
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 1

Practical Resource Provisioning and Caching
with Dynamic Resilience for Cloud-Based

Content Distribution Networks
Menglan Hu, Jun Luo, Member, IEEE , Yang Wang, and Bharadwaj Veeravalli, Senior Member, IEEE

Abstract—Content distribution networks (CDNs) built on clouds have recently started to emerge. Compared to conventional CDNs,
cloud-based CDNs have the benefit of cost efficient hosting services without owning infrastructure. However, resource provisioning
and replica placement in cloud CDNs involve a number of challenging issues, mainly due to the dynamic nature of demand patterns.
To deal with this dynamic nature, this paper proposes a set of novel algorithms to solve the joint problem of resource provisioning
and caching (i.e., replica placement) for cloud-based CDNs with an emphasis on handling the dynamic demand patterns. Firstly, we
propose a provisioning and caching algorithm framework called Differential Provisioning and Caching (DPC) algorithm, which aims to
rent cloud resources to build CDNs and whereby to cache contents so that the total rental cost can be minimized while all demands are
served. DPC consists of 2 steps. Step 1 first maximizes total demands supported by unexpired resources. Then, step 2 minimizes the
total rental cost for new resources to serve all remaining demands. For each step we design both greedy and iterative heuristics, each
with different advantages over the existing approaches. Moreover, to dynamically adjusts the placement of contents and route maps,
we further propose the Caching and Request Balancing (CRB) algorithm, which is light-weight and thus can be frequently executed as
a companion of DPC to maximize the total demands. Performance evaluation results are presented to demonstrate the effectiveness
and competitiveness of our approaches when compared to existing algorithms.

Index Terms—Cloud computing, content distribution, resource provisioning, replica placement, request routing.

F

1 INTRODUCTION

W ITH the successful deployment of commercial systems
and increasing user popularity, content distribution

networks (CDNs) have received much attention in recent years.
Conventional CDNs such as Akamai built hundreds of data
centers to distribute the contents across the world. It has hence
become financially prohibitive for small content providers to
compete on a large scale by deploying new data centers.

The emerging cloud vendors such as Amazon S3 are creat-
ing new opportunities to enable cost-effective CDNs. As the
cloud vendors provide on-demand and cost-effective content
storage and delivery capabilities, one can build CDNs upon the
clouds without investments on installing and maintaining the
infrastructure while providing scalable service. As a customer,
a cloud CDN may benefit from elastic cloud charge models.
Also, the cloud CDN can dynamically adjust the leases of
bandwidth, virtual machine (VM), and storage resources based
on the runtime demand rates to reduce the total rental costs
without severely sacrificing the service performance.

There have been some initial attempts in leveraging clouds
to support content distribution. For example, Netflix moved

• M. Hu and J. Luo are with the School of Computer Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798. E-mail:
{mlhu, junluo}@ntu.edu.sg.

• Y. Wang is with the Faculty of Computer Science, University of New
Brunswick, Fredetricton, Canada, E3B 5A3. E-mail: ywang8@unb.ca.

• B. Veeravalli is with the Department of Electrical and Computer Engineer-
ing, National University of Singapore, 4 Engineering Drive 3, Singapore
117576. E-mail: elebv@nus.edu.sg.

its streaming servers, data stores, and other customer-oriented
APIs to Amazon Web Services (AWS) [2]. In academia, sever-
al recent works [3], [4], [5], [10] also studied the problems of
building CDNs on clouds. However, these papers either relied
on over-simplified assumptions that storage and/or bandwidth
capacities are infinite or only one content is considered [3],
[4], [10], while others required to solve linear programming
problems [5], which may be impractical for large-scale sys-
tems with rapidly varying demand patterns. Therefore, it is
desirable to design efficient algorithms which are practical to
large scale cloud CDNs with finite resources.

In addition, it is well known that the problems of resource
provisioning and replica placements in cloud CDNs are noto-
riously difficult, mainly due to the dynamics and diversities
in users’ request patterns, which lead to the following so-
called update dilemma that is commonplace but more or less
neglected in the above mentioned studies.

The dilemma includes several aspects. Firstly, due to rapidly
varying demand patterns, these algorithms need frequently
update provisioning and caching solutions to keep up with the
dynamic variation (e.g., [10] suggested a frequency of every 10
minutes in experiments). Unfortunately, this eager solution is
not always cost-effective when considering the dynamic nature
of the demands. Usually, after being leased, a cloud server
has to spend a significant amount of time in initializing its
configuration before it is ready to use (e.g. ephemeral disk
problem [21]). During this period, if the demand rates or the
access patterns are rapidly changed, it is always hard, if not
impossible, for the algorithms to react in time by frequently
updating the solutions and leasing new resources because of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 2

the considerable initialization overhead. It is likely that when
a server becomes ready after the initialization phase, demand
rates might fall down again, leaving the newly rented server to
be under-utilized, which is apparently not cost effective. Ad-
ditionally, the update operation is also not free and may incur
considerable overheads as existing placements are potentially
influenced. Another factor restricting the frequent update is
that most cloud providers impose a minimum time unit for
leasing resources (e.g. 1 hour for Amazon EC2). This further
deteriorates the dilemma. For example, once the demand rate
arriving at a certain cloud site unexpectedly decreases, the
excessively rented resources at that site may be wasted until
the current lease period is over. Therefore, in practice it may be
unwise to frequently update the solutions to match the runtime
demand patterns while less frequent updates could also cause
resource wastage and performance degradation.

Clearly, this dilemma stems from the mismatch of the
highly unpredictable demand patterns and relatively inflexible
resource provisioning, and imposes great challenges to cloud
CDNs. Therefore, to maximize the served demands with the
provisioned resources, we should consider jointly both the
resource provisioning and content caching together with their
interactions at the same time for the design of adaptive and
practical management algorithms as it has been shown that any
unilateral solution could result in the degraded performance
and inefficient resource utilization [3], [4], [10].

With these challenges in mind, in this paper we contribute
a set of novel algorithms to the joint problem of resource
provisioning and caching (i.e., replica placement) in cloud-
based CDNs with an emphasis on resolving the mismatch
in the update dilemma. Our approaches consist of both long
term (i.e., less frequently used) and short term (i.e., frequently
used) algorithms, each with its own goals and strategies. This
design not only simplifies the algorithms in each phase but
also isolates the performance problems for easy analysis.

We first propose a long term provisioning and caching algo-
rithm framework called Differential Provisioning and Caching
(DPC) algorithm, which rents cloud resources to build the
CDNs and thereafter cache contents in such a way that the
total rental cost can be minimized while all demands are
served. With different focuses in consideration, DPC performs
two steps to deal with the time granularity of the lease unit.
Step 1 is to maximize the total demands supported by the
unexpired resources while Step 2, as a complementary action,
is to minimize the total rental cost for the new resources to
serve all remaining demands. These steps are not redundant;
rather, they cooperate with each other to reach the final goal.

As the formulated problem is NP-complete, for each step of
DPC, we design both efficient greedy and iterative heuristics,
each having different advantages in achieving the goals. In
particular, we develop two greedy heuristics, Site First Greedy
(SFG) and Set Cover Greedy (SCG), each emphasizing a
different facet of the problem. SFG is our original contribution
while SCG is a variant of the classical greedy heuristic of the
set cover problem [17]. As the name indicates, SFG prioritizes
the content sites first for the content placements to optimize
resource utilization and thus we use SFG in step 1 of DCP. We
then adopt SCG in step 2 because it is beneficial in making

cost-efficient content placements.
Although these simple greedy algorithms are efficient, the

quality of the solutions may not be always satisfactory in
some case that the resource utilization is a pragmatic concern.
Hence, we also design a novel iterative algorithm, referred
to as Utilization-Aware Greedy Search Algorithm (UAGSA).
UAGSA searches for the efficient provisioning/caching solu-
tions by iteratively utilizing SCG/SFG to construct the feasible
solutions that can improve resource utilization in CDN sites.
Based on SFG, SCG, and UAGSA, we develop two combined
algorithms, SFG-UAGSA, and SCG-UAGSA, which are used
in steps 1 and 2 of DPC, respectively.

To address the dynamic demand patterns, we also propose
the short term Caching and Request Balancing (CRB) algorith-
m. By leveraging the previous runs of DPC, CRB dynamically
adjusts the content placements and route tables such that the
total demands supported by the provisioned resources can
be maximized. Since no provisioning is involved and only
dynamic adjustments are made, CRB is light-weight and thus
can be frequently executed as in conjunction with DPC as a
reaction to the dynamically changed demand patterns. Clearly,
by combining the two algorithms, DCP and CRB, the update
dilemma could be naturally solved.

To the best of our knowledge, our paper is the first attempt
to realistically deal with the dynamic nature in users’ demand
patterns on cloud-based CDNs. The proposed algorithms are
shown to be efficient in terms of both performance (i.e.,
amount of served requests) and rental cost under rapidly
varying demand patterns via simulation studies.

The remainder of this paper is organized as follows. Section
2 discusses related work. Section 3 introduces mathematical
models, assumptions, and problem formulation. Section 4
proposes the provisioning and caching algorithms including
DPC, SFG, SCG, and UAGSA. Section 5 describes the CRB
algorithm. Section 6 presents simulation results to evaluate the
algorithms, with conclusions following in Section 7.

2 RELATED WORK
A number of replica placement algorithms for content distri-
bution have been proposed in the literature. In terms of min-
imizing content retrieval cost only, Li et al. [6] and Krishnan
et al. [7] showed that replica placement in general network
topologies is NP-complete and provided optimal solutions for
tree topologies. Kalpakis et al. [8] considered read, write and
storage costs in content distribution and presented solutions
for tree topologies. Further, Borst et al. [9] developed dis-
tributed cooperative cache management algorithms that aimed
to minimize bandwidth costs. Under symmetric assumptions
on systems and demands, the optimal solution of the linear
program is shown to have a rather simple structure. Based on
this observation, the authors designed low-complexity cache
management and replacement algorithms. Dai et al. [11] aimed
to maximize total supported demands in a cooperative manner
in all levels of hierarchical cache topologies for IPTV systems.
Based on the understanding of real IPTV systems, the authors
proposed collaborative caching strategies and corresponding
dynamic request routing mechanisms for hierarchical topolo-
gies. In another work [13], Applegate et al. applied Lagrangian

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 3

S0

S1

S3

S2

S4

S5

L1

L2

L3
L4L5

L6

L7

L8

Li

Sj

S0 Root site

Site j

Location i

Networks

connected sites

Replica

serving path

Fig. 1. Cloud CDN model.

relaxation and subgradient methods to solve content placement
optimization for large-scale VoD systems.

Some previous studies have considered quality-of-service
(QoS) by requiring all user requests to reach replica servers
within a certain network distance. Tang et al. [15] proposed
QoS-aware algorithms to optimize total storage and update
cost. They assumed that requests can be issued from any
node, and ignored retrieval cost. Rodolakis et al. [16] added
server capacity limitation to the formulation while optimizing
storage and retrieval cost. Similar to [15], [16], our paper also
considers QoS constraints for replica placement in CDNs, but
we step further to consider CDNs built on clouds.

A recent trend of building CDNs on clouds have also started
to emerge. Niu et al. [10] studied bandwidth provisioning
and multiplexing for video-on-demand (VoD) applications;
however, storage and replica placement are neglected in this
work. Chen et al. [3] proposed to build CDNs based on
storage clouds. Given the NP-hardness of the problem, the
authors presented offline and online heuristics. Another work
[4] proposed a cloud-assisted live media streaming framework
to facilitate a migration of media streaming services to clouds.
The authors designed depth first search mechanisms to ac-
commodate temporal and spatial diversities. In [15], [16], [3],
[4], storage and/or bandwidth capacities were assumed to be
infinite and only one content was to be placed in CDNs. Such
over simplified assumptions may restrict the applicability of
these studies in real CDNs or cloud CDNs. In contrast, our
paper considers placing many contents in cloud-based CDNs
with limited storage and bandwidth resources.

Another work close to ours is [5], which solved one-shot
content placement optimization problem by relaxing formulat-
ed integer programs to linear programs and using Lagrangian
relaxation and subgradient methods. They also proposed an
online algorithm to adjust the one-shot optimization results.
Due to the high computational complexity in Lagrangian
relaxation, subgradient methods and linear programming, the
solutions in [5] are improper for the problem discussed in
this paper. In contrast to [5], our paper designs efficient
heuristics, which are more practical for large CDN systems and
more dynamic resilient to rapidly varying demand patterns. In
addition, as illustrated in Section 1, the algorithms presented
by the above papers [3], [5], [4] may not work well due
to the practical challenges brought by the dynamic demand
patterns. As opposed to these studies, this paper presents novel
algorithms to realistically deal with the dynamics.

Parameter Definition
Bj bandwidth/VM capacity of site j
Br

j rest amount of bandwidth/VM capacities at site j

baj amount of bandwidth/VM capacities unexpired
dik input demands of content k at location i
drik unallocated amount of dik
dsjk amount of demands servable by placing content k on site j

M a set of locations where users reside
N a set of sites
N ′ a temporary set containing the sites
K a set of contents provided by the root site
psj unit storage rental price of site j

pbj unit bandwidth/VM rental price of site j

Qij binary parameter indicating whether request can be routed
from location i to site j

Sj storage capacity of site j
Sr
j rest amount of storage at site j

saj amount of storage unexpired
Variable Definition
bnj amount of bandwidth/VM capacities newly rented
rijk ratio of demands on content k routed from location i to site

j
ri0k ratio of demands on content k routed from location i to the

root
snj amount of storage that should be newly rented
xjk binary indicating whether content k is cached at site j

TABLE 1
Notation and terminology

3 PROBLEM FORMULATION

In our settings, a root site aims to serve K (types of) contents
(e.g., videos) to users residing on M locations, as shown in
Fig. 1. Since the root site is far from the users, to meet QoS
constraints, the root needs a CDN to help serve users’ demands
(or requests). The CDN is built on resources leased from N
cloud sites located across the Internet.

Operating a cloud-based CDN on these sites requires 3
kinds of resources: bandwidth, VM, and storage. Accordingly
leasing the resources incurs 3 kinds of costs: bandwidth
cost, VM rental cost, and storage cost. For simplicity, we
assume that all contents are of the same size. This is also a
reasonable assumption since servers divide videos into small
portions with the same size for the convenience of caching.
The request for a long video can also be divided into many
requests for small portions. This means that the portions
for a video can independently exist in different servers and
can be independently served to users [12]. Notice that when
considering use patterns (e.g., chunks in one video are served
one-by-one), one may further improve the caching algorithm,
but this has been beyond the scope of this paper. Accordingly
the caching algorithm independently address each file and such
assumptions can effectively simplify the problem. Therefore,
a fixed-size portion is the minimum unit considered in the
paper. In this case, we can assume that serving each request
of any content consumes the same amount of resources for
both bandwidth and VM. Consequently, we can simply use
one parameter to denote both bandwidth and VM resource:
let Bj be the bandwidth/VM capacity (in amount of requests
that can be served per second) of site j (j ∈ N). Similarly, let
pbj be the unit price of site j to rent both bandwidth and VM

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 4

capacities, i.e., cost for renting bandwidth and VM resources
that can serve one request per second. Also, let Sj be the
storage capacity (in the number of contents that can be stored)
of site j and psj be the unit storage price of site j.

Each request, issued by a user, attempts to access a certain
content k ∈ K. The content can be video segments in IPTV
systems or file blocks in file downloading systems. In order
to satisfy QoS requirements for end user requests, we use
a binary parameter Qij to denote whether request can be
directed from location i to site j. We let Qij = 1 if requests
can be routed from location i to site j. Then we can determine
Qijs beforehand via response time measurement. If proper
sites that can meet QoS requirements exist, users’ requests
can be directed to the proper sites. Otherwise, some requests
may be routed to the root as the CDN fails to serve them while
meeting QoS requirements. Upon receiving a request, a site
returns the corresponding content if bandwidth/VM capacities
allow. When the site becomes overloaded, excessive requests
will also be routed to the root. Notice that an alternative
policy to handle the excessive requests is to redirect them
to neighbor sites. Since this alternative policy influences the
proposed algorithms little, this policy is not adopted in our
models for simplicity. If a request is processed by the root,
then the QoS guarantee will probably be violated as the quality
distance between the root and any location is too large. Clearly,
one of our goals is to maximize the number of requests that
are served by the cloud CDN.

Suppose that time is slotted into equal intervals. Provi-
sioning and caching solutions are periodically updated for
each interval. As an individual time interval [t, t + ∆t) is
considered, without loss of generality, we drop subscript t
in our notations. We define the amount of input demands on
content k originated at location i as dik given by a demand
predictor [14] that can predict demands in the coming period
[t, t+∆t) before time t. We also assume that demand patterns
does not vary in each update period ∆t. This is a reasonable
assumption when ∆t is small.

Most cloud providers have a minimum unit time T for the
duration of leasing a server (e.g. 1 hour for Amazon EC2). It
is possible that the period of updating provisioning solutions
(∆t) is shorter than T [10]. In this case, when updating
the solutions, only parts of leased resources have expired.
Hence, before renting new resources, we should first utilize
the currently unexpired resources. Otherwise such resources
will be wasted. For the convenience of periodically updating
provisioning solutions, we assume that the minimum rental
duration for any bandwidth/VM/storage resource is T = n∆t
where n is a positive integer. That is, provisioning and caching
solutions are updated n times during one rental period T .
After being leased, each resource will be available for n
consecutive time intervals. At the end of each interval, parts
of previously rented resources automatically expire and we
can rent additional new resources for next n intervals. Fig.
2 shows the timing diagram of an example scenario, wherein
T = 3∆t. The current time is t + 3∆t. In each execution of
the DPC algorithm, resources rented in the latest 2 runs are
still unexpired.

Let baj and saj be the amounts of bandwidth/VM capacity

and storage capacity that have been rented but have not
expired. Let bnj and snj be the amounts of bandwidth/VM
capacity and storage capacity that should be newly rented for
next n time intervals. The storage decision variable xjk ∈ 0, 1
is used to denote whether or not content k is placed in site j.
Accordingly xjk represents replica placement strategies. The
notation rijk is used to denote the probability (or fraction)
of type-k requests from location i being directed to site j.
Hence rijk actually indicate the request routing strategy. Once
available resources are not enough to serve all demands, ex-
cessive demands are served by the root and incur performance
degradation. Since cloud vendors provide limited resources to
each cloud resource user (i.e., the root), this case will happen
if a huge amount of demands are requested. We denote the root
as site 0 and use ri0k denote the portion of demands that are
routed to the root. Demands routed to the root should suffer
a large cost pb0 as punishment.

The joint resource provisioning and replica placement prob-
lem is formulated as an integer programming problem aiming
to minimize the total rental cost while all demands are satisfied
over time interval ∆t as follows:

min
∑
j∈N

pbjb
n
j +

∑
j∈N

psjs
n
j +

∑
k∈K

∑
i∈M

pb0dikri0k (1)

s.t.

bnj + baj ≤ Bj ∀j ∈ N (2)∑
i∈M

∑
k∈K

rijkdik ≤ bnj + baj ∀j ∈ N (3)

snj + saj ≤ Sj ∀j ∈ N (4)∑
k∈K

xjk ≤ snj + saj ∀j ∈ N (5)

rijk(1−Qij) = 0 ∀i ∈M, j ∈ N, k ∈ K (6)
0 ≤ rijk ≤ xjk ∀i ∈M, j ∈ N, k ∈ K (7)
xjk ∈ {0, 1} ∀j ∈ N, k ∈ K (8)

ri0k +
∑
j∈N

rijk = 1 ∀i ∈M,k ∈ K (9)

Constraints (2) - (5) capture the bandwidth/VM limit and
disk limit at each site, respectively. Constraint (6) then guar-
antees that the QoS requirement can be satisfied. It is possible
that not all links satisfy QoS requirements. Constraint (7)
captures the fact that site j can serve content k only when it
has a copy locally. Constraint (8) states that we always store
either the entire content or none of it at a site. Constraint (9)
guarantees that the total fraction of requests served is 1.

The formulation includes a set cover problem when baj and
saj are equal to zero, which is a famous NP-complete problem
[20]. Since the solutions are periodically updated (e.g., in every
30 minutes), we need effective heuristics which are practical
for large CDN systems. In this case, the following sections
present a set of efficient heuristics. Finally, we list the notation
and terminology in Table 1.

4 PROVISIONING AND CACHING ALGORITHMS
To deal with the minimum server lease time, we first

propose a two-step algorithm framework, the Differential

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 5

Past DPC

execution

CRB

execution

T=3∆t

∆t

Expired

resource

time

t t+3∆t

Unexpired

resource

Newly rented

resource

Resources leased

at t+n∆t

Current DPC

execution

Fig. 2. Timing diagram of DPC and CRB.

Algorithm 1 Greedy Heuristic (SFG/SCG)
1: N ′ ← N
2: while true do
3: Select a pair (j, k) by SFG or SCG pair selection
4: if no pair is found then
5: Return
6: else
7: for each location i in site j’s coverage do
8: if dik > 0 then
9: d← min(drik, B

r
j)

10: rijk ← rijk + d/dik
11: ri0k ← ri0k − d/dik
12: drik ← drik − d
13: Br

j ← Br
j − d

14: Sr
j ← Sr

j − 1
15: end if
16: end for
17: end if
18: end while

Provisioning and Caching (DPC) algorithm. The intuition is
that to minimize the total cost, we first maximize the demands
supported by the unexpired resources in step 1. Then, step
2 minimizes the total cost of renting new resources such
that all remaining demands can be served. For each step, we
propose greedy and iterative heuristic algorithms, as detailed
in the following subsections. These heuristics assign content
placements. Provisioning solutions can be finally determined
by content placement decisions.

4.1 Greedy Heuristics

In this subsection we describe 2 greedy heuristics, Site First
Greedy (SFG), and Set Cover Greedy (SCG), which share the
same algorithm framework shown in Algorithm 1. We use a
data structure “content-site pair” specified by a pair (j, k) to
denote the placement of content k on site j. Let dsjk be the
amount of demands that can be served by placing content k on
site j. A pair (j, k) can be selected only if dsjk > 0. The greedy
heuristics work by repeatedly selecting pairs and implementing
the pairs (adds the selected pairs to the solution set). Each
greedy heuristic has its own policy for selecting pairs (Line
3 in Algorithm 1), as detailed in Sections 4.1.1 and 4.1.2.
Algorithm 1 terminates if no pair can be found. Otherwise,
the selected pair (j, k) can be implemented by placing content
k at site j and updating the routing map, i.e., rijk and ri0k.

Algorithm 2 SFG Pair Selection
1: while N ′ ̸= ∅ do
2: Select a site j with the largest γj from N ′

3: Select a content k from K such that dsjk is maximized
4: if dsjk = 0 then
5: N ′ ← N ′ − j
6: else
7: Return pair (j, k)
8: end if
9: end while

10: Return Null

In Algorithm 1, N ′ is a temporary set containing all sites
and will be used by SFG (Algorithm 2); d is a temporary
variable denoting the allocated (or migrated) demands in one
placement operation; drik is the unallocated amount of dik;
Br

j is the rest amount of capacity at site j and Sr
j is the rest

amount of storage at site j. The time complexity of Algorithm
1 is O(KMN) because at most KN pairs may be selected
and for placing a pair at most M locations are searched. In
practice, M and N are rather small when compared to K and
thus K contribute the most to the time complexity.

4.1.1 Site First Greedy (SFG) Pair Selection
As shown in Algorithm 2, this heuristic selects a content-

site pair in two steps. It first selects a site with the largest γj
value given as follows:

γj =
Br

j

Sr
j

(10)

This metric gives high priorities to the sites with comparatively
abundant resources, i.e., the sites with high bandwidth/VM
capacities and low storage. Then it assigns the site with the
content whose total demand can be served by the site in
its coverage is the largest. The intuition of this policy is to
optimize resource utilization by first selecting the sites with
comparatively abundant resources. This is because popular
contents can efficiently consume the resources of such sites.
If such sites are not given high priorities, the bandwidth/VM
resources of these sites may be wasted because unpopular
contents may not efficiently utilize the bandwidth/VM re-
sources of these sites. Since SFG can efficiently utilize avail-
able resources, it has the advantage of maximizing supported
demands and can be adopted in the first step of DPC.

4.1.2 Set Cover Greedy (SCG) Pair Selection
This greedy heuristic is adopted from an approximation al-
gorithm for the weighted set covering problem [17]. This
policy selects the content-site pair that has the largest overall
maximum utility µjk > 0 as follows:

µjk =
dsjk

dsjkp
b
j + psj

(11)

The utility is defined as the amount of demands that can be
served divided by the total cost incurred for serving requests
on content k by site j. SCG has the benefit of optimizing
rental cost and can be adopted in the second step of DPC.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 6

Algorithm 3 The UAGSA Algorithm
1: f(x∗)←∞
2: for 1 to Imax do
3: Call Greedy Heuristic
4: Update ut

j for all sites
5: if f(x) < f(x∗) then
6: x∗ ← x
7: end if
8: end for

4.2 The UAGSA Algorithm

Based on SCG/SFG, we design UAGSA, which iterates Imax

times to search for efficient solutions. In Algorithm 3, x
denotes a feasible solution and f(x) denotes the performance
of the solution; Imax is a predetermined parameter and we
will discuss how to choose Imax in Section 6. The best overall
solution (denoted by x∗) is kept as the result. In each iteration
it utilizes SFG/SCG to construct a feasible solution that can
improve resource utilization in CDN sites (Line 3 of Algorithm
3). The time complexity of UAGSA is the same as Algorithm
1, i.e., O(KMN). Based on SFG, SCG, and UAGSA, we
develop two algorithms, SFG-UAGSA, and SCG-UAGSA.
SFG-UAGSA is advantageous in maximizing demands under
given resources and can be used in Step 1 of DPC. SCG-
UAGSA is beneficial in minimizing rental cost and thus can
be used in Step 2 of DPC.

We first use SFG-UAGSA as an example to introduce
how UAGSA works. SFG-UAGSA runs a modified version
of SFG to produce a feasible solution in each iteration t.
For selecting pairs, SFG-UAGSA first selects a site with the
largest αj given by Equation (12), where ut

j is defined as a
utilization parameter for each site j in each iteration t to denote
bandwidth/VM utilization at site j. Then SFG-UAGSA assigns
the site with the content of which the total demands servable
by the site is the largest among all contents.

αj = γju
t
j (12)

In the first iteration, ut
j is initialized as 1 for each site. In each

of the following iterations, after running the greedy heuristic,
a feasible solution is produced and ut

j will be updated for each
site as follows:

ut
j = ut−1

j

Bj

Bj −Br
j

(13)

where
Bj−Br

j

Bj
is the utilization of bandwidth/VM capacities.

Low utilization causes a decreasing αj that gives a high
priority to under-utilized sites, which can be better utilized in
the next iteration. Hence in each iteration the priorities (αjs)
of the sites are fixed based on ut

js, which are updated based
on resource utilization in the latest feasible solution. This
tends to produce solutions with efficient resource utilization.
Since probably such solutions are also efficient in terms of
maximizing supported demands, UAGSA can quickly and
effectively find efficient solutions that can maximize demands
supported by given resources. The best overall solution that
maximizes supported demands is kept as the result.

Algorithm 4 The CRB Algorithm
1: Initialize dik for each content k and site j
2: drik ← dik ∗ ri0k for each content k and site j
3: N ′ ← N
4: for j ← 1 to N do
5: if site j is overloaded then
6: for j ← 1 to M do
7: for k ← 1 to K do
8: if

∑
i∈M

∑
k∈K dikrijk > Bj and dik ̸= 0

then
9: d← min(rijkdik, dj −Bj)

10: rijk ← rijk − d/dik
11: ri0k ← ri0k + d/dik
12: drik ← drik + d
13: end if
14: end for
15: end for
16: end if
17: end for
18: while true do
19: Select a pair (j, k) by modified SFG
20: if no pair is found then
21: Return
22: else
23: Call Replace(j, k)
24: end if
25: end while

SCG-UAGSA works in a similar way to SFG-UAGSA. The
only difference is that SCG-UAGSA runs a modified version
of SCG to produce a feasible solution in each iteration t. That
is, SCG-UAGSA selects the pair with the largest βjk:

βjk = ut
j ∗ µjk (14)

Equation (14) emphasizes on both cost efficiency (µjk) and
resource utilization (ut

j). Hence SCG-UAGSA may derive
solutions that can minimize rental costs and efficiently utilize
available resources. The best overall solution that minimizes
rental costs is kept as the result.

According to our simulation results, we suggest using SFG
or SFG-UAGSA for step 1. For step 2, we suggest using
SCG or SCG-UAGSA. Iterative algorithms SFG-UAGSA and
SCG-UAGSA can deliver better performance than their greedy
competitors; however, the greedy heuristics are faster than
the iterative algorithms. In this case, one can choose proper
greedy or iterative heuristics according to performance and
speed requirements in practical implementations.

5 THE CRB ALGORITHM

In Section 4 we have presented long term provisioning and
caching algorithms for renting cloud resources and building
cloud-based CDNs. Since resource provisioning is compara-
tively less flexible, to timely deal with the dynamic demand
patterns, in this section we further present a more flexible
short term algorithm, referred to as the Caching and Request
Balancing (CRB) algorithm. By leveraging the previous runs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 7

Algorithm 5 Place (j, k)

1: if content k is not cached at site j then
2: if Sr

j > 0 then
3: Sr

j ← Sr
j − 1

4: else
5: Among all contents cached at site j, select the content

k′ that serves the least amount of demands
6: if dsjk′ < dsjk then
7: for each location i in site j’s coverage do
8: drik′ ← drik′ + rijk′dik′

9: ri0k′ ← ri0k′ + rijk′

10: rijk′ ← 0
11: end for
12: Br

j ← Br
j + dsjk′

13: Remove content k′ from site j
14: else
15: N ′ ← N ′ − j
16: Return
17: end if
18: end if
19: Cache content k at site j
20: end if
21: for each location i in site j’s coverage do
22: if dik ̸= 0 then
23: d← min(drik, B

r
j)

24: rijk ← rijk + d/dik
25: ri0k ← ri0k − d/dik
26: drik ← drik − d
27: Br

j ← Br
j − d

28: end if
29: end for

of DPC, CRB dynamically adjusts the placement of contents
and routing maps such that total demands supported by the
previously leased resources can be maximized. Since no
provisioning is involved and only dynamic adjustments are
made, CRB is light-weight and thus can be more frequently
executed than DPC. For instance, in Fig. 2 DPC is executed
once to update provisioning and caching solutions for each
interval ∆t, while CRB is executed multiple times in each
interval to adjust the DPC solution. By combining DPC and
CRB, the update dilemma is naturally solved.

The CRB algorithm is shown in Algorithm 4. It dynamically
“pull” and “push” demands among the root and sites to
improve resource utilization. If requests arriving at a site is
more than the predicted value, the site may not have enough
resources to support all requests. Accordingly, the algorithm
modifies the routing map to pull requests from overloaded
sites to the root site (Lines 3 - 17 of Algorithm 4). If requests
arriving at a site is less than the predicted value, the site
can handle more demands. Thus, the algorithm pushes some
requests from the root site to under-loaded sites (Lines 18 -
25 of Algorithm 4). The “push” operation works in a similar
way to SCG/SFG described in Section 4, i.e., it works by
repeatedly selecting content-site pairs and implementing the
pairs. But it is different from SCG/SFG in two ways.

Firstly, for selecting pairs, we use a modified version of
SFG to fit the scenario of request balancing. SFG selects a
pair in two steps. It first selects a site with the largest γj
and then assigns a content the site. However, since DPC tends
to rent as many storages as used to save costs, probably no
spare storage is left for request balancing (Sr

j = 0), rendering
Equation(10) meaningless. Therefore, in the modified version,
rather than selecting the site with the largest γj , the algorithm
selects the site with the largest Br

j . The intuition is that the
sites with more under-utilized resources should be given higher
priorities. Otherwise, such resources may be wasted.

Secondly, for implementing a pair, we design a placement
procedure that places a content k at a site j, as shown in
Algorithm 5. If site j has no spare storage, an unpopular
content k′ that covers the lowest amount of demands is
removed from the site (Lines 5 - 13 of Algorithm 5). This
is beneficial if content k is more popular than content k′ at
site j (dsjk′ < dsjk), where dsjk′ is the amount of demands
served by content k′ at site j. Otherwise, the placement of
content k at site j site cannot be favored and the procedure
is terminated (Lines 15 and 16 of Algorithm 5). If content
k has been successfully cached at site j, the routing map is
then modified so that demands are migrated from the root to
under-utilized sites (Lines 21 - 29 of Algorithm 5). The time
complexity of Algorithm 4 is O(KMN) due to the nested
loops (Lines 4 - 7 of Algorithm 4).

6 PERFORMANCE EVALUATION

In this section we present a performance evaluation study to
assess the effectiveness of the proposed algorithms. We use
Java to implement a simulator which generates a sequence of
requests for a time period and serves demands over the period.
It also has a scheduler which periodically runs the algorithms
to perform provisioning and caching. In the simulation DPC
is executed every 30 minutes and CRB is run at intervals of
10 minutes. In addition, the input predictions of demands for
DPC and CRB are simply the historical demand data of the
last 30 minutes and 10 minutes, respectively. Since both greedy
heuristics and iterative heuristics can be applied in DPC, in the
simulation results we use “DPC” to denote the basic version
that adopts SFG and SCG, and we use “DPC-Iter” to denote
the version using the iterative heuristics (SFG-UAGSA, and
SCG-UAGSA). DPC-Iter iterates 10 times to yield a solution
(Imax = 10). We then combine DPC and DPC-Iter with CRB
to generate two algorithms: DPC-CRB and DPC-Iter-CRB.

To understand the merits of our algorithms, we compare
them with several baseline algorithms. The first baseline is
called Greedy, which execute the set cover greedy heuristic to
provision and cache contents, in the way that is described in
Algorithm 1. In addition, to show the separate effects of DPC
and CRB, we will show the results of DPC only (denoted
as DPC), and the Greedy heuristic with CRB (denoted as
Greedy-CRB). Notice that Greedy and Greedy-CRB are hourly
executed as hourly resource rental is commonly supported in
cloud systems [1]. Further, we also test LRU (Least Recently
Used) for comparison. In LRU, each user is routed to the
closest cloud site in terms of network delays. Upon a cache

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 8

5 10 20 40 80

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sites

P
er

ce
nt

ag
e

of
 S

er
ve

d
R

eq
ue

st
s

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(a) Percentage of served requests

5 10 20 40 80
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Number of Sites

N
or

m
al

iz
ed

 R
en

ta
l C

os
t

DPC
DPC−Iter

(b) Normalized rental cost

5 10 20 40 80
150

200

250

300

350

400

Number of Sites

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(c) Average response time

Fig. 3. Results with varying number of sites.

20 40 80 160 320

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Locations

P
er

ce
nt

ag
e

of
 S

er
ve

d
R

eq
ue

st
s

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(a) Percentage of served requests

20 40 80 160 320
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Number of Locations

N
or

m
al

iz
ed

 R
en

ta
l C

os
t

DPC
DPC−Iter

(b) Normalized rental cost

20 40 80 160 320
100

150

200

250

300

350

400

Number of Locations

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(c) Average response time

Fig. 4. Results with varying number of locations.

miss a cloud site retrieves the missed object from the root
site and replaces the least recently used object with the
missed object. Since LRU is only a caching policy but not
a provisioning policy, when compared with our algorithms,
we use the amount of resources provisioned in Greedy.

We are interested in 3 performance metrics. The first is the
percentage of served requests, defined as the ratio of requests
served by the cloud CDN (with QoS constraints satisfied) to
the total number of requests. The second is the rental costs
spent by the proposed algorithms. Hence, normalized rent cost
is used as the second performance metric. It is defined as the
total rental cost of an algorithm divide by that of the Greedy
heuristic. Since CRB is irrelevant to resources provisioning,
Greedy, Greedy-CRB, and LRU provision the same amount
of resources with the same cost. Similarly, DPC and DPC-
CRB spend the same cost. Therefore, in the following results
(e.g., Fig. 3(b)) we only show the normalized rent costs of
DPC and DPC-Iter. To characterize performance from users’
perspective, we use average response time as the third metric.

In our experiments, the geo-distributed cloud sites and
locations are randomly generated. We use the geographic
distance between a site and a location as an indicator of delay.
The round-trip delays (RTT) are emulated using manually
injected delays in programs following the formula RTT =
0.02 ∗ Distance(km) + 5 [5]. The target maximal average
response delay is set as 150ms. With randomly generated
sites and locations, we then use Qij to indicate whether
the distance between a site and a location is qualified for
content distribution. The leasing prices of cloud resources (i.e.,
bandwidth, VM, and storage) are also randomized by using
the prices of Amazon EC2 and Nirvanix. The population pi of
each location i is uniformly distributed in the range [100, 200].

This parameter determines the request arrival rate di at each
location according to di =

pi
∑

di∑
pi

. Accordingly, the number of
locations is irrelevant to the total amount of incoming requests,
but it can disperse the requests at each location. The number
of locations can be covered by a site falling in the range
[2, 18]. In fact, the choice of this parameter does not impact
the performance of our algorithms (results not shown here).

By default, we simulate a cloud across 20 cloud sites to
serve requests from 80 locations. This setting represents the
fact that users from many different locations are served by less
cloud sites. We will also show the results of more sites and
more locations. Firstly, we keep other settings fixed and only
vary the number of sites in the cloud CDN. Fig. 3 depicts the
corresponding results. Then, the number of locations is varied
and the corresponding results are shown in Fig. 4.

The default number of content is set as 500. We also vary
the number of contents in the range [250, 4, 000] and the
corresponding results are shown in Fig. 5, which confirms that
the performance with a large number of contents is similar to
that with a small number. Following prior works [18], [9], we
assume that the popularity of contents is governed by a Zipf-
Mandelbrot distribution with shape parameter α and plateau
parameter q. By default, we let α = 1 and let q = 0.5. We
will also vary α in the range [0.6, 1.4] and vary q in the range
[0, 2]. Fig. 6 and Fig. 7 depict the corresponding results.

To model the dynamic variation of user demands, we let the
arrival of requests conform to a non-homogeneous Poisson
process, i.e., a Poisson process with rate parameter λ(t).
Following [19], we let the rate parameter λ be a piecewise
linear function of time t (in minutes) with a linear rate δd,
which is the increment of λ per second. We let λ(t) vary in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 9

250 500 1000 2000 4000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Contents

P
er

ce
nt

ag
e

of
 S

er
ve

d
R

eq
ue

st
s

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(a) Percentage of served requests

250 500 1000 2000 4000
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Number of Contents

N
or

m
al

iz
ed

 R
en

ta
l C

os
t

DPC
DPC−Iter

(b) Normalized rental cost

250 500 1000 2000 4000
150

160

170

180

190

200

210

220

230

240

250

Number of Content

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(c) Average response time

Fig. 5. Results with varying number of contents.

0.6 0.8 1 1.2 1.4
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

skew

P
er

ce
nt

ag
e

of
 S

er
ve

d
R

eq
ue

st
s

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(a) Percentage of served requests

0.6 0.8 1 1.2 1.4
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

skew

N
or

m
al

iz
ed

 R
en

ta
l C

os
t

DPC
DPC−Iter

(b) Normalized rental cost

0.6 0.8 1 1.2 1.4
140

160

180

200

220

240

260

280

skew

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(c) Average response time

Fig. 6. Results with varying skew.

the range of [200, 1200] according to the following function:

λ(t) =

{
200 + δd(t− nT), if nT ≤ t < (n+ 0.5)T

1200− δd(t− nT), if (n+ 0.5)T ≤ t < (n+ 1)T
(15)

where T = 2000
δd

and n = 1, 2, We then vary δd in the
range [0.5, 8] to study the influence of dynamically varying
demands and show the dynamic resilience of our algorithms.
The corresponding results are shown in Fig. 8.

The results in Figs. 3 - 8 show that DPC-CRB and DPC-
Iter-CRB significantly outperform Greedy and LRU under
various scenarios. Also, DPC-Iter-CRB outperforms others
over all cases, indicating the effectiveness of UAGSA. The
performance gains of DPC and Greedy-CRB over Greedy
indicate that both DPC and CRB have contributions in enhanc-
ing performance. Fig. 8(a) shows when δd is small the per-
formance gaps between DPC/DPC-CRB/DPC-Iter-CRB and
Greedy/Greedy-CRB are comparatively small. As δd increases,
the percentage of served requests drops for all algorithms and
this trend is more severe for Greedy and Greedy-CRB. Hence,
the performance gaps between DPC/DPC-CRB/DPC-Iter-CRB
and Greedy/Greedy-CRB sharply increases. This suggests that
DPC can effectively resist dynamism in incoming requests.

Also, the results in Figs. 3(b) - 8(b) show that our algorithms
incur about 2%-5% more costs than Greedy. However, given
the significant advantage of our algorithms in performance,
it is worth spending such few additional costs in exchange of
serving more requests. It may be noticed that the costs of DPC
and DPC-Iter are normalized to Greedy and thus the plots in
Figs. 3(b) - 8(b) do not reflect how the absolute costs really
vary with varying parameters. in Further, it is shown in that
DPC-Iter-CRB delivers the best performance over all cases but

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Iterations

R
at

io
 to

 A
ch

ie
ve

 T
he

 B
es

t P
er

or
m

an
ce

Fig. 9. The number of times that the best solution is avail-
able in the x-th iteration of UAGSA out of all experiments

it also incurs more rental costs than other algorithms.
Finally, Fig. 9 depicts how many times that the best solution

is available in the x-th iteration out of the total number of
experiments. The x axis is the number of iterations used in
UAGSA and the y axis is the proportion of times that the
x-th iteration obtains the best solution over the total number
of experiments. In this experiment Imax is set as 30. It is
shown that about 80% of the best solutions are obtained within
5 iterations. Indeed in 60% of all cases the best solution is
achieved in the first iteration, i.e., UAGSA is useless in these
cases. Lessons learnt from this experience seem to suggest that
Imax can be set in the range [5, 20], which covers most cases
that the best solution can be found in UAGSA.

7 CONCLUSIONS

This paper has addressed the resource provisioning and replica
placement problems for cloud-based CDNs with an emphasis
on handling dynamic demand patterns. We have proposed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 10

0 0.5 1 1.5 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

plateau

P
er

ce
nt

ag
e

of
 S

er
ve

d
R

eq
ue

st
s

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(a) Percentage of served requests

0 0.5 1 1.5 2
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

plateau

N
or

m
al

iz
ed

 R
en

ta
l C

os
t

DPC
DPC−Iter

(b) Normalized rental cost

0 0.5 1 1.5 2
150

160

170

180

190

200

210

220

230

240

plateau

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(c) Average response time

Fig. 7. Results with varying plateau.

5 10 20 40 80
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

δ
d

P
er

ce
nt

ag
e

of
 S

er
ve

d
R

eq
ue

st
s

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(a) Percentage of served requests

5 10 20 40 80
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

δ
d

N
or

m
al

iz
ed

 R
en

ta
l C

os
t

DPC
DPC−Iter

(b) Normalized rental cost

5 10 20 40 80
120

140

160

180

200

220

240

260

280

300

δ
d

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

LRU
Greedy
DPC
Greedy−CRB
DPC−CRB
DPC−Iter−CRB

(c) Average response time

Fig. 8. Results with varying δd.

a set of novel algorithms to solve both the long-term pro-
visioning and caching problem and the short-term caching
and request balancing problem. Firstly, we have proposed the
DPC algorithm, which rents cloud resources to build CDNs
and caches contents on the cloud CDNs so that the total
rental cost can be minimized while all demands are served.
For each step of DPC, we have designed both greedy and
iterative heuristics. Secondly, we have presented the CRB
algorithm, which dynamically adjusts the placement of replicas
and routing maps based on the previously run solutions of DPC
such that total demands supported by the rented resources can
be maximized at runtime. The simulation results have shown
that our algorithms DPC-CRB and DPC-Iter-CRB constantly
outperform Greedy and LRU under various scenarios. Also, it
has been shown that DPC and CRB are adaptive to dynamic
environments.

REFERENCES
[1] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/.
[2] “Four Reasons We Choose Amazon’s Cloud as Our Computing Platform,”

The Netflix “Tech” Blog, December 2010.
[3] F. Chen, K. Guo, J. Lin, and T. La Porta, “Intra-cloud Lightning: Building

CDNs in the Cloud,” in Proc. IEEE INFOCOM, 2012.
[4] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-Assisted Live Media

Streaming for Globalized Demands with Time/Region Diversities,” in Proc.
IEEE INFOCOM, 2012.

[5] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F.C.M. Lau, “Scaling
Social Media Applications into Geo-Distributed Clouds,” in Proc. IEEE
INFOCOM, 2012.

[6] B. Li, M. Golin, G. Italiano, and X. Deng, “On the optimal placement
of web servers in the Internet,” in Proc. IEEE Infocom, 1999.

[7] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Problem,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 568-582, 2000.

[8] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of
replicas in trees with read, write, and storage costs,” IEEE Trans. Parallel
and Distributed Systems, vol. 12, no. 6, pp. 628-637, 2001.

[9] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” in Proc. IEEE INFOCOM, 2010.

[10] D. Niu, H. Xu, B. Li, and S. Zhao. “Quality-Assured Cloud Bandwidth
Auto-Scaling for Video-on-Demand Applications,” in Proc. IEEE INFO-
COM, 2012.

[11] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li. “Collaborative Hierarchical
Caching with Dynamic Request Routing for Massive Content Distribution,”
in Proc. IEEE INFOCOM, 2012.

[12] Z. Shen, J. Luo, R. Zimmermann, and A.V. Vasilakos, “Peer-to-peer
Media Streaming: Insights and New Developments,” Proc. IEEE, vol. 99,
no. 12, pp. 2089-2109, 2011.

[13] D. Applegate, A. Archer, V.G.S. Lee, and K. Ramakrishnan, “Optimal
Content Placement for a Large-Scale VoD System,” in Proc. ACM Interna-
tional Conference on Emerging Networking Experiments and Technologies
(CoNEXT), 2010.

[14] G. Gursun, M. Crovella, and I. Matta, “Describing and Forecasting Video
Access Patterns,” in Proc. IEEE INFOCOM Mini-Conference, 2011.

[15] X. Tang and J. Xu, “QoS-Aware Replica Placement for Content Dis-
tribution,” IEEE Trans. Parallel Distributed Systems, vol. 16, no. 10, pp.
921-932, 2005.

[16] G. Rodolakis, S. Siachalou, and L. Georgiadis, “Replicated Server Place-
ment with QoS Constraints,” IEEE Trans. Parallel Distributed Systems, vol.
17, no. 10, pp. 1151-162, 2006.

[17] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, pp. 233-235, 1979.

[18] M. Hefeeda and O. Saleh, “Traffic Modeling and Proportional Partial
Caching for Peer-to-Peer Systems,” IEEE/ACM Trans. Netw., vol. 16, no.
6, pp. 1447-1460, 2008.

[19] W.A. Massey, G.A. Parker, and W. Whitt, “Estimating the parameters of
a nonhomogeneous Poisson process with linear rate”, Telecommunication
Systems, vol. 5, no. 2, pp 361, 1996.

[20] R.M. Karp, “Reducibility among combinatorial problems,” 50 Years of
Integer Programming 1958-2008, pp. 219-241, 2010.

[21] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman, and
P. Maechling, “Data Sharing Options for Scientific Workflows on Amazon
EC2”, in Proc. 2010 ACM/IEEE Int’l Conf. High Performance Computing,
Networking, Storage and Analysis, 2010.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 11

Menglan Hu received the B.E. degree from
Huazhong University of Science and Technolo-
gy, Wuhan, China, in 2007, and the Ph.D. de-
gree from the National University of Singapore,
Singapore, in 2012. He is currently a research
fellow at the School of Computer Engineering,
Nanyang Technological University, Singapore.
His research interests includes cloud comput-
ing, parallel and distributed systems, as well as
scheduling and resource management.

Jun Luo received the B.S. and M.S. degrees in
electrical engineering from Tsinghua University,
Beijing, China, in 1997 and 2000, respectively,
and the Ph.D. degree in computer science from
the Swiss Federal Institute of Technology in Lau-
sanne (EPFL), Lausanne, Switzerland, in 2006.
From 2006 to 2008, he has worked as a Post-
Doctoral Research Fellow with the Department
of Electrical and Computer Engineering, Univer-
sity of Waterloo, Waterloo, ON, Canada. In 2008,
he joined the faculty of the School of Computer

Engineering, Nanyang Technological University, Singapore, where he is
currently an Assistant Professor. His research interests include wireless
networking, mobile and pervasive computing, distributed systems, mul-
timedia protocols, network modeling and performance analysis, applied
operations research, and network security. He is a member of the IEEE.

Yang Wang received the BS degree in applied
mathematics from the Ocean University of Chi-
na in 1989 and the MS and PhD degrees in
computing science from Carleton University and
the University of Alberta in 2001 and 2008,
respectively. He is currently at IBM Center for
Advanced Studies (CAS), Atlantic, University of
New Brunswick, Fredericton, Canada. Before
joining CAS Atlantic in 2012, he was a research
fellow at the National University of Singapore
from 2010 to 2012. Before that, he was a re-

search associate at the University of Alberta, Canada, from August
2008 to March 2009. His research interests include scientific workflow
computation and virtualization in Clouds and resource management
algorithms.

Bharadwaj Veeravalli received his BSc in
Physics, from Madurai-Kamaraj University, India
in 1987, Master’s in Electrical Communication
Engineering from Indian Institute of Science,
Bangalore, India in 1991 and PhD from Depart-
ment of Aerospace Engineering, Indian Institute
of Science, Bangalore, India in 1994. He did
his post-doctoral research in Concordia Univer-
sity, Montreal, Canada, in 1996. He is currently
with the Department of Electrical and Computer
Engineering at the National University of Sin-

gapore, Singapore, as a tenured Associate Professor. His research
interests include Cloud/Grid/Cluster Computing, Scheduling in Parallel
and Distributed Systems, Bioinformatics & Computational Biology, and
Multimedia Computing. He is one of the earliest researchers in Divisible
Load Theory (DLT). He had secured several externally funded projects
and published over 120 papers in high-quality journals and conferences.
He has co-authored three research monographs in the areas of PDS,
Distributed Databases, and Networked Multimedia Systems, in 1996,
2003, and 2005, respectively. He is currently serving the Editorial Board
of IEEE Transactions on SMC-A, Multimedia Tools & Applications (M-
TAP) and Cluster Computing, as an Associate Editor. Until 2010 he had
served as an AE for IEEE Transactions on Computers. More information
can be found in http://cnl-ece.nus.edu.sg/elebv/. He is a senior member
of the IEEE and the IEEE computer society.

