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Abstract—In collaborative social networks (CSNs), au- happensin most online social networks [3], such as Facebook
tonomous individuals cooperate for their common reciprody Twitter and Weibd [41, [5].
interests. The intrinsic heterogeneity of individuals’ caability With respect to most CSN applications, the public goods

and willingness makes significant impact on the promotion . . -
of cooperation rate. In this paper, we propose a two-phase game (PGG) [6] is widely used to model the cooperation

Heterogeneous Public Goods Game (HPGG) model to study dynamics on CSNs. However, the intrinsic heterogeneity of
the cooperation dynamics in CSNs. We introduce two factors autonomous individuals makes it difficult to design an ap-
to represent the heterogeneity of individual behaviors andthe proach for analyzing the cooperation dynamics in a CSN.
benefit-to-cost enhancement of population, respectivelidased on “Heterogeneity” is the diversity of nature of human intetai,

HPGG CSN model, we quantitatively investigate the relatioship text f d ial struct d individ
between cooperation rate and individuals’ heterogeneousdhay- CONEXLS, Prelerences and social structures, and InGvidu

iors from an evolutionary game perspective. Simulations orthe ~heterogeneity is shown to play an important role in the
population structure of scale-free networks show the evoliion of ~ promotion of cooperation [7]. In PGG modeled CSNs, a round
cooperation in CSNs has no-trivial dependence on the indiduals’ of game can be divided into two phases: investment phase and
heterogeneous behaviors. Compared with standard PGG and payoff phase. In the investment phase, heterogeneity islynai
single-phase heterogeneous PGG, HPGG provides a more prsei ted by the di itv of the individual’ ind
mechanism to promote cooperation rate of CSNs. Finally, dat re.p.resen €d Dy the diversity o e. Individual's _Capf"m' .

traces collected from real experiments also demonstrate th Willingness to cooperate. Due to different contributionghe
preciseness of HPGG in formulating the cooperation dynamie investment phase, individuals reasonably obtain diffegams

on CSNs. in the payoff distribution phase. From the view of evolu-

I ndex Terms—collaborative social network, heterogeneous pub- tionary dynamics, heterogeneity also derives from mutatio
lic goods game, cooperation, evolutionary dynamics, comgk probability, structured network graph, and dynamic linkag
network. etc. Recently, just a few work has partially investigated th
heterogeneity problem in PGG. Cao et al. [8] investigated
the cooperation dynamics with heterogeneous contribsition
Zhang et al. [9] proposed an evolutionary PGG model with an

A social network [1] is a social structure made of individualunequal payoff allocation mechanism to analyze the coepera
called “nodes” which are linked together by one or mortve behaviors.
specific types of interdependency called “edges”, such asln this paper, we systematically formulate and investigate
friendship, kinship, financial exchange, communicatiarkdi the quantitative relationship between the cooperation aad
age, etc. In collaborative social networks (CSNs), automasn the heterogeneity of individuals’ behaviors. The existetkv
individuals with common interests cooperate to accomplishat exploited game theoretical approaches studied thiéasim
relatively complicated tasks for their reciprocity taigeAs problems either from heterogeneous investment phase [8] or
we know, the cooperation rate makes significant impact drom heterogeneous payoff phase [9]. To the best of our
the possibility of achieving the public goal of a CSN. Unforknowledge, this paper is the first work that exploits twogsha
tunately, most CSNs , either off-line CSNs or online CSN#eterogeneous public goods game to study the evolution of
both suffer from the problem of low cooperation rate. Thatooperation on CSNs from both the investment phase and the
is so called “Social dilemma”’Such “Social dilemmas” also payoff phase simultaneously.

_ _ . From the view of evolutionary mechanism, we model the
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in CSNs into HPGG model in which the CSN partic-
ipants (autonomous individuals) are treated as players

TABLE |
SOME IMPORTANT NOTIONS USED IN THE PAPER

Meaning

(or agents). Due to the diversity of players’ social re-Symbol
lations, players’ investments and payoffs are considere(%c
heterogeneous in HPGG. The simultaneous analysis ok,

the investment phase and the payoff phase helps us gaif

a deep insight into the cooperation dynamics on CSNs.ff

We propose two factors to describe individuals’ hetero-x
geneous behavior, i.e., the heterogeneity fagtand the ¢
benefit-to-cost enhancement factorThis configuration

makes HPGG more realistic and precise in modeling mosg

The number of players in a game.

The number of players who take cooperation strategy.
The degree of playei in BA scale-free network

The average degree of BA scale-free network.

The factor for individual's heterogeneous behavior.
The benefit-to-cost enhancement factor for the population.
Threshold used to constrain the rangecof

Threshold used to constrain the rangerof

The player’s evolutionary noise in the game.
Observation noise ofy, ¢ ~ N(0,1).

Observation noise of, £ ~ N(0, 1).

Cooperation rate of a CSh. = %

Playeri’s investment.

Playeri’'s payoff.

Cooperatori’s payoff under HPGG.

Defector;'s payoff under HPGG.

Cooperatori’'s payoff under single-phase heterogeneous PGG.
Defector;'s payoff under single-phase heterogeneous PGG.
The ratio of P to P;p.

The ratio of P/, to P/ .

The probability of playeri copying j's strategy.

CSNs in real world. pe

« We propose two theorems for promoting cooperation ratépi
of CSNs. The two theorems solve the problem of how topzc
choose proper heterogeneity factorand benefit-to-cost P;p
enhancement factorto promote the cooperation rate in a 5{0
special CSN. And we theoretically prove the correctnesan'D
of the proposed theorems. n

« Simulations on the population structure of scale-freeHi—;
networks show the evolution of cooperation in CSNs has
no-trivial dependence on the individuals’ heterogeneous

behaviors. We find some useful laws about cooperation

dynamics on CSNs of heterogeneous population vfggeeiﬂk € fE Tthe nurprl:]er of nelghlé)jors of p:ca%/h@rls t?\z K
comprehensive simulations and real world experimen Sgreek; of verlexwv;. 1he average degree of the networ

including: (1) the cooperation rate monotonically inls’ denoted agk). The terms vertex, individual, participant

creases withr; (2) for an arbitrarily givenr, there are and plgyer are used intgrchangeably in this paper; likefoise
two distinct intervals ofa where the cooperation rateedge’ ;]nt(Tractu_)n, acnglllmk.tt K f the two strat )
monotonically decreases and increases, respectively; an ach playerin a Just takes one ot the two stra egles:
(3) there is a unique turning point of the cooperatio rD. C strategy means a player cooperates with other players,

rate for a heterogeneity factor; and the unique turninvéﬁhIIe D_strategy player does nothlng at the discrete time step
- (he might cooperate at+ 1 if his strategy changes t¢'

point in a specific CSN can be obtained by conductiz{gﬂ ing the strat dat t time ¢
dedicated experiments. We also find the conditions un fing the strategy update process at time gjep

which HPGG outperforms standard PGG and single-
phase heterogeneous PGG in promoting cooperation r&tePopulation structure

in CSNS of hetgrogengous population. By comparative | this paper, we adopt thBA scale-free network to rep-
analysis on the simulation results of the three models, Wgsent the population structure of CSNs, which is constict
discover the intrinsic mechanism of HPGG model that “E‘ccording to the “growth” and “preferential attachment’ane
co-acted tw_o-phase_pollcy promotes cooperative behavighisms. Starting fromn, fully connected nodes, a new node
. The rest of .thIS paper is orgamzeo! as follows. HPGG .modmth m (m < my) edges is added to the system at every step.
is proposed in Section II. In Section I, we theoreticallyrhe new node links ton different nodes by a “preferential
analyze the cooperative behavior and evolutionary dynamigitachment” mechanism. The probability of connecting to an
in CSNs based on HPGG model. In Section IV, we condugkisting node is proportional to its degree, i.e; = ki)Y k;,
simulations and experiments to demonstrate and explain Qufiere j runs over all existing nodes arig is the degree of
findings. In Section V, we analyze related work compreheRode:. After ¢ time steps this algorithm produces a graph with
sively. And finally, we conclude the work in Section VI. N =t + my vertices andnt edges.

II. TWO-PHASEHETEROGENEOUSPGG MODEL C. Two phases in HPGG model

In this section, we model a CSN into a two-phase het-
erogeneous public goods game to investigate multi-per
interactions by focusing on the evolutionary dynamics
cooperation. For the easy understanding of the proposeéim
and theory parts, we list some important notions in Table |.

s nThe proposed HPGG model derives from an extension upon
é%e traditional (standard) PGG model. We divide the process
o%f a game into two phases: investment contribution phase and
payoff distribution phase.
In the investment phase, players contribute into the public
o ) pool heterogeneously. To describe heterogeneity of péaiyer
A. Individual behavior this phase, we let playei's investment determined by its
We consider a CSN witlv players. Playef is represented degreek; and the heterogeneity facter. Here, we usex
as a vertew; of a graphG(V, E), with v; € V. An interaction to denote the willingness of a player in the ivestment phase.
between two players and j is represented by an undirectedrhe degree is explained as the capability of a player in a



certain societya > 0 implies the more powerful a player'scooperators and defectors. Alsa, = 0 denotes the equal
capability is, the bigger a player makes contribution, amme v distribution mechanism (i.e., distribution factor for yéa i
versaa < 0. is %H) Note that “equal’ here does not mean all the

In the payoff phase, players obtain gains from the total profilayers’ share are the same, it means within a certain PGG
heterogeneously. We let the payofffP;, jointly determined (i.e., composed of and itsk; neighbors), all thé:; +1 players’
by the central game playérits k; neighbors, the heterogeneityshare are equal.

factora and the benefit-to-cost enhancement factddetailed The payoff of player thus can be expressed as:

investment formulation and payoff calculation are desatim B ke
Section II-E. Pic =rx(Li+Xsihy) >;Q7k?+zlkla — I @
—Pi =7r X (ElSlIl) X W
D. Population dynamics and strategy update rule where s; is the strategy of neighbat (I runs over alli’s
Let S(t) = (s1(t), s2(t), - , sy (t)) denote a configuration neighbors,s; = 1 for cooperates; = 0 for defect).r is the

of the population strategies;(t) € {C, D} at time stept, benefit-to-cost enhancement factor angt 1 holds to ensure
the global synchronous system dynamics leadS(to+ 1) by that groups of cooperators can obtain positive benefit.
simultaneously updating all the players’ strategies atiogr

to the chosen rule, such as Fermi update rule [10]. Here, by 1ll. COOPERATIVEBEHAVIOR IN HPGG MODEL

synchronous, we mean that player's strategy will not changethe key quantity to characterize the cooperative behavior

(even if it had already changed during its strategy updatiig the cooperation rate, which is defined as the ratio of the

process at time stef until all the otherN—1 players complete cooperator numbeN. to the total number of playe® at the

their strategy updating processes. steady state, i.eg. = 5. It is obvious that the cooperation
The evolution process is the same as the standard evolutipfte ranges from 0 to 1, where 0 corresponds to the case of

ary game. At each step, all nodes are synchronously updaifdyefectors and 1 corresponds to the case of all coopsrator
according to a strategy update rule. Note that in realistic

CSNss, individuals are rational and there may be environatenf h€orem 1. To promote cooperation rate in CSN, 1) given
noise which influences individuals’ decisions (e.g., sggt Neterogeneity facton, we should choose benefit-to-cost en-
mutation). So, to deal with it, we adopt the Fermi updatingancement factor as large as possible; Il) given if a is
rule which considers individual rationality and enviromtsd N€gative (positive), we should chooseas small (large) as
noise. When playef updating its strategy, it will first select aPossible.

neighbor; out from all its k; neighbors at random, and then  proof: For a player,

adoptj’s strategy with the probability P kOt poks(R)® KO+ s (k)
iC Ny Pcli Ry 4

e = ! | @ TR T ek rpekilky
7 1+ exp(P — Pj) /K] _r—l(ﬁ)a rpe — 1 3)
Here, x characterizes the environmental noise, including rpcki \ (k) TPe
bounded rationality, individual trials, errors in decisjcetc. \yhere (k) denotes the ensemble average ovemalhodes.
xk — oo leads to neutral (random) drift whereas— 0 cor- As Eq.(3) indicatesy is the ratio of P, to P;p. So, the

responds to the imitation dynamics where playsrstrategy |argery, is, the more likely playet will choose to cooperate,

replaces playei's whenever; > P;. For finite value ofx, and thus results in a lager. We denote this relationship as
the smallers is, the more likely the fitter strategy is to replace

to the less fit one, thus the value gfindicates the intensity pe ~ x(n) 4
of selection. We next calculate the first derivative gfby differentiating
n with «
E. Investment and payoff an ki N7 —1/ ki \o
Consider the heterogeneous investment contribution phase On = 9o " (@) rpcks (@) ®)

first. Playeri will invest I; = N - k¢ /3;k¢ if he is a coopera- According to the function theory, i, > 0 (or < 0), then

tor, wherej runs over all existingV nodes. lfa > 0 (or < 0), is @ monotonic increasing (or decreasing) functionoof
large-degree (or small-degree) nodes contribute moreeif th/ . >ing (or g
However, in Eq. (5), the sign a¥, is closely related to player

are cooperators. When = 0, all cooperative players havel.,s degreek;. If k; > (k) (or < (k)), thens, > 0 (or < 0).

the same contribution (i.eVi, I; = 1) and our model reverts | | . ' ; :
to the standard PGG model. The defectors contribute nothi\%\ljé"l%nmaes;r;ﬁ:g;;eog’ integrate from 1 4eco on d,dk;,
n

during the investment phase.
Next, we consider the heterogeneous payoff distribution oo
phase. The payoff of each player is distributed according to 5~ Ji 7 Ondk; _ (= 1)(1 + aIn(k))

its neighbors’ degrees, i.e., playés distribution factor is e (k) a?{k)3rp.

calculated ag:?* /(k{* + k). Here,l runs over alli's k; {< 0 ifa<A 1
neighbors. Ifa > 0 (or < 0), nodes with large degree (or = _ where\ = — (6)
small degree) can obtain a higher sharing payoff, both for >0 ifa>A In{k)



Thus, we get &> g
.| monotonic increasing withy, if A
n(e) is : g it e = 7 <<k> -|- -|- k> -1
monotonic decreasing with, if o < A P Casel
Combine Eq.(4,7), we get A0 Aa<O An>0
r-1 <k
(a) is monotonic increasing witly, if o > A )
« " _ )
r monotonic decreasing with, if a < A ki<r-1 > <k> o Case2
An>0 An<O An>0

According to BA scale-free network constructiotk) =
2m > 2,50 % ~ —1.44 < A < 0. So, under a fixed,
wheno < A (or_> A), the co_operatlon ratﬁ.c monoton!ca”y Fig. 1. (Color Online) Conditional solution fah; () > 0 with two cases
decreases (or increases) with Clearly, It is thus indicated of 1y < — 1 and (k) > r — 1.
that by settingx as small (or large) as possible ¢if< X (or >
A)), our HPGG will facilitate the emergence of cooperation.

Thus, the 1) part of Theorem 1 is theoretically explained. where

The proof of the I) part is similar and simpler. According §=1n l /mﬁ (13)
to Eq.(3), we can easily derive tha{r) is monotonic in- r—1 (k)
creasing withr. Combined this with Eq.(4), we judge that the according to Eq. (13), in the region 6f< o < 6, Ay(e) <
cooperation rate. monotonically increases with benefit-to-) will always hold. In case of\,, () > 0, the solution is much
cost enhancement facter B more complicated. Ifk) < —1 (or > r — 1), to guarantee

Theorem 2. Given benefit-to-cost enhancement faetpunder 24 > 0, the value ofa should be set withinv <OUa > ¢

condition of (k; < r—1Nk; < (k))U(k; > r—1Nk; > (k)), under a condlt_|on oft; < (k) U ki >r—1 _((_)r ki < r—

HPGG outperforms (i.e., having a larger cooperation rate}’ ki > (k)). Figure 1 summarizes the conditional results for

single-phase heterogeneous PGG (i.e., heterogeneou§f pado(@) > 0, whereCase 1means(k) < r —1 and Case 2

distribution PGG) in the region ofi < 0 U > 0, where ¢orresponds tdk) > r — 1. However, if (k) < k; <r—1

6 =1In £ /In k. (Case Jorr—1 < k; < (k) (Case 2, in the region of

TR a<0Ua >0, A, (a) is still negative. However, as Theorem

Proof: We definen’ for PGGs that consider only the2 indicates, our aim is to prove that in the entire domain of

heterogeneous payoff distribution phase as: k; (ie., [1,+o0]), whena < 0 ora > 6, A,(a) > 0 wil
. Pl r(peki + 1)kS — (k& + Ky (k)®) glways hold. Thus, the proc_)f is based on Fhe following idea:
=5 ~ T poks % kO if the number of players with degrég (which results in a
1D chvi i

negativeA, («)) is less than number of players with degkee
_rpkitr—1 1 (@)a (9) (which resnu(lts) in a positive\,,(«)), then A, (a) > 0 hokfli.
rpcki rpe \ ki According to [26], the BA scale-free network is power law
where P/, P/, are payoffs of playef in PGGs that consider dependent of the degree distributiaf{/) ~ kE—4, with the
only heterogeneous payoff distribution phase. Considier reexponentd typically satisfyingd = 2.9 +0.1. We then have
tionship (4), we have) ~ x~!(p.). Defining the relationship

(k) 1.—d +00 5 —d r—1,_4
of cooperation rate and heterogeneity factopas- 7(«), we Ji7 Rk + [Tk ks — f(k) k; “dk; > 0
can then redefing ~ x~!(p.) as if (k)<r—1
TRk 4 [k ks — [k dk; < 0
n~ Xil(q'(oé)) (10) fl [ T + f(k) [ T frfl [ i <
. . ) if (k)>r—1
Therefore, the cooperation rate difference can be defined as (14)

An(@)=n—1 The first inequality of Eq. (14) will always hold; the second
n P | ek . inequality of I]Eq. (14) holds under the condition of> 1 +
= T;( ’ ) + (Q) _Emtr-2 (11) (2 + (k)'=?)7=4. Thus, we have proved that in the region of

rpcki \ (k) rpe N ki rpcki a<0Ua >0, A,(a) > 0is hold under condition provided
ConsiderA,(a) > 0, we solve Eq. (11) as in Eq.(13). Combining Egs.(4,10,14), one can always have a
L L b _ positive (negative) cooperation rate improvement wher:
{(w) <ggor(gy) >l ifk<r—1 (12) 0Ua>00<a<b). -
(g5)" <tor(gy)” > ifki>r—1

Solving Eq. (12), we get the following conditional solution V. EXPERIMENTS AND DISCUSSIONS

In this section, we validate two theorems provided in Sec-
a<0Ua>0 tion 1ll. We then compare the performance of HPGG with stan-
dard PGG and single-phase heterogeneous PGG, respectively
We also discuss the intrinsic mechanism of HPGG model and
(ki <r—1Nk <(E)Uki>r—1Nk; > (k)) evaluate cooperation dynamics when global parametensd

under condition of:



Fig. 2. (Color Online) The cooperation rate vs. r for different c. Fig. 3. (Color Online) Cooperation rage, as a function of the heterogeneity
factor « for different r.

r have observation noise. In addition, to collect real world

data traces, we design and emulate a Weibo-like system and - B
carry out experiments with human participation. We use the = o] oot e
real world data traces verify the preciseness of our thealet <. el
results and simulation results. “ e .ty

All the simulations were carried out on a BA scale-free ./ ——e] R s
network with network sizeNV = 1000 and m = mg = 4; r r
therefore, the average degrée) = 8. Initially, cooperators @) (b)

(C) and defectors [p) are randomly distributed among the

i i ili 0 ki ig. 4. (Color Online) The turning point value offor different (k) when
population with equal probability (50%). The equmbnunﬁonsideringpc vs. r relationship in HPGG model. (a) The cooperation rate

frequencies qf cooperators are Optained by averaging OYEWs. r for different o when (k) = 6; (b) The cooperation ratg. vs.  for
3000 generations after a transient time of 10,000 gen@satiodifferent oo when (k) = 10.

Each piece of data is averaged over 1000 runs on 1000
different network3.
cooperation. The same technology can always be found in
. . knowledge sharing management of virtual community.
A. Cooperative behavior of HPGG model In Figgre 3, Weginvestigate the relationship of coo}p/Jeration

Figure 2 reports the relationship of cooperation rat@and rate p. and heterogeneity factar in detail for differentr.
benefit-to-cost enhancement faciofor differenta. One can As Figure 3 shows, for small(r < 4), the cooperation rate
see that the cooperation rate monotonically increases withp,, first decreasesa( < 0) and then increasesy(> 0). For
for all o (=6 < a < 6). For a fixedr, whena < 0, the coop- moderate- (6 < r < 8), the cooperation ratg. first decreases
eration ratep. monotonically decreases with (see Figure 2); and then increases. After that, it will again decrease finst a
whena > 2, the cooperation ratg. monotonically increases then increase. For a large(r > 10), the cooperation ratg,
with o (see Figure 2). Remember that > 0 represents again first decreases and then increases.
realistic CSN where people with complex social relatiopshi  The simulation results shown in Figures 2 and 3 coincide
strong powers, high positions will invest and receive mare iwith suggestions in Theorem 1, indicating that our HPGG
a project. Our result (Figure 2) reveals the fact that powerfmodel is correct and efficient.
people (i.e., large-degree nodes) always cooperate totke&p
positions, because cooperation (communication) can @se; |\ o~~\ gondo i PGG
their social ties and thus get a larger payoff. Once theyalefe ] . ) ]
(isolate), they might lose their social ties, become a small [N Figure 2, We find an interesting phenomenon that for
degree node and thus get a smaller payoff. Accordingly, 4f< @ < 6, givenr (r < (k)), p. monotonically increases with
a < 0, Figure 2 reveals the same fact that cooperation is the However, ifr > (k) + 1, thea = 0 curve exceeds other
only right way to survive. Besides, in Figure 2, we observ/e!ves _and becom_es the most cooperative curve. We redo our
that for anya, to promote cooperation, one should chopses  Simulations by settm@@ = 6 and 10 respectively, the results
large as possible. This can be explained by stimulatingriheg'® the same (see Figure 4), indicating that (k) + 1 is
[11]. Large stimulation (i.e., the benefit-to-cost enhaneat @ turning point. Recall thatr = 0 denotes the mechanism of
factor  in our paper) will certainly arouse an interest irfqual contribution and distribution. Our results sugglest if

the benefit-to-cost enhancement factds large enough (i.e.,
3According to the pioneering work [23], we have tried to agermver 50 larger than network average degrgg), then HPGG model

different networks in the first place. However, the averageperation rate has no advantage over the standard PGG model.
is not stable in our HPGG. To be concrete,aif < 0, averaging over 50 Th USi be f din th
different networks can get a stable cooperation rate; hewethena > 0, € same conclusion can be found In tae- p curve.

the cooperation rate is not stable until averaging over Hiiérent networks. Returning to Figure 3, we observe that (k) +1 is a turning
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—=— <k>=6,r=6 —=— <k>=10,r=10
051 —e— <k>=6,r=7 051 —e—<k>=10,r=11
| <k=6r=8 o] e <e=t0m12

(@) (b)

Fig. 5. (Color Online) The turning point value offor different (k) when
consideringp. vs. « relationship in HPGG model. (a) Cooperation rate
as a function of the heterogeneity facterfor different» when (k) = 6; (b)
Cooperation rate. as a function of the heterogeneity facterfor different
r when (k) = 10.

Fig. 6. (Color Online) Improvement of cooperation ratep,,,, as a function
of the heterogeneity factax for different r.
point. The curve mutates when= 0 (the mechanism of equal
contribution and distribution) and > 8. Figure 5 show the
corresponding result by setting) = 6 and 10 respectively.
Our result again shows that if the benefit-to-cost enhanoem
factor r is large enough (e.g., larger than average network
degree(k)), then HPGG model has no advantage over the a; = () + G
standard PGG model. Combining Figures 2-5, we have:
Guidance The introduction of heterogeneity into standard ri={r) +& (15)
PGG can always promote cooperation in CSNs. Howev@fhere «; is used to represent heterogeneity factor with ob-
when the benefit-to-cost enhancement fact¢caused by en- servation noise(; is a normal distribution variable with zero

vironment changes) exceeds a certain threshold (kg-+1), mean (i.e.,/ "> ¢d¢ = 0) and unit variance whose probability
we should go back to use the standard PGG to model CSN%nsiw function satisfiesP(¢) — 1 ¢<*/2 The same
= o :

and used. Considering heterogeneity of observation noise i
éeality, we redefiner andr as:

definition is also forr;.
C. HPGG vs. single-phase heterogeneous PGG The experiments are described as following: in Figure 7(a),

Here, we simulate the cooperative behavior of heterog&e investigate the relationship of the cooperation rate
neous payoff distributon PGG. Again, the BA scale-fre@nd the heterogeneity facter in detail for differentr. Here
network is also set taV = 1000 andm = mo = 4. The €ach playeri is assigned witha; individually. (a) is set
equilibrium frequencies of cooperators are obtained by-av@s 2.0, 4.0 and 6.0 respectively. Note that for each network
aging over 3000 generations after a transient time of 10,00#lization (1000 total), alkv; are regenerated and during
generations. Each piece of data is averaged over 1000 rdfs000 evolutionary steps of a specified networks, the value
on 1000 different networks. Figure 6 reports the perforneangf : are fixed. In Figure 7(b), we explore the relationship of
improvement of HPGG over single-phase heterogeneous P@operation rate,. and benefit-to-cost enhancement faator
Here, givena andr, imp,. = puraa — ps, Wherepgpae 1N detail for differento (o > 0). Here each playeris assigned
the cooperation rate in the PGG model only having tHeor €ach network realization, all are regenerated and during
heterogeneous payoff distribution phase. As Figure 6 show$;000 evolutionary steps of a specified networks, the vaiue
whena < 0 or a > 6 (see Eq. (13)), we can always havéi are fixed. Our results show that with observation noise on
improvementimp,,. . HPGG, individual's heterogeneity can promote cooperation

In simulation, we can calculate condition in Theory 2 284S Figure 7 indicated, the noise ofhas little influence on
r > 2.4. According to theoretical analysis,= 2 will diverge COOperation rate.
from simulation results (as Figure 6 shows, the- 2 curve
intersects Withimppc =0 curve _further away fr_om the origin_ E. Intrinsic mechanism of HPGG
(o = 0), and this coincides with our theoretical analysis in

Theorem 2). In this subsection, we try to explain the intrinsic mechanis

of HPGG model in the effectiveness of promoting cooperative
) . behavior via detecting the co-action of the two phases.
D. Observation noise of o and r Figure 8 shows ther — p.. curves for different- in single-

In this subsection, we discuss the cooperative behavigmase heterogeneous PGGs (Figure 8(a) is the heterogeneous
with observation noise on andr. As we know in network investment contribution PGG modelf), Figure 8(b) is the
science that when users observe global factors there iyslwhaeterogeneous payoff distribution PGG mod&l.§, and we
observation noise unless the factors are publicly acdessibseM; to represent our proposed HPGG model). In the region
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Fig. 8. (Color online) The cooperation raje. vs. « for different r in
(b) Cooperation rate., as a function of heterogeneity factar single-phase heterogeneous PGG.
for different benefit-to-cost enhancement factofr = 4.0, 8.0
and 12.0 respectively) with standard normal distributidiser-
vation noise¢.

F. Experiments on an emulated Weibo-like system
Fig. 7. (Color Online) Comparison of cooperation rate withservation

noise. The Weibo system can be considered as a Chinese version
of Twitter. Sina Weibo [4], used by over 30% of Chinese
Internet users, is one of the most popular online social odtw
systems in China. Most Weibo systems, including Sina Weibo
[4] and Tencent Weibo [5] in China, adopt a similar mar-
keting strategy: users publish, re-publish or quote irsténg

of a < 0Ua > 6, the cooperation rate enhancemenp,_ > 0 information (e.g., messages, images, music and video fies)

is straightforward. Both\/; and M, are C' and approaching attract their networked users and instant access followéres

D. Here, X € {M;,M,} is C (or D) means that in model Weibo system operator shares a part of advertisement income
X, the cooperator (or defector) dominates the defector (8ith users according to their contributions in Web page ad-
cooperator) in the social system. Whih knows ), is going  Vertisement distribution (advertisement coverage cbuation).

to decrease his cooperation rate, he shdsthe sincerity This marketing strategy encourages Weibo users to invest in
of cooperation by increasing his cooperation rate. On thglilding big social networks and posting original attreeti
other hand,M, observesiM;’s sincerity and also agrees tomessages, especially for some celebrity users.

cooperate. It is indicated that the intrinsic powerd§ is that  In this section, we design an emulated Weibo-like system to
it combines)M,; and M,, makes them stimulate each otheinvestigate the cooperation dynamics in an online CSN. The
during the evolutionary game steps, and thus departs frem gmulated system has 100 users. The social relationshipgmon
social dilemma. We can infer that HPGG model has a built-the 100 users forms a scale-free topology, in which each node
function of reputation. However, in the region 0f< oo < §, is a user and each edge represents social relationshipdretwe
the cooperation rate is decreaseéch,. < 0). Here M, is C  two users. 100 students participated our experiments igtwhi
and going to beD; M, is D and going to be”. M, observes each student acted as a user (a player of HPGG). Each student
that M, prefers to cooperate, st/; choosesD to maximize was encouraged to try their best to maximize her/his payoff.
its payoff opportunistically)Ms observesM;’s behavior () In our multiple rounds HPGG model, each player has two
and choosed as the response, thus they run into the sociatrategiesC' andD. Here, a player choosing strategy means
dilemma. she/he invests in publishing original messages in the ntirre



round and a player choosirg means she/he just re-publishes
or quotes her/his neighbors’ messages with no investment. |
each round, a user must choose one stratégyr D. In the
first round, all users’ strategies are randomly set by thiegys
50% C strategy and 50% strategy. From the second round,

before decision making, each user can see her/his payaff fro . os " g;g;: _———r
the previous round and some information about her/his reigh & o4 o 1
. - - . 03] —=- realo=2 08 —a—a=6theo | 4
borhood users, including strategies, reference invedsnezal —e—realo=4 o8 —o—a=6real
. . 0.2 ’ 2 X 4
investments and payoffs from the previous round. The system 1] —*- reala=6 T esbnose
will give a reference investment; = N - k*/3;k in the 99
current round if she/he choosés strategy. TheC' strategy G L R AL L
user can use the reference investment or give her/his pedfer r

investment. Here, the deviation from the reference inveatm _ _ _
is the observation noise af Note that heterogeneity of HPGGF'g' 9. (Col_or online) Real world results of cooperatiorerat, as a _functlon

. . of the benefit-to-cost enhancement factofor different heterogeneity factor
model is hereby presented in our emulated system. When @}, — 2.0, 4.0 and 6.0 respectively). The inset graph is a comparison among
users have chosen their strategies, the system uses Eaj.(2) bf theoretical, theoretical with noise and real world réesdbr o = 6.0.
compute each user’s payoff from the current round.

After each round, we collect all users’ data traces and

compute the cooperation rate of the round. Then, the game T —
goes to the next round. When the standard deviation of the IS e, Jmme 1
cooperation rates of ten recently continuous rounds islemal ok o -0 <P E A <pe ]
than 0.05, we consider the mean cooperation rate to be stable 100] 60 :
and then end the game. N 1

As described in Section Il, the factors and r play % 107 o grpge il R o
important roles in formulating heterogeneity of HPGG CSNSs. e e e ]
In Weibo-like application scenarios, the realistic megnaf %0 ——<Pd>
a is the amplifying factor of the cost for a Weibo user P ]
in publishing attractive information and maintaining Hés/ R S S L B L A A
social relationships and the amount of her/his page visitor r
can be considered as the average willingness of Weibo users t _
build and boost their social networks. The realistic megmif (2) The mean payoffs of cooperatd:) and defectors Py) in

L the population as well as the ones of cooperators and deecto
r indicates the rate of Return On Investment (ROI) for users  lying around the boundary, i.e(P?) and (P%).

in a Weibo system, i.e., the ratio of obtained advertisement
income share from the Weibo system operator to a user’s o
investment. Different CSN applications have their différe 09] —m—p or

. . . . . . e->d LC TR P,

« and r. In Weibo-like application scenarios, it is easy to o8] =O—=p,, oy N . p“ i
0441, \ d->c
0.3 \\ k

o
3
L

know that, for a user, biggér (social connections) and more £

attractive information publishing lead to more investmand g

bigger«. It is reasonable that more investment leads to more 5"
E }

payoff. In our experimentsy andr are set by the emulated
system at server side. The observation noise isfdetermined
by users’ investment inputs and the noise-a$ stochastically
set at server side according to a normal distribution (See
Eq.(15)).

We evaluate the cooperative behavior of the theoretical
model in real world application, and the results are shown (b) The transformation probabilities of cooperators anfcters
n Flg.ure 9. AS.We can see that. the human’s .COOperatl¥|%. 10. (Color online) Qualitative explanation to the rearld experiment
behavior approximately accords with our theoretical mssulyesuits from mean payoffs of cooperators and defectors nnpegoffs of
e.g., the inset graph of Figure 9 is a comparison amgngf boundary cooperators and defectors, as well as transfiormatobability
theoretical model, theoretical model with noise and realadvo between cooperators and defectors. The heterogeneityr fads set to 2.0.
results forae = 6. We can see that the real world results are
consistent with theoretical and theoretical-noise rssinltthe
sense that the evolutionary tendencies of cooperativevimha which can not very precisely describe the observed noise
are consistent, and the real world results always lie batwe@evitably. Secondly, human’s strategy is also noised &l re
theoretical and theoretical-noise results. We argue thiat tworld experimental environment, i.e., the process of human
result is acceptable and anticipated, and the reason candkeision of C' or D strategy is much more complicated
multi-fold. Firstly, in theoretical-noise model, we assemna than strategy selection and updating rules specified in most
normal distribution with zero mean and unit variance noiséheoretical models. Besides, during the process of exetisn




(f) Round 6 (g) Round 7 (h) Round 8 i (j) Round 10

Fig. 11. (Color online) Snapshots of cooperators (blue) deféctors (red) on a 100 nodes scale-free networkofo2.0 andr = 6.0 of the first 10
evolutionary rounds. At the beginning (Round 1), coopesatnd defectors are randomly distributed with equal pritibabrhrough dynamic transformation
between cooperators and defectors (i.e., Rounds 2-10sodledt by P._ - ; and P;_~ ), the network evolves into Evolutionary Stable Strategy.

we also collect feedback from students that players alwagsund has no transformation probability).
deviates from his/her own history investment and payoffjevh  Finally, we investigate the dynamic cluster formation pro-
the neighbors information (e.g., strategy, investmenyoffa cess at different evolutionary time steps, ite= 1,2,---,10
etc.) are not fully taken into consideration most of the timéor «=2.0 andr = 6.0, the results are shown in Figure
To name but a few, these factors jointly conclude that tHel. At the beginning (Round 1), cooperators and defectors
real world noise can be conjectured as an approximatigee randomly distributed with equal probability. Then the
skew normal distribution. However, the formulation of thizooperators invade their defective neighbors quickly @zt
“deviation” is always ethological, which is hard to be exfili to a high cooperation rate ¢f. ~ 0.68. After that, through
expressed mathematically in online CSNs. dynamic transformation between cooperators and defectors
To qualitatively explain the real world results in Figures®  (i.e., the behavior shown by the inset graph of Figure 10(b))
next evaluate the mean payoffs of cooperators and defentorghe cooperation rate gradually decreases and preserve to a
the population as well as the ones of cooperators and desecgfeady level ofp. ~ 0.59 for the subsequent rounds.
lying around the boundary. As Figure 10(a) shown, we can
find that the cooperators always have a larger payoff over V. RELATED WORK
defectors, i.e.{P.) > (P4). This indicates that players will  Traditionally, in an infinite well-mixed population, coae
favor to cooperate because thestrategy results in a biggertion cannot emerge under replicator dynamics [12]. However
income, and thus the cooperation rate > 50% holds as observations in the real world usually show the opposite, th
Figure 9 shown. The up-left inset graph shows the relatipnsiplayers are always altruistic. To explain the emergence and
between cooperators and defectors lying around the boyndafiaintenance of cooperative behavior, several mechaniawes h
As one can seéP?) > (P}), which indicates that boundarybeen invoked, such as kin selection [13], direct or indirect
cooperators will invade their defective neighbors and Itesureciprocity [14], group selection [15], voluntary parpeaition
in an increase of cooperators. However, the defectors do &), punishment [17], and so on.
disappear in the system, that's because defectors can forrAmong these work, by introducing spatial structure, the
small compact clusters (as up-right inset graph of Figu@)10 pioneering work done by Nowak and May [18] has increas-
shows, (P;) ~ (P}), which indicates that the defectors aréngly attracted interest from different fields [19] as sfipant
placed isolatedly in the ocean of cooperators, i.e., most @ftensions of traditional evolutionary game theory foogsi
defectors are boundary defectors) to compete with coopsraton well-mixed populations. In spatial evolutionary games
and maintain a dynamic steady state. (SEGSs), individuals are situated on the vertices of a graph,
We also evaluate the transformation probabilities of coopnd the edges indicate interactions among individuals. The
erators and defectors. Here we uBe,, denoting the trans- evolutionary success of an individual is determined by its
formation probability from cooperators to defectors dd,. payoff accrued in pairwise interactions with its neighb@@j.
denoting the opposite transformation probability. Fromure In this context, the network topology plays a key role in the
10(b), we can see thaft.,; < P;. always holds, which evolution of cooperation, which has been widely studiedrove
indicates that more defectors turn to play as cooperatars ththe years, e.g., regular networks [21], small-world neksor
cooperators turning to be defectors, and thus the cooparatj22] and scale-free networks [23]. Quite recently, the diglap
rate increases. The inset graph in Figure 10(b) descritees tietworks [24] and the mobility of players [25] have also
evolution of transformation probability in the first 10 ralsn been studied which consider the mutual interaction between
for « = 2.0, = 6.0 (i.e., Rounds 2-10, note that the firsinetwork topology and evolution of strategies.
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Recently, a prestigious work [26] found that most socigt] F. C. Santos, F. L. Pinheiro, T. Lenaerts and J. M. Pach&he role of

networks’ degree observe power law distribution. Based on diversity in the evolution of cooperatiodournal of Theoretical Biology,
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this finding, heterogeneity (diversity)_ is becoming one (ﬁ] X.-B. Cao, W.-B. Du, and Z.-H. Rong, The evolutionary fiabgoods
the hottest research focuses on social networks. In [6], the game on scale-free networks with heterogeneous investrbytica A,

authors studied the cooperation dynamics on heterogenegyﬁsi(f‘)ihlaz::'lﬁsgé Zgalgé W.B. Du, B-H. Wang and X.-B. G
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done on the effort of a substantial and persistent cooperatl™ p \amics Cambridge University Press, 1998, Cambridge.
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