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Abstract—This paper studies a scheduling problem of task graphs on a non-dedicated networked computing platform. The networked
platform is characterized by a set of fully connected processors such as a multiprocessor system that can be shared by multiple tasks.
Therefore, the computation and communication capacities of the computing platform dynamically fluctuate. To deal with this fluctuations
for high performance task graph computing, we propose an online dynamic resilience scheduling algorithm called Adaptive Scheduling
Algorithm (ASA) that bears certain distinct features compared to existing algorithms. First, the proposed algorithm deliberately assigns
tasks to idle processors in multiple rounds to prevent any unfavorable decisions and also to avoid inefficient assignments of certain
key tasks to slow processors. Second, the algorithm adopts task duplication as an attempt to minimize serious increase of schedule
length due to unexpected processor slowdown. Finally, a look-ahead message transmission policy is applied to save communication
time and further improve the overall performance. Performance evaluation results are presented to demonstrate the effectiveness and
competitiveness of our approaches when compared with the existing algorithms.

Index Terms—Dynamic algorithm, dynamic resilience, multiprocessor scheduling, task graphs, task duplication.
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1 INTRODUCTION

Efficient scheduling of the tasks in a parallel application
onto multiprocessors is a critical issue for achieving high
performance. In the general form of a parallel task scheduling
problem, an application is represented by a directed acyclic
graph (DAG), where vertices represent tasks and edges repre-
sent inter-task communications. The objective is to schedule
tasks onto a set of processors such that the makespan (i.e.,
overall execution time) of the DAG is a minimum. The
scheduling problem is known as NP-hard [1].

In this paper, we investigate a dynamic scheduling prob-
lem of performing a task graph on a non-dedicated mul-
tiprocessor. Nowadays computer systems are customarily
multiprocessor/multi-core systems with multi-tasking func-
tionality. Such computers simultaneously run multiple tasks
(i.e,. processes) in multiple processors/cores. Each single pro-
cessor/core can also perform multiple processes concurrently
by switching its time slices (i.e., CPU cycles) between dif-
ferent tasks. Because of the time sharing, CPU cycles (i.e.,
CPU speed) available to one task may dynamically fluctuate
throughout the execution of the task. Additionally, multiple
tasks may also contend for other type of resources such as
memory and communication resources. Therefore, in such a
non-dedicated computer system, available computation speed
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for each given task may dynamically vary with time. For
instance, the available speed may drop down when multiple
other tasks are launched in the system and may rebound after
these tasks leave the system.

The dynamic scheduling problem in multiprocessors has
wide applicability. For example, computer clusters (in a de-
partment or a laboratory) can simultaneously run many tasks
which may belong to one or multiple users. Accordingly, for
each task, its available CPU cycles may fluctuate over time.
Grid is another kind of shared systems. One typical example is
SETI@home [20], which exploits donated (thus unguaranteed
and fluctuating) computer power across the world to perform
a huge amount of computations. Besides, even in cloud
platforms wherein virtual machines (VMs) are dedicated to
one user who leases them, the user may simultaneously run
multiple tasks in one VM, making the VMs a shared and
dynamic computing system.

Since most practical multiprocessor systems are shared and
dynamic, it is highly desirable to investigate the schedul-
ing problem for non-dedicated (i.e., shared) multiprocessors.
Although the classical task graph scheduling problem was
extensively investigated by prior work, most of the work
(e.g., [10], [7], [8], [9]) only focused on the static scheduling
problem wherein processor speeds are assumed to be fixed.
However, when considering dynamic scenarios, their heuristics
often run into the so-called pre-committing problem. That is,
their heuristics statically determine the global schedule of all
tasks before the execution. In this case, it is very common that
the available capacity of the assigned processor for the task
unexpectedly slows down due to the contention of other tasks.
The slowed processor will delay the execution of the task and
may also impede the execution of the whole task graph if it is
on the critical path. In other words, the scheduling decisions
are made too early and may become inefficient as the available
processor capacity dynamically varies.
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Although online algorithms [3], [4], [5] can alleviate the
pre-committing problem to some degree, they receive only
limited attention owing to the dynamism and complexity of the
task graphs and computing resources. Moreover, these studies
still neglected the dynamic properties of underlying compute
resources. We will present a detailed review on related online
scheduling algorithms in the next section. Such algorithms can
be categorized into two types. The first type (e.g., [3]) only
considers scheduling tasks to idle processors. In this case,
tasks may be assigned to idle but slow processors, thereby
degrading the overall performance. The second type considers
both idle and busy processors for assigning tasks. This type
of strategy may allocate tasks to fast processors which are
still processing previously assigned tasks. This is again a pre-
committing situation. Once the fast processors unexpectedly
decelerates, the assignment becomes inefficient. Unfortunately,
these algorithms cannot effectively react to and fix inefficient
scheduling decisions in presence of inaccurate task profiling
and fluctuating computing capacities.

As explained above, the scheduling of task graphs in shared
multiprocessors is very difficult. Even worse, in practice
task profiling techniques hardly estimate perfectly accurate
information on the actual workloads of the tasks. Inaccurate es-
timate information may further deteriorate the performance of
a schedule in actual execution. When we consider task graphs,
the scheduling problem becomes even more challenging as
unexpectedly slowed processors and inaccurate predictions on
both tasks and processors may delay the completion of some
tasks, which may further hinder the execution of all successors
of the delayed tasks and thereby defer the overall progress.

Motivated by these needs and challenges, this paper in-
vestigates the scheduling of a task graph on a non-dedicated
multiprocessor. We contribute a dynamic task graph schedul-
ing algorithm called Adaptive Scheduling Algorithm (ASA)
that realistically deals with the dynamic properties of mul-
tiprocessor platforms in several ways. First, the proposed
algorithm assigns tasks to idle processors in multiple rounds
with a tentative scheduling strategy to prevent inefficient pre-
committing decisions and avoid unfavorable assignment of
key tasks to slow processors. Second, the algorithm applies
task duplication to prevent delayed task completion due to
unexpected processor slowdown. Third, a look-ahead message
transmission policy is applied to save communication time. In
short, the essence of the paper is to trade algorithm complexity
and computing resources for better performance.

The remainder of this paper is organized as follows. Section
2 discusses the related work. Section 3 introduces mathemat-
ical models, assumptions, and problem formulation. Section
4 describes the proposed algorithms in great detail. Section
5 presents simulation results to evaluate the algorithm, with
conclusions following in Section 6.

2 RELATED WORK
The problem of task graph scheduling has been extensively
studied in past decades and many heuristic algorithms were
proposed. The heuristics are classified into a variety of cat-
egories such as list scheduling, clustering, and duplication-
based algorithms, which are mainly for static scheduling on

homogeneous systems. A list scheduling heuristic maintains a
list of all tasks of a given graph according to their priorities.
It has two phases: the task selection phase for selecting the
highest-priority ready task and the processor selection phase
for selecting a suitable processor that minimizes a predefined
cost function. Some of the examples are the Modified Critical
Path (MCP) [9], Earliest Task First (ETF) [7], Dynamic
Critical Path (DCP) [8], and Heterogeneous Earliest-Finish-
Time (HEFT) [10] algorithms. Kwok and Ahmed surveyed a
number of list scheduling heuristics in [2]. As list scheduling
approaches can provide high performance at a low cost, our
paper presents algorithms based on list scheduling techniques.
Another type of heuristic is clustering [11], [9]. In this
category, tasks are pre-clustered before allocation begins to
reduce the problem size. Task clusters (instead of individual
tasks) are then assigned to individual processors. Algorithms
in this category are typically static and thus inappropriate
to dynamic cases. Duplication-based scheduling algorithms
[13], [14], [15], duplicate tasks across multiple processors
to reduce communication overheads. The algorithms in this
group are usually for an unbounded number of homogeneous
processors and they have much higher complexity values than
the algorithms in other groups.

In contrast to duplication-based algorithms, some grid
scheduling algorithms [6], [12] apply task duplication to
prevent delayed task completion. These heuristics require no
performance prediction information of underlying resources
and are thereby called knowledge-free approaches. Another
type of grid scheduling approaches is so-called knowledge-
based, which customarily assumes perfect performance pre-
diction information on resources and tasks. This intuition is
similar to the ideas adopted in prior grid scheduling heuris-
tics. Some well-known knowledge-based heuristics include
Max-Min, Min-Min, Sufferage [17], XSufferage [18], and
Storage Affinity (SA) [19]. Although these algorithms are
efficient when the prediction information is available, yet in
practice such information is not always available. Since both
knowledge-based and knowledge-free approaches are useful,
in this paper we borrow the intuitions from both of them.

The above heuristics are mainly designed for static schedul-
ing and often run into the problem of pre-committing the
schedule to the processors when the scenario extends to
dynamic situations. A task then can only be executed on the
assigned processors even if a favorable rescheduling is possible
on another processor. Though online scheduling schemes do
not have this constraint, they have not been studied extensively
given the dynamism and complexity of the computer resources
and applications. Feldmann et al. [4] proposed a method
for online scheduling of parallel applications assuming that
execution time is unknown beforehand. In contrast, Choudhury
et al. [5] designed a hybrid offline and online approach for dy-
namic task graphs without communication costs which shows
improvement over pure static schedulers. [3] presented an
online scheduling algorithm for conditional task graphs with
communication contention in multiprocessors. Nevertheless,
these studies neglected the dynamism in task properties (e.g.,
inaccurately estimated task sizes) and underlying computing
resources. As a result, these proposed algorithms cannot
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Parameter Definition
Ck estimated computation speed of Pk

eij edge linking two nodes ni and nj

ni i-th node in the task graph (i = 1, 2, · · · ,M )
Pk k-th processor (k = 1, 2, · · · ,K)
Ri number of actual instances of ni concurrently being computed
Rv

i number of virtual instances of ni

rank(ni) rank of ni

tTF
i temporary finish time of ni

tTA
k temporary available time of Pk

tEA
k estimated available time of Pk for its running task
SR set containing ready nodes
wi workload of ni

wij estimated time cost for transferring eij
w̄i average execution time cost of ni

TABLE 1
Notations and Terminology

effectively react and fix inefficient scheduling decisions upon
the actual task execution in presence of inaccurate predictions
on tasks and fluctuating available computing capacities.

3 PROBLEM FORMULATION

We consider scheduling a task graph on a multiprocessor. Let
P = {P1, P2, · · · , PK} denote the set of processors. Since
the processors are shared among multiple users, they could
not be dedicated to a single task graph. As a consequence,
the computation speed of the processors will fluctuate over
time. We assume that prediction information on the compute
resources is available to the scheduler owing to prediction
mechanisms proposed in prior works [16]. However, the pre-
diction information may be inaccurate as the capacities of the
processors may dynamically fluctuate along the time axis. The
estimated computation speed of processor Pk (j = 1, 2, ...,K)
is denoted as Ck.

An application g can be modeled by a directed acyclic graph
(DAG) G = (V,E), where V is the set of vertices (i.e., tasks)
and E is the set of edges. A vertex corresponds to a task which
is a set of instructions that must be executed serially on the
same processor. Terms task and node are interchangeably used
thereafter in this paper. Associated with ni (i = 1, 2, · · · ,M )
is its workload (required amount of computations) wi. Before
scheduling, each task is labeled with the estimated execution
time cost w̄i, defined as:

w̄i =
Kwi

K∑
k=1

Ck

(1)

An edge eij linking two nodes ni and nj specifies the
communication and precedence between the two nodes. That
is, ni should complete its execution before nj starts. Also,
let wij be estimated time cost for transferring eij . Notice that
both wi and wij known to the scheduler may be inaccurate
and the proposed algorithm can tolerate such inaccuracy to
some degree. The source node ni and the destination node nj

of the edge eij are called the parent node and the child node,
respectively. A node which has no parent is called an entry
node while a node has no child is called an exit node.

Algorithm 1 Adaptive Scheduling Algorithm
1: compute ranks for all nodes
2: ∀k = 1, 2, ...,K, initialize Ck and tEA

k ← 0
3: ∀i = 1, 2, ...,M , Ri ← 0
4: while any unfinished node exists do
5: ∀ni ∈ SR, Rv

i ← Ri

6: ∀ni ∈ SR, tTF
i ← +∞

7: ∀k = 1, 2, ...,K, tTA
k ← tEA

k

8: while there exist any idle processor and unfinished node
i in SR with Ri < Rmax do

9: select a ready node ni

10: select processor Pk

11: tTA
k ← max{t+ tcomm

i , tTA
k }+ wi/Ck

12: Rv
i ← Rv

i +1 /∗the assignment is a virtual instance∗/
13: if Pk is idle and tTF

i > tTA
k then

14: Ri ← Ri + 1 /∗the assignment is an actual
instance∗/

15: end if
16: if tTF

i > tTA
k then

17: tTF
i ← tTA

k

18: end if
19: end while
20: edges are scheduled into message queues and transmit-

ted and actual instances are processed
21: wait until any processor becomes idle
22: kill all the replicas of the task just completed /∗

all processors that are computing these replicas also
become idle ∗/

23: ∀k = 1, 2, ...,K, update Ck and tEA
k

24: end while

Our objective is to minimize the overall processing
time, i.e., makespan of all the applications. Minimizing the
makespan of parallel applications is the objective of numerous
research projects in parallel computing. Here we address this
problem with challenges posed by diverse applications and
dynamic resources. Finally, we assume that each processor
has adequate storage to store and compute any amount of data.
Further, when compared to task execution time, the time taken
for making scheduling decisions is negligible.

4 THE PROPOSED ALGORITHM

This section describes the proposed algorithm, which is
shown in Algorithm 1. Previous static algorithms often run into
the problem of pre-committing the schedule to the processors.
A task then can only be executed on the assigned processors
even if a favorable rescheduling is possible on another proces-
sor. To avoid unfavorable pre-commitment, scheduling deci-
sions should be committed as late as possible, i.e., tasks should
be dynamically assigned to idle processors which require task
assignments according to the actual execution progress. An
idle processor is a processor on which no task from the
scheduler is running. The proposed algorithm dynamically
works by iteratively assigning nodes to idle processors in
multiple rounds. Each round of scheduling is triggered by an
event that a processor finishes processing a task.
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Fig. 1. Scheduling of ASA for a task graph on 2 proces-
sors. (a) Processors’ speeds. (b)-(e) Rounds 1-6.

We use terms actual instance and virtual instance to assist
the scheduling of computation and communication. An actual
instance refers to an instance of a node that is actually assigned
for execution. In contrast, a virtual instance refers to virtual
assignments of nodes which are tentatively allocated in the
current round of scheduling. In addition, the algorithm applies
task duplication to prevent delayed task completion and reduce
communication time. Hence, each node may have multiple
actual and virtual instances when task duplication is applied.
At the beginning of each round of scheduling, the number of
virtual instances of a node ni, denoted as Rv

i , is initialized
as the number of actual instances of the node, denoted as
Ri (line 5). Actual instances are executed in processors and
thus occupy computing resources. To prevent resource wastage
caused by excessive task duplication, we limit the maximum
number of actual instances for each node that can be produced,
denoted as Rmax, i.e., Ri ≤ Rmax.

We define that a node is ready if it is unfinished and has
no unfinished parents nodes. Hence, a node being computed
is also a ready node. Let set SR contain all ready nodes.
Once there exist idle processors and ready nodes satisfying
Ri < Rmax, the scheduling process repeats to assign selected
tasks to selected processors (lines 8 - 19). Among all nodes
in the ready set, the node with the least number of virtual
instances are selected for scheduling (line 9). Ties are broken

by selecting the node with the highest rank among the nodes
with the same least number of tentative instances. The rank of
a node is recursively defined as:

rank(ni) = w̄i + max
1≤q≤Q

{rank(niq ) + wij} (2)

where ni has Q children and niq is the q-th child. The rank
of an exit node is equal to

rank(nexit) = ¯wexit (3)

Basically, rank(ni) is the longest distance from ni to an exit
node.

Although tasks are only assigned to idle processors, the
scheduler still globally considers both idle and busy proces-
sors and makes tentative scheduling decisions in order to
prevent inefficient scheduling decisions (e.g., assigning key
nodes to idle but slow processors). Among all processors,
the node is scheduled to the processor Pk with the minimum
max{t + tcomm

i , tTA
k } + wi/Ck (line 10). That is, the node

is assigned to the processor on which the estimated earliest
completion time is achieved.

tTA
k = max{t+ tcomm

i , tTA
k }+ wi/Ck (4)

where max{t+tcomm
i , tTA

k } is the estimated start time on Pk;
t is current time; tcomm

i is the estimated time for transferring
the edges for ni, which is obtained as:

tcomm
i = max

1≤p≤P
{wipir(P (nip), Pk)} (5)

where ni has P parents and nip is the p-th parent node of ni;
P (nip) is the processor which holds nip ; r(P (nip), Pk) = 1 if
P (nip) ̸= Pk and zero otherwise. After the node is scheduled
on a selected processor Pk, tTA

k is updated accordingly. Also,
Rv

i is incremented by one (lines 11, 12).
The scheduler prefers to wait for assigning tasks to busy

but fast processors in the future rather than to assign tasks
immediately to idle but slow processors if the future assign-
ment can finally cause the task to be finished earlier than
the immediate assignment. Such a strategy can effectively
prevent unfavorable assignments of mapping critical tasks to
slow but idle processors that may finally lead to delayed task
completion. Notice that if a processor already has the edges,
it may have more opportunities to be selected. Also, the node
cannot be scheduled to a processor where a virtual instance
of the node already resides.

To avoid inefficient task pre-commitment, only the task as-
signments to idle processors are immediately issued, i.e., such
assignments produce actual instances. Then, the processor is
marked as busy and required edges of the task are sent to the
processor. The processor will start to process the node once
all required edges are prepared. Ri is also incremented by one
(lines 13 - 15). On the contrary, the assignments to the busy
processors yield virtual instances which are not immediately
implemented. A virtual instance may finally be realized in later
rounds of scheduling and then becomes an actual instance.
That is, if the busy processors’ compute capacities are stable
and prediction information is accurate, the virtual instance will
finally be realized in later rounds when all prior allocated
nodes on the processor have been completed. However, if the
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busy processors are unexpectedly slowed down in the near
future, the current tentative assignments will not be realized.
Such a prudent strategy can prevent delayed task completion
from unexpectedly slowed processors. Because ASA only im-
plement actual replicas, no node is queued in the buffer of each
processor. This significantly reduces load unbalancing caused
by inaccurate prediction information. Therefore, inaccurate
prediction impacts little on the performance of ASA.

We consider an example of scheduling a task graph onto
2 processors, as illustrated in Fig. 1. The task graph with 5
nodes is shown in Fig. 1.(a). Fig. 1.(b) shows the speeds of
the processors varying with time. Fig. 1.(c) - (f) illustrates 4
rounds of ASA to complete all tasks at time is 0, 3, 5, and
6, respectively. In this example, communications are assumed
to be negligible for the simplicity of illustration. When time
is 0, both P1 and P2 are idle and the algorithm is executed.
The ready task T1 is first allocated to P1 since P1 can finish
T1 earlier than P2 according to estimation, i.e., P1 is expected
to finish T1 at time 2 with a speed of 6 while P2 is expected
to finish T1 at time 4 with a speed of 3. Since T1 is the only
ready task and P2 is also ready, task duplication is activated,
i.e., T1 is again selected and its replica is assigned to P2. Both
P1 and P2 acquire an actual instance of T1 as they are idle.
As the speeds of the processors vary, P2 first finishes T1 at
time 3 and the execution of T1 on P1 is cancelled accordingly.
This illustrates the benefits of task duplication in preventing
delayed completion. Without the duplication on P2, P1 will
finish T1 at time 4, which is much later than the expected
time 2. When time is 3, tasks T2 and T3 become ready. As
T3 has a higher rank, it is first assigned to P2. T2 is then
assigned to P1. When time is 5, P1 finishes T2 and becomes
idle. At the moment, tasks T4 and T5 are ready. T4 is first
selected and tentatively scheduled to the busy processor P2.
This assignment leads to a virtual instance of T4 as P2 is
busy at this time. Hence, if P1 unexpectedly speeds and P2

unexpectedly slows in the future, the virtual instance will not
be realized and P1 still has a chance to be allocated with T4.
Since P1 is still idle, the next ready task T5 is then assigned
to P1. Without tentative scheduling, T4 will be assigned to
idle processor P1 and expected to be finished at time 10. Due
to tentative scheduling, the actual finish time is 8. This thus
illustrates the advantage of tentative scheduling in preventing
unfavorable assignment of key tasks to slow processors.

The algorithm explicitly addresses communication costs and
contentions via look-ahead message transmission. This ap-
proach transfers prerequisite edges of virtual instances to their
destination processors before they become actual instances.
Since a virtual instance may be realized as an actual instance
in later rounds of scheduling, this look-ahead method can re-
duce communication waiting time by issuing communications
beforehand. In other words, when an actual instance of a node
is assigned to a processor, the processor may have received
corresponding prerequisite edges and can immediately start to
run the node.

However, if the virtual instance is not realized as an actual
instance, the prerequisite edges of the instance transferred
to destination processors will be wasted. To reduce resource
wastage due to excessive look-ahead message transmission, the

amount of communications that each processor can transfer
for the current round of look-ahead message scheduling is
refrained by a limit Mmax. Let Mk record the amount of
communications that will be transferred from a processor Pk

for the current round of look-ahead message scheduling. If
the scheduler plans to transfer a prerequisite edge eij of a
virtual instance from processor Pk, Mk is increased by wij .
An edge will be placed into the message queue of Pk (where
all edges will be actually transmitted) if the edge is required by
an actual instance or Mk < Mmax with the edge counted in.
The message queue is a priority queue with two priority levels.
An edge required by an actual instance has a high priority
otherwise it has a low priority.

As multiple potential source processors may have owned the
edge that need be transferred to a destination processor, the
scheduler will select one potential source processor to transfer
the edge. If the edge is required by a virtual instance, it can
only be transferred by a processor Pk satisfying Mk ≤Mmax.
Among feasible potential source processors, the one with
the fastest link to the destination processor is selected to
transfer the edge if information on link speeds is available to
the scheduler; otherwise the scheduler randomly selects one
source processor to transmit the edge.

Afterwards, the current round terminates. Edges in the mes-
sage queues are sequentially transferred and actual instances
are processed. The scheduler waits until a new processor fin-
ishes a task and becomes idle. The scheduler hence updates Ck

and tEA
k for all processors and starts a new round. When the

scheduler is awaken again, the untransferred prerequisite edges
for virtual instances assigned in the last round is cancelled as
a new tentative partial schedule will be generated in the new
round (lines 20 - 23). The entire execution completes after all
tasks are finished.

The worst case complexity of the algorithm is
O(KMRmaxWmax), where K is the number of processors;
M is the number of tasks; Rmax is the maximum number of
replicas per task; Wmax is the width of the task graph. The
complexity is derived as follows: The outer while loop (line
4) will be run at most MRmax times since only when a task
is finished, the scheduler will be waken up and line 4 will be
triggered. The inner while loop (line 8) will be run at most
MWmax times, which is determined by lines 8-10. Wmax is
the maximum value of SR.

5 PERFORMANCE EVALUATION

In order to assess the effectiveness of the proposed scheduling
policies, we will now present a performance evaluation study,
carried out by means of a discrete-event simulator. We com-
pare their performance for a large set of operational scenarios,
obtained by combining a set of system configurations with a
set of application workloads. The default simulation configu-
rations are set as follows: The number of nodes is 200 and the
default graph topology is random. The average size of a node
is 20 and the estimated size of a node varies among [0.5, 1.5]
times of its actual size. The communication to computation
ratio (CCR) is initially set as 0.1. The number of processors
is 50. The computation speed of each processor dynamically
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Fig. 2. Miniature example for (a) an in-tree task graph;
(b) an out-tree task graph; (c) a fork-join task graph; (d) a
work-flow task graph.

varies among [0.05, speedmax], where speedmax is uniformly
distributed in the range [0.5, 3.5]. The occurrence of a speed
variation event follows an exponential distribution with a mean
of 1/λ where the default value of λ is 0.01. In each of the
following experiments we vary one interested parameter while
fixing other parameters as their default values to study the
effect of the interested parameters. In Figs. 3 and 4, each dot
in each figure is the average result of 100 trials.

To understand the merits of ASA we compare it with three
baseline algorithms, Choudhury’s online algorithm [3], and
two offline algorithms, HEFT [10] and ETF [7]. Also, to
evaluate the effect of task duplication, we will show the results
of ASA with the maximum number of replicas (R) equaling
to 0, 1, and 2, respectively. The results will show that making
2 or more replicas is probably cost-ineffective.

The major performance metric is normalized average
makespan, defined as the average makespan of an algorithm
over that of ASA (R = 0). Fig. 3 depicts the normal-
ized average makespan versus λ for five specific task graph
topologies: random, in-tree, out-tree, fork-join, and work-flow,
respectively, while Fig. 2 shows miniature examples for the
specific topologies. In addition, Fig. 4 presents other results on
random topologies. Moreover, in Fig. 3(a) error bars are added
to denote 95% confidence intervals. The error bars show that
the results are rather credible as most results do not deviate.

Figs. 3 shows that ASA (R = 0, 1, 2) significantly outper-
forms the three baseline algorithms by clear margins, which
demonstrates the benefits of ASA in handling dynamic task
graphs in dynamic environments. Specifically, when λ is quite
small, processor speeds rarely vary and thus the offline-
estimated processor speeds are comparatively accurate. Ac-
cordingly, the performance gaps between ASA and the offline
algorithms (HEFT and ETF) are comparatively small. As λ
grows, processor speeds frequently vary and thus the offline-
estimated processor speeds becomes inaccurate. Therefore, the
performance gaps between ASA and the offline algorithms

sharply increase since ASA can adapt to dynamically varying
processor speeds while the offline algorithms cannot.

On the other hand, we also observe that the performance
gap between ASA and Choudhury’s algorithm decreases as λ
grows. A plausible explanation is that ASA globally considers
all processors in scheduling tasks to avoid assigning critical
tasks to idle but slow processors. Accordingly, ASA may
prefer to wait for assigning tasks to busy but fast processors in
the future rather than immediately assign tasks to idle but slow
processors. In contrast, Choudhury’s algorithm only considers
idle processors in scheduling tasks and thus incurs the risk
of assigning key tasks to idle but quite slow processors. This
explains why ASA (R = 0) outperforms Choudhury’s algo-
rithm in the above figures. When λ grows, processor speeds
rapidly vary. Current idle but slow processors may become
fast soon. Accordingly, the strategy adopted in Choudhury’s
algorithm that assigning tasks immediately to idle processors
may become more efficient.

Furthermore, we can observe that both ASA (R = 1) and
ASA (R = 2) outperform ASA (R = 0) for more than 15%,
demonstrating the effectiveness of task duplication. Further,
ASA (R = 2) performs only slightly better than ASA (R = 1),
showing that making 2 or more replicas is helpless.

In addition, as the proposed algorithm employs duplication
techniques, to study possible CPU wastage owing to duplica-
tions, Fig. 4(a) plots normalized CPU time usage, which is
defined as the average CPU usage of an algorithm divide by
that of ASA (R = 0). The result shows that ASA (R = 0)
requires the least CPU time. Since ASA (R = 1) and ASA
(R = 2) require CPU time to process additional replicas, they
spend 30% to 45% more CPU time than ASA (R = 0). The
three baseline algorithms also spend more CPU time than ASA
(R = 0), because they probably make inefficient scheduling
decisions in dynamic computing environments.

Further, we vary CCR from 0.05 to 1.6 and the corre-
sponding normalized makespan is plotted in Fig. 4(b). The
result shows that as CCR increases the advantage of ASA
over the baseline algorithms decreases. When CCR equals to
1.6, the performance of ASA (R = 0) is close to that of the
baselines, implying that when communication costs are larger
than computation costs, communication-aware strategies are
desired in the design of online scheduling algorithms, which
can be one direction of the future work.

Moreover, we vary the number of processors from 10 to
160 and the corresponding normalized makespan is plotted in
Fig. 4(c). The result shows that as the number of processors
grows, the performance gap between ASA and the baselines
significantly diminishes. In particular, when the number of
processor is 160, Choudhury’s algorithm even outperforms all
other algorithms. A plausible explanation is that one important
benefit of ASA is that it globally considers all processors in
scheduling tasks to avoid assigning tasks to idle but quite slow
processors. According to the tentative scheduling strategy,
ASA may prefer to wait for assigning tasks to busy but
fast processors in the future rather than immediately assign
tasks to idle but slow processors. When there are abundant
processors, probably fast and idle processors exist at any time.
In this case, the tentative strategy adopted in ASA becomes
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(a) Normalized average makespan versus λ for
random graph.
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(b) Normalized average makespan versus λ for
fork-join graph.
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(c) Normalized average makespan versus λ for in-
tree graph.
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(d) Normalized average makespan versus λ for
out-tree graph.
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(e) Normalized average makespan versus λ for
work-flow graph.

Fig. 3. Normalized average makespan versus various task graph topologies

less competitive. For the same reason, the strategy adopted in
Choudhury’s algorithm that assigns tasks immediately to idle
processors may become more efficient.

To evaluate the scalability of our algorithm, we vary the
number of nodes from 50 to 800 and Fig. 4(d) depicts the
corresponding normalized makespan. We can observe that as
the number of nodes grows, the performance gap between
ASA and HEFT/ETF algorithms significantly increases while
the performance gap between ASA and Choudhury’s online
algorithm keeps stable. One possible explanation is that in
offline algorithms inefficient scheduling decisions caused by
pre-committing can increase the makespan and such increase
may tend to accumulate for scheduling large task graphs
as large task graphs require more scheduling decisions. In
contrast, in online algorithms including ASA and Choudhury’s
algorithm, such increase cannot easily accumulate since slow
processors that finish tasks late will have less chances to
receive new tasks. This result demonstrates the benefits of
ASA in handling large task graphs.

Also, Fig. 4(e) plots normalized algorithm run time with
number of nodes varying from 50 to 800. The normalized
algorithm run time is defined as the average algorithm run
time of an algorithm divide by that of ASA (R = 0). Fig. 4(e)
shows that ASA spends more time on algorithm execution
than the three baselines. When the number of nodes is 50,
ASA (R = 0) requires up to 2 times of the execution time of
the baselines. As the number of nodes increases to 800, ASA
(R = 0) spends even 10 times of execution time. Also, when
R increases from 0 to 2, ASA requires 3 to 4 times of more
execution time, showing that making excessive replicas may

be cost-ineffective.
Finally, Fig. 4(f) plots ratio of total number of virtual

instances to total number of actual instances versus λ. It shows
that in ASA, tasks are not assigned to slow processors directly.
Instead, the algorithm prefers to assign tasks to fast but busy
processors. Thus, a large number of virtual instances (at least 5
times of actual instances) are created for tentative scheduling.
In addition, the figure shows that task duplication causes extra
virtual instances, which leads to more CPU usage and longer
algorithm runtime, as shown in Figs. 4(a) and 4(e).

Lessons learnt from the above results suggests that ASA
(R = 1) is an efficient choice in the trade-off of performance
(in terms of makespan) and costs (in terms of CPU time usage
and algorithm run time).

6 CONCLUSIONS

In this paper we studied an important problem of scheduling
dynamic task graphs on dynamic computing environments. We
proposed the ASA algorithm that realistically deals with the
dynamic nature of the task graphs and the underlying platform-
s. The proposed algorithm assigns tasks to idle processors in
multiple rounds with a tentative scheduling strategy to prevent
inefficient pre-committing decisions and avoid unfavorable
assignment of key tasks to slow processors. In addition, the
algorithm applies task duplication to prevent delayed task
completion. Moreover, a look-ahead message transmission
policy is applied to save communication time and thus further
improves overall performance. With these useful techniques,
the proposed algorithm is resilient to dynamic computing envi-
ronments and inaccurate profiling information. Our extensive
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(a) Normalized average CPU time usage versus λ.
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(b) Normalized average makespan versus CCR.

10 20 40 80 160
0.5

1

1.5

2

2.5

3

Number of Processors

N
or

m
al

iz
ed

 A
ve

ra
ge

 M
ak

es
pa

n

HEFT
ETF
Choudhury’s
ASA (R=0)
ASA (R=1)
ASA (R=2)

(c) Normalized average makespan versus number
of processors.
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(d) Normalized average makespan versus number
of nodes.
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(e) Normalized average algorithm run time versus
number of nodes.
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(f) Ratio of number of virtual instances to number
of actual instances versus λ.

Fig. 4. Simulation results on random task graph topologies

simulation results with various test configurations demonstrat-
ed the effectiveness and competitiveness of our algorithm. The
simulation results show that ASA significantly outperforms
three previous peer heuristics under various dynamic scenarios.
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