summary, our

Greedy Routing through dIstributed Parametrization

(GRIP) has two main components: (1) a localized algo-

rithm to map a network domain N 2 R
d; d ¼ 2; 3 into a

virtual domain D 2 R
d, such that all the boundaries (outer

or inner) become circular (2D) or convex (3D), and (2) a

tunable greedy routing mechanism to guarantee data

delivery between any s� t pairs in N , while providing

flexibility to fine tune the tradeoff between energy effi-

ciency and load balancing. In designing these two com-

ponents of GRIP, we make the following main

contributions:

• A fundamentally new parametrization procedure to

‘‘regularize’’ the boundaries (outer or inner) of a multi-

connected domain in both 2D and 3D.

• Fully distributed and localized algorithms to perform

the geometric parametrization and to obtain virtual

coordinates in a WSN.

• A greedy routing objective that combines both the

distance and the ‘‘position’’ in the harmonic field

resulting from the parametrization, providing tunability

towards diversified routing paths.

• A real implementation of GRIP in TOSSIM for

feasibility evaluations.

In the following, we first give more detailed discussions on

the closely related literature in Sect. 2. We provide an

overview of GRIP in Sect. 3, including the network model

and the enabling services. Then we focus on GRIP’s two

main components respectively in Sect. 4 and 5, along with

the corresponding analysis. We also discuss related issues

in Sect. 6. We report and discuss our simulations results in

Sect. 7. Finally, we draw conclusions in Sect. 8.

2 Related work

Our discussions in this section only focus on the approa-

ches of applying embedding (or domain mapping) to allow

stateless greedy routing. The reason is that, the ‘‘local

tuning’’ approaches, such as [1, 8], to enhance the stateless

greedy routing is proven to be impossible for 3D routing by

Durocher et al. [2]. What is shown in [2] is that routing

decision based only on local information may always lead

to infinite loop in 3D Euclidean space, which is essentially

the consequence of the increased ‘‘freedom’’ in choosing

directions in a high dimensional space. Although ran-

domized algorithms may give a temporary cure to this issue

[4], it simply cannot provide guaranteed delivery.

One of the earliest approaches of generating virtual

coordinates through embedding is proposed in [18]. While

the idea there was about location-free routing (rather than

getting stateless greedy routing out of local minimums), Rao

et al. [18] did motivate the idea of using virtual coordinates to

enable stateless greedy routing. The question asked by Pa-

padimitriou and Ratajczak [17] is under what condition(s) a

connectivity graph admits a greedy embedding, i.e., an

embedding in a 2D plane under which stateless greedy

routing never fails. Their conjecture was that any planar

3-connected graph admits greedy embedding, and the con-

jecture was later proven by Leighton and Moitra [11].

One of the important results along the line of research is

Kleinberg’s statement that every connected finite graph has

a greedy embedding in hyperbolic plane [10]. Although

this result extends the condition for greedy embedding

from 2D to an arbitrarily higher dimension, the idea of

embedding network topology graph (a combinatorial

structure) has two major drawbacks. Firstly, any change in

a network may require a substantial revamp of the

embedding; the large overhead makes such a scheme

impractical in large scale WSNs [4]: one would be better

off using a stateful routing instead. Secondly, as the

embedding is performed on a spanning tree, the path

between any s� t pair becomes unique and many s� t
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pairs may share a substantial amount of links with their

routing paths. The consequent unbalanced load again

makes this scheme unsuitable for the energy constrained

WSNs.

Suppose we can map the space covered by a WSN to

another one with a geometry that favors the greedy routing,

changes in network topology would be limited within their

neighborhood; they affect the whole map only if certain

communication voids that hamper a greedy routing are

created. This is the idea brought forward by Sarkar et al.

[19], and was later improved with load balancing features

by Zeng et al. [22]. Unfortunately, these earlier approaches

are confined in 2D spaces, because the geometric tools used

there (e.g., discrete Ricci flow) are still open for higher

dimensions. Even if we consider only 2D WSNs, the heavy

computation load imposed by these tools makes themselves

less practical. Our approach presented in this paper sig-

nificantly improves upon these two aspects. Our map works

for both 2D and 3D. The computations required for sensor

nodes are all arithmetic; they can be performed in a

localized manner and converge quickly. All these features

contrast strikingly against the existing approaches that

entail computing trigonometric functions and result in a

slow convergence rate [19, 22].

3 Overview of GRIP

In this section, we first explain the principles that guide the

GRIP design. Then we describe the network model and the

system construction of GRIP. We also discuss the services

required by GRIP to function properly.

3.1 Basic principles

We use Fig. 1 to illustrate the principles of GRIP. As

shown on the left side, the existence of two lakes in the

area covered by a WSN results in two communication

voids (of non-convex shapes),1 causing failure of stateless

greedy routing.

To overcome this difficulty, GRIP first parameterizes the

original network domain to a virtual domain, in which all the

boundaries are convex. Under the coordinates of this virtual

domain, we will show that stateless greedy routing always

succeeds. However, the contribution of GRIP goes beyond a

simple stateless greedy routing, which can lead to a con-

centration of routing paths at the internal boundaries [22].

As shown in Fig. 1 (the right side), GRIP’s tunable greedy

routing can get around the holes by having a greedy

objective that adapts to the geometry of the network domain.

Remark Some of our illustrations/examples are 2D to

facilitate visual interpretation. Nevertheless, our simula-

tions will be performed for both 2D and 3D WSN settings.

3.1.1 Network model and system construction

We assume WSN nodes are deployed in 2D or 3D spaces

and that two nodes can communicate with each other

directly iff their distance is below a certain threshold.

Without loss of generality, we set this threshold to one. The

resulting graph GðV ;EÞ is termed unit disk graph (UDG)

for 2D and unit ball graph (UBG) in 3D, where V is the set

of nodes and edge ðu; vÞ is in E if u and v can communicate

with each other directly. For a 3D WSN, we assume that all

its boundaries are genus-0 surfaces. A stateless greedy

routing relies only on the locations (either exact or virtual)

of the source, the destination, as well as every forwarding

node u and its one-hop neighbors NðuÞ.
The components of GRIP are as follows:

• Restricted Delaunay Triangulation

• Boundary Detection and Location Service

• Distributed Network Parametrization

• Tunable Greedy Routing

We will briefly introduce the first two components in the

following. The remaining components, which are our main

contributions in designing GRIP, will be detailed in Sect. 4

and 5, respectively.

3.1.2 Restricted delaunay triangulation

In order to parameterize the network domain to a virtual

domain with required properties, the topology of the network

domain is needed. GRIP gets aware of this information through

the WSN nodes. In other words, using the connectivity rela-

tionsor the location information (if available), GRIP constructs

a Delaunay triangulation upon the network domain, which is a

discrete representation of the ‘‘shape’’ of the domain.

Fig. 1 A network domain with concave holes (left) may lead to

routing failure. GRIP maps the domain to a virtual domain (right) and

applies a greedy routing with tunable objective to achieve load-

balancing routing

1 Geological objects are only one reason for this; irregular deploy-

ment of WSNs may be another.
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Straightforward Delaunay triangulation may result in

arbitrarily long edges, hence can fail to represent the

topology of a domain. For example, triangular faces with

very long edges may eventually cover the holes, hence

create an illusion of a simply connected domain. Gao et al.

[5] propose a restricted Delaunay graph (RDG): it confines

its edge set ~E to be a subset of the network edge set E. The

outcome is that all the communication voids are repre-

sented as non-triangular faces. Although the distributed

algorithm proposed in [5] is meant for 2D networks, it can

be extended to 3D to construct tetrahedron mesh, again

based on the principle of the restricted Delaunay graph.

Remark The RDG only serves our distributed parame-

trization; it is by no means used to assist routing.

3.1.3 Other supporting services

Similar to other routing mechanism relying on virtual

coordinates, GRIP needs the support from two services,

namely boundary detection and location management.

While boundary detection lets a node at a boundary to be

aware of its state and the boundary surface it sits on,

location management allows any node to query the (virtual)

coordinates of other nodes. A location management service

is not constrained by the dimensionality, so we can use any

existing solutions, such as [15]. An effective 3D boundary

detection scheme has recently been proposed [13, 14]. In

addition to getting aware of the network boundaries, it also

supports distributed coordinations among boundary nodes.

For example, a boundary surface can be constructed in a

distributed way and certain consensus can be reached

among node belonging to the same boundary surface.

4 Distributed parametrization in 2D/3D wireless sensor

networks

In this section, we focus on the distributed algorithms to

realize the map illustrated in Fig. 1. In Sect. 4.1, We first

introduce the mathematical background for individual tools,

as well as corresponding distributed algorithms to implement

these tools. Then we summarize the distributed parametriza-

tion procedures for 2D and 3D in Sect. 4.2. We finally present

the complexity analysis of the two procedures in Sect. 4.3.

4.1 Mathematical background and algorithms

We hereby explain the individual mathematical tools,

namely harmonic function, gradient vector field, integral

curve, and annulus embedding. For each tool, we propose a

distributed algorithm to perform the computation; these

algorithms are executed by individual nodes and they

require only the access of local information. To simplify

the exposition, we first introduce the concepts and tools for

2D cases in Sect. 4.1.1 to 4.1.4, and then discuss the gen-

eralization to R
3 in Sect. 4.1.5.

4.1.1 Harmonic function

Given a network domainN � R
2 with holes, we consider it as a

multi-connected domain with boundaries oN ¼ c0�
c1 � � � � � cl, where c0 is the outer boundary and ci, 1� i� l,

are the inner hole boundaries. These outer and inner boundaries

can be identified in a localized manner [14]. The harmonic

function f : N ! R is twice continuously differentiable and

satisfies the Laplace’s equation 4f ðpÞ ¼ 0; 8 p 62 oN , with

Dirichlet boundary condition f jci
¼ fi; 0� i� l.

According to Sect. 3.1.2, N is represented by an a tri-

angle mesh (i.e., a RDG) M ¼ ðV ; ~E;FÞ where V , ~E and F

are the set of vertices, edges and faces, respectively. As

pointed out in [19], the boundaries oM of the mesh may

well approximate oN . Let ~EðpÞ be the subset of ~E incident

to p, the discrete Laplace operator of an interior vertex

p 62 oM is defined as 4f ðpÞ ¼ f ðpÞ �
P
ðp;qÞ2 ~EðpÞ xpqf ðqÞ,

where xpq is the weight of directed edge ðp; qÞ. The choice

of the weight is usually application dependent. We choose

a straightforward weight determined by vertex degree, i.e.,

xpq ¼ 1
degðpÞ, with degðpÞ being the degree of vertex p.

Observing the above Laplace equation is equivalent to

the heat diffusion

of

ot
¼ �4 f ; ð1Þ

we can solve it using the Euler method in a distributed

manner, as shown by Algorithm 1. Given the boundary

conditions f0 ¼ 0 and fi ¼ 1; i 6¼ 0, The initial and final

states of a domain are shown in Fig. 2(a) and (b).

Algorithm 1: Computing harmonic function
Input: The Dirichlet boundary condition fi. For each

p ∈ V , Ẽ(p), the step length δ, the stopping
tolerance ε

Output: A harmonic function f : M →
1 Initialize f(p) ← fi, p ∈ γi; otherwise f(p) ← 0
2 For every interior vertex p periodically:
3 if | � f(p)| > ε then
4 �f(p) = f(p) − ∑

(p,q)∈Ẽ(p) ωpqf(q)
5 f(p) ← f(p) − δ � f(p)
6 Broadcast f(p) to all q : (p, q) ∈ Ẽ(p)
7 end

4.1.2 Gradient vector field

Given an arbitrary smooth function g defined on N , we can

approximate the gradient rg using M. For a triangle

4p1p2p3, let gi ¼ gðpiÞ, 1� i� 3, be the function value
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defined for each vertex. Let pipiþ1
���! be the vector from pi to

piþ1 (the modulo-3 operator is applied to the subscript

index). The gradient rg inside 4p1p2p3 is

rgj4p1p2p3
¼
X3

i¼1

rðpiþ1piþ2
�����!ÞgðpiÞ;

where rð v!Þ is the counter-clockwise rotation of v! in 90�.
Given a vertex p, let NbðpÞ denote the triangles adjacent

to p. We first compute the gradient for each triangle in

NbðpÞ and then compute the gradient on p by weighted sum:

rgðpÞ ¼
P

t2NbðpÞ sðtÞrgjt
P

t2NbðpÞ sðtÞ ;

where sðtÞ measures the area of triangle t.

4.1.3 Tracing integral curves

Suppose F is a 2D vector field defined on M, i.e., F : M ! R
2,

and xðsÞ a parametric curve. Then xðsÞ is an integral curve of F

if it satisfies x0ðsÞ ¼ FðxðsÞÞ. Intuitively speaking, the integral

curve is a curve such that the tangent vector to the curve at any

point p along the curve is precisely the vector FðpÞ. Given a

triangle4p1p2p3 and an arbitrary point q 2 4p1p2p3, we can

compute the integral curve in a localized manner as shown in

Algorithm 2, where Barycentricðqj 4 p1p2p3Þ returns the

barycentric coordinates of q with respect to t. Note that only

one of the vertices of t needs to perform the computation,

which involves purely arithmetic operations. The collective

outcome of tracing a gradient vector field (i.e., integral curves

and iso-value curves) in a WSN is shown in Fig. 2(c).

Algorithm 2: Tracing inside a triangle
Input: A triangle t = �p1p2p3, the vector F(pi),

i = 1, 2, 3, a point q ∈ t, the step length
Output: An integral curve γ ∈ t following the vector

field F, formed by the locus of q
1 while q ∈ t do
2 (λ1, λ2, λ3) = Barycentric(q| � p1p2p3)
3 F(q) =

∑3
i=1 λiF(pi)

4 q ← q + ∗ F(q)
5 end

4.1.4 Annulus embedding of 2-connected domain

We have the following proposition of a harmonic function

on the 2-connected domain:

Proposition 1 Let M be a 2-connected domain oM ¼
c0

S
c1 and f : M ! R be a harmonic function with

boundary conditions f jc0
¼ 0 and f jc1

¼ 1. The gradient

vector field F ¼ rf has the following properties: 1) any

integration curve x is an open curve with two ending points

on c0 and c1 respectively; 2) any two integration curves x1

and x2 do not intersect; and 3) for any point p 2 M, there is

a unique integration curve x passing through p.

The proof is presented in the Appendix 1. According to

these properties, we can naturally embed the 2-connected

domain to an annulus in a conformal (i.e., angle-preserving)

manner. We first calculate all integral curves from outer

boundary to the inner boundary, then we map the inner

boundary to an inner circle of annulus. Finally we map each

integral curve to corresponding radius on annulus. For the

discrete case (where a triangular mesh M is concerned), we

only need to calculate the integral curve from each vertex to the

inner boundary. We can determine the vertex location on the

annulus by polar coordinates ðq; hÞ, where q is determined by

the harmonic function value f and h is determined by the end

point of integral curve on the inner boundary.

Since for each vertex, f is known and we only need to

compute h in polar coordinates, the embedding can be

accomplished in a distributed and efficient way, by tracing

part of the integral curve (rather than the whole curve from

vertex to inner boundary). Basically, a tracing can be

stopped when it meets an edge whose f at two endpoints

are both larger than the f of the starting vertex. Then the

stopping position on the edge is recorded, and the h of this

position (which is in turn the h of the starting vertex) is

obtained by linear interpolation. As a vertex with lower f

always obtain its h from some vertices that have bigger f , a

distributed iteration may start from the vertices on the inner

boundary, whose f is highest, and gradually propagate to

the outer boundary. We can always obtain the h for all

Fig. 2 Harmonic function and integral curves. a, b Computing the

harmonic function for a WSN with three holes. c The harmonic

function defined on a topological annulus has no singularity and the

integral curves of the harmonic function are perpendicular to the iso-

value curves. a Initial status,b convergence, c Integral curves
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vertices after the iteration reaches the outer boundary. This

distributed embedding procedure is illustrated in Fig. 3 and

is shown by Algorithm 3, where lðp; qÞ (line 14) returns the

length of edge ðp; qÞ.

Algorithm 3: Annulus embedding
Input: A 2-connected triangle mesh M ∈ 2 with two

boundaries ∂M = γ0
⋃

γ1
Output: A conformal map φ that maps M to an

annulus, i.e., φ(p) = (ρp, θp), where (ρp, θp)
is the polar coordinate.

1 Compute a harmonic function f : M → with
Dirichlet boundary condition f |γi

= i, i = 0, 1, using
Algorithm 1

2 Choose a vertex p0 ∈ γ1 and set its θp0 = 0
3 Compute � =

∫
γ1

dl, the length of γ1

4 if vertex p ∈ γ1 then
5 lp = length from p to p0 on γ1 in counter

clockwise direction; θp = lp

l

6 else
7 Apply Algorithm 2 to trace the integral curve

from p to an edge (a, b), s.t. f(a) > f(p) and
f(b) > f(p)

8 Record the stopping position sp

9 Initialize the θ of p to NaN
10 end

11 For every interior vertex p:
12 Periodically check all (p, q) ∈ Ẽ(p) for which at least

one stopping position sp̄ is recorded
13 if θp̄ = NaN, θp �= NaN, θq �= NaN then
14 θp̄ = θp

l(p,sp̄)
l(p,q) + θb

l(sp̄,q)
l(p,q) ; Update vertex p̄ with

θp̄

15 end
16 return (ρp = f(p), θp)

The first part of the algorithm (lines 2 to 5) needs dis-

tributed coordinations along the inner boundary, we refer to

Sect. 3.1.3 for details. The second part involves curve trac-

ing (lines 6 to 10) and h value propagation (lines 11 to 15). It

can be shown that none of them require transmissions beyond

a single hop, so the algorithm is by default localized.

4.1.5 Extension to 3D

We have shown that computing discrete harmonic function

and its gradient on triangular mesh embedded in R
2. This

machinery can be easily generalized to a tetrahedral mesh

in R
3. Let M ¼ ðV ; ~E;F; TÞ be a tetrahedral mesh, where T

is the set of tetrahedral. Computing harmonic function on

tetrahedral mesh can also be done by Algorithm 1; the

outcome is shown by Fig. 4(a)–(c).

Computing the gradient in tetrahedral mesh is similar to

the 2D counterpart. Given a tetrahedron p1p2p3p4, let v!i,

1� i� 4, be a vector, which is perpendicular to triangle

4piþ1piþ2piþ3 and points outward of the tetrahedron. The

magnitude k v!ik equals the area of triangle 4piþ1piþ2piþ3.

Then, the gradient rg inside tetrahedron p1p2p3p4 is

rgjp1p2p3p4
¼
P4

i¼1 v!igðpiÞ. Computing the gradient for

each vertex is similar to the 2D case except that tetrahedron

volume is used in the weighted sum.

When embedding a 2-connected domain in 2D to an

annulus, we need to map the inner boundary to a circle

(lines 2-5 in Algorithm 3). Let Dr ¼ fx 2 R
3jr�kxk2� 1g

be the 3D embedding domain. We need to map the inner

boundary (surface) c1 to a sphere with radius r. This can be

tackled by using Algorithm 1 to solve a harmonic function,

so it is again localized and involves only arithmetic oper-

ations. Details are omitted due to limited space. We also

need to compute another harmonic function f : M ! R

with Dirichlet boundary condition f jc0
¼ 0 and f jc1

¼ 1.

Then the gradient rf has exactly the same properties as its

2D counterpart (see Proposition 1). Therefore, similar to

Algorithm 3, we can embed M to Dr by tracing the integral

curves, as shown in Fig. 4(d) and (e).

4.2 Distributed parametrization

With the set of algorithms presented in Sect. 4.1, we can

map a network domain with one hole to an annulus. We now

present Algorithm 4 that parameterizes a network domain

with many holes, by iterating the single-hole map (Algo-

rithm 3) among all the holes. We also illustrate the algorithm

in Fig. 5 and the outcome for a 3D domain in Fig. 6.

Fig. 3 Propagative embedding

a 2-connected triangle mesh into

an annulus
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Algorithm 4: Iterative parametrization of a do-
main with multiply genus-0 boundaries

Input: A domain M with multiply boundaries
Output: A bijective parametrization φ mapping M

such that all boundaries become convex
1 Fill all holes virtually
2 while Some hole boundary γi is not convex do
3 Open the i-th hole virtually
4 Perform Algorithm 3 in terms of γi

5 end

The procedures of filling and opening holes virtually

(lines 1 and 3) simply require an inner boundary vertex to

identify a corresponding vertex on the the boundary and to

bridge, with virtual edges, all the vertex pairs or to cut the

Fig. 4 The cut views of the

harmonic function on the 3D

network domain with a void

(a)–(c). Integral curves in a

network domain (d) and in the

embedding domain, i.e., a solid

ball with a spherical hole in the

center (e). a x-cut view, b y-cut

view, c z-cut view, d network

domain, e embedding domain

Fig. 5 Distributed parametrization of a 2D WSN. Each iteration of

the algorithm consists of three steps, since the given 2D WSN

contains three holes. Initially, all holes are filled virtually. In each

step, we open one hole to get a 2-connected domain, and then apply

Algorithm 3 to parameterize it to an annulus. The original network

domain, the intermediate results, and the final parametrization after

two iterations are shown from left to right

Fig. 6 Parametrization of a 3D WSN where one void is mapped to a

sphere centered at the origin and others are mapped to convex

polyhedra
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virtual edges. These can be achieved with the support of a

boundary detection service [14]. The convexity test in line

2 can be performed in a localized manner. In particular, for

each vertex p 2 c1, its neighborhood NðpÞ in G should

contain a subset �NðpÞ � c1. Let ap be the angle (or solid

angle in 3D) determined by fpg [ �NðpÞ, then the convexity

test returns true of ap\p (or ap\2p in 3D). In general, we

have

Proposition 2 Our iterative parametrization algorithm

terminates with all boundaries being convex.

The proof is sketched in Appendix 2. In fact, for 2D

WSNs, we can use circularity as the termination condition,

such that the algorithm terminates with all boundaries

being circular.

4.3 Message complexity analysis

Given a 2D/3D WSN with l holes, Algorithm 4 parame-

terizes each hole to a circular domain by virtually filling

the other holes. It repeats this process until all holes

become convex. Let Nc denote the number of times

Algorithm 3 is applied to a hole. We have Nc ¼ Oð1Þ. As

shown in Fig. 5, only two iterations are required to map

each hole to a circular domain.

Note that Algorithm 3 contains two key steps, i.e., com-

puting the harmonic function by using Algorithm 1, and

embedding the WSN to an annulus (applying Algorithm 2 to

each triangle). The complexity of Algorithm 1 is Oðlog nÞ,
where n is the number of nodes in a WSN, given the diffusion

nature of the algorithm [9]. The complexity of embedding

depends on the network diameter, as the embedding is

‘‘propagated’’ from some inner boundary to the outer

boundary. Therefore, we have Oð
ffiffiffi
n
p
Þ for 2D and Oðn1

3Þ for

3D. Putting them all together, the complexity of our algorithm

isO lðlog nþ
ffiffiffi
n
p
Þð Þ for 2D and O l log nþ n

1
3

� �� �
for 3D.

5 Tunable greedy routing

With the parametrization procedure applied to a WSN, we

are now ready to present our routing protocol under the

resulting virtual coordinates. In this section, we first prove,

in Sect. 5.1, that stateless greedy routing never fails under

the virtual coordinates computed through the distributed

parametrization. Then we present an augmented greedy

routing in Sect. 5.2: it has a tunable greedy objective that

leverages on the harmonic field computed during the

parametrization phase (see Sect. 4.1.1), and can hence

avoid concentrating the routing load on the hole

boundaries.

5.1 Guaranteed delivery

A stateless greedy routing, as defined in Sect. 3.1.1 needs

the locations of the destination d, the current forwarding

node u, and its one-hop neighbors NðuÞ. The greedy for-

warding decision at each hop u in general takes the fol-

lowing form:

v̂ ¼ arg min
v2NðuÞ

distðv; dÞ; ð2Þ

where distðv; dÞ returns the Euclidian distance between v

and d, and v̂ indicates the next hop. Here the greedy

objective is distðv; dÞ and the decision oracle returns v̂ that

minimizes the objective. Due to the existence of holes in a

WSN, oracle (2) may return fug and thus lead to a routing

failure. To cope with this issue, we add another criterion in

case of failure:

v̂ ¼ arg min
v2NðuÞ

ðd� vÞ � d; ð3Þ

where the vector is defined with the source node s as the

origin. As we have shown in Sect. 4.2, GRIP’s distributed

parametrization results in virtual coordinates under which

all the boundaries are convex. Now we show that stateless

greedy routing never fails.

Proposition 3 If a network, under certain virtual coor-

dinates, has all its boundaries convex, our stateless greedy

routing always guarantees data delivery.

Proof The correctness is obvious if oracle (2) never fails,

so we only need to show how (3) may overcome the sit-

uation where (2) fails. The only possibility that (2) fails is

that the local angle (or solid angle for 3D) becomes close to

p (or 2p for 3D) [3]. However, this also indicates that the

routing path has hit a boundary [5], while a boundary is

now convex according to Proposition 2. The convexity

further suggests that, for any node u on the boundary, there

exists v 2 NðuÞ such that ðd� vÞ � d\ðd� uÞ � d. There-

fore, the greedy objective (3) always drives the routing

path to make progress along d, hence away from the

starting point u1 (see Fig. 7).

Consequently, no routing loop can be produced by (3).

As soon as (3) brings the routing path sufficiently far from

the node where (2) fails (e.g., to node v in Fig. 7), oracle (2)

will return successfully and hence the protocol will switch

back to (2). The existence of such a ‘‘switching’’ node can be

proven by contradiction. Assume it does not exist, then one

can trivially show that d is in the hole, a contradiction.

For each u 2 V not on a boundary, there always exists a

v 2 NðuÞ such that dðv; dÞ\dðu; dÞ under the virtual

coordinate, therefore,
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Corollary 1 The decision oracle in (2) only needs to

search within NþðuÞ � NðuÞ, such that dðv; dÞ\
dðu; dÞ; 8v 2 NþðuÞ.

5.2 Tuning greedy objective

Although stateless greedy routing never fails under GRIP’s

virtual coordinates, many routing paths could be concen-

trated along the inner boundaries. This unfortunate phe-

nomenon is a direct consequence of the decision oracle (2):

as distance is the only greedy objective, many routing paths

are forced to turn away from the line segment between

source and destination only upon ‘‘hitting’’ a hole boundary.

Our solution is to slightly change the greedy objective for

non-boundary nodes by taking into another ‘‘coordinate’’

into account. One byproduct of the distributed parametri-

zation is a scalar field2 given by the harmonic function f ð�Þ.
Specifically, every node u 2 V has a scalar value f ðuÞ 2
½0; 1� that indicates its ‘‘distance’’ towards some inner

boundary: the larger the f ðuÞ, the closer u is to that inner

boundary. We define a new decision oracle by using f ðuÞ:
v̂ ¼ arg min

v2NþðuÞ
1þ kjDfvdjð Þdistðv; dÞ; ð4Þ

where Dfvd ¼ f ðvÞ � f ðdÞ. As v̂ 2 NþðuÞ, the distance

toward d keeps reducing and thus the correctness of this

routing algorithm is guaranteed. The rationale behind the

greedy objective ð1þ kjDfv;djÞdistðv; dÞ is that, as a routing

path whose harmonic values deviate from f ðdÞ will be

penalized, routing paths tend to be bent by isosurfaces

rather than by inner boundaries. Consequently, the routing

paths are evenly distributed instead of being concentrated

at the inner boundaries. By tuning the weight k, we may

choose a proper tradeoff between energy efficiency and

load balancing: a larger value of k biases towards tracing

the isosurfaces rather than the line from source to

destination, resulting in better load balancing but longer

routing paths.

In order to better adapt to the geometry of the network

domain, we may tune k online, as shown by Algorithm 5.

Algorithm 5: Online Greedy Objective Tuning
1 v̂ = arg minv∈N+(u) (1 + λu|Δfvd|) dist(v, d)
2 if Δfv̂u = f(v̂) − f(u) > 0 then
3 λv̂ = incr(λu)
4 else
5 λv̂ = decr(λu)
6 end
7 Piggyback λv̂ with the packet to be forwarded to v̂

Basically, the kv̂ for v̂ (the next hop) is tuned by the current

forwarding node u according to Dfv̂u. On one hand, k is

increased to penalize a positive Dfv̂u, as the routing path

tends to approach some inner boundary. On the other hand,

k is decreased to encourage a negative Dfv̂u, as it either

helps to improve load balancing or allows the routing path

to ‘‘jump’’ from one isosurface to another; this later

jumping effect is necessary to maintain a reasonable rout-

ing stretch when the isosurface of the source is not con-

nected (in topological sense) to that of the destination.

6 Discussions

As GRIP’s virtual coordinates are obtained by embedding

the network domain, they are very insensitive to changes in

network topology. Nodes may join or leave the network, or

they may move within the network domain. As far as no

new holes are created, such changes in network topology

will not cause another distributed parametrization proce-

dure. Nodes that are affected by such changes only need to

locally reconstruct the RDG and interpolate their virtual

coordinates from their neighbors. As demonstrated by

Fig. 8, the cost to maintain the virtual coordinates is often

negligible. On the contrary, the approach that embeds the

network topology [10], though appears to be lightweight

during the parametrization phase, is very sensitive to

changes in the topology: virtually any slight changes can

lead to the revamp of the embedding.

Though discrete surface Ricci flow [19] is an effective

technique to parameterize multiply connected surfaces by

manipulating the target curvature, GRIP is superior to [19]

in two aspects: First, the distributed version of the 2D

discrete Ricci flow method is computationally expensive

for sensor nodes, as trigonometric functions and square

root are involved. GRIP, in sharp contrast, only entails

simple arithmetic functions, and it is thus much more

efficient. Second, although the continuous version of Ricci

flow for 3-manifolds has been widely studied, defining the

discrete Ricci flow on tetrahedral meshes is still an open

u1

u2

d

u3

v

s

routing

path

boundary of a hole

transmit range

Fig. 7 Greedy forward decision (3) always succeeds and is loop-free

on a convex boundary

2 The vector field will be discarded after the parametrization, as it is

used to assist the parametrization and is of no use to a greedy routing.
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problem. GRIP is based on tracing integral curves, which is

well defined in R
n. We will compare their complexity in

Sect. 7.1. One recent proposal directly applies a volumetric

harmonic map to 3D WSNs [21]. However, it can handle

only WSNs with at most one hole, whereas our proposal is

much more general as it works for any number of holes.

Our approach also fundamentally differs from Koebe’s

method [23], in that Koebe’s method computes a holo-

morphic 1-form (a complex 1-form such that both real and

imaginary parts are harmonic) on the 2-dimensional sur-

face. However, it is known that a 3D volume does not have

holomorphic 1-form. Thus, the holomorphic 1-form based

Koebe’s method cannot be generalized to parameterize 3D

volumes. Moreover, computing holomorphic 1-form

requires solving a sparse linear system, whose distributed

implementation can be hard.

One potential drawback of our GRIP framework is that

its 3D part has not been able to take into account the

irregularities in network connectivity. In 2D, such irregu-

larities are captured by extending UDG to Quasi UDG, and

parametrization algorithms relying on triangulation can be

adapted to Quasi UDG [19]. However, there is no extension

to 3D UBG yet, and it is an open problem that what impact

could be brought to triangulation by such an extension.

7 Simulations and experiments

In this section, we evaluate the performance of GRIP

through simulations. We have implemented GRIP in

TOSSIM [12]. However, as TOSSIM has difficulty in

simulating large scale WSNs (e.g., tens of thousands of

nodes), we have also developed a high level simulator

(which neglects the MAC effects) for those WSNs.

We evaluate the distributed parametrization phase and the

routing phase separately. We first compare our parametri-

zation with the Ricci flow approach [19] in Sect. 7.1. Then

we evaluate the performance of different greedy routing

schemes under the virtual coordinates in Sect. 7.2.

7.1 Parametrization efficiency

We compare GRIP’s parametrization with the distributed

Ricci flow method [19] in terms of time complexity. As

discussed in Sect. 6, the latter only works for 2D meshes

for now, so the comparison is done in nine 2D WSNs with

different sizes. As the Ricci flow method has not been

implemented under the TinyOS framework, we only

compare these two algorithms in a simulated environment.

This performance comparison is shown in Fig. 9. Ricci

flow differs from GRIP’s parametrization in that it is able

to deal with all holes in a WSN simultaneously. However,

as Ricci flow involves trigonometric function and square

root function, and it usually requires many iterations to

terminate, the overall performance is much worse.

7.2 Routing performance

We evaluate the greedy routing performance in this section.

The three routing protocols concerned in this paper are:

1. Pure Greedy Routing: with decision oracle (2). This is

also the method used in [19]

Fig. 8 Changes in network

topology due to node joining

(left) and leaving (right) only

have local influences. The

dashed circle represents the

transmission range of a node
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Fig. 9 CPU time comparison between GRIP’s parametrization and

Ricci flow. l1 ¼ l4 ¼ l7 ¼ 2, l2 ¼ l5 ¼ l8 ¼ 3, and l3 ¼ l6 ¼ l9 ¼ 4,

where li is the number of holes in the i-th 2D WSN

Table 1 Simulated WSNs

S. no No of nodes No of holes S. no No of nodes No of holes

1 9299 3 2 1089 2

3 10433 3 4 9654 4

5 8358 2 6 9146 4

7 8750 2 8 2628 2

9 79999 1 10 80000 2

11 80000 3 12 80000 4
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2. Offline Tunable Greedy Routing: with decision oracle

(4) and k is set offline.

3. Online Tunable Greedy Routing: with decision oracle

(4) and k is tuned online using Algorithm 5.

As proven in Sect. 5.1, all these routing schemes always

succeed, and this is also what we observed in our experi-

ments. Therefore, we compare them with respect to other

metrics, namely, load balancing, routing path stretch, and

total energy consumption. We assume that, as soon as a

routing path goes through a node, the load (defined as

energy consumption) taken by this node is increased by one

unit. Therefore, given a certain (large) number of routing

paths, the load balancing is verified by checking the

maximum load taken by a node, whereas the total energy

consumption is the sum of the load for all nodes.

The features of the WSNs we worked on are listed in

Table 1. For each WSN, the sensor nodes are uniformly

distributed in the deployment field. The first 8 cases are 2D

WSNs, while the remaining are 3D WSNs. Before com-

paring these WSNs against the three metrics, we first use

Net5 to illustrate the behavior of the three routing schemes

in Fig. 10. The three routing paths between two arbitrary

nodes are drawn in both the network domain and embed-

ding domain, with the harmonic field as the background.

Though they all succeed while facing non-convex holes,

pure greedy scheme is ‘‘attracted’’ by the inner boundaries,

while the online tunable scheme makes the best tradeoff

between energy efficiency and load balancing.

The load balancing effects of the three routing schemes

are shown in Fig. 11(a), for both 2D (upper) and 3D

(lower) WSNs. The straightforward observation is that,

while the two tunable routing schemes have rather similar

performance, the maximum load of the pure greedy routing

Fig. 10 Comparing different greedy routing schemes. The 2D WSN

(left) is mapped to the parametric domain (right). While the pure

greedy scheme (gray curve) sticks to the inner boundary, the two

tunable schemes (purple and black curves) obviously tend to follow

the isosurfaces, and the online tunable scheme (black curve) appears

to achieve the most balanced performance. a Network domain, b
Embedding domain (Color figure online)
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Fig. 11 Comparing three greedy routing schemes in 2D WSNs (top) and 3D WSNs (bottom). a Load balancing. b Routing path stretch. c Total

energy consumption
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is often much higher (it can be up to 3.8 times of those of

the other two schemes). We also compare the load bal-

ancing effects of the pure greedy and the online tunable

schemes in Fig. 12. Obviously, in both 2D and 3D WSNs,

the online tunable scheme achieves almost perfect load

balancing, whereas the pure greedy scheme generates many

hot spots all over the network domain, in particular around

the inner boundaries.

Of course, the load balancing effects of the two tunable

schemes come at a cost: longer routing paths and hence

higher total energy consumption for a whole WSN. How-

ever, as shown in Fig. 11(b) and (c), such a cost is worthy

of trading for the significant improvement in load balanc-

ing. Especially for the online tunable scheme, only up to

30% of the cost is sacrificed in path length or in total

energy consumption.

8 Conclusion

We presented GRIP (Greedy Routing through dIstributed

Parametrization), a greedy routing algorithm with guaran-

teed delivery in 2D/3D WSNs. Based on a novel distributed

parametrization algorithm, we can embed a complicated

2D/3D network domain to a simple parametric domain, in

which each hole is mapped to a circle or convex domain.

This property favors greedy routing and allows it to have

guaranteed delivery. We further proposed two tunable

greedy routing schemes to combat the load concentration

caused by the pure greedy routing that sticks to the distance

greedy principle. We proved the correctness and efficiency

of GRIP, and demonstrated that our tunable greedy routing

schemes are able to naturally generate routing path diver-

sity. Using simulations in TOSSIM, we demonstrated the

tunable greedy schemes can significantly improve load

balancing while only marginally sacrificing the energy

efficiency.

Appendix 1: Proof of Proposition 1

Note f is smooth function, its gradient vector fields are

curl-free. Thus, no integral curve can form a loop inside M.

Furthermore, the function f is harmonic and there is no

critical points (where the gradient vanishes) inside M.

Thus, the function value is strictly monotonic along the

integral curve. Note that all points on the same boundary

curve have the same function value, so the ending points of

each integral curve must be on different boundary curve.

Then we show that two integral curves do not intersect.

Assume two integral curves x1 2 M and x2 2 M intersect at

a point p. Then p is a critical point and the gradient rf

vanishes at p. Since f is harmonic, the maximum and

minimum must be on the boundaries. Therefore the Hes-

sian matrix at p has negative eigenvalue values. Suppose

f ðpÞ ¼ s, then according to Morse theory, the homotopy

types of the level sets f�1ðs� �Þ and f�1ðsþ �Þ will be

different, where � is a small positive value. At all the

interior critical points, the Hessian matrices have negative

eigenvalues, the homotopy type of the level sets will be

changed. Therefore, the homotopy type of c0 is different

from that of c1. This contradicts the given condition that M

is 2-connected. Therefore x1 and x2 have no intersection

points anywhere.

Appendix 2: Correctness of Algorithm 4

Due to the page limit, we only sketch the proofs.

2D WSN. Consider a 2D multiply connected network

domain N 2 R
2 with boundaries oN ¼ c0 � c1 � � � � � cl,

where c0 is the outer boundary and ci, 1� i� l, are the hole

boundaries.

Each iteration of the parametrization algorithm contains

l steps: in the first step, we conformally map c0 to the unit

circle and c1 to a concentric circle. Let /1 : N ! D be the

conformal map of the first step, where D is the unit disk.

Then in the i-th step, i [ 1, we conformally map /i�1 �
� � � � /1ðSÞ to the unit disk D such that c0 is mapped to the

unit circle and ci to a concentric circle, i.e.,

/i : /i�1 � � � � � /1ðN Þ ! D. Note that /1ðc1Þ is a circle.

After the mapping, /2 � /1ðc1Þ is still close to a circle.

Fig. 12 Illustration of the load balancing effect in two WSNs. Cut

views are applied to reveal the loads inside the 3D WSN. a Pure

Greedy (Net5). b Online Tunable (Net5). c Pure Greedy (Net10). d
Online Tunable (Net10)

Wireless Netw

123

Author's personal copy



Intuitively, all the boundaries are getting rounder and

rounder in the iterations, and eventually become circles. As

each map /i is conformal, Henrici’s theorem (see

[7], pp.502-505) on complex analysis guarantees the con-

vergence of our method.

3D WSN. The proof for volumetric case is similar to the

proof of planar case. Each time we map an inner void to the

center spherical void, the mapping can be extended to the

volume with its reflection with respect to the boundary

surface of the inner void. Eventually, the complement of

the union of reflected volumes is a Cantor set, with zero

measure. The harmonic map can be extended to the whole

volume with all voids filled. By using the Poisson integral

formula for harmonic maps [20], it can be shown that the

images of the inner boundary surfaces are spherical.
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