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Cooperation Dynamics on Collaborative Social
Networks of Heterogeneous Population
Guiyi Wei, Ping Zhu, Athanasios V. Vasilakos, Yuxin Mao, JunLuo and Yun Ling

Abstract—In collaborative social networks (CSNs), au-
tonomous individuals cooperate for their common reciprocity
interests. The intrinsic heterogeneity of individuals’ capability
and willingness makes significant impact on the promotion
of cooperation rate. In this paper, we propose a two-phase
Heterogeneous Public Goods Game (HPGG) model to study
the cooperation dynamics in CSNs. We introduce two factors
to represent the heterogeneity of individual behaviors andthe
benefit-to-cost enhancement of population, respectively.Based on
HPGG CSN model, we quantitatively investigate the relationship
between cooperation rate and individuals’ heterogeneous behav-
iors from an evolutionary game perspective. Simulations onthe
population structure of scale-free networks show the evolution of
cooperation in CSNs has no-trivial dependence on the individuals’
heterogeneous behaviors. Compared with standard PGG and
single-phase heterogeneous PGG, HPGG provides a more precise
mechanism to promote cooperation rate of CSNs. Finally, data
traces collected from real experiments also demonstrate the
preciseness of HPGG in formulating the cooperation dynamics
on CSNs.

Index Terms—collaborative social network, heterogeneous pub-
lic goods game, cooperation, evolutionary dynamics, complex
network.

I. I NTRODUCTION

A social network [1] is a social structure made of individuals
called “nodes” which are linked together by one or more
specific types of interdependency called “edges”, such as
friendship, kinship, financial exchange, communication link-
age, etc. In collaborative social networks (CSNs), autonomous
individuals with common interests cooperate to accomplish
relatively complicated tasks for their reciprocity targets. As
we know, the cooperation rate makes significant impact on
the possibility of achieving the public goal of a CSN. Unfor-
tunately, most CSNs , either off-line CSNs or online CSNs,
both suffer from the problem of low cooperation rate. That
is so called “Social dilemma”1 Such “Social dilemmas” also
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1The Prisoner Dilemma Game model first illustrates the conflict of interest
between what is best for the individual and what is best for the group, and
creates the social dilemma [2].

happens in most online social networks [3], such as Facebook,
Twitter and Weibo2 [4], [5].

With respect to most CSN applications, the public goods
game (PGG) [6] is widely used to model the cooperation
dynamics on CSNs. However, the intrinsic heterogeneity of
autonomous individuals makes it difficult to design an ap-
proach for analyzing the cooperation dynamics in a CSN.
“Heterogeneity” is the diversity of nature of human interaction,
contexts, preferences and social structures, and individual
heterogeneity is shown to play an important role in the
promotion of cooperation [7]. In PGG modeled CSNs, a round
of game can be divided into two phases: investment phase and
payoff phase. In the investment phase, heterogeneity is mainly
represented by the diversity of the individual’s capability and
willingness to cooperate. Due to different contributions in the
investment phase, individuals reasonably obtain different gains
in the payoff distribution phase. From the view of evolu-
tionary dynamics, heterogeneity also derives from mutation
probability, structured network graph, and dynamic linkage,
etc. Recently, just a few work has partially investigated the
heterogeneity problem in PGG. Cao et al. [8] investigated
the cooperation dynamics with heterogeneous contributions.
Zhang et al. [9] proposed an evolutionary PGG model with an
unequal payoff allocation mechanism to analyze the coopera-
tive behaviors.

In this paper, we systematically formulate and investigate
the quantitative relationship between the cooperation rate and
the heterogeneity of individuals’ behaviors. The existed work
that exploited game theoretical approaches studied the similar
problems either from heterogeneous investment phase [8] or
from heterogeneous payoff phase [9]. To the best of our
knowledge, this paper is the first work that exploits two-phase
heterogeneous public goods game to study the evolution of
cooperation on CSNs from both the investment phase and the
payoff phase simultaneously.

From the view of evolutionary mechanism, we model the
cooperation in CSNs into a two-phase Heterogeneous Public
Goods Game (HPGG). Based on HPGG CSN model, we quan-
titatively investigate the relationship between cooperation rate
and individuals’ heterogeneous behaviors from an evolutionary
game theoretic perspective. Our contributions in this workare
multi-fold:

∙ We novelly model the problem of cooperation dynamics

2Akin to a hybrid of Twitter and Facebook, Weibo refers to microblogging
services in China. Weibo helps its users build their own online social
networks on which multimedia information, including text messages, graphical
emoticons, images, music or video files, can be shared through users’ online
social relations.
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in CSNs into HPGG model in which the CSN partic-
ipants (autonomous individuals) are treated as players
(or agents). Due to the diversity of players’ social re-
lations, players’ investments and payoffs are considered
heterogeneous in HPGG. The simultaneous analysis on
the investment phase and the payoff phase helps us gain
a deep insight into the cooperation dynamics on CSNs.

∙ We propose two factors to describe individuals’ hetero-
geneous behavior, i.e., the heterogeneity factor� and the
benefit-to-cost enhancement factorr. This configuration
makes HPGG more realistic and precise in modeling most
CSNs in real world.

∙ We propose two theorems for promoting cooperation rate
of CSNs. The two theorems solve the problem of how to
choose proper heterogeneity factor� and benefit-to-cost
enhancement factorr to promote the cooperation rate in a
special CSN. And we theoretically prove the correctness
of the proposed theorems.

∙ Simulations on the population structure of scale-free
networks show the evolution of cooperation in CSNs has
no-trivial dependence on the individuals’ heterogeneous
behaviors. We find some useful laws about cooperation
dynamics on CSNs of heterogeneous population via
comprehensive simulations and real world experiments,
including: (1) the cooperation rate monotonically in-
creases withr; (2) for an arbitrarily givenr, there are
two distinct intervals of� where the cooperation rate
monotonically decreases and increases, respectively; and
(3) there is a unique turning point of the cooperation
rate for a heterogeneity factor; and the unique turning
point in a specific CSN can be obtained by conducting
dedicated experiments. We also find the conditions under
which HPGG outperforms standard PGG and single-
phase heterogeneous PGG in promoting cooperation rate
in CSNs of heterogeneous population. By comparative
analysis on the simulation results of the three models, we
discover the intrinsic mechanism of HPGG model that the
co-acted two-phase policy promotes cooperative behavior.

The rest of this paper is organized as follows. HPGG model
is proposed in Section II. In Section III, we theoretically
analyze the cooperative behavior and evolutionary dynamics
in CSNs based on HPGG model. In Section IV, we conduct
simulations and experiments to demonstrate and explain our
findings. In Section V, we analyze related work comprehen-
sively. And finally, we conclude the work in Section VI.

II. T WO-PHASEHETEROGENEOUSPGG MODEL

In this section, we model a CSN into a two-phase het-
erogeneous public goods game to investigate multi-person
interactions by focusing on the evolutionary dynamics of
cooperation. For the easy understanding of the proposed model
and theory parts, we list some important notions in Table I.

A. Individual behavior

We consider a CSN withN players. Playeri is represented
as a vertexvi of a graphG(V,E), with vi ∈ V . An interaction
between two playersi and j is represented by an undirected

TABLE I
SOME IMPORTANT NOTIONS USED IN THE PAPER

Symbol Meaning
N The number of players in a game.
NC The number of players who take cooperation strategy.
ki The degree of playeri in BA scale-free network
⟨k⟩ The average degree of BA scale-free network.
� The factor for individual’s heterogeneous behavior.
r The benefit-to-cost enhancement factor for the population.
� Threshold used to constrain the range of�.
� Threshold used to constrain the range ofr.
� The player’s evolutionary noise in the game.
� Observation noise of�, � ∼ N(0, 1).
� Observation noise ofr, � ∼ N(0, 1).
�c Cooperation rate of a CSN,�c = NC

N
.

Ii Playeri’s investment.
Pi Playeri’s payoff.
PiC Cooperatori’s payoff under HPGG.
PjD Defectorj ’s payoff under HPGG.
P ′

iC
Cooperatori’s payoff under single-phase heterogeneous PGG.

P ′

jD
Defectorj ’s payoff under single-phase heterogeneous PGG.

� The ratio ofPiC to PiD.
�′ The ratio ofP ′

iC
to P ′

iD
.

Hi→j The probability of playeri copying j ’s strategy.

edgeeij ∈ E. The number of neighbors of playeri is the
degreeki of vertex vi. The average degree of the network
is denoted as⟨k⟩. The terms vertex, individual, participant
and player are used interchangeably in this paper; likewisefor
edge, interaction, and link.

Each player in a CSN just takes one of the two strategies:C
or D. C strategy means a player cooperates with other players,
while D strategy player does nothing at the discrete time step
t (he might cooperate att + 1 if his strategy changes toC
during the strategy update process at time stept).

B. Population structure

In this paper, we adopt theBA scale-free network to rep-
resent the population structure of CSNs, which is constructed
according to the “growth” and “preferential attachment” mech-
anisms. Starting fromm0 fully connected nodes, a new node
with m (m ≤ m0) edges is added to the system at every step.
The new node links tom different nodes by a “preferential
attachment” mechanism. The probability of connecting to an
existing nodei is proportional to its degree, i.e.,pi = ki/Σjkj ,
wherej runs over all existing nodes andki is the degree of
nodei. After t time steps this algorithm produces a graph with
N = t+m0 vertices andmt edges.

C. Two phases in HPGG model

The proposed HPGG model derives from an extension upon
the traditional (standard) PGG model. We divide the process
of a game into two phases: investment contribution phase and
payoff distribution phase.

In the investment phase, players contribute into the public
pool heterogeneously. To describe heterogeneity of players in
this phase, we let playeri’s investment determined by its
degreeki and the heterogeneity factor�. Here, we use�
to denote the willingness of a player in the ivestment phase.
The degree is explained as the capability of a player in a
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certain society.� > 0 implies the more powerful a player’s
capability is, the bigger a player makes contribution, and vice
versa� < 0.

In the payoff phase, players obtain gains from the total profit
heterogeneously. We let the payoff ofi, Pi, jointly determined
by the central game playeri, itski neighbors, the heterogeneity
factor� and the benefit-to-cost enhancement factorr. Detailed
investment formulation and payoff calculation are described in
Section II-E.

D. Population dynamics and strategy update rule

Let S(t) = (s1(t), s2(t), ⋅ ⋅ ⋅ , sN (t)) denote a configuration
of the population strategiessi(t) ∈ {C,D} at time stept,
the global synchronous system dynamics leads toS(t+1) by
simultaneously updating all the players’ strategies according
to the chosen rule, such as Fermi update rule [10]. Here, by
synchronous, we mean that player’s strategy will not change
(even if it had already changed during its strategy updating
process at time stept) until all the otherN−1 players complete
their strategy updating processes.

The evolution process is the same as the standard evolution-
ary game. At each step, all nodes are synchronously updated
according to a strategy update rule. Note that in realistic
CSNs, individuals are rational and there may be environmental
noise which influences individuals’ decisions (e.g., strategy
mutation). So, to deal with it, we adopt the Fermi updating
rule which considers individual rationality and environmental
noise. When playeri updating its strategy, it will first select a
neighborj out from all itski neighbors at random, and then
adoptj’s strategy with the probability

Hi→j =
1

1 + exp[(Pi − Pj)/�]
. (1)

Here, � characterizes the environmental noise, including
bounded rationality, individual trials, errors in decision, etc.
� → ∞ leads to neutral (random) drift whereas� → 0 cor-
responds to the imitation dynamics where playerj’s strategy
replaces playeri’s wheneverPj > Pi. For finite value of�,
the smaller� is, the more likely the fitter strategy is to replace
to the less fit one, thus the value of� indicates the intensity
of selection.

E. Investment and payoff

Consider the heterogeneous investment contribution phase
first. Playeri will invest Ii = N ⋅k�i /Σjk

�
j if he is a coopera-

tor, wherej runs over all existingN nodes. If� > 0 (or < 0),
large-degree (or small-degree) nodes contribute more if they
are cooperators. When� = 0, all cooperative players have
the same contribution (i.e.,∀i, Ii = 1) and our model reverts
to the standard PGG model. The defectors contribute nothing
during the investment phase.

Next, we consider the heterogeneous payoff distribution
phase. The payoff of each player is distributed according to
its neighbors’ degrees, i.e., playeri’s distribution factor is
calculated ask�i /(k

�
i + Σlk

�
l ). Here, l runs over alli’s ki

neighbors. If� > 0 (or < 0), nodes with large degree (or
small degree) can obtain a higher sharing payoff, both for

cooperators and defectors. Also,� = 0 denotes the equal
distribution mechanism (i.e., distribution factor for player i
is 1

ki+1
). Note that “equal” here does not mean all theN

players’ share are the same, it means within a certain PGG
(i.e., composed ofi and itski neighbors), all theki+1 players’
share are equal.

The payoff of playeri thus can be expressed as:
{

PiC = r × (Ii +ΣlslIl)×
k�

i

k�

i
+Σlk�

l

− Ii

PiD = r × (ΣlslIl)×
k�

i

k�

i
+Σlk�

l

(2)

where sl is the strategy of neighborl (l runs over all i’s
neighbors,sl = 1 for cooperate,sl = 0 for defect).r is the
benefit-to-cost enhancement factor andr > 1 holds to ensure
that groups of cooperators can obtain positive benefit.

III. C OOPERATIVE BEHAVIOR IN HPGG MODEL

The key quantity to characterize the cooperative behavior
is the cooperation rate, which is defined as the ratio of the
cooperator numberNC to the total number of playersN at the
steady state, i.e.,�c = NC

N . It is obvious that the cooperation
rate ranges from 0 to 1, where 0 corresponds to the case of
all defectors and 1 corresponds to the case of all cooperators.

Theorem 1. To promote cooperation rate in CSN, I) given
heterogeneity factor�, we should choose benefit-to-cost en-
hancement factorr as large as possible; II) givenr, if � is
negative (positive), we should choose� as small (large) as
possible.

Proof: For a playeri,

� =
PiC

PiD
≈

k�i + �cki⟨k⟩
�

�cki⟨k⟩�
−

k�i + ki⟨k⟩
�

r�cki⟨k⟩�

=
r − 1

r�cki

( ki
⟨k⟩

)�

+
r�c − 1

r�c
(3)

where⟨k⟩ denotes the ensemble average over allN nodes.
As Eq.(3) indicates,� is the ratio ofPiC to PiD. So, the

larger� is, the more likely playeri will choose to cooperate,
and thus results in a lager�c. We denote this relationship as

�c ∼ �(�) (4)

We next calculate the first derivative of� by differentiating
� with �

�� =
∂�

∂�
= ln

( ki
⟨k⟩

) r − 1

r�cki

( ki
⟨k⟩

)�

(5)

According to the function theory, if�� > 0 (or < 0), then
� is a monotonic increasing (or decreasing) function of�.
However, in Eq. (5), the sign of�� is closely related to player
i’s degreeki. If ki > ⟨k⟩ (or < ⟨k⟩), then�� > 0 (or < 0).
Using mean field theory, integrate from 1 to+∞ on ��dki,
we can approximate�� as

�� ≈

∫ +∞
1

��dki

⟨k⟩
=

(r − 1)(1 + � ln⟨k⟩)

�2⟨k⟩3r�c

⇒

{

< 0 if � < �

> 0 if � > �
where� = −

1

ln⟨k⟩
(6)
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Thus, we get

�(�) is

{

monotonic increasing with�, if � > �

monotonic decreasing with�, if � < �
(7)

Combine Eq.(4,7), we get

�(�) is

{

monotonic increasing with�, if � > �

monotonic decreasing with�, if � < �
(8)

According to BA scale-free network construction,⟨k⟩ =
2m ≥ 2, so −1

ln 2
≈ −1.44 ≤ � < 0. So, under a fixedr,

when� < � (or > �), the cooperation rate�c monotonically
decreases (or increases) with�. Clearly, It is thus indicated
that by setting� as small (or large) as possible (if� < � (or >
�)), our HPGG will facilitate the emergence of cooperation.
Thus, the II) part of Theorem 1 is theoretically explained.

The proof of the I) part is similar and simpler. According
to Eq.(3), we can easily derive that�(r) is monotonic in-
creasing withr. Combined this with Eq.(4), we judge that the
cooperation rate�c monotonically increases with benefit-to-
cost enhancement factorr.

Theorem 2. Given benefit-to-cost enhancement factorr, under
condition of(ki < r−1∩ki < ⟨k⟩)∪ (ki > r−1∩ki > ⟨k⟩),
HPGG outperforms (i.e., having a larger cooperation rate)
single-phase heterogeneous PGG (i.e., heterogeneous payoff
distribution PGG) in the region of� < 0 ∪ � > �, where
� = ln ki

r−1
/ ln ki

⟨k⟩ .

Proof: We define�′ for PGGs that consider only the
heterogeneous payoff distribution phase as:

�′ =
P ′
iC

P ′
iD

≈
r(�cki + 1)k�i − (k�i + ki⟨k⟩

�)

r�cki × k�i

=
r�cki + r − 1

r�cki
−

1

r�c

( ⟨k⟩

ki

)�

(9)

whereP ′
iC , P

′
iD are payoffs of playeri in PGGs that consider

only heterogeneous payoff distribution phase. Consider rela-
tionship (4), we have� ∼ �−1(�c). Defining the relationship
of cooperation rate and heterogeneity factor as�c ∼ �(�), we
can then redefine� ∼ �−1(�c) as

� ∼ �−1(�(�)) (10)

Therefore, the cooperation rate difference can be defined as:

Δ�(�) = � − �′

=
r − 1

r�cki

( ki
⟨k⟩

)�

+
1

r�c

( ⟨k⟩

ki

)�

−
ki + r − 1

r�cki
(11)

ConsiderΔ�(�) > 0, we solve Eq. (11) as
{

(

ki

⟨k⟩
)�

< ki

r−1
or

(

ki

⟨k⟩
)�

> 1 if ki < r − 1
(

ki

⟨k⟩
)�

< 1 or
(

ki

⟨k⟩
)�

> ki

r−1
if ki > r − 1

(12)

Solving Eq. (12), we get the following conditional solution:

� < 0 ∪ � > �

under condition of:

(ki < r − 1 ∩ ki < ⟨k⟩) ∪ (ki > r − 1 ∩ ki > ⟨k⟩)

r-1< >k

Δ

r-1

ki<< >k ki>r-1

ki<r-1 ki>< >k

η>0 Δη>0Δη<0

< >k

Δη>0 Δη<0 Δη>0

Fig. 1. (Color Online) Conditional solution forΔ�(�) > 0 with two cases
of ⟨k⟩ < r − 1 and ⟨k⟩ > r − 1.

where
� = ln

ki
r − 1

/ ln
ki
⟨k⟩

(13)

According to Eq. (13), in the region of0 < � < �, Δ�(�) <
0 will always hold. In case ofΔ�(�) > 0, the solution is much
more complicated. If⟨k⟩ < r − 1 (or > r − 1), to guarantee
Δ� > 0, the value of� should be set within� < 0 ∪ � > �
under a condition ofki < ⟨k⟩ ∪ ki > r − 1 (or ki < r −
1∪ki > ⟨k⟩). Figure 1 summarizes the conditional results for
Δ�(�) > 0, whereCase 1means⟨k⟩ < r − 1 and Case 2
corresponds to⟨k⟩ > r − 1. However, if ⟨k⟩ < ki < r − 1
(Case 1) or r − 1 < ki < ⟨k⟩ (Case 2), in the region of
� < 0∪� > �, Δ�(�) is still negative. However, as Theorem
2 indicates, our aim is to prove that in the entire domain of
ki (i.e., [1,+∞]), when� < 0 or � > �, Δ�(�) > 0 will
always hold. Thus, the proof is based on the following idea:
if the number of players with degreeki (which results in a
negativeΔ�(�)) is less than number of players with degreekj
(which results in a positiveΔ�(�)), thenΔ�(�) > 0 holds.
According to [26], the BA scale-free network is power law
dependent of the degree distribution,d(k) ∼ k−d, with the
exponentd typically satisfyingd = 2.9± 0.1. We then have

⎧









⎨









⎩

∫ ⟨k⟩
1

k−d
i dki +

∫ +∞
r−1

k−d
i dki −

∫ r−1

⟨k⟩ k−d
i dki > 0

if ⟨k⟩ < r − 1
∫ r−1

1
k−d
i dki +

∫ +∞
⟨k⟩ k−d

i dki −
∫ ⟨k⟩
r−1

k−d
i dki < 0

if ⟨k⟩ > r − 1
(14)

The first inequality of Eq. (14) will always hold; the second
inequality of Eq. (14) holds under the condition ofr > 1 +
(1
2
+ ⟨k⟩1−d)

1

1−d . Thus, we have proved that in the region of
� < 0 ∪ � > �, Δ�(�) > 0 is hold under condition provided
in Eq.(13). Combining Eqs.(4,10,14), one can always have a
positive (negative) cooperation rate improvement when� <
0 ∪ � > � (0 < � < �).

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we validate two theorems provided in Sec-
tion III. We then compare the performance of HPGG with stan-
dard PGG and single-phase heterogeneous PGG, respectively.
We also discuss the intrinsic mechanism of HPGG model and
evaluate cooperation dynamics when global parameters� and
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Fig. 2. (Color Online) The cooperation rate�c vs. r for different �.

r have observation noise. In addition, to collect real world
data traces, we design and emulate a Weibo-like system and
carry out experiments with human participation. We use the
real world data traces verify the preciseness of our theoretical
results and simulation results.

All the simulations were carried out on a BA scale-free
network with network sizeN = 1000 and m = m0 = 4;
therefore, the average degree⟨k⟩ = 8. Initially, cooperators
(C) and defectors (D) are randomly distributed among the
population with equal probability (50%). The equilibrium
frequencies of cooperators are obtained by averaging over
3000 generations after a transient time of 10,000 generations.
Each piece of data is averaged over 1000 runs on 1000
different networks3.

A. Cooperative behavior of HPGG model

Figure 2 reports the relationship of cooperation rate�c and
benefit-to-cost enhancement factorr for different�. One can
see that the cooperation rate monotonically increases withr
for all � (−6 ≤ � ≤ 6). For a fixedr, when� ≤ 0, the coop-
eration rate�c monotonically decreases with� (see Figure 2);
when� ≥ 2, the cooperation rate�c monotonically increases
with � (see Figure 2). Remember that� > 0 represents
realistic CSN where people with complex social relationships,
strong powers, high positions will invest and receive more in
a project. Our result (Figure 2) reveals the fact that powerful
people (i.e., large-degree nodes) always cooperate to keeptheir
positions, because cooperation (communication) can preserve
their social ties and thus get a larger payoff. Once they defect
(isolate), they might lose their social ties, become a small-
degree node and thus get a smaller payoff. Accordingly, if
� < 0, Figure 2 reveals the same fact that cooperation is the
only right way to survive. Besides, in Figure 2, we observe
that for any�, to promote cooperation, one should chooser as
large as possible. This can be explained by stimulating theory
[11]. Large stimulation (i.e., the benefit-to-cost enhancement
factor r in our paper) will certainly arouse an interest in

3According to the pioneering work [23], we have tried to average over 50
different networks in the first place. However, the average cooperation rate
is not stable in our HPGG. To be concrete, if� < 0, averaging over 50
different networks can get a stable cooperation rate; however when� > 0,
the cooperation rate is not stable until averaging over 1000different networks.
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Fig. 3. (Color Online) Cooperation rate�c, as a function of the heterogeneity
factor � for different r.
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Fig. 4. (Color Online) The turning point value ofr for different ⟨k⟩ when
considering�c vs. r relationship in HPGG model. (a) The cooperation rate
�c vs. r for different � when⟨k⟩ = 6; (b) The cooperation rate�c vs. r for
different � when ⟨k⟩ = 10.

cooperation. The same technology can always be found in
knowledge sharing management of virtual community.

In Figure 3, we investigate the relationship of cooperation
rate �c and heterogeneity factor� in detail for differentr.
As Figure 3 shows, for smallr(r ≤ 4), the cooperation rate
�c first decreases (� ≤ 0) and then increases (� ≥ 0). For
moderater (6 ≤ r ≤ 8), the cooperation rate�c first decreases
and then increases. After that, it will again decrease first and
then increase. For a larger (r ≥ 10), the cooperation rate�c
again first decreases and then increases.

The simulation results shown in Figures 2 and 3 coincide
with suggestions in Theorem 1, indicating that our HPGG
model is correct and efficient.

B. HPGG vs. standard PGG

In Figure 2, We find an interesting phenomenon that for
0 ≤ � ≤ 6, givenr (r ≤ ⟨k⟩), �c monotonically increases with
�. However, if r ≥ ⟨k⟩ + 1, the� = 0 curve exceeds other
curves and becomes the most cooperative curve. We redo our
simulations by setting⟨k⟩ = 6 and10 respectively, the results
are the same (see Figure 4), indicating thatr = ⟨k⟩ + 1 is
a turning point. Recall that� = 0 denotes the mechanism of
equal contribution and distribution. Our results suggest that if
the benefit-to-cost enhancement factorr is large enough (i.e.,
larger than network average degree⟨k⟩), then HPGG model
has no advantage over the standard PGG model.

The same conclusion can be found in the� − � curve.
Returning to Figure 3, we observe thatr = ⟨k⟩+1 is a turning
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Fig. 5. (Color Online) The turning point value ofr for different ⟨k⟩ when
considering�c vs. � relationship in HPGG model. (a) Cooperation rate�c
as a function of the heterogeneity factor� for different r when⟨k⟩ = 6; (b)
Cooperation rate�c as a function of the heterogeneity factor� for different
r when ⟨k⟩ = 10.

point. The curve mutates when� = 0 (the mechanism of equal
contribution and distribution) andr > 8. Figure 5 show the
corresponding result by setting⟨k⟩ = 6 and10 respectively.
Our result again shows that if the benefit-to-cost enhancement
factor r is large enough (e.g., larger than average network
degree⟨k⟩), then HPGG model has no advantage over the
standard PGG model. Combining Figures 2-5, we have:
Guidance: The introduction of heterogeneity into standard
PGG can always promote cooperation in CSNs. However,
when the benefit-to-cost enhancement factorr (caused by en-
vironment changes) exceeds a certain threshold (i.e.,⟨k⟩+1),
we should go back to use the standard PGG to model CSNs.

C. HPGG vs. single-phase heterogeneous PGG

Here, we simulate the cooperative behavior of heteroge-
neous payoff distribution PGG. Again, the BA scale-free
network is also set toN = 1000 and m = m0 = 4. The
equilibrium frequencies of cooperators are obtained by aver-
aging over 3000 generations after a transient time of 10,000
generations. Each piece of data is averaged over 1000 runs
on 1000 different networks. Figure 6 reports the performance
improvement of HPGG over single-phase heterogeneous PGG.
Here, given� and r, imp�c

= �HPGG − �S , where�HPGG

means the cooperation rate in HPGG model and�S represents
the cooperation rate in the PGG model only having the
heterogeneous payoff distribution phase. As Figure 6 shows,
when� < 0 or � > � (see Eq. (13)), we can always have
a positive cooperation rate improvementimp�c

; and when
0 < � < �, we can always have a negative cooperation rate
improvementimp�c

.
In simulation, we can calculate condition in Theory 2 as

r > 2.4. According to theoretical analysis,r = 2 will diverge
from simulation results (as Figure 6 shows, ther = 2 curve
intersects withimp�c

= 0 curve further away from the origin
(� = 0), and this coincides with our theoretical analysis in
Theorem 2).

D. Observation noise of � and r

In this subsection, we discuss the cooperative behavior
with observation noise on� and r. As we know in network
science that when users observe global factors there is always
observation noise unless the factors are publicly accessible
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Fig. 6. (Color Online) Improvement of cooperation rateimp�c , as a function
of the heterogeneity factor� for different r.

and used. Considering heterogeneity of observation noise in
reality, we redefine� andr as:

�i = ⟨�⟩+ �i

ri = ⟨r⟩ + �i (15)

where�i is used to represent heterogeneity factor with ob-
servation noise.�i is a normal distribution variable with zero
mean (i.e.,

∫ +∞
−∞ �d� = 0) and unit variance whose probability

density function satisfiesP (�) = 1√
2�

e−�2/2. The same
definition is also forri.

The experiments are described as following: in Figure 7(a),
we investigate the relationship of the cooperation rate�c
and the heterogeneity factor� in detail for differentr. Here
each playeri is assigned with�i individually. ⟨�⟩ is set
as 2.0, 4.0 and 6.0 respectively. Note that for each network
realization (1000 total), all�i are regenerated and during
10,000 evolutionary steps of a specified networks, the value
of �i are fixed. In Figure 7(b), we explore the relationship of
cooperation rate�c and benefit-to-cost enhancement factorr
in detail for different� (� > 0). Here each playeri is assigned
with ri individually. ⟨r⟩ is set as 4.0, 8.0 and 12.0 respectively.
For each network realization, allri are regenerated and during
10,000 evolutionary steps of a specified networks, the valueof
ri are fixed. Our results show that with observation noise on
�, the cooperation level of HPGG is significantly increased.
The result accords with our findings in Section IV-A, i.e., in
HPGG, individual’s heterogeneity can promote cooperation.
As Figure 7 indicated, the noise ofr has little influence on
cooperation rate.

E. Intrinsic mechanism of HPGG

In this subsection, we try to explain the intrinsic mechanism
of HPGG model in the effectiveness of promoting cooperative
behavior via detecting the co-action of the two phases.

Figure 8 shows the�− �c curves for differentr in single-
phase heterogeneous PGGs (Figure 8(a) is the heterogeneous
investment contribution PGG model (M1), Figure 8(b) is the
heterogeneous payoff distribution PGG model (M2), and we
useM3 to represent our proposed HPGG model). In the region
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(a) Cooperation rate�c, as a function of benefit-to-cost enhance-
ment factorr for different heterogeneity factor� (� = 2.0, 4.0
and 6.0 respectively) with standard normal distribution observa-
tion noise�.
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Fig. 7. (Color Online) Comparison of cooperation rate with observation
noise.

of � < 0∪� > �, the cooperation rate enhancementimp�c
> 0

is straightforward. BothM1 andM2 areC and approaching
D. Here,X ∈ {M1,M2} is C (or D) means that in model
X , the cooperator (or defector) dominates the defector (or
cooperator) in the social system. WhenM1 knowsM2 is going
to decrease his cooperation rate, he showsM2 the sincerity
of cooperation by increasing his cooperation rate. On the
other hand,M2 observesM1’s sincerity and also agrees to
cooperate. It is indicated that the intrinsic power ofM3 is that
it combinesM1 and M2, makes them stimulate each other
during the evolutionary game steps, and thus departs from the
social dilemma. We can infer that HPGG model has a built-in
function of reputation. However, in the region of0 < � < �,
the cooperation rate is decreased (imp�c

< 0). HereM1 is C
and going to beD; M2 is D and going to beC. M1 observes
thatM2 prefers to cooperate, soM1 choosesD to maximize
its payoff opportunistically.M2 observesM1’s behavior (D)
and choosesD as the response, thus they run into the social
dilemma.
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(a) Heterogeneous investment contribution PGG
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Fig. 8. (Color online) The cooperation rate�c vs. � for different r in
single-phase heterogeneous PGG.

F. Experiments on an emulated Weibo-like system

The Weibo system can be considered as a Chinese version
of Twitter. Sina Weibo [4], used by over 30% of Chinese
Internet users, is one of the most popular online social network
systems in China. Most Weibo systems, including Sina Weibo
[4] and Tencent Weibo [5] in China, adopt a similar mar-
keting strategy: users publish, re-publish or quote interesting
information (e.g., messages, images, music and video files)to
attract their networked users and instant access followers. The
Weibo system operator shares a part of advertisement income
with users according to their contributions in Web page ad-
vertisement distribution (advertisement coverage contribution).
This marketing strategy encourages Weibo users to invest in
building big social networks and posting original attractive
messages, especially for some celebrity users.

In this section, we design an emulated Weibo-like system to
investigate the cooperation dynamics in an online CSN. The
emulated system has 100 users. The social relationship among
the 100 users forms a scale-free topology, in which each node
is a user and each edge represents social relationship between
two users. 100 students participated our experiments in which
each student acted as a user (a player of HPGG). Each student
was encouraged to try their best to maximize her/his payoff.

In our multiple rounds HPGG model, each player has two
strategies,C andD. Here, a player choosingC strategy means
she/he invests in publishing original messages in the current
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round and a player choosingD means she/he just re-publishes
or quotes her/his neighbors’ messages with no investment. In
each round, a user must choose one strategy,C or D. In the
first round, all users’ strategies are randomly set by the system,
50%C strategy and 50%D strategy. From the second round,
before decision making, each user can see her/his payoff from
the previous round and some information about her/his neigh-
borhood users, including strategies, reference investments, real
investments and payoffs from the previous round. The system
will give a reference investmentIi = N ⋅ k�i /Σjk

�
j in the

current round if she/he choosesC strategy. TheC strategy
user can use the reference investment or give her/his preferred
investment. Here, the deviation from the reference investment
is the observation noise of�. Note that heterogeneity of HPGG
model is hereby presented in our emulated system. When all
users have chosen their strategies, the system uses Eq.(2) to
compute each user’s payoff from the current round.

After each round, we collect all users’ data traces and
compute the cooperation rate of the round. Then, the game
goes to the next round. When the standard deviation of the
cooperation rates of ten recently continuous rounds is smaller
than 0.05, we consider the mean cooperation rate to be stable
and then end the game.

As described in Section II, the factors� and r play
important roles in formulating heterogeneity of HPGG CSNs.
In Weibo-like application scenarios, the realistic meaning of
� is the amplifying factor of the cost for a Weibo user
in publishing attractive information and maintaining her/his
social relationships and the amount of her/his page visitors.�
can be considered as the average willingness of Weibo users to
build and boost their social networks. The realistic meaning of
r indicates the rate of Return On Investment (ROI) for users
in a Weibo system, i.e., the ratio of obtained advertisement
income share from the Weibo system operator to a user’s
investment. Different CSN applications have their different
� and r. In Weibo-like application scenarios, it is easy to
know that, for a user, biggerk (social connections) and more
attractive information publishing lead to more investmentand
bigger�. It is reasonable that more investment leads to more
payoff. In our experiments,� and r are set by the emulated
system at server side. The observation noise of� is determined
by users’ investment inputs and the noise ofr is stochastically
set at server side according to a normal distribution (See
Eq.(15)).

We evaluate the cooperative behavior of the theoretical
model in real world application, and the results are shown
in Figure 9. As we can see that the human’s cooperative
behavior approximately accords with our theoretical results,
e.g., the inset graph of Figure 9 is a comparison among�c of
theoretical model, theoretical model with noise and real world
results for� = 6. We can see that the real world results are
consistent with theoretical and theoretical-noise results in the
sense that the evolutionary tendencies of cooperative behavior
are consistent, and the real world results always lie between
theoretical and theoretical-noise results. We argue that this
result is acceptable and anticipated, and the reason can be
multi-fold. Firstly, in theoretical-noise model, we assumed a
normal distribution with zero mean and unit variance noise,
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Fig. 9. (Color online) Real world results of cooperation rate �c, as a function
of the benefit-to-cost enhancement factorr for different heterogeneity factor
� (� = 2.0, 4.0 and 6.0 respectively). The inset graph is a comparison among
�c of theoretical, theoretical with noise and real world results for � = 6.0.
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Fig. 10. (Color online) Qualitative explanation to the realworld experiment
results from mean payoffs of cooperators and defectors, mean payoffs of
boundary cooperators and defectors, as well as transformation probability
between cooperators and defectors. The heterogeneity factor � is set to 2.0.

which can not very precisely describe the observed noise
inevitably. Secondly, human’s strategy is also noised in real
world experimental environment, i.e., the process of human
decision of C or D strategy is much more complicated
than strategy selection and updating rules specified in most
theoretical models. Besides, during the process of experiments,
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(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4 (e) Round 5

(f ) Round 6 (g) Round 7 (h) Round 8 (i) Round 9 (j) Round 10

Fig. 11. (Color online) Snapshots of cooperators (blue) anddefectors (red) on a 100 nodes scale-free network for�=2.0 andr = 6.0 of the first 10
evolutionary rounds. At the beginning (Round 1), cooperators and defectors are randomly distributed with equal probability. Through dynamic transformation
between cooperators and defectors (i.e., Rounds 2-10, controlled byPc−>d andPd−>c), the network evolves into Evolutionary Stable Strategy.

we also collect feedback from students that players always
deviates from his/her own history investment and payoff, while
the neighbors information (e.g., strategy, investment, payoff,
etc.) are not fully taken into consideration most of the time.
To name but a few, these factors jointly conclude that the
real world noise can be conjectured as an approximative
skew normal distribution. However, the formulation of this
“deviation” is always ethological, which is hard to be explicit
expressed mathematically in online CSNs.

To qualitatively explain the real world results in Figure 9,we
next evaluate the mean payoffs of cooperators and defectorsin
the population as well as the ones of cooperators and defectors
lying around the boundary. As Figure 10(a) shown, we can
find that the cooperators always have a larger payoff over
defectors, i.e.,⟨Pc⟩ > ⟨Pd⟩. This indicates that players will
favor to cooperate because theC strategy results in a bigger
income, and thus the cooperation rate�c > 50% holds as
Figure 9 shown. The up-left inset graph shows the relationship
between cooperators and defectors lying around the boundary.
As one can see⟨P b

c ⟩ > ⟨P b
d ⟩, which indicates that boundary

cooperators will invade their defective neighbors and results
in an increase of cooperators. However, the defectors do not
disappear in the system, that’s because defectors can form
small compact clusters (as up-right inset graph of Figure 10(a)
shows,⟨Pd⟩ ≈ ⟨P b

d ⟩, which indicates that the defectors are
placed isolatedly in the ocean of cooperators, i.e., most of
defectors are boundary defectors) to compete with cooperators
and maintain a dynamic steady state.

We also evaluate the transformation probabilities of coop-
erators and defectors. Here we usePc→d denoting the trans-
formation probability from cooperators to defectors andPd→c

denoting the opposite transformation probability. From Figure
10(b), we can see thatPc→d < Pd→c always holds, which
indicates that more defectors turn to play as cooperators than
cooperators turning to be defectors, and thus the cooperation
rate increases. The inset graph in Figure 10(b) describes the
evolution of transformation probability in the first 10 rounds
for � = 2.0, r = 6.0 (i.e., Rounds 2-10, note that the first

round has no transformation probability).
Finally, we investigate the dynamic cluster formation pro-

cess at different evolutionary time steps, i.e.,t = 1, 2, ⋅ ⋅ ⋅ , 10
for �=2.0 and r = 6.0, the results are shown in Figure
11. At the beginning (Round 1), cooperators and defectors
are randomly distributed with equal probability. Then the
cooperators invade their defective neighbors quickly and reach
to a high cooperation rate of�c ≈ 0.68. After that, through
dynamic transformation between cooperators and defectors
(i.e., the behavior shown by the inset graph of Figure 10(b)),
the cooperation rate gradually decreases and preserve to a
steady level of�c ≈ 0.59 for the subsequent rounds.

V. RELATED WORK

Traditionally, in an infinite well-mixed population, coopera-
tion cannot emerge under replicator dynamics [12]. However,
observations in the real world usually show the opposite, the
players are always altruistic. To explain the emergence and
maintenance of cooperative behavior, several mechanisms have
been invoked, such as kin selection [13], direct or indirect
reciprocity [14], group selection [15], voluntary participation
[16], punishment [17], and so on.

Among these work, by introducing spatial structure, the
pioneering work done by Nowak and May [18] has increas-
ingly attracted interest from different fields [19] as significant
extensions of traditional evolutionary game theory focusing
on well-mixed populations. In spatial evolutionary games
(SEGs), individuals are situated on the vertices of a graph,
and the edges indicate interactions among individuals. The
evolutionary success of an individual is determined by its
payoff accrued in pairwise interactions with its neighbors[20].
In this context, the network topology plays a key role in the
evolution of cooperation, which has been widely studied over
the years, e.g., regular networks [21], small-world networks
[22] and scale-free networks [23]. Quite recently, the adaptive
networks [24] and the mobility of players [25] have also
been studied which consider the mutual interaction between
network topology and evolution of strategies.
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Recently, a prestigious work [26] found that most social
networks’ degree observe power law distribution. Based on
this finding, heterogeneity (diversity) is becoming one of
the hottest research focuses on social networks. In [6], the
authors studied the cooperation dynamics on heterogeneous
graphs by introducing social heterogeneity. In [27], Yang et al.
analyzed individual heterogeneity in scale free structure. Work
[28]–[30], [32] explored the heterogeneity of game timescale.
The work [31] discussed the heterogeneity of mobility in
promotion of cooperation in spatial games.

As for the evolutionary cooperation of PGG, much has been
done on the effort of a substantial and persistent cooperation
level [6], [16], [27], [33]. However, most of these work as-
sumed that participants equally make investment contributions
and obtain payoffs, i.e., heterogeneity of PGG was not fully
explored. In realistic social networks, participants presented
large heterogeneity in both the contribution phase and the
payoff phase due to their social structures. Besides work
[8] and [9], Sirakoulis and Karafyllidis also discussed the
heterogeneity of benefit-to-cost enhancement factor in PGG
in a power-aware embedded-system [34].

VI. CONCLUSION

In this paper, we have proposed a novel two-phase heteroge-
neous PGG model (HPGG) to study the evolution of coopera-
tion in CSNs. In HPGG, a round of game is divided into two
phases: an investment phase and a payoff phase. In the two
phases, the individuals of a CSN invest and obtain payoff in
a heterogeneous mechanism. Theoretical analysis and results
from simulations and real world experiments demonstrated
that the proposed HPGG model is precise for formulating
the quantitative relationship between the cooperation rate
and the individuals’ heterogeneous behaviors. Simulations on
CSNs of scale-free network population structure show that the
cooperation rate has non-trivial dependence on individuals’
heterogeneous behaviors represented by the introduced het-
erogeneity factor� and benefit-to-cost enhancement factorr.
For any�, the cooperation rate monotonically increases with
r. For a givenr, if � is smaller (or larger) than the threshold�,
the cooperation rate�c monotonically decreases (or increases).
Furthermore, we observed that the cooperation rate increases
in the range of� < 0∪� > � due to HPGG model’s intrinsic
mechanism. In addition, we also found thatr = ⟨k⟩+1 is the
unique turning point of the cooperation rate in HPGG model.
Whenr is larger than the network’s average degree⟨k⟩, HPGG
model has no advantage over the standard PGG model.
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