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Abstract

We address the problem of estimating the real-time traffic flows in data center networks (DCNs), using the light-weight
SNMP data. Unlike the problem of estimating the traffic matrix (TM) across origin-destination (OD) pairs in ISP
networks, the traffic flows across servers or Top of Rack (ToR) switch pairs in DCNs are notoriously more irregular and
volatile. Although numerous methods have been proposed in past several years to solve the TM estimation problem in
ISP networks, none of them could be applied to DCNs directly. In this paper, we make the first step to solve the TM
estimation problem in DCNs by leveraging the characteristics of prevailing data center architectures and decomposing
the topologies of DCNs, which makes TM estimation problems in DCNs easy to handle. We also state a basic theory
to obtain the aggregate traffic characteristics of these clusters unbiasedly. We propose two efficient TM estimation
algorithms based on the decomposed topology and the aggregate traffic information, which improves the state-of-the-
art tomography methods without requiring any additional instrumentation. Finally, we compare our proposal with a
recent representative TM estimation algorithm through both real experiments and extensive simulations, the results
show that, i) the data center TM estimation problem could be well handled after the decomposition step, ii) our two
algorithms outperforms the former one in both speed and accuracy.
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1. Introduction

As data center networks (DCNs) become increas-
ingly central in cloud computing, both academic and
industrial communities have started to explore how to
better design and manage them. The main topics in-
clude network structure design [2, 3, 4], traffic engineer-
ing [5], capacity planning [6], anomaly detection [7],
etc. However, until recently, very little is known about
the characteristics of traffic flows within DCNs. For
instance, how do traffic volumes exchanged by two
servers or Top of Rack (ToR) switches vary with time?
Which server communicates to other servers the most
in DCNs? Actually the real-time traffic matrix (TM)
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across servers or ToR switches is a critical input to all
above network designs and operations. Lack of this in-
formation hampers both research and practice.

With the increasing demands for the detailed flow
level information of DCNs, a few works have stud-
ied the flow characteristics of the data centers in their
hands [8, 9, 10]. However, the main barrier for them is
the difficulty in flow data collection, for the flow level
instrumentation is unavailable in most data centers. Be-
sides, installing these additional modules requires sub-
stantial development and lots of administrative costs.

As the SNMP counters are ubiquitously available in
all DCN devices, it is natural to ask if we could borrow
from the well known tomography methods [11, 12, 13]
and use link level information (such as SNMP bytes
counters) to infer the TMs in DCNs. Unfortunately,
both Kandula et al.’s experiments in real DCNs [10]
and our testbed show that all existing tomography based
methods (reviewed in Sec. 2) perform poorly in DCNs.
This is due to the irregular flow behaviors and the large
quantity of redundant paths between each pair of servers
or ToR switches in these networks.
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In this paper, we demonstrate that the prevailing DCN
topologies (including conventional data center architec-
ture [14], Fat-Tree [2], VL2 [3], etc.) can be divided
into several clusters, and the complexity of original TM
estimation problem can be reduced accordingly. Based
on that, we design two efficient algorithms to infer, with
high accuracy, the TMs i) across these clusters and ii)
among ToR switches within each cluster. Then we ver-
ify their performance in our experiments. More specif-
ically, this paper makes the following contributions to
the field of data center networking.

We decompose DCN topology into several clusters
to deal with the large quantity of paths between origin-
destination (OD) pairs. By doing this, the complexity
of the intractable inference problem can be dramatically
reduced, and tomography methods may hence be ap-
plied. We also state a basic theory that the total traf-
fics exchanged among clusters and within each cluster
can both be unbiasedly inferred from the link loads on
switches. Such aggregate traffic characteristics are of
great significance for the network administrators. For
instance, clusters with much more intra traffic may have
been well designed, as the intra traffic often costs lower
network and computational resources. And the admin-
istrators should pay more attention to the clusters that
communicate a lot with other clusters, whose traffic may
cause relative high network delay.

We propose two efficient algorithms to infer the de-
tailed inter and intra clusters’ TMs. The first algorithm,
which is more appropriate to infer the TMs without ex-
plicit structures, utilizes the aggregate traffic informa-
tion to calculate a hypothesis flow volume on each path
and then refine the assignments by a least square prob-
lem. The second one models the inference problem as a
state-space network which incorporates both the spatial
and temporal structure of TM, and updates the states of
TM elements whenever a new observation arrives.

Finally, we design several experiments on testbed
and extensive simulations in ns-3 to validate the per-
formances of our two proposals. Through comparing
with a recent representative TM estimation method, the
experiment results show that our two algorithms outper-
form the former algorithms in both accuracy and speed,
especially for large scale TMs.

The rest of the paper is organized as follows: we sur-
vey the related works in Sec. 2, and present the problem
formulation in Sec. 3. In Sec. 4, we present DCN topol-
ogy decomposition principles. We propose two efficient
TM estimation algorithms in Sec. 5 and Sec. 6, respec-
tively and evaluate them through both experiments and
simulations in Sec. 7. Finally we give a discussion in
Sec. 8 and conclude our work in Sec. 9.

2. Related Work

As DCN has recently emerged as an intriguing topic,
there are numerous studies working on approaches for
traffic engineering [5], anomaly detection [7], provi-
sioning and capacity planning [6], etc. However, almost
no existing work has devoted to the traffic measurement
approaches, although the estimation of traffic flows is
a critical input to all above network designs and opera-
tions.

Previous studies [8, 9] have exploited the traffic char-
acteristics within DCNs. The former focuses on cloud
data centers that host Web services as well as those run-
ning MapReduce [15], while the latter considers more
generic DCNs such as enterprise and campus data cen-
ters. Both of them collected packet traces by attaching
a dedicated packet sniffer on the switches in data cen-
ters. It is an impractical solution to turn on the packet
sniffers all the time since it will consume a lot of switch
resources. Therefore, Benson et al. in [9] only selected
a handful of locations at random per data center and in-
stalled sniffers on them.

Kandula et al. [10] studied the nature of data cen-
ter traffic on a single MapReduce data center. They
firstly measure the traffic on data center servers, provid-
ing socket level logs. They also question whether TM
can be inferred from link counters by tomography meth-
ods in DCNs as they perform in the ISP counterpart? If
they do so, the barrier to understand the traffic character-
istics of data centers will be lowered from the expensive
instrumentation to analyzing the more easily available
SNMP link counters. Unfortunately, they show with
their evaluations that tomography performs poorly for
data center traffic, due to the following reasons.

• Most existing topography based methods model
the traffic flows at the granularity of volumes ex-
changed by OD pairs, assuming that there is only
one path between an OD pair and the routing ma-
trix will always be constant over time. However,
this assumption may be violated in DCNs. There
are a great number of redundant paths in DCNs
to deal with the congestion, and choosing which
route depends on the particular scheduling strategy
within the network.

• To address the under-determined problem in net-
work topography, some methods make additional
assumptions such as gravity traffic model [11] and
rank minimization [12], both of which perform
poorly in DCNs, since servers in data centers do
not have the same behaviors as terminals in ISP
networks.
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Figure 1: An example of conventional DCN architecture (adopted
from Cisco [14]).

• Methods that exploit the spatio-temporal structure
of traffic flows [12] often have high time and space
complexity, for the elements in the TM were esti-
mated simultaneously under the global constrains.
When TM is in large scale, these inference al-
gorithms incur high time and space complexities.
Moreover, when new observations or requirements
arrive, they need to start over again.

In this paper, we aim at designing an efficient tool to
infer the traffic flows in DCNs with high accuracy by
the ubiquitous SNMP data collected by switches. With
the our new but powerful tool, the data center adminis-
trators could learn the real-time network traffic details
at any moment they need.

3. Problem Formulation Background

We consider a typical DCN as shown in Fig. 1,
consisting of ToR switches, aggregation switches and
core switches connecting with Internet. We can poll the
SNMP MIBs on the network switches for bytes/packets-
in and bytes/packets-out at granularities ranging from 1
minute to 30 minutes. The SNMP data can also be inter-
preted as switch loads equals to the summation of vol-
umes of flows that traverse the corresponding switches.
While a fine-grained DCN TM indicates the traffic vol-
umes exchanged between ToRs, we decompose a DCN
into clusters and aim at only inferring coarse-grained
TMs (among clusters and ToRs in each cluster) from
switch loads.

We represent switches in the network as S =

{s1, s2, . . . , sm}, where m is the number of switches. Let
y = {y1, y2, . . . , ym} denote the traffic loads collected by
SNMP counters on the switches, and x = {x1, x2, . . . , xn}

denote the traffic flow volumes on the paths between
ToR switch pairs, where n is the number of all available
paths in DCN. xi(t) and y j(t) represent the correspond-
ing traffic at discrete time t. The correlation between

x(t) and y(t) can be formulated as

y(t) = Ax(t) t = 1, ...,T, (1)

where A is the routing matrix indicating all possible
paths between ToR/cluster pairs. Ai j = 1 denotes flow j
traverses the switch si, and Ai j = 0 otherwise. Although
Eqn. (1) is a typical linear system, it is very difficult
to solve. Since the number of equations is much less
than the number of variables, the problem is highly ill-
posed. Especially, the case for the conventional data
center topologies (as shown in Fig. 1) makes the prob-
lem even worse as many ToR switches connect to one
or a few high-degree aggregation switches. For exam-
ple in Fig. 1, the network consists of 8 ToR switches,
4 aggregation switches and 2 core switches. The num-
ber of possible paths between all ToR switches is more
than 300, while the number of observations is only 14.
Moreover, the number of paths grows dramatically with
the network scale. When the numbers of correspond-
ing switches double, the number of paths will grow up
to thousands. Hence, inferring TMs of DCNs directly
from Eqn. (1) is impractical. In the next section, we in-
troduce a novel methodology which turns the intractable
problem into an easy one.

4. Data Center Topologies Decomposing

Due to the special architecture of prevailing DCNs,
the TM across ToR switches can be decomposed to sev-
eral smaller TMs. The possibility of the decomposition
operation is based on the locally tree-like structure of
data center topologies. For example in Fig. 1 each ToR
connects with two aggregations. Then the two aggre-
gation switches together with 4 ToR switches can form
a conditional independent cluster. That is to say, if we
know the traffic flows that go in (or out of) agg1 and
agg2, the traffic flows that go in (or out of) ToR1 ∼ ToR4
are independent to the traffic flows going in (or out of)
ToR5 ∼ ToR8. Hence, the DCN topology in Fig. 1 can
be decomposed to two clusters as shown in Fig. 2. For
architectures such as Fat-Tree [2] and VL2 [3], we can
still group aggregation switches with the ToR switches
directly connected to them. Therefore, the problem can
be turned into inferring the TM across clusters (inter in-
ference) and the TM across the ToR switches intra each
cluster (intra inference), both of which are much more
determined than the original problem in terms of net-
work tomography.

Note that, although the inter and intra TMs that we
aim to estimate can reveal most of the traffic charac-
teristics of DCNs, we still could not obtain the traffic
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Figure 2: Decomposing the topology in Fig. 1 to two clusters.

flows directly if their ends are in different clusters. In-
stead, we could learn from intra TM that how much traf-
fic that originates from ToRi and goes to another clusters
and how much traffic that originates from another clus-
ter and enters in ToR j. We could also learn from inter
TM the detailed traffic flows across clusters. We will
carry the work on to estimate the TM across ToRs in
different clusters in our future work based on the intra
and inter TMs.

Actually, decomposing data center topology not only
reduces the complexity of inference problem but also
motivates us to figure out the aggregate traffic charac-
teristics for each cluster, including the total traffic ex-
changed within each cluster, the total traffic leaving or
entering into each cluster. In the rest part of this section,
we first give some definitions then state Lemma 4.1 to
demonstrate the aggregate traffic information of clusters
can be inferred unbiasedly from the loads on switches.

Taking Fig. 2 for example, we denote the loads on
the i-th core switch and aggregation switch as y(corei)
and y(aggi), respectively. Here load on the switch is
the sum of the in or out traffic of all the interfaces of
a switch during a certain interval, which can be ob-
tained by, for example, setting up SPAN on the Cisco
switches. This helps us to greatly reduce the traffic
generated in the process of “SNMP polling”. Practi-
cally, it is easy to distinguish the “in” and “out” traf-
fic flows on ToR switches. We represent the “out”
flows which come from servers under ToRi as yout(tori),
and the “in” flows which are transferred to servers as
yin(tori). Obviously, the total loads on ToRi switch
y(tori) = yout(tori) + yin(tori).

Suppose the underlying DCN can be decomposed to
s clusters which are grouped in C = {c1, c2, . . . , cs}.
AGGci denotes the set of aggregation switches in cluster
ci, and TORci is the set of all the ToRs within cluster ci.

Lemma 4.1. Suppose xintra(ci) is the total traffic ex-
changed intra the cluster ci, xin(ci) is the total traffic
entering ci from other clusters, and xout(ci) is the to-
tal traffic going out of ci. Then the following equations

hold.

xintra(ci) (2)

=
∑

tork∈TORci

(yin(tork) + yout(tork)) −
∑

agg j∈AGGci

y(agg j)

xin(ci) =
∑

agg j∈AGGci

y(agg j) −
∑

tork∈TORci

yout(tork) (3)

xout(ci) =
∑

agg j∈AGGci

y(agg j) −
∑

tork∈TORci

yin(tork) (4)

The proof can be found in [1]. The aggregate traffic
nature of clusters is unbiased and simple in calculation.
It is significant to the data center administrators and net-
work designers for making more convincing decisions
based on the real-time traffic information.

5. TM Inference Method Based on Aggregate Traffic
Characteristics

In this section, we propose an efficient TM estimation
algorithm based on the aggregate traffic characteristics
(TMCG). The new algorithm first calculates a hypoth-
esis set of TM elements based on the aggregate traffic
from Lemma 4.1 and then refines the hypothesis using
the constraints of switch observations by solving a least
square problem.

5.1. Hypothesis for TM Elements
The hypothesis for inter TM elements are calculated

based on the gravity traffic model [16]. As we men-
tioned in Sec. 2, traffic flows across servers or ToR
switches in DCNs are revealed to violate the gravity
traffic model [10], since the traffic flows are often ir-
regular. However, the DCN after being decomposed
operates in a different situation. The inter TM are not
as sparse as the TM in the original topology, which is
more consistent with the assumptions of gravity model.
Moreover, the clusters and cores are likely to play the
same roles as the terminals and routers in the Inter-
net. The sub-networks intra clusters have the similar
situation as well. Thus, in this section we set the hy-
pothesis for TMs using the gravity traffic model, which
will be demonstrated feasible through the experiments
in Sec. 7.

Gravity models are based on the assumption of a sim-
ple proportionality relationship [17]

xi j ∝ yout
i · y

in
j , (5)

where xi j denotes the traffic from the i-th end to the j-th,
yout

i denotes the total traffic going out at the i-th end, and
yin

j denotes the total traffic entering at the j-th end.
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5.1.1. Hypothesis for Inter TM
Since we know the out (in) traffic volumes of all clus-

ters from Lemma 4.1, the hypothesis of inter TM ele-
ments xh(ci, c j) can be formulated by

xh(ci, c j) = xout(ci) ·
xin(c j)∑

ck∈C xin(ck)
(6)

Suppose nc is the number of core switches. Since there
is only one hop on each path between cluster pairs, there
are nc paths from ci to c j. We define a vector of weights
w = {w1, . . . ,wnc } for the paths between two clusters,
where

∑nc
i=1 wi = 1. For example, in Fig. 2, there are

two paths from c1 to c2 : c1 → core1 → c2 and c1 →

core2 → c2. If we suppose they have the equal weight,
then w1 = w2 = 1

2 . Thus the traffic allocated on the k-th
path is wk · xh(ci, c j).

5.1.2. Hypothesis for Intra TM
Similar to inter traffic flows, we also model the in-

tra traffic exchanged by ToR switches as gravity traffic
model. Different from inter traffic, there is a portion
of traffic that goes out of (or enters into) the cluster.
Therefore, we partition the total out (or in) loads on i-th
ToR switches into two parts: traffic going to (or coming
from) ToRs outside the cluster (denoted by xout′ (tori) or
xin′ (tori)) and traffic going to (or coming from) ToRs
within the cluster (equal to xout(tori) − xout′ (tori) or
xin(tori) − xin′ (tori)). We also define a parameter θout

k
as the possibility that traffic goes out of cluster ck, and
θin

k as the possibility of traffic comes from other clusters,
which can be calculated by

θout
k =

xout(ck)∑
tor j∈TORck

xout(tor j)
(7)

and
θin

k =
xin(ck)∑

tor j∈TORck
xin(tor j)

(8)

The hypothesis for xout′ (tori) and xin′ (tori) are

xh
out′ (tori) = θout

k · xout(tori) (9)

and
xh

in′ (tori) = θin
k · xin(tori) (10)

For the intra traffic flows, let xh(tori, tor j) denote the
hypothesis for traffic volumes from ToRi to ToR j within
the cluster ck, which can be calculated by

xh(tori, tor j) = (1 − θout
k )xout(tori) ·

(1 − θin
k )xin(tor j)

xintra(ck)
(11)

Suppose there are nk aggregation switches in cluster ck.
Then the number of available paths between ToRi and
ToR j within a cluster is nk as well, for there is only
one hop on each path. We define v = {v1, . . . , vnk } as
the weights of paths that go through the correspond-
ing aggregation switches, where

∑nk
i=1 vi = 1. The traf-

fic allocated on the k-th path of each hypothesis set is
vk · xh(torout

i ), vk · xh(torin
i ) and vk · xh(tori, tor j), respec-

tively. Similar to w, the assignments to v depend on the
routing strategy applied to the underlying network.

5.2. Refine Hypothesis TMs by Least Square Problem

The intuition to refine the hypothesis of inter and intra
TM elements is finding the solution that is closest to the
hypothesis and subject to the switch loads we have ob-
served, similar approach was proposed in [11, 18, 19].
This problem can be formulated as a least square prob-
lem.

For the inter TM, the program can be formulated as

Minimize ||x(C) − xh(C)|| (12)

s.t. Ainterx(C) = [y(core), yout(C), yin(C)]

where x(C) is the vector of directed traffic flows from
one cluster to another, and xh(C) is its hypothesis value.
Ainter is the routing matrix where each column repre-
sents a directed path between a cluster pair. y(core)
is the vector of loads on the core switches, yout(C) and
yin(C) are the vectors of out and in traffic of each clus-
ter. || · || is the L2 norm of the vector (i.e., the Euclidean
distance).

For the intra TM of cluster ci, the program can be
formulated as

Minimize ||x(ci) − xh(ci)|| (13)
s.t. Aci x(ci) = [y(AGGci ), y(TORci )]

where x(ci) denotes the vector of directed traffic vol-
umes exchanged by ToR switch pairs within cluster ci,
the traffic from each ToR switches going out of cluster
ci, and the traffic entering each ToR switch in cluster ci

from other clusters. xh(ci) is the corresponding hypothe-
sis values. Aci is the routing matrix, where each column
represents a directed path between two ToR switches
within cluster ci. Note that we denote a flow path from
ToRi going out of the cluster by a column that only con-
tains the source ToRi and the aggregation switches, and
similarly with the flow entering ToRi from other clus-
ters. y(AGGci ) is the vector of loads on aggregation
switches in cluster ci. y(TORci ) consists of total in and
out traffic loads on ToR switches in cluster ci, the total
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traffic entering in and going out of cluster ci, and the
total traffic exchanged intra cluster ci.

Basically, we want to obtain x that is closest to xh but
satisfies the tomographic conditions. This problem can
be formulated as follows:

Minimize ‖x − xh‖

s.t. ‖Ax − y‖ is minimized

Note that the tomography constraints may not be satisfi-
able due to noise or error in the collected link counts or
the routing matrix. So we choose to minimize the gap
between y and Ax in the experiments. To tackle this
problem, we first compute the deviation ỹ = y − Axh,
then we solve the following constrained least square
problem to obtain the deviation x̃ as the adjustments to
xh for offsetting the deviation ỹ.

Minimize ‖Ax̃ − ỹ‖ (14)
s.t. µx̃ ≥ −xh

We use a tunable parameter µ, 0 ≤ µ ≤ 1 to make the
tradeoff between the similarity to the prior solution and
the precise fit to the link loads. The constraint is meant
to guarantee a non-negative final estimation x.

Finally, x is obtained by making a tradeoff between
the prior and the tomographic constraint as x = xh + µx̃.
According to our experience, we take µ = 0.8 to give a
slightly more bias towards the prior.

6. Adaptive TM Inference Method based on Linear
State-space Model

The TM estimation method based on aggregate traf-
fic characteristics simply calculates a solution using the
observations on current time slice. The historical ob-
servations and solutions would not be used once a new
observation set arrives. However, motivated by the stud-
ies in [12, 13], we found in our experiments that the
traffic flows over multiple time periods also have a spa-
tial and temporal structure as the flows in ISP networks.
To leverage this characteristics of TM structure, we
model the TM estimation problem as a linear state-space
network which always incorporates both historical and
fresh observations. We then design an efficient adaptive
inference algorithm based on the model to infer the TM
with a spatio-temporal structure.

6.1. Modeling
The linear state-space network is defined asx(t + 1) = F · x(t) + Q(t)

y(t + 1) = A · x(t + 1) + V(t + 1)
(15)

t t+1

X1(t+1)

...
...

Predict

Xn(t+1)

Y1(t+1)

Ym(t+1)

X1(t)

...
...

Xn(t)

Y1(t)

Ym(t)

Smooth

Update

Figure 3: Linear space-state model for TM estimation problem and
we add smooth step to the Kalman filter.

where F is a known matrix, correlating the state x(t + 1)
with its state on the last discrete time t. Q is an i.i.d.
Gaussian process with covariance matrix σQ, indicating
the uncertainty of the relationship. y(t + 1) is the vector
of observations on time t+1, which correlates x(t+1) by
matrix A. V is also an i.i.d. Gaussian process with co-
variance matrix σV , representing the observation noise.

In our TM estimation problem, we represent the in-
ter (intra) traffic flow on each path as a state, and the
switch loads together with the aggregate traffic of clus-
ters as the observations. The state-space network for
the TM estimation problem is shown in Fig. 3, where
xi(t) denotes the traffic on the i-th path of inter (intra)
networks, and y j(t) is the j-th observation. The arrow
connecting xi(t) and y j(t) means xi(t) contributes the to-
tal traffic of y j(t). Our goal is to estimate the states
of x1(t) ∼ xn(t), t = 1, . . . ,T , given the observations
y1(t) ∼ ym(t), t = 1, . . . ,T , where n is the number of
possible paths and m is the number of observations.

6.2. A Variant Kalman Filtering Algorithm
Kalman filter is one of the best inference algorithms

for linear state-space network. It can achieve an optimal
solution to (15) under the assumption that the probabil-
ity density of the state at every time step is Gaussian. In
our model, we assume traffic state xi(t) follows a Gaus-
sian distribution N(µi(t), σi(t)). We treat µi(t) as the es-
timation of state xi(t), and σi(t) as the uncertainty on
the estimation. In the rest of the paper, we use xi(t) uni-
formly to represent both the state and its mean value.
Obviously, the observation y j(t) also follows a Gaussian
distribution.

The Kalman filtering includes two steps: predict and
update. The former predicts the states of traffic flows in
the next time slice based on their current states, and the
latter updates the predicted states with the new obser-
vations [20]. In our traffic inference method, we add a
smooth step to the Kalman filter to adjust the states on
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preceding time slices using their new updated states in
order to refine the TM structure. The relationship of the
three steps are shown in Fig. 3.

6.2.1. Predict Step
In the first step, the states of traffic flows on the next

time slice are calculated by

x̄(t + 1) = Fx̂(t) (16)

where F is the correlation among traffic flows on adja-
cent time slices, x̄(t+1) is the prediction value using the
estimated state x̂(t) at time t. The diagonal elements of
F indicate a temporal correlation within a single flow,
while the off-diagonal elements capture the spatial cor-
relation across different traffic flows.

Meanwhile, the covariance of states is calculated by

σ(t + 1) = [F · σ2(t) · FT + σ2
Q(t)]

1
2 , (17)

where FT is the transpose of F.

6.2.2. Update Step
In this step, the states of flows will be updated us-

ing the new observations. To learn the gap between the
states we expected and their ground truth, we first calcu-
late the deviation between the observations we expected
and their true values by

i(t + 1) = y(t + 1) − Ax̄(t + 1) (18)

Here, i(t + 1) is called measurement innovation, which
we can use to adjust the predicted state of traffic flows
by

x̂(t + 1) = x̄(t + 1) + K(t + 1)i(t + 1) (19)

Here, K(t + 1) is called Kalman gain matrix, which is
chosen by minimizing the posteriori error covariance
E(x(t + 1) − x̂(t + 1))2, where x(t + 1) is the real states
of the traffic flows.

Through some regular linear algebra steps, the
Kalman gain K(t + 1) can be written as

K(t + 1) = [σ2(t + 1)AT ] · [Aσ2(t + 1)AT +σ2
V (t + 1)]−1,

(20)
where AT is the transpose of A. The physical meaning
of the update step is that: we try to find an optimal state
for the traffic flow, which is a tradeoff between the pre-
dicted state and the linear-equation constraints. On one
hand, if the measurements error covariance σV (t + 1)
approaches zero, then the actual measurements y(t + 1)
is trusted more and more, while the prediction state
Ax̄(t + 1) is trusted less and less. On the other hand,

if the uncertainty about the predicted state Ax̄(t + 1) is
small enough, the Kalman filter will incline to the pre-
dicted state rather than the observation constraints. The
filter keeps refining the uncertainty of the states by mea-
suring the performance of their prediction.

In some cases, the Kalman gain matrix calculated by
Eqn. (20) does not make any physical sense in our infer-
ence model, for substituting it into Eqn. (19) may lead
to negative traffic volumes. Therefore, we modify (20)
to a least square problem by

Minimize ||K(t + 1)[Aσ2(t + 1)AT ] − σ2(t + 1)AT ||

(21)

s.t. K(t + 1)i(t + 1) > −x̄(t + 1)

The uncertainty of the states is updated by

σ(t + 1) = [(i(t + 1) −K(t + 1)A)σ2(t + 1)]
1
2 (22)

6.2.3. Smooth Step
In the last step, we use the new updated states of traf-

fic flows to smooth the preceding states backward. The
smooth process is formulated as

x̃(t) = x̂(t) + J(t + 1)(x̂(t + 1) − F · x̂(t)) (23)

Here x̃(t) represent the smoothed states of flows on the
t time slice. Similar to K, J is called Kalman smooth
gain matrix, which can be calculated by

J(t +1) = [σ2(t) ·FT ] · [F ·σ2(t) ·FT +σ2
Q(t +1)]−1 (24)

We also modify Eqn. (24) to be a least square prob-
lem to eliminate the unreasonable results.

Minimize ||J(t + 1)[Fσ2(t)FT + σ2
Q(t + 1)] − σ2(t)FT ||

(25)

s.t. J(t + 1) · [x̂(t + 1) − F · x̂(t)] > −x̂(t)

The uncertainty of the states in last discrete time should
also be updated by

σ̂(t) = [σ2(t)+J(t+1)(σ2(t)−σ2
Q(t+1))JT (t+1)]

1
2 (26)

Consider the scalability of the method, we only smooth
the flow states of the direct precursor rather than pass
the smooth step back to the beginning. In practice, the
effect of smooth operation becomes much weaker when
it passes to the last but one discrete time.

7



6.3. Model Calibration
To make the Kalman filter better adapted to different

kinds of traffic in different environments, it should be
better to train the model listed in Eqn.(15) first before
applying the model. More specifically, we need to get
the matrix F, A and variables Q, V in Eqn.(15).

The matrix A can be derived from the routing
schemes in the network, so we only need to obtain the
matrix F and variables Q, V . In this paper, we as-
sume the availabilities of flow monitors such as Open-
flow [21] but it is expensive to turn on and use. So in our
algorithm, we only operate the flow monitors for an lim-
ited amount of time, which has the chance to gain about
50% of improvement of accuracy while only increasing
about 10 − 20% of measurement overhead [13].

In our methods, we let the flow monitors turn on for
24 hours and collect the real traffic measurements of
the flows to calibrate the model in Eqn.(15). And we
get the data of n flows and the SNMP counters y for T
time slices. After that, we use the EM algorithm, which
computes the maximum likelihood estimation of param-
eters, to compute the matrix F and variables Q, V given
the observations of y and real flow data measurements
x. The details of the EM algorithm can be found in [22].

6.4. Innovation
In the real DCNs, it is possible that the traffic pat-

tern changes and the parameters are not applicable any
more. In this case, we need to turn on the flow monitors
for 24 hours to recalibrate the model. Here we use the
innovation measurement as stated before to determine
whether and when we need to recalibrate the model to
get the new matrix F and variables Q, V .

As link counters y can be measured in the network for
each interval, we can judge whether recalibrate is neces-
sary by computing the gap between real measurements y
and the estimated link count ȳ. Recall that measurement
innovation is the deviation between the observations we
expected and their true values. So namely the gap be-
tween y and ȳ is the measurement innovation as stated
before, then if we combine it with Eqn.(18), we can get
the following

i(t + 1) = y(t + 1)− ȳ(t + 1) = y(t + 1)−Ax̄(t + 1), (27)

where i(t + 1) is a zero-mean Gaussian process and the
covariance of i(t + 1) can be computed as

P(t + 1) = [σ2
V (t + 1) + Aσ2(t + 1)AT ]

1
2 . (28)

P(t+1) is an m×m matrix, with the diagonal elements
Pii(t) denoting the covariance of the measurement inno-
vation of link i at time t.

Now we know that the innovation measurement i(t)
follows the zero-mean Gaussian process and the covari-
ance is P(t), so we can determine the confidence inter-
val of i j(t) to be ±2P j j(t) with the possibility of at least
95% [20]. More specifically, in each time t, we first
compute the i j(t) and P j j(t) for each link, where j is the
index of link in the network. Then we check whether
the value of ‖i j(t)‖ is larger than 2P j j(t). If the answer
is yes and it happens for 10 consecutive time slots, we
take the model as inaccurate for the present traffic and
start an calibration.

6.5. Algorithm Pseudocode

Algorithm 1 describes the adaptive TM estimation
algorithm based on Linear State-space model (TMLS).
We first use the real measurements to calibrate the
model and get the initial inputs x(0) for the first time
slice in line 1. The algorithm then predicts the state of
x(t) based on x(t−1), and updates the state of x(t) by the
observation y(t) in line 3 and 4, respectively. After that,
line 5 performs the smooth backwards to the flow states
x(t−1) using their corresponding new states. Finally, we
check whether the requirements to recalibrate are meet.
If it does, we start a recalibration (line 6). Note that,
Algorithm 1 unifies both inter and intra TM estimation
by substituting the input parameters by the inter or intra
TM parameters.

Algorithm 1: Adaptive TM Inference Algorithm
Based on Linear State-space Model

Input: y(1 : k), A, T
Output: x

1 Calibrate the model to get x(0), F,σ(0), σQ(0),
σV (0).

2 for t = 1 to T do
3 [x(t)]← Predict(x(t − 1), σ(t − 1), σQ(t − 1))
4 [x(t), σ(t)]← U pdate(x(t), y(t), σ(t), σV (t))
5 [x(t − 1), σ(t − 1)]←

S mooth(x(t − 1), x(t), σ(t − 1), σ(t), σQ(t − 1))
6 If the requirements of recalibration is satisfied, start

a calibration process.

7. Experiments and Simulations

7.1. Algorithms and Metrics

We implement our two TM estimation algorithms:
TMCG and TMLS, together with a recent representative
TM estimation algorithm—Sparsity Regularized Matrix
Factorization (SRMF for short) [12] which leverages the
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Spatio-temporal structure of traffic flows, and utilizes
the compressive sensing method to infer the missing
data in TM by rank minimization. The TM estimation
problem that we aim to address is a special case that
all elements in TM are missing. In our experiments,
the SRMF algorithm can not provide a result in a lim-
ited time (more than 24 hours) when apply it directly
to the data center tomography problem, simply because
the number of columns of the origin routing matrix is
more than 15000 while the number of its rows is only
56. Therefore, we apply all the three algorithms on
the decomposed data center topology, and reconfigure
the parameters of the TM estimation problem based on
Lemma 4.1.

We quantify the performance of the three algorithms
from three aspects: The cumulative distribution of rela-
tive error (RE), the mean relative error (MRE), and the
computing time.

The relative error (RE) is formulated as

REi = |xi − x̂i|/xi (29)

Here xi denotes the true TM element and x̂i is the corre-
sponding estimated value.

The mean relative error (MRE) introduced by [23]
can be calculated by

MRE =
1
nε
·
∑
xi>ε

|xi − x̂i|

xi
(30)

The sum is taken over the flow volumes larger than a
threshold ε, and nε is the number of elements that larger
than ε. In our experiments, we set ε to 10 packets, which
mask most minor flows that we do not concern, such as
some small ACK flows. The algorithm’s MRE indicates
the global deviation of the estimation from the ground
truth.

For the computing time, we measure the time pe-
riod starting from when we input the topologies and
link counts to the algorithm until the time when all TM
elements are returned. All three algorithms are imple-
mented by Matlab (R2012a) on 6-core Intel Xeon CPU
@2.93GHz, with 12GB of memory and the Mac OS X
10.6.5(10H574).

7.2. Experiments

7.2.1. Experiment Setup
We use a testbed with 10 switches and about 300

servers as shown in Fig. 4 for our experiments. And
the architecture for this testbed DCN is a conventional
tree similar to Fig. 1. The testbed hosts a variety of
services such as hadoop [15], multimedia and so on.

Figure 4: Our testbed with 10 switches and more than 300 servers.

We gather the SNMP link counts for all the switches.
We also record the flows exchanged between servers
through socket level logs in each server (not a scalable
approach) to form the ground truth for both inter TM
and intra TM. The data are all collected every 5 min-
utes.

7.2.2. Experiment Results
Fig. 5(a) plots the relative error in inter TM estima-

tion for three algorithms. Clearly, our proposed two al-
gorithms both outperforms SRMF. More than 90% of
relative errors are less than 0.25. For TMLS (Kalman)
incorporates inference with real measurements, it has
a slightly better performance than TMCG. And maybe
the TM of inter clusters is not low-rank, SRMF has the
worst performance of the three.

We then study the relative error in intra cluster TM
estimation for three algorithms in Fig. 5(b). Again,
our two algorithms both have a better performance than
SRMF. However, as we can see that TMLS (Kalman)
has a long tail in this figure, which is due to the high er-
ror rate in the innovation process. When there are some
transient changes, it may first face consecutive errors
and spend another 24 hours to recalibrate the model to
react to the changes of the traffic. Similar results are
also reported in [13].

In Fig. 6, we pick up two flows for intra and inter traf-
fics respectively, and we compare the results of several
TM estimation algorithm against the ground truth. We
can clearly see that the estimated values of our two al-
gorithm are much closer to the ground truth than SRMF
in almost all the time slices; this is consistent with the
CDF plots in Fig. 5.

7.3. Simulations

7.3.1. Simulation Setup
We adopt the conventional data center architec-

ture [14] to conduct our simulations, but our methods
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Figure 5: The relative error of the three algorithms on testbed.
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Figure 6: Ground truth is in green, estimations are in red, black and blue.

are also applicable to other data center architectures
such as Fat-Tree [2], VL2 [3] and so on. The topology is
a medium scale data center with 32 ToR switches, 16 ag-
gregation switches and 8 core switches. For a rack, there
are 20 servers connecting to each ToR switch, where the
link capacities are set to be 1Gbps. At the meantime, the
capacities of the links between switches are also 1Gbps.

We generate the traffic flows based on the study of
the traffic characteristics of DCNs [8, 9, 10]. Specifi-
cally, we randomly select 1 ∼ 10 server(s) under each
ToR switch, and let them generate flows to all of other
servers; the numbers of packets within the flows that go
out of the cluster follow the distribution Log-N(4, 1),
while the numbers of packets for the flows exchanged
within a cluster follow Log-N(10, 1); the size of each
packet is around 1400 bytes. We use TCP flows to simu-
late the real data center traffic since most of the data cen-
ter traffic is TCP traffic [24]. For routing strategies, we
use ECMP [25], which is widely used in DCNs. There-
fore, we set the weights of paths between two ends to be
equal.

We record the total number of packets that enter and
go out of each switch in the network every 5 minutes.
We also record the total packets of flows on each path

in the corresponding time periods as the ground truth.

7.3.2. Simulation Results
Fig. 7 and Fig. 8 compare the relative errors of the

three algorithms inferring the TMs with different num-
bers of time slices. From the figures we can see that both
our two algorithms outperform SRMF on all kinds of
networks. The promising results are partially due to the
fact that our algorithms make use of the aggregate flow
information obtained by Lemma 4.1. More specifically,
TMCG leverages the aggregate data to obtain the more
accurate hypothesis flow values on every time slice, and
TMLS utilizes the aggregate data in its update step when
a new observation arrives.

From the figures, we can also find that both our two
algorithms perform better in intra TM estimation than
in inter TM estimation; this is because the difference
between the number of unknown variables and avail-
able measurements is smaller in the intra TM estimation
problem.

For the intra TM estimation, we can see from Fig.
7(a) and Fig. 8(a), when the number of time slices in-
creases, the gap between SRMF and our two algorithms
becomes even larger. That shows that the performance
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Figure 7: The relative error of the three algorithms for estimating traffic matrix with 3 time periods.
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Figure 8: The relative error of the three algorithms for estimating traffic matrix with 25 time periods.

of SRMF degrades as TM elements expands, and it
cannot handle the large quantity of missing data well.
TMLS performs even better when TM gets larger, for
the reason that it adaptively updates the old TM ele-
ments when new observation arrives, and it keeps refin-
ing the flow states and their uncertainty in order to make
a reasonable tradeoff between the estimations and the
observations. Thus as the time goes on, it could capture
the spatial and temporal structure of traffic flows more
accurately. And for the inter TM estimation, it seems
that the our algorithms only perform slightly better than
SRMF in the inter TM estimation in Fig. 8(b). However,
the computation time spent by our two algorithms is far
less than SRMF, which is key factor for online inference
and we will show it later.

We then compare the MRE of the three algorithms
in Fig. 9. From the two figures we can see that al-
though TMLS algorithm can accurately estimate most
of the TM elements in some cases, its average accuracy
is not always the highest of the three algorithms. That
is to say a small part of TMLS’s results have a relative
large deviation. However, the MRE of TMLS is going to

converge as the number of time slices increases. TMCG
has the best performance on MRE, as it always recom-
putes the hypothesis flow volumes using the new obser-
vations and the unbiased aggregate traffic information.
Therefore, the results with large deviation could be ad-
justed timely when the new observations arrive. In Fig.
9(a), SRMF performs better at the beginning of the the
time period. However, its MRE tends to be larger as the
time passes. For the reason that in DCN, the larger TM
with more time slices may not be low rank as the corre-
sponding smaller one. Therefore, the deviation between
the TM with the lowest rank and the ground truth TM
becomes larger when time goes on. Moreover, the com-
puting time of SRMF is also unacceptable in large TM
estimation, that is why we could not present the curve
of SRMF in the long term period in Fig. 9(b).

Table 1 lists the computing times of the three algo-
rithms. We can see from Table 1, TMCG finishes the in-
ference much faster than the other two algorithms, and
its computing time seems not be affected much by the
TM scale. SRMF runs relatively faster when the scale
of TM is small. However, its computing time increases
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Figure 9: The mean relative error for the three (two) algorithms over different terms of time periods.

Table 1: The computing time of the three algorithms (Seconds).

Number of
time slices

inter TM intra TM
5 10 24 42 100 5 10 24 42 100

TMCG 0.01 0.01 0.03 0.05 0.18 0.10 0.34 0.40 0.56 0.81
TMLS 12.59 22.88 50.81 89.46 200.90 5.58 11.85 26.73 53.46 102.54
SRMF 45.79 176.84 1528.71 6341.20 - 2.02 26.45 147.06 470.12 -

drastically when TM becomes larger. When the num-
ber of time periods goes up to 100, SRMF cannot finish
the inference within a day. Although TMLS runs rela-
tively slower at the beginning, its computing time grows
linearly with the TM scale, which is one of the most
valuable advantages of TMLS. In other words, TMLS
can be applied to on-line TM estimation problem, where
it incorporates the new SNMP information and adjusts
the direct precursor at each round. We could estimate
from Table 1 that each round of updating (adjusting the
last column and adding a new column) needs about 2
seconds and 1.3 seconds for inter TM estimation and
intra TM estimation, respectively. Therefore, although
TMLS requires 200.90 seconds to infer the inter TM
over 100 time periods, actually it only takes 2 seconds
for each period to update and smooth the TM to get
the inference result in the next period. On the contrary,
SRMF algorithm can only be applied to the off-line in-
ference problem as it needs to start over on each discrete
time period.

It is notable that TMLS and SRMF compute much
faster in intra TM estimation problem than in the in-
ter counterpart, for the number of possible paths be-
tween all cluster pairs is much larger than their intra
paths. Therefore, their speeds are determined with the
TM scale. However TMCG performs exactly the oppo-
site way, due to its speed only correlates with the total
number of TM elements. And the total elements in intra

TM over all clusters are much more than the elements
in the inter TM. This also implies that decomposing the
inference problem into several smaller one greatly helps
the structure based methods to handle the problem.

8. Discussion

The calibration and innovation process of TMLS
need the availability of flow monitors such as Open-
Flow [21], which only lead to the increase of about 10-
20% of measurement overhead but may gain about 50%
of accuracy [13]. For the networks that no flow mon-
itors are available, we can also use TMLS to get rea-
sonable inference results by the following ways. First,
we can use some empirical matrix F and noise variables
Q, V to conduct the experiments, which is applicable to
the cases that we are familiar with the characteristics of
the traffic. Second, we can try to use the gravity model
to get the coarse flow data first and then use the data to
train the Kalman filter. Even though flow data infered by
gravity model is not absolutely accurate, but generally
the trending of traffic flows is accurate [13] and transient
changes can be also captured by gravity model. So it is
still helpful for training the Kalman model and achiev-
ing a promising result.

We can choose the TMLS or TMCG based on the
traffic characteristics or the type of applications in
DCNs. When comes to the traffic characteristics, TMLS
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is more adaptable for traffic with explicit structures.
And the traffic characteristics in inter TM and intra TM
do have some different characteristics [9], so maybe we
can combine TMLS and TMCG to infer the intra TM
and inter TM, respectively. In terms of applications,
TMCG is able to react to transient changes quickly
and accurately, so it is better suited to applications like
anomaly detection. While for the applications such as
traffic engineering and capacity planning, the accuracy
of the mean of the flows is more important than trending
of the flows. So for these applications, TMLS may offer
a better performance [13].

9. Conclusion

In this paper, we have enabled the tomography based
methods to handle the TM estimation problem for
DCNs from ubiquitous SNMP data. We have argued
that the prevailing DCN topologies can be decomposed
into several clusters. Hence the complexity of inference
problem can be dramatically reduced. We have also
stated a basic theory to demonstrate the aggregate traffic
characteristic of each cluster can be calculated unbias-
edly using the SNMP data. Two efficient algorithms are
proposed to infer the structured and un-structured TMs,
respectively. Through comparing our two algorithms
with a recent representative TM estimation method, the
experimental results show that our two algorithms out-
perform the former one in both accuracy and efficiency.
Moreover, our methods can make the online inference
through updating the TM elements on the last time pe-
riod within a few seconds, while the former method re-
quires hours to start over a new inference.
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