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Abstract—Recently, Mobile Crowdsourcing (MC) has aroused great interest on the part of both academic and industrial circles.

One of the key problems in MC is designing the proper mechanisms to incentivize user participation, as users are typically self-

interested and must consume a substantial amount of MC resources/costs. Although considerable research has been devoted to this

problem, the majority of studies have neglected the privacy issue in mechanism design. In this study, we consider the scenario where

a mobile crowdsourcing platform aims to maximize the crowdsourcing revenue under a budget constraint, and users are interested

in maximizing their utility while keeping their cost private. We design differentially-private mechanisms for such a scenario under an

offline setting where users bid their costs simultaneously and under an online setting where user bids are revealed one by one. We

show that our mechanisms simultaneously achieve provable performance bounds with respect to several measures, including revenue,

differential privacy, truthfulness and individual rationality. Finally, we also conduct extensive numerical experiments to demonstrate the

effectiveness of our approach.

✦

1 INTRODUCTION

In recent years, the spread of smart phones has led
to the proliferation of Mobile Crowdsourcing (MC) ap-
plications, where collected information about interested
events can be acquired by assigning MC tasks to indi-
viduals (users). Due to its wide applications, MC has
already aroused great interest on the part of academic
and industrial circles [1].

One of the central problems in MC is incentivizing
user participation, as users are typically self-interested
and incur substantial costs to perform MC tasks. How-
ever, the users may not report their true costs, as they are
selfish/rational and may engage in strategic behaviour
to maximize their utility. Based on these observations,
many incentivization mechanisms for MC have appeared
(e.g., [2]–[5]); these mechanisms usually encourage users
to participate in MC and behave truthfully through
carefully determining the monetary payments to them,
while satisfying various constraints such as a predefined
budget on total payments [6], [7].

Nevertheless, the majority of previous studies on in-
centivization mechanism design for MC have neglected
another important issue–user privacy. In practice, the
users’ costs for participating in MC can be important
information; leaks of this information may expose users’
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personal status and hence harm user utility [8]. For ex-
ample, in a spatial crowdsourcing application, the users’
costs for performing MC tasks could be determined by
their traveling costs to the Point of Interests (PoIs) [9],
so having the cost information in hand would allow
attackers to infer the location information about the
users [10].

As the current incentivization mechanisms for crowd-
sourcing determine the payments to the users based on
the users’ costs1, the cost information of the users can
be easily leaked to any third party (or adversary) who
observes the payment profile calculated by the crowd-
sourcing mechanism. One possible way to address this
problem is to use the traditional syntactic approaches
such as k-anonymity and ℓ-diversity [12], [13] to protect
the users’ privacy. Roughly speaking, these syntactic
approaches try to generalize the data entries such that
the ability of an adversary to link a “quasi-identifier”
tuple to sensitive values is restricted. However, it has
been proved that these approaches are vulnerable, espe-
cially when the adversary has strong background knowl-
edge [14]. Therefore, a more prevailing approach for
data privacy adopted by the recent work is Differential
Privacy (DP) [15]. The basic idea of DP is to add noises
to the answers of data queries such that it becomes
harder for an adversary who observes the output of
the algorithm to distinguish two neighbouring input
datasets of the algorithm (in a probabilistic sense) [15].
Compared to the traditional syntactic approaches, DP
has a more rigorous mathematical framework for defin-
ing and preserving privacy, and it also adopts a stronger
model on adversary’s background knowledge, i.e., the

1. This is based on the rationale of “individual rationality” or “vol-
untary participation” [11], i.e., no user who truthfully participates in
the crowdsourcing campaign should be paid less than her/his private
cost.
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adversary can observe all the data records except for the
one whose privacy is to be protected.

However, designing differentially private incentiviza-
tion mechanisms for MC is complex, as we typically
need to simultaneously achieve other performance goals
except DP (e.g., revenue maximization) under various
system constraints (e.g., the budget constraint for pay-
ments). Indeed, the desired goals even appear to be self-
contradictory. For example, it can be easily understood
that payments to users must be sensitive to the adjust-
ment of any single user’s cost to optimize the system’s
revenue under a limited budget, but the concern about
DP requires the mechanism to be insensitive to such
an adjustment (to protect the user privacy). In addition,
the truthfulness problem must be addressed at the same
time; otherwise, the user costs revealed to the system
can be noisy (and strategic) data even if DP is not taken
into account. In summary, these entangled issues make
it extremely difficult to design privacy-preserving incen-
tivization mechanisms for MC, and a good mechanism
should strive to seek a balance between truthfulness,
privacy and other optimization goals such as revenue
maximization under rigorous resource constraints.

Due to the difficulties described above, the existing
incentivization mechanisms for mobile crowdsourcing
usually drop one or more requirements among truth-
fulness, budget-feasibility and differential privacy, so it
is simpler for them to get some provable performance
bounds. For example, a large body of existing studies
on crowdsourcing incentivization (e.g., [6], [7], [16], [17])
have neglected the privacy issue, while some other work
considering DP has neglected the budget constraint [8],
[18]. To the best of our knowledge, no previous work
has proposed a truthful and differentially private incen-
tivization mechanism for mobile crowdsourcing under a
budget constraint.

1.1 Our Contributions

In this paper, we study the problem of maximizing
crowdsourcing revenue under a budget constraint on
payments to users and propose mechanisms that achieve
budget-feasibility, truthfulness, differential privacy and
high revenue simultaneously. We consider both the of-
fline setting where all users show up simultaneously and
the online setting where users arrive sequentially in an
arbitrary order. More specifically, our contributions can
be summarized as follows:

1) In the offline setting, we first propose a benchmark
mechanism called PWDP with a 1

2 performance
ratio on the revenue without considering DP, and
then provide a mechanism achieving ǫ-differential
privacy and a performance ratio close to that of
PWDP.

2) In the online setting, we propose DPP-UCB,
a dynamic pricing mechanism based on the
multi-armed-bandit paradigm [19]. We prove that
DPP-UCB achieves ǫ-differential privacy and an

O(logW log logW ) regret bound with respect to rev-
enue, where W is the predefined budget limit.

3) In addition to DP, we prove that all our proposed
mechanisms achieve other nice properties including
truthfulness, budget-feasibility and individual ratio-
nality [11].

4) We conduct extensive numerical experiments to
compare our algorithms with related studies, and
the experimental results demonstrate the effective-
ness of our approach.

5) To the best of our knowledge, we are the first to
propose differentially private and budget-limited
mechanisms for mobile crowdsourcing with prov-
able performance bounds, both under the offline
setting and under the online setting.

The rest of our paper is organized as follows. We
first formally formulate our problem in Sec. 2, and then
introduce our mechanisms as well as their performance
analysis in Sec. 3 and Sec. 4. The experimental results
are shown in Sec. 5. We discuss related work in Sec. 6
before concluding the paper in Sec. 7.

2 PROBLEM FORMULATION

We assume that there are a mobile crowdsourcing plat-
form and a set of users in [m] , {1, 2, · · · ,m}. Each user
j ∈ [m] has a private cost cj ∈ [θ1, θ2] for performing one
crowdsourcing task, where θ1, θ2 are known constants.
Following [6], [8], [17], [20], we assume that the platform
has a budget W for paying the users, and the monetary
payment to any user is selected from a set S of candi-
date prices. Note that the users’ costs and the rewards
to them are usually monetized in real crowdsourcing
applications. For example, the crowdsourcing tasks in
Amazon’s Mechanical Turk [21] are usually priced at
several cents/dollars. Based on this observation, we
assume that S is a discrete set, which is also assumed in
some related work such as [22]. Therefore, the set S can
be represented by {s1, s2, · · · , sk}, where s1 < s2 · · · < sk.

A crowdsourcing mechanism (possibly a randomized
algorithm) of the platform finds a payment profile p =
〈p1, p2, · · · , pm〉 ∈ S

m and a winner set N ⊆ [m] under
the constraint of

∑
j∈N pj ≤ W , such that any user

j ∈ [m] is assigned one crowdsourcing task (and receives
payment pj) if and only if j ∈ N . The utility of any user
j ∈ [m] in the crowdsourcing mechanism can be written
as

uj =

{
pj − cj ; if j ∈ N
0; otherwise

We also assume that completing the crowdsourc-
ing tasks yields identical values, which has also been
assumed by some related work such as [17], [20],
[22]. In practice, this assumption holds in crowdsourc-
ing applications with homogeneous tasks (e.g., re-
CAPTCHA [23]). Based on this assumption, the revenue
of our crowdsourcing mechanism is defined as the total
(expected) number of crowdsourcing tasks assigned to
the users, i.e., E{|N |}.
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TABLE 1: Some Frequently Used Notations

Notation Description
m The number of crowdsourcing users
[m] The set {1, · · · ,m}
W The budget for paying the users
N The set of users who are assigned tasks
S The set of candidate prices {s1, · · · , sk}
k The cardinality of S
x Vector (x1, · · · , xm) ∈ {0, 1}m; ∀j ∈ [m] : xj = 1 ⇔

j ∈ N
p Vector (p1, · · · , pm); pj is the payment to user j
c Vector (c1, · · · , cm); cj is the cost of user j
b Vector (b1, · · · , bm); bj is the bid of user j under the

offline setting
ξ(bj) min{e|e ∈ S ∧ bj ≤ e}
r(b, e) min {⌊W/e⌋ , f(b, e)}
f(b, e) |{j|j ∈ [m] ∧ ξ(bj) ≤ e}|
Dl The probability that any user’s cost is no more than sl

under the online setting
ϕl min{mDl,W/sl}
nl,t The total number of times that price sl has been posted

until time t under the online setting

Hl,t

√

8 log 4t4

ǫnl,t
(1 + lognl,t)

σl,t

√
5 ln t/2nl,t

Dl,t The estimation on Dl at any time t by using the hybrid
mechanism under the online setting

ϕ̃l,t min{m(Dl,t + σl,t +Hl,t),W/sl}
[θ1, θ2] The range of users’ costs

If we know all users’ true costs, then the problem
of maximizing the revenue under the budget W can
be optimally solved in polynomial time. Specifically, we
can first sort the users according to the non-decreasing
order of their costs, and then select the users according
to this order until the total cost exceeds W . However, the
costs of the users are usually unknown, which makes our
problem much more complex. To address this problem, a
possible approach is to solicit the cost information from
the users such that the crowdsourcing revenue can be
optimized. However, as the users are selfish and rational,
they may report false information to the platform to
maximize their own utilities. Therefore, a crowdsourcing
mechanism should encourage the users to tell the truth,
by aligning the personal interests of the users with
the system goal of revenue maximization. Moreover, it
should also guarantee that no user gets a negative utility
as long as the user behaves honestly. Based on these
considerations, we formally introduce the definitions on
truthfulness and Individual Rationality (IR):

Definition 1. A crowdsourcing mechanism is called dom-
inant strategy truthful iff any user j ∈ [m] maximizes
her/his utility uj by reporting truthfully to the platform,
regardless of how the other users report. The mechanism is
called individually rational iff any truthful user gets a non-
negative utility.

Besides achieving truthfulness, we also aim to protect
differential privacy of the users with respect to their costs
for performing the crowdsourcing tasks. Generally, pro-
tecting the privacy against an attacker with more back-
ground knowledge would be harder than that against

  

bj

   User j

pj

Fig. 1: User bidding under the offline model

an attacker with less background knowledge [14], [15].
In this paper, we assume that the attacker has strong
background knowledge, i.e., she/he can observe the pay-
ment profile p. Note that the attacker can either watch
p when it is published by the mechanism, or observe
it through some other ways (e.g., somehow snooping
on the paying records of the mechanism) when p is not
publicly published. It would also be very interesting to
consider the case where the attacker has no background
knowledge (i.e., she/he cannot get the information of the
payment profile), but this problem might be out of the
scope of our paper due to the space constraint, and we
plan to study it in our future work.

We will also consider two models that address how
users show up in the system, i.e., the offline model
and the online model. Although we have the same goal
of maximizing crowdsourcing revenue under both of
these models, the definitions on other measures such
as differential privacy are different. In the sequel, we
explain these models in detail, and we also list some
frequently used notations in Table 1.

2.1 Offline Model

In the offline model, we assume that all users appear
at the same time with arbitrary costs in [θ1, θ2]. The
crowdsourcing mechanism reveals users’ private costs
by soliciting a bidding vector b = 〈b1, · · · , bm〉 from
users, where bj is the reported cost of user j for any
j ∈ [m], and then decides the payment profile p as well
as the winner set N . An intuitive illustration for the
offline model is shown in Fig. 1.

As discussed in Sec. 1, the payment profile p should
be “insensitive” to changes of a single user’s cost/bid, so
the privacy of users can be protected. Based on this idea
and [15], we provide the following definition of privacy:

Definition 2. (ǫ-differential privacy for the offline model) A
crowdsourcing mechanism for the offline model is called ǫ-
differentially private iff for any j ∈ [m], any P ⊆ Sm and
any two bidding vectors b = 〈bj , b−j〉 and b′ = 〈b′j , b−j〉,
we have P{p ∈ P|〈bj , b−j〉} ≤ exp(ǫ)P{p ∈ P|〈b′j , b−j〉},
where b−j denotes the bids of the users in [m]\{j}.

Example 1: Suppose that a pricing mechanism selects
a payment uniformly at random from S for each user.
Although such a pricing mechanism does not guarantee
individual rationality, it satisfies ǫ-differential privacy
according to Definition 2. Indeed, we have ǫ = 0 in this
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case, as the variations of the users’ bids do not affect the
payments at all.

It is well acknowledged that randomized mechanisms
should be designed to guarantee differential privacy [15].
Therefore, the concept of truthfulness in Definition 1 can
be relaxed to the following definition on truthfulness-in-
expectation:

Definition 3. (truthfulness in expectation) A crowdsourcing
mechanism is called ǫ-approximate truthful-in-expectation iff
E{uj |〈cj , b−j〉} ≥ E{uj |〈bj , b−j〉}− ǫ holds for any j, bj and
b−j . When ǫ ≤ 0, the mechanism is called exactly truthful-
in-expectation.

2.2 Online Model

In the online case, we assume that users arrive one
by one in an arbitrary order, and their private costs
are drawn independently from an unknown distribu-
tion. This assumption generalizes the standard Bayesian
mechanism design model adopted in [4], [5], [11], where
the cost distribution of users is assumed to be known in
advance.

When any user j ∈ [m] shows up, the mechanism
selects and posts a take-it-or-leave-it price pj ∈ S for
user j based on the prices selected in the history and
past observations on users {1, · · · , j−1}. After observing
the posted price pj , user j reports xj ∈ {0, 1} to the
mechanism, where xj denotes whether user j accepts
the price (xj = 1 for acceptance). The mechanism adds
j to the winner set N if and only if xj = 1. This process
continues until either the budget W is depleted or the
last user m has been processed. An intuitive illustration
for posted pricing under the online model is shown in
Fig. 2.

Note that the posted-pricing scheme described above
has also been adopted in many commercial crowd-
sourcing systems such as Amazon’s Mechanical Turk.
However, achieving differential privacy is trickier in the
online model than that in the offline model, as we have
to guarantee that the mechanism achieves differential
privacy at each time a user shows up. Therefore, we
revise Definition 2 and get the following definition on
DP for the online model:

Definition 4. (ǫ-differential privacy for the online model)
Let pj and xj denote 〈p1, · · · , pj〉 and 〈x1, · · · , xj〉, re-
spectively. Any pair (xj ,x

′
j) ∈ {0, 1}

j × {0, 1}j is called
adjacent iff xj and x′

j differ in at most one element. An
online pricing mechanism is ǫ-differentially private iff for
any j ∈ [m], any P ⊆ S , any pj−1 ∈ S

j−1 and any
adjacent pair (xj−1,x

′
j−1) ∈ {0, 1}

j−1 × {0, 1}j−1, we have
P{pj ∈ P |pj−1,xj−1} ≤ exp(ǫ)P{pj ∈ P |pj−1,x

′
j−1}.

Example 2: Suppose that j = 3. Then the pair
(xj−1,x

′
j−1) = (〈0, 1〉, 〈0, 0〉) is adjacent. However, if

(xj−1,x
′
j−1) = (〈0, 0〉, 〈1, 1〉), then (xj−1,x

′
j−1) is not

adjacent. Indeed, there are totally 12 possible adjacent
pairs for (xj−1,x

′
j−1). If none of these adjacent pairs

User j

 xj

pj

 

Fig. 2: Posted pricing under the online model

result in a significant change of pj (in the probabilistic
sense explained in Definition 4), then such a pricing
mechanism achieves differential privacy (at time j). In-
deed, the conditions in Definition 4 are stronger, as it
requires that the pricing mechanism achieves differential
privacy for any 1 ≤ j ≤ m.

3 MECHANISM DESIGN FOR THE OFFLINE

MODEL

In this section, we design mechanisms for the offline
model. We first introduce a benchmark algorithm with-
out considering DP. Then, we propose our privacy-
preserving mechanism and analyze its performance.

3.1 A Truthful Mechanism without Considering DP

It can be seen that the revenue of any mechanism that
achieves individual rationality under the offline model
can be upper-bounded by

Ropt = max
{
|U | : U ∈ 2[m] ∧

∑
j∈U

ξ(bj) ≤W
}
, (1)

where ξ(bj) = min{e|e ∈ S ∧ bj ≤ e}. Moreover, we
can optimally find a set of users U ⊆ [m] such that the
revenue got from U is Ropt, assuming that all users in [m]
bid truthfully. However, when users act strategically, we
have to sacrifice some revenue to ensure truthfulness. A
naive idea for designing a truthful mechanism is to use
the VCG mechanism [11], but it is known that this ap-
proach can compromise budget-feasibility [2]. Therefore,
we propose PWDP, an algorithm that simultaneously
achieves truthfulness and budget-feasibility (but without
achieving DP), as shown by Algorithm 1. Algorithm 1
serves as a benchmark algorithm for our problem under
the offline setting.

The idea of Algorithm 1 is explained as follows. We
first sort the users according to the non-decreasing order
of the minimum payments to them to ensure individual
rationality (line 1), and then add the users into the
winner set according to their orders sorted by line 1
and a filter condition in line 3. After that, we calculate
the payment profile to the users (lines 5-7), such that
each user j ∈ N is equally paid with a “threshold
value” to guarantee truthfulness. More specifically, we
use K to denote the maximum equal payment to each
user in N under the budget constraint (line 5); and
the payment pj to any winner j ∈ N is set to the
smaller one between K and ξ(bdq+1

) (line 7), where q is
the cardinality of N . Intuitively, such a payment profile
guarantees that, if any of the winner j ∈ N unilaterally
raises her/his bid to be larger than pj , then she/he
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Algorithm 1: The PWDP algorithm

Input: b,W,m,S
Output: p,N

1 Sort the users in [m] into d1, · · · , dm such that
ξ(bd1

) ≤ ξ(bd2
) · · · ≤ ξ(bdm

), ties broken according
to the id of the users;

2 for j = m to 1 do
3 if ξ(bdj

) ≤W/j then
4 N ← {d1, · · · , dj}; break;

5 q ← |N|;p← 0;K ← max{e|e ∈ S ∧ e ≤W/q}
6 for j = 1 to m do
7 if j ∈ N then pj ← min{ξ(bdq+1

),K};

8 return p,N

would no longer be selected as a winner. This property is
sufficient for proving the truthfulness of Algorithm 1 due
to the Myerson’s Lemma [11], as shown by the following
theorem:

Theorem 1. Algorithm 1 achieves dominant strategy truth-
fulness, individual rationality and budget feasibility.

Proof: Clearly, Algorithm 1 achieves budget feasibil-
ity according to line 7. Let N (b) denote the winner set
output by Algorithm 1 given the input bidding vector b.
To prove the truthfulness, we only need to prove the fol-
lowing conditions according to the celebrated Myerson’s
lemma [11]: (1) Algorithm 1 is monotone, i.e, ∀j ∈ [m],
if b′j ≤ bj ; then, j ∈ N (bj , b−j) implies j ∈ N (b′j , b−j) for
every b−j ; (2) Each winner is paid the threshold value,
i.e., each winner j is paid pj = inf{bj : j /∈ N (bj , b−j)}.
Clearly, condition (1) holds. Next, we prove condition
(2):

Case 1: ξ(bdq+1
) ≤ K:

In this case, any user j ∈ N has utility uj = ξ(bdq+1
)−

cj ≥ ξ(bj) − cj , which is non-negative if the user is
truthful (i.e., bj = cj). In addition, any user j ∈ N
bidding any b′j ≤ ξ(bdq+1

) still wins, as she/he is still
ranked before user bdq+1

with such a bid b′j , and we have
ξ(b′j) ≤ ξ(bdq+1

) ≤ W/q ≤ W/z for any z ∈ [q]. However,
the user will lose by bidding any b′j > ξ(bdq+1

), because
she/he would be ranked after bdq+1

with such a bid, and
we have ξ(b′j) ≥ ξ(bdq+1

) > W/(q + 1) ≥ W/z for any
z ≥ q + 1.

Case 2: K < ξ(bdq+1
):

In this case, any user j ∈ N has the utility uj = K −
cj ≥ ξ(bdq

) − cj ≥ ξ(bj) − cj , which is non-negative if
bj = cj . Any user j ∈ N bidding any b′j ≤ K still wins, as
ξ(b′j) < ξ(bq+1) and ξ(b′j) ≤ W/q ≤ W/z for any z ∈ [q].
Bidding b′j > K will make user j lose, as ξ(b′j) > W/q ≥
ξ(bdq

) ≥W/z for any z ≥ q.
Note that the above reasoning also proves individual

rationality. Hence, the theorem follows.
Besides guaranteeing truthfulness, Algorithm 1 also

achieves a constant performance ratio on the revenue:

Theorem 2. The revenue obtained by Algorithm 1 is at least

1
2Ropt.

Proof: Suppose that Algorithm 1 outputs N =
{d1, · · · , dq} and qmax = max{z|

∑z
t=1 ξ(bdt

) ≤ W}. So
Ropt = qmax and q ≤ qmax. If q = qmax, the theorem
trivially holds. Thus, we assume q < qmax. Note that
we have ξ(bdq+1

) > W/(q + 1) and (qmax − q)ξ(bdq+1
) ≤∑qmax

t=1 ξ(bdt
) ≤ W , so we get qmax ≤ 2q. Hence, the

theorem follows.

Example 3: Suppose that S = {1, · · · , 10}, W = 11, m = 5
and b = 〈b1, b2, b3, b4, b5〉 = 〈2, 5, 1, 3, 6〉. According to
line 1 of Algorithm 1, we have 〈d1, d2, d3, d4, d5〉 =
〈3, 1, 4, 2, 5〉. According to lines 2-4 of Algorithm 1, we
haveN = {1, 3, 4}. According to lines 5-7 of Algorithm 1,
we have 〈p1, p2, p3, p4, p5〉 = 〈3, 0, 3, 3, 0〉. It is noted that,
when all the users are truthful, an optimal solution is
to select the users 1, 2, 3 and 4, and pay them 2, 5, 1, 3,
respectively. This optimal solution has the revenue 4,
while the solution output by Algorithm 1 has the rev-
enue 3. Therefore, Algorithm 1 achieves at least half of
the optimal revenue in this instance of our problem.

3.2 The OPEX Mechanism

In this section, we propose a privacy-preserving mech-
anism called OPEX, shown in Algorithm 2. The idea of
Algorithm 2 is that we first randomly select a payment
profile with identical payments to all users (line 1)
and then determine the winner set using this payment
profile and the budget constraint W (lines 2-4). To
optimize revenue, OPEX selects each payment profile
〈pox, pox, · · · , pox〉 with the probability proportional to
r(b, pox), which denotes the revenue that can be gained
by using this payment profile. More specifically, the
function r is defined as

∀e ∈ S : r(b, e) = min {⌊W/e⌋ , f(b, e)} , (2)

where f(b, e) , |{j|j ∈ [m] ∧ ξ(bj) ≤ e}|.
According to lines 2-4 of Algorithm 2, any bidder

j selected in the winner set L satisfies the condition
bj ≤ pox. Therefore, the utility of any truthful bidder j is
either 0 or pox− bj ≥ 0. Thus, OPEX achieves individual
rationality. In addition, from lines 3-4, we can see that
the total payment of OPEX is no more than ℓpox ≤
⌊W/pox⌋pox ≤ W , so OPEX achieves budget-feasibility.
Moreover, inspired by the performance analysis for the
exponential mechanism [15], [24], we can also prove:

Theorem 3. OPEX achieves ǫ-differential privacy and 2ǫ-
approximate truthfulness in expectation.

Proof: For any b = 〈bi, b−i〉, b
′ = 〈b′i, b−i〉 and any

s ∈ S , we have

P{p = 〈s, · · · , s〉|b}/P{p = 〈s, · · · , s〉|b′}

=
exp{ǫr(b, s)/2}∑
e∈S exp{ǫr(b, e)/2}

·

∑
e∈S exp{ǫr(b′, e)/2}

exp{ǫr(b′, s)/2}

≤ exp{ǫ∆r/2} exp{ǫ∆r/2}

≤ exp{ǫ∆r}, (3)
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Algorithm 2: The OPEX mechanism

Input: b,W,m,S, ǫ ∈ [0, 1]
Output: p,N

1 Select pox ∈ S with probability proportional to
exp{ǫr(b, pox)/2};

2 K ← {j|j ∈ [m] ∧ bj ≤ pox};
3 ℓ← min{|K|, ⌊W/pox⌋};
4 N ← an arbitrary set L ⊆ K such that |L| = ℓ;
5 return N ,p = 〈pox, pox, · · · , pox〉

where ∆r = maxe∈S |r(b, e)− r(b′, e)|.
Note that ∀e ∈ S : |f(b, e) − f(b′, e)| ≤ 1.

When ⌊W/e⌋ ≤ min{f(b, e), f(b′, e)}, we have |r(b, e)−
r(b′, e)| = 0. When ⌊W/e⌋ ≥ max{f(b, e), f(b′, e)}, we
have |r(b, e) − r(b′, e)| ≤ 1. When f(b, e) ≤ ⌊W/e⌋ ≤
f(b′, e) or f(b′, e) ≤ ⌊W/e⌋ ≤ f(b, e), we have |r(b, e)−
r(b′, e)| ≤ |f(b, e) − f(b′, e)| ≤ 1. Therefore, we have
∆r ≤ 1, and hence OPEX achieves ǫ-differential privacy.
Finally, according to Proposition 10.1 of [15], it can be
seen that OPEX achieves 2ǫ approximate truthfulness
truthful-in-expectation.

Example 4: Reconsider the problem instance in Example
3. We have f(b, 1) = 1, f(b, 2) = 2, f(b, 3) = f(b, 4) =
3, f(b, 5) = 4 and f(b, i) = 5 for i ≥ 6. According to
Eqn. (2), we have r(b, 1) = 1, r(b, 2) = 2, r(b, 3) = 3,
r(b, 4) = r(b, 5) = 2 and r(b, i) = 1 for i ≥ 6. Therefore,
according to line 1 of Algorithm 2, the probability that
Algorithm 2 selects pox = 3 is the largest among all the
ten prices in S . When pox = 3, we have K = {1, 3, 4}
and ℓ = 3 according to lines 3-4 of Algorithm 2, so
we have N = {1, 3, 4} according to line 4 of Algorithm 2.

Next, we analyze the performance of OPEX in terms
of revenue. Note that equation (1) implies that users
should be paid unequally to obtain the maximal revenue
Ropt. However, the following theorem reveals that we
can obtain at least half of the optimal revenue by using
identical payments to all users:

Theorem 4. Let sopt = argmaxe∈S r(b, e). Then, we have
Ropt ≤ 2r(b, sopt).

Proof: We assume w.l.o.g. that ξ(b1) ≤ ξ(b2) · · · ≤
ξ(bm). Let v = r(b, sopt) and h = Ropt. If v = m or
v ≥ h, the theorem is trivially proved. When v < m and
v < h, we must have vξ(bv) ≤W and (v+1)ξ(bv+1) > W .
Note that we also have

∑h
j=1 ξ(bj) ≤ W . Therefore, we

get W ≥
∑h

j=v+1 ξ(bj) ≥ (h − v)ξ(bv+1) > h−v
v+1W , so

Ropt = h ≤ 2v = 2r(b, sopt).
Note that OPEX outputs a payment profile with iden-

tical payments. So, we can use Theorem 4 to prove
Theorem 5:

Theorem 5. We have r(b, pox) ≥
1
2Ropt − O(

log k
ǫ ) with

high probability.

Proof: Let ϑ = 1
2Ropt −

2 ln k+z
ǫ , where z is a positive

constant (e.g., we can set z = 10). Using Theorem 4, we

have:

P{r(b, pox) < ϑ} ≤
k exp{ǫϑ/2}

exp{ǫr(b, sopt)/2}

≤ k exp{ǫϑ/2}/exp{ǫRopt/4}

= k exp {ǫ(2ϑ−Ropt)/4} = exp{−z/2}, (4)

which implies that P{r(b, pox) ≥ ϑ} > 1 − exp{−z/2}.
Hence, the theorem follows.

It can be seen that the only difference between the
bounds shown in Theorem 2 and Theorem 5 is the
O( log k

ǫ ) additive factor. This suggests that we would
not lose too much revenue by considering differential
privacy.

4 MECHANISM DESIGN FOR THE ONLINE

MODEL

In the online case, our problem becomes more difficult,
as we have to guarantee DP at any time, and the cost
distribution of the users is unknown. Based on these
considerations, the intuitive idea of our algorithm can be
roughly explained as follows. Instead of using the true
means of the users’ costs (which are unknown), we try to
use the empirical means to design a pricing mechanism.
As such, if the empirical means are accurate enough,
then the revenue got by our pricing mechanism should
be close to the optimal revenue got under the Bayesian
setting. However, directly using the empirical means
could breach the users’ privacy. Therefore, we will add
noises into the empirical means before we use them, and
carefully adjust the “noise level” such that the resulted
noisy empirical means can achieve high accuracy while
satisfying differential privacy.

Based on the above idea, we will leverage the multi-
armed-bandit (MAB) paradigm [25] and the hybrid
mechanism [26] to design our algorithm. Intuitively, the
MAB paradigm enables us to quickly find an approxi-
mate solution based on the empirical means, while the
hybrid mechanism [26] provides a method for calcu-
lating noisy empirical means that achieve differential
privacy and high accuracy. However, it is highly non-
trivial to design an algorithm with provable performance
bounds based on these intuitive ideas, and we will
elaborate our algorithms in the following sections.

4.1 The Hybrid Mechanism

The goal of the hybrid mechanism [26] is to publish the
aggregation of private data. More specifically, suppose
that there is a data sequence d1, d2, · · · where dn ∈ {0, 1}
for any n ∈ N. The hybrid mechanism is a function B
satisfying B({d1, · · · , dn}) =

∑
j∈[n] dj+γn for any n ∈ N,

where γn is a random variable (i.e., the “noise”). By
carefully choosing the probability distribution of γn, the
hybrid mechanism can achieve ǫ-differential privacy, i.e.,
for any n ∈ N, any j ∈ [n], any A = {d1, · · · , dj , · · · , dn},
A′ = {d1, · · · , d

′
j · · · , dn} and any Z ⊆ R, we have

P{B(A) ∈ Z} ≤ exp(ǫ)P{B(A′) ∈ Z}. Moreover, it
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has been shown that the hybrid mechanism has the
following nice property:

Lemma 1 ( [26], [27]). Define χ(κ, n) =
√
8
ǫ log

(
4
κ

)
log n+√

8
ǫ log

(
4
κ

)
. For any κ ≤ n−d (d > 0) and any n ∈ N, we

have P{|γn| ≥ χ(κ, n)} ≤ κ.

Intuitively, Lemma 1 implies that we do not have to
add a too large “noise” (i.e., γn) to the sum of d1, · · · , dn
such that the noisy sum B({d1, · · · , dn}) satisfies ǫ-
differential privacy. More specifically, as indicated by
Lemma 1, γn only needs to be logarithmic to n in a
probabilistic sense. This property will be useful for the
performance analysis of our algorithms in Sec. 4.3.

4.2 The DPP-UCB Algorithm

With the hybrid mechanism, we propose a privacy pre-
serving mechanism called DPP-UCB (shown in Algo-
rithm 3). Clearly, if we consider a Bayesian setting where
the cost distribution of the users is known, then the
revenue got by offering any price sl ∈ S to all users
is at most ϕl = min{mDl,

W
sl
}, where Dl = P{c1 ≤ sl}.

Moreover, it has been known that, the maximum revenue
that we can get by offering a single price to all users
is a constant approximation to the revenue got by any
truthful mechanism [2], [28]. Therefore, the main idea of
DPP-UCB is trying to select the price sl∗ at each time t,
where l∗ = argmaxl∈[|S|] ϕl.

However, Dl and ϕl are unknown for any l ∈ [|S|].
Therefore, we use the hybrid mechanism to get a noisy
empirical mean Dl,t as the estimation of Dl for any l ∈
[|S|] and t > 0. More specifically, we set Dl,t = S̃l,t/nl,t,
where S̃l,t = B({xj : ij = l ∧ j ∈ [t]}) is the noisy sum
output by the hybrid mechanism (which guarantees ǫ-
differential privacy) and nl,t is the total number of times
that sl has been posted until time t.

According the above discussions, a straightforward
idea is to directly select a price sl′ ∈ S at any time t+ 1
such that min{mDl′,t,

W
sl′
} is maximized. However, this

method cannot lead to good performance ratios, as the
estimation Dl,t is not accurate for any l and t. Therefore,

we introduce two factors Hl,t ,
√
8 log 4t4

ǫnl,t
(1+log nl,t) and

σl,t ,
√

5 ln t
2nl,t

as the “exploration factors” to compensate

for the estimation error of Dl,t, and hence select a price
l to maximize

ϕ̃l,t , min{m(Dl,t + σl,t +Hl,t),W/sl} (5)

at any time t + 1. Indeed, the exploration factors Hl,t

and σl,t are elaborately designed to get a low “regret”
of DPP-UCB, which will be seen from our performance
analysis in Sec. 4.3.

With the intuitive ideas explained above, we describe
the details of Algorithm 3 as follows. Algorithm 3 first
tries each price in S to get the initial knowledge (line 4),
and then selects sit ∈ S as the posted price pt for any
user t ∈ [m] according to Eqn. (5) (line 5). After observing
any user t’s response to the posted price, DPP-UCB

Algorithm 3: The DPP-UCB Algorithm

Input: W,m,S, ǫ ∈ [0, 1]
Output: p,N , T

1 t← 1,W0 ←W , ∀i ∈ {1, · · · , |S|} : ni,0 ← 0;
2 p← 0;N ← ∅;T ← 0;x← 0

3 while t ≤ m do
4 if t ≤ |S| then it ← t;
5 else it ← argmaxl∈{1,··· ,|S|} ϕ̃l,t−1;
6 pt ← sit ;
7 if sit > Wt−1 then break;
8 else T ← t;
9 Post sit to user t and update xt;

10 if xt = 1 then N ← N ∪ {t};
11 Wt ←Wt−1 − sit · xt /*Wt: leftover budget*/
12 nit,t ← nit,t−1 + 1; t← t+ 1

13 return p,N , T

updates the parameters (lines 9-12) and stops at a finite
time T ≤ m, such that user T is the last paid user.

Note that Algorithm 3 always selects each price in
S sequentially in the initialization phase (i.e., when
t ≤ |S|). Therefore, Algorithm 3 trivially achieves ǫ-
differential privacy in the initialization phase due to the
reason that the price selection therein is not affected by
the users’ actions at all. After the initialization phase,
Algorithm 3 selects prices based on the output of the
hybrid mechanism, which achieves differential privacy.
As DP is immune to post-processing [15], we can prove:

Theorem 6. DPP-UCB achieves ǫ-differential privacy.

Note that DPP-UCB decides the price pt for any user t
even before user t arrives. Thus, it can be easily proven
that DPP-UCB achieves dominant strategy truthfulness
and individual rationality as pt is independent of user
t. More specifically, any user t ∈ [m] maximizes her/his
utility ut by truthfully reporting xt = 1(ct ≤ pt) and then
gets a non-negative utility xt(pt − ct), where 1(·) is the
indicator function.

4.3 Performance Analysis on the Revenue

In this section, we show that DPP-UCB has a low
“regret” on revenue, where the regret is defined as
Reg = ϕl∗−E{|N |} (recall thatN is the winner set output
by DPP-UCB). Intuitively, the regret measures how much
revenue that we can lose compared with an omniscient
algorithm that does not guarantee differential privacy.
Before we describe our regret analysis, we quote the
celebrated Hoeffding’s inequality in Lemma 2, which is
used in our proofs:

Lemma 2 (Hoeffding’s inequality [29]). Let Y1, Y2, · · · ,
Yn be a sequence of random variables with common support
[0,1]. If E{Yi|Y1, Y2, · · · , Yi−1} ≤ Φ for any i ≤ n, then we
have Pr{ 1n

∑n
i=1 Yi−Φ ≥ κ} ≤ exp{−2κ2n} for any κ > 0.

If E{Yi|Y1, Y2, · · · , Yi−1} ≥ Φ for any i ≤ n, then we have
Pr{ 1n

∑n
i=1 Yi − Φ ≤ κ} ≤ exp{−2κ2n} for any κ > 0.
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The main idea of our regret analysis is that we first
bound the expected number of the sub-optimal prices
selected from S\{sl∗} by the DPP-UCB algorithm and
then bound the revenue loss suffered from selecting
these sub-optimal prices. However, our analysis is very
different from that in the traditional MAB problem [19],
[25], as we need to take DP into account and handle the
sub-optimal prices in {sl ∈ S|l > l∗} and {sl ∈ S|l < l∗}
separately. In the sequel, we give the regret analysis in
detail.

We first give some bounds on the probabilities of
the suboptimal prices (i.e., prices in S\{sl∗}) being se-
lected in DPP-UCB, as shown by Lemma 5-6. Intuitively,
Lemma 5 and Lemma 6 imply that, after the suboptimal
prices in S\{l∗} have been selected a sufficient number
of times in the history, the probability of selecting them
again by DPP-UCB is very small, as DPP-UCB has
acquired “sufficiently accurate” knowledge about these
prices to determine that they are sub-optimal. The proof
of Lemma 5 leverages Lemma 4, which uses a property
of the celebrated Lambert function stated in Lemma 3:

Lemma 3. [30], [31] Let W̄ be the Lambert function
which satisfies ∀x ∈ R : x = W̄ (xex). The equation
e−cx = a0 (x− r) (a0, c, r ∈ R; a0 6= 0) has the solution

x = r + 1
cW̄

(
ce−cr

a0

)
.

Lemma 4. Define ∆l = ϕl∗ − ϕl, Ql(t) = 2
√
8 ln 4t4

ǫ(1−ν)(∆l/m)

and ζ(l, t) = max
(

10 ln t
ν2(∆l/m)2

, Ql(t) (lnQl(t) + 7)
)

where ν

is any number in (0, 1). When nl,t > ζ(l, t), we must have
∆l/m > 2σl,t + 2Hl,t

Proof: Based on the properties of the celebrated
Lambert function [32] and Lemma 3, we know that a
sufficient condition for the inequality i > y ln i + y(∀i ∈
N

+, ∀y > 0) to hold is i > y(ln y + 7). Therefore, if nl,t >
Ql(t) (lnQl(t) + 7), we must have nl,t > Ql,t(1 + lnnl,t),
which implies (1−ν)∆l/m > 2Hl,t. In addition, it can be
easily known that ν∆l/m > 2σl,t when nl,t >

10 ln t
ν2(∆l/m)2

.

Hence, the lemma follows.

Lemma 5. For any t ≥ k and any j < l∗, we have P{it+1 =
j;nj,t ≥ ζ(j, t)} ≤ 6t−4.

Lemma 6. For any t ≥ k and any j > l∗, we have P{it+1 =
j} ≤ 2t−4.

With Lemma 4-6, we are able to bound the expecta-
tions of the numbers of the sub-optimal prices selected
by DPP-UCB, which is shown in Lemma 8-9. Intuitively,
Lemma 8 shows that the expected number of times
that any sub-optimal price j < l∗ is selected in DPP-
UCB is bounded by O(ζ(j, β)), while Lemma 9 shows
that the expected number of times that any sub-optimal
price j > l∗ is slected in DPP-UCB is bounded by a
constant. The proof of Lemma 8 leverages Lemma 7,
which essentially provides an upper bound on DPP-
UCB’s stopping time (i.e., T ).

Lemma 7. Let β = ⌈2W/(s1D1)⌉. Then, we have

∑∞
t=β P{Wt ≥ 0} ≤ 2s2k/(s1D1)

2

Lemma 8. For any j < l∗, we have E{nj,T } ≤ 2⌈ζ(j, β)⌉+
2s2k

(s1D1)2
+ π4

15 .

Proof: For any j < l∗, we have

nj,β = 1 +
∑β−1

t=k
1{it+1 = j}

= 1 +
∑β−1

t=k
1{it+1 = j;nj,β < ζ(j, β)}

+
∑β−1

t=k
1{it+1 = j;nj,β ≥ ζ(j, β)}

≤ ⌈ζ(j, β)⌉+

β−1∑

t=k

1{it+1 = j;nj,β ≥ ζ(j, β)} (6)

If nj,β ≥ ζ(j, β), there must exist certain v ∈ [k, β − 1]
such that nj,v < ζ(j, β) and nj,v+1 ≥ ζ(j, β). Therefore,
we have

∑β−1

t=k
1{it+1 = j;nj,β ≥ ζ(j, β)}

≤ ⌈ζ(j, β)⌉+
∑β−1

t=v+1
1{it+1 = j;nj,β ≥ ζ(j, β)}

≤ ⌈ζ(j, β)⌉+
∑β−1

t=v+1
1{it+1 = j;nj,t ≥ ζ(j, β)}

≤ ⌈ζ(j, β)⌉+
∑β−1

t=k
1{it+1 = j;nj,t ≥ ζ(j, t)} (7)

Combining equation (6)-(7) with Lemma 5 and Lemma 7
gives us

E{nj,T }

≤ E{nj,β}+ E{
∑∞

t=β
1{it = j}}

≤ 2⌈ζ(j, β)⌉+ E{
∑β−1

t=k
1{it+1 = j;nj,t ≥ ζ(j, t)}}

+E{
∑∞

t=β
P{Wt ≥ 0}}

≤ 2⌈ζ(j, β)⌉+ 2s2k/(s1D1)
2 +

∑∞

t=1
6t−4

≤ 2⌈ζ(j, β)⌉+ 2s2k/(s1D1)
2 +

π4

15
(8)

where (8) is due to the Riemann zeta function∑∞
t=1 t

−4 = π4

90 [19]. Hence, the lemma follows.

Lemma 9. For any j > l∗, we have E{nj,T } ≤ 1 + π4

45

Proof: Using Lemma 6 and the Riemann zeta func-
tion, we can get E{nj,T }=E{1 +

∑T−1
t=k 1{it+1 = j}} ≤

1 +
∑∞

t=1 2t
−4 = 1 + π4

45 .

Now, we are ready to give the regret bound of DPP-
UCB, as shown by Theorem 7. The main idea for proving
Theorem 7 is that, as selecting l∗ incurs zero regret, we
only need to consider the regret caused by selecting the
sub-optimal prices in S\{l∗}, which can be calculated
by using Lemma 8 and Lemma 9. To derive the regret
bound shown in Theorem 7, we also need a lower bound
on the stopping time T of DPP-UCB, which is presented
in Lemma 10:
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Lemma 10. The stopping time T of the DPP-UCB algorithm
is bounded by

E{T} > min {W/(Dl∗sl∗),m} − θ2/(Dl∗sl∗)

−
∑

j>l∗
E{nj,T }

(
Djsj
Dl∗sl∗

− 1

)

Theorem 7. The regret of the DPP-UCB algorithm has an
upper bound of O(logW log logW ).

Proof: Note that |N | =
∑T

t=1 xt. Therefore, we have

Reg ≤ ϕ(sl∗)− E{
∑T

t=1
xt}

= min{mDl∗ ,W/sl∗} − E{T}Dl∗

+
∑

j∈[k]
E{nj,T } (Dl∗ −Dj)

≤ min{mDl∗ ,W/sl∗} − E{T}Dl∗

+
∑

j<l∗
E{nj,T } (Dl∗ −Dj)

≤
θ2
sl∗

+
∑

j<l∗
E{nj,T } (Dl∗ −Dj)

+
1

sl∗

∑
j>l∗

E{nj,T } (Djsj −Dl∗sl∗) (9)

≤
θ2
sl∗

+
∑

j<l∗
(Dl∗ −Dj)

(
2⌈ζ(j, β)⌉+

2s2k
(s1D1)2

+
π4

15

)
+
∑

j>l∗

(
Djsj
sl∗

−Dl∗

)(
1 +

π4

45

)
(10)

where (9) is due to Lemma 10 and (10) is due to
Lemma 8-9. Note that the factor ζ(j, β) is in the order
of O(logW log logW ). Hence, the theorem follows.

It can be seen from Theorem 7 that the average regret
of DPP-UCB asymptotically approaches zero; i.e., we
have limW→∞ Reg/W = 0. This suggests that DPP-UCB
is a Hannan-consistent learning algorithm [19].

Remark: Until now, we have assumed that the number
of users m is fixed and known under the online setting.
Although this assumption has also been widely adopted
in the literature (e.g., [20], [28], [33], [34]), it may not hold
in some crowdsourcing applications where the number
of participants is stochastic. Fortunately, in such cases,
we can often get the distribution knowledge and hence
the expected value of the number of participants. For
example, the historical mobility traces of the users could
be used to estimate the number of users appeared in
the Points of Interests (PoI) of mobile crowdsourcing
applications [9], [35].

Based on the above observation, we can use a simple
method to extend our DPP-UCB algorithm to the case
that the number of users is stochastic with known distri-
butions. More specifically, we can simply replace m by its
expectation in our algorithms, while all our performance
analysis and performance bounds remain the same. This
is due to the reason that, the revenue of any pricing
strategy under the online setting is originally defined
as an expected value (see Sec. 2.2), so we should replace
m by its expected value for calculating the revenue of
any price in S (including the optimal price) when m
is stochastic. As such, the expected value of m can be

24.4%
29.1%

24.3%
13.4%

6.3%

2.5%

<100

100-200

200-300

300-400

400-500

≥500

Fig. 3: Distribution of the traveling distances in the T-
Drive dataset (kilometers)

considered as a constant in our algorithms, so all our
performance analysis still holds under this setting.

5 PERFORMANCE EVALUATION

We conduct extensive experiments to study the per-
formance of our mechanisms. The purpose of our ex-
periments is to compare our algorithms with the re-
lated work on revenue and regret, using both synthetic
datasets and real datasets.

5.1 Experimental Settings

In the experiments, we compare OPEX with Ropt and
PWDP in the offline setting, and compare DPP-UCB
with several representative algorithms proposed in the
literature including BP-UCB [20], UCB-BV2 [36] and
MRCB [37]. BP-UCB is a dynamic pricing algorithm for
customers arriving online, while UCB-BV2 and MRCB
are two representative budgeted MAB algorithms with
random arm costs. As neither of BP-UCB, MRCB and
UCB-BV2 guarantees differential privacy, we have to
adapt them to achieve DP for fair comparison. Therefore,
we incorporate the hybrid mechanism into BP-UCB,
MRCB and UCB-BV2, i.e., using the noisy means as the
estimations of the expectations of the arms’ costs (as we
do in DPP-UCB). We also implement OPT∗, which is the
benchmark algorithm that always selects the price sl∗ in
the online setting.

We use both a real-world dataset and synthetic
datasets to test the performance of our implemented
algorithms. The real-world dataset used by us is T-
Drive [38], which is a mobile trajectory dataset published
by Microsoft Research. This dataset contains the GPS
trajectories of 10,357 taxis in the Beijing city. In our
experiments, we consider the drivers in the T-Drive
dataset as mobile crowdsourcing users, and their costs
are set in proportional to their travelling distances. The
distribution of the users’ travelling distances in the T-
Drive dataset is plotted in Fig. 3.

In each of the generated synthetic datasets, the cost
of any user is sampled from one of the following
distributions (by a uniformly random selection): the
Gaussian distribution N (µ, σ2) (truncated to have the
support [0, 1]), the uniform distribution U(0, 1) and the
beta distribution Beta(α, β). Both of the parameters µ, σ
are randomly sampled from the uniform distribution
U(0, 1), while α, β are randomly sampled from U(0, 10).
To achieve unbiased performance comparison, the re-
ported data for the synthetic datasets are the average
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Fig. 4: Comparing the revenue of the implemented offline algorithms using the T-Drive dataset
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Fig. 5: Comparing the revenue/regret of the implemented online algorithms using the T-Drive dataset

running results on 200 datasets. We also follow [20] to
set θ1 = 0.01, θ2 = 1 and k = 20 for all the implemented
algorithms.

5.2 Experimental Results

5.2.1 Overall Performance

In Fig. 4, we compare the performance of the imple-
mented algorithms under the offline setting using the
T-Drive dataset, where the budget W is scaled from 100
to 1000 and ǫ is set to 1, 0.6 and 0.2 in Fig 4(a)-4(c),
respectively. It can be seen that the revenue of all offline
algorithms increases with W , which can be explained
by the reason that more crowdsourcing users can be
recruited when W increases. Another fact revealed by
Fig. 4 is that the revenue of OPEX does not vary much
when ǫ decreases, which demonstrates the robustness
of OPEX against the variation of ǫ. Finally, it can be
seen from Fig. 4 that the performance of OPEX is very
close to PWDP, which indicates that OPEX can achieve
differential privacy without losing too much revenue.

In Fig. 5, we study the revenue and regret performance
of the implemented algorithms under the online setting
using the T-Drive dataset, where the parameter settings
are the same to those in Fig. 4. It can be seen from
Fig. 5 that the revenue of all algorithms increases with
the budget, while DPP-UCB outperforms BP-UCB, UCB-
BV2 and MRCB. We also notice that a smaller ǫ results in
smaller revenue of all algorithms except for OPT∗, which
is not surprising as the algorithms need to spend more

budget to identify the optimal price when ǫ decreases.
Finally, the results shown in Fig. 5 demonstrate that the
average regret of DPP-UCB (i.e., Reg/W ) approaches 0
when the budget increases, while it is much smaller
than the average regret of the other two algorithms. This
corroborates the logarithmic regret bound of DPP-UCB
proved in Sec. 4.3.

In Figs. 6-7, we study the performance of the imple-
mented algorithms using the synthetic datasets. Follow-
ing the work in [20], the number of users in Figs. 6-7
is set to W/θ1, and the other parameter settings are the
same to those in Figs. 4-5. It can be seen that the results
shown in Figs. 6-7 are similar to those in Figs. 4-5, and
our algorithms outperform the baseline algorithms both
under the online setting and under the offline setting.
This can be explained by similar reasons with those for
Figs. 4-5.

5.2.2 Privacy Leakage

In this section, we study how the users’ privacy is
protected by the implemented algorithms. Following [8],
we use the Kullback-Leibler (KL) divergence to measure
the Privacy Leakage (PL) of the algorithms. More specif-
ically, we define PL under the offline setting as follows:

Definition 5. (Privacy leakage under the offline setting)
Under the offline setting, the privacy leakage with respect
to any two adjacent bidding vectors b and b′ (i.e., b

and b′ differ in only one user’s bid) is defined as PL =
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Fig. 6: Comparing the revenue of the implemented offline algorithms using the synthetic datasets
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Fig. 7: Comparing the revenue/regret of the implemented online algorithms using the synthetic datasets

∑
p∈Sm P (p|b) ln

[
P(p|b)
P(p|b′)

]

Intuitively, the privacy leakage defined above mea-
sures how much the payment profile varies when one
user’s bid changes. Similarly, we define PL under the
online setting as follows:

Definition 6. (Privacy leakage for the online setting) Under
the online setting, the privacy leakage with respect to any pj−1

and any adjacent pair (xj−1,x
′
j−1) (see Definition 4) is de-

fined as PL =
∑

pj∈S P (pj |pj−1,xj−1) ln

[
P(pj |pj−1,xj−1)

P(pj |pj−1,x′

j−1)

]

Note that PWDP is a deterministic algorithm and has
infinite PL. Therefore, we only compare the PL of the
implemented randomized algorithms in Fig. 8, where
the parameter settings are the same to those in Figs. 4-7.
To achieve unbiased comparison, we randomly generate
1000 adjacent bidding vectors (or 1000 adjacent pairs
under the online setting), and plot the average PL in
Fig. 8. The results in Fig. 8 reveal that, the privacy
leakage of all the implemented algorithms increases with
ǫ, as a larger ǫ allows for more privacy leakage accord-
ing to the definition of DP [15]. However, the privacy
leakage of our algorithms (i.e., OPEX and DPP-UCB) is
significantly smaller than those of the other algorithms,
which demonstrates the superiority of our approach for
privacy preservation.
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Fig. 8: Comparing the privacy leakage

6 RELATED WORK

The incentivization problem in mobile crowdsourcing
has been extensively studied, and the related studies in
this area can be found in two excellent surveys [39], [40].
In particular, the insightful survey in [39] has presented a
novel and comprehensive taxonomy of existing incentive
mechanisms for mobile crowdsourcing systems, and it
has also discussed about the related approaches in depth.
The more recent survey in [40] has proposed the first
framework in the literature for defining and enforcing
Quality of Information (QoI) in mobile crowdsourcing,
and has also proposed some novel research challenges
and possible research directions in this area.

Among the existing crowdsourcing incentivization ap-
proaches, the work in [6], [7], [16], [17] has designed
truthful auction mechanisms under a limited budget.
Most of these studies are based on the framework of
budget feasible mechanisms proposed in [2]–[4]. It can be
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seen that the best approximation ratio of the budget fea-
sible mechanisms investigated in [2]–[4] is 1

3 (presented
in [3]). However, all these related work has neglected the
privacy issue.

Recently, the privacy protection problems in mobile
crowdsourcing have begun to arouse interests in the
literature. Two excellent studies [41], [42] have provided
insightful surveys on the methods and challenges for
protecting the privacy of mobile crowdsourcing users.
The seminal work in [43] has proposed FIDES, a brilliant
trust-based framework for secure user incentivization
in mobile crowdsourcing, which is the first trust-based
framework that simultaneously solves the problems of
incentivizing users’ participation and guaranteeing data
reliability. The work in [44] has proposed a smart
anonymity-preserving reputation framework for mobile
crowdsourcing, which is agnostic to both the reputation
assignment algorithm and the crowdsourcing applica-
tion. The work in [45], [46] has studied the privacy
preserving data publishing and aggregation problems
in mobile crowdsourcing, but without considering the
incentivization problem. The excellent studies in [35],
[47] have proposed some novel approaches to protect
the location privacy of the users, using the tools of
differential privacy or k-anonymity. Two closest studies
to ours are [8] and [18], where some ingenious auction
mechanisms are proposed to protect the bidding privacy
of the users in mobile crowdsourcing. However, no
budget constraints are considered in [8], [18], and their
problem models and optimization goals are both very
different from ours. Indeed, both [8] and [18] aim to min-
imize the total payment/cost in mobile crowdsourcing,
while our goal is to maximize the system revenue under
a budget constraint. Moreover, only offline algorithms
are proposed in [8], [18]. Due to these essential discrep-
ancies, the algorithms and methods proposed in [8], [18]
cannot be applied to our case.

The dynamic pricing problem for online customers has
also been studied in the literature [20], [28], [33], [34].
Nevertheless, these studies neglected either the budget
constraint or the privacy issue. Meanwhile, it is noted
that the dynamic pricing problem can be considered as
a variant of the budgeted multi-armed bandit problem
investigated in [36], [48], [49]. Nevertheless, none of
these studies considered the privacy issue. Moreover,
our online pricing problem has some unique features
ignored by [36], [48], [49]; i.e., the rewards for selecting
different prices/arms are implicitly correlated (as any
user rejecting a given price would also reject a lower
price). Therefore, our regret analysis for DPP-UCB is
very different from those in [36], [48], [49].

Finally, it can be seen that most of the studies on multi-
armed bandits have not considered the privacy issue
with only a few exceptions [27], [50]. However, both [50]
and [27] assume an unlimited budget for playing the
arms, so their algorithms cannot be used to address our
problem.

7 CONCLUSION AND DISCUSSIONS

We have studied the problem of designing differentially
private incentivization mechanisms for mobile crowd-
sourcing, where the total payment to users should not
exceed a predefined budget. We have proposed novel
algorithms for our problem both in an offline setting
and an online setting. We have shown that our mecha-
nisms achieve provable theoretical performance bounds
on revenue, truthfulness and differential privacy simul-
taneously, and the effectiveness of our approach has
also been corroborated by the results of numerical ex-
periments. To the best of our knowledge, we are the
first to propose privacy-preserving mechanisms with
provable performance bounds for budget limited mobile
crowdsourcing.

Although the effectiveness of our algorithms has been
proved by both theoretical analysis and experimental
evaluations, there are still several improvements that
could be done. First, as our model only assumes homo-
geneous crowdsourcing tasks (and hence homogeneous
task values), extending the current model to the case of
heterogeneous tasks would be an interesting problem.
Second, it would be interesting to design more effi-
cient algorithms for our problem under the continuous-
pricing scenario, as the running time of the current
algorithms could be high in this case. Third, although
we have followed some related work (e.g., [20], [28], [33],
[34]) to assume that there are some prior knowledge on
the number of users under the online setting, designing
algorithms for our problem without this assumption
could make our approach more general. We plan to
investigate all these issues in the future.
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