
Compressed Data Aggregation for Energy Efficient
Wireless Sensor Networks∗

Liu Xiang Jun Luo
School of Computer Engineering

Nanyang Technological University, Singapore
Email: {xi0001iu, junluo}@ntu.edu.sg

Athanasios V. Vasilakos
Department of Electrical and Computer Engineering

National Technical University of Athens, Greece
Email: vasilako@ath.forthnet.gr

Abstract—As a burgeoning technique for signal processing,
compressed sensing (CS) is being increasingly applied to wireless
communications. However, little work is done to apply CS to
multihop networking scenarios. In this paper, we investigate the
application of CS to data collection in wireless sensor networks,
and we aim at minimizing the network energy consumption
through joint routing and compressed aggregation. We first
characterize the optimal solution to this optimization problem,
then we prove its NP-completeness. We further propose a mixed-
integer programming formulation along with a greedy heuristic,
from which both the optimal (for small scale problems) and
the near-optimal (for large scale problems) aggregation trees are
obtained. Our results validate the efficacy of the greedy heuristics,
as well as the great improvement in energy efficiency through
our joint routing and aggregation scheme.

I. INTRODUCTION

Energy efficiency of data collection is one of the dominating
issues of wireless sensor networks (WSNs). It has been tackled
from various aspects since the outset of WSNs, which include,
among others, energy conserving sleep scheduling (e.g., [1]),
topology control (e.g., [2]), mobile data collectors (e.g., [3]),
and data aggregation1 (e.g., [4]). Whereas the first three
approaches (and many others) focus on the efficiency of
networking techniques that transport the sensory data, data
aggregation directly aims at significantly reducing the amount
of data to be transported, and it hence complements other
approaches and is deemed as the most crucial mechanism to
achieve energy efficient data collection for WSNs.

Although data aggregation techniques have been heavily
investigated, there are still imperfections to be improved on.
First, lossy aggregation that adopts simple aggregation func-
tions (e.g., MIN/MAX/SUM) only extracts certain statistical
quantities from the sensory data [5], [6], other information is
thus lost and hence this aggregation technique only applies to
particular applications that require limited information from a
WSN. Secondly, though one may, in theory, apply distributed
source coding technique, such as Slepian-Wolf coding [7], [4],
to perform non-collaborative data compression at the sources,
it is not exactly practical due to the lack of prior knowledge
of the data correlation structure. Finally, whereas collaborative

∗This work is supported in part by the Start-up Grant of NTU and AcRF
Tier 1 Grant RG 32/09.

1We define data aggregation in a general sense. It refers to any transfor-
mation that summarizes or compresses the data acquired and received by a
certain node and hence reduces the volume of the data to be sent out.

in-network compression makes it possible to discover the data
correlation structure through information exchange [8], [9],
it either requires a simple correlation structure [8], or often
results in high communication load [9] that may potentially
offset the benefit of this aggregation technique.

As a newly developed signal processing technique, com-
pressed sensing (CS) promises to deliver a full recovery of
signals w.h.p. from far fewer measurements than their original
dimension, as long as the signals are sparse or compressible in
some domain [10]. Although this technique appears to suggest
a way of reducing the sensory data traffic for WSNs without
the need for adapting to the data correlation structure [11], the
complication involved in the interaction between data routing
and CS-based aggregation has postponed the development on
this front until very recently [12], [13]. In this paper, we
promote a new data aggregation technique derived from CS,
and we aim at minimizing the total energy consumption of a
WSN in collecting sensory data from the whole network. To
the best of our knowledge, we are the first to investigate the
minimum energy CS-based data aggregation problem under a
combinatorial framework. More specifically, we are making
the following contributions in this paper:

• We define the problem of minimum energy compressed
data aggregation (MECDA), and we provide the charac-
terizations of the optimal solutions.

• We analyze the complexity of the (parameterized) de-
cision versions of MECDA, and we prove the NP-
completeness of MECDA in general (through a tricky
reduction from the maximum leaf spanning tree problem
[14]), and also relate MECDA with the existing non-
aggregation and lossy aggregation approaches.

• We present a nontrivial mixed-integer programming
(MIP) formulation of MECDA, through which we may
obtain the optimal solutions for small scale WSNs, and
we also propose a greedy heuristic that delivers near-
optimal solutions for large scale WSNs.

• We report a large set of numerical results, which, on one
hand, validate the efficacy of our heuristic, and on the
other hand, demonstrate the energy efficiency of our CS-
based data aggregation.

The remaining of our paper is organized as follows. We
first give a brief overview of applying compressed sensing in

networking in Sec. II. Then we define our minimum energy
data aggregation problem and present the characterizations
of its optimal solution in Sec. III. After showing the NP-
completeness of our problem in Sec. IV, we present two
solution techniques in Sec. V. We further report numerical
results to demonstrate energy efficiency of our hybrid CS
data aggregation approach in Sec. VI. Finally, we discuss the
related work and the limitation of our current approach in
Sec. VII, before concluding our paper in Sec. VIII.

II. COMPRESSED DATA AGGREGATION: AN OVERVIEW

In this section, we first briefly introduce the basic theory of
CS, and then we explain in detail how CS can be applied to
data collection in WSNs.

A. Compressed Sensing Basics

Suppose a signal u = [u1, · · · , un]T has an m-sparse
representation under a proper basis Ψ = [ψ1, . . . , ψn], s.t.
u =

∑m
i=1 wiψi and m � n. The theory of CS states that,

under certain conditions, instead of directly collecting u, we
only need to collect k = O(m log n) measurements v = Φu,
where Φ = [φ1, . . . , φn] is a k × n “sensing” matrix2 whose
row vectors are largely incoherent with Ψ. Consequently, we
can perfectly recover u from v w.h.p. by solving the convex
optimization problem (‖w‖`1 =

∑
i |wi|)

min
w∈Rn

‖w‖`1 subject to v = ΦΨw, (1)

and by letting u = Ψŵ, with ŵ being the optimal solution.
The practical performance of CS coding depends on the

sparsity of the signal, as well as the reconstruction algorithm.
As networked data is generally quite sparse in nature, CS suits
well for data collection in WSNs.

B. CS Coding in Networking Context

Assume a WSN of n nodes with each one acquiring a
sample ui, the ultimate goal of the WSN is to collect all data
u = [u1, · · · , un]T at a particular node called sink. Without
data aggregation, each node needs to send its sample to the
sink following a routing path, hence nodes around the sink
will carry heavy traffic as they are supposed to relay the
data from the downstream nodes. Fortunately, applying CS
to data collection suggests a way to alleviate the bottleneck.
To illustrate the idea, we rewrite the CS coding as

v = Φu = u1φ1 + · · ·+ unφn

Now the idea of CS-based aggregation becomes clear [11]:
each node i first expands its sample to a k-dimension vector
through a column vector φi, then this encoded vector rather
than the raw data is transmitted. The aggregation is done by
summing the coded vectors whenever they meet, therefore, the
traffic load on the aggregation path is always k. Eventually,
the sink collects the aggregated k-dimension vector rather
than n raw samples, then the decoding algorithm is used to

2In theory, the sensing matrix Φ should satisfy the restricted isometry
principle (RIP). Both Gaussian random matrices and Bernoulli random
matrices are considered as good candidates for Φ.

recover the n raw samples. It is worth noting that the encoding
process is actually done in a distributed fashion on each
individual node, by simply performing some multiplications
and summations whose computational cost can be negligibly
small. The actual computational load is shifted to the decoding
end where the energy consumption is not a concern.

C. Hybrid CS Aggregation

Interestingly, directly applying CS coding on every sensor
node might not be the best choice. As shown in Fig. 1,
suppose n− 1 nodes are each sending one sample to the n-th
node, the outgoing link of that node will carry n samples
if no aggregation is performed; or will carry 1 sample if
lossy aggregation is performed. If we apply the CS principle
directly, the so called plain CS aggregation will force every
link to carry k samples, leading to unnecessary higher traffic
at the early stage transmissions. Therefore, the proper way of

1

n

1

Non-aggregated data collection Lossy data aggregation

k

k 1

n n k

k

if < ;
otherwise

Plain CS aggregation Hybrid CS aggregation

1

1 1
1 1

1 1

k k
k

1 1
1

Fig. 1. Comparison of different data collection mechanisms. The link labels
correspond to the carried traffic.

applying CS is to start CS coding only when the outgoing
samples will become no less than k, otherwise, raw data
collection (non-aggregation hereafter) is used. We coined this
scheme as hybrid CS aggregation in our previous work [15].
Obviously, hybrid CS aggregation marries the merits of non-
aggregation and plain CS aggregation: it reduces the traffic
load while preserving the integrity of the original data set.
Note that two types of traffic are imposed by the hybrid CS
aggregation, namely the encoded traffic and the raw traffic,
which can be differentiated by a flag carried by a data packet.

In a practical implementation, all nodes are initialized with
non-aggregation mode by default. Given the publicly known
threshold k, a node i waits to receive from all its downstream
neighbors3 all the data they have to send. Only upon receiving
more than k− 1 raw samples or any encoded samples, node i
will switch to the CS aggregation mode by creating a vector
ujφj for every uncoded sample uj it receives (including ui).
These vectors, along with the already coded samples (if any),
are combined into one vector through a summation. Finally,
node i will send out exactly k encoded samples corresponding
to the aggregated column vector.

3Node i’s downstream neighbors are the nodes that have been specified by
a routing scheme to forward their data to the sink through i.

According to the description above, we need an implicit
synchronization in generating Φ, i.e., for a given round of data
collection, the i-th column of Φ has to be the same wherever
it is generated (as CS coding is not necessarily performed
at a source node). We achieve this goal by associating a
specific pseudo-random number generator (a publicly known
algorithm and its seed) with a node i: it indeed meets the i.i.d.
criterion among matrix entries, while avoiding any explicit
synchronization among nodes.

III. PROBLEM STATEMENT AND SOLUTION
CHARACTERIZATION

A. Model and Problem

We represent a WSN by a connected graph G(V,E), where
the vertex set V corresponds to the nodes in the network,
and the edge set E corresponds to the wireless links between
nodes (so we use “edge” and “link” interchangeably hereafter).
There is a special node s ∈ V known as the sink that collects
data from the whole network. We denote by n and ` the
cardinalities of V and E, respectively. Let c : E → R+

0

be a cost assignment on E, with cij : (i, j) ∈ E being
the energy expense of sending one unit of data across link
(i, j). Also let x : E → R+

0 be a load allocation on E, with
xij : (i, j) ∈ E being the data traffic load imposed by a certain
routing/aggregation scheme on link (i, j). The objective of our
problem is to minimize the total cost (or energy consumption)∑

(i,j)∈Ecijxij

We assume that all nodes are roughly time synchronized
and the data collection proceeds in rounds. At the beginning of
each round, every node produces one unit of data (one sample),
and the sink collects all information at the end. We assume
no packet loss is incurred; this can be achieved by properly
scheduling the network with effective MAC mechanisms (e.g.,
[16]). Based on the system orientation in Sec. II-C, we claim
that no encoded traffic can coexist with any raw traffic on
a link. This is so because once CS aggregation is initiated,
allowing additional raw data transmission would only hurt the
energy efficiency. Besides, encoded traffic cannot be split once
it is introduced, otherwise it would be impossible to append
new data at a later stage. So the encoded traffic is constrained
on a spanning tree. While for the raw traffic, there is always
an optimal single-path routing strategy. Consequently, without
loss of generality, we restrict the data aggregation on a tree
rooted at the sink. The nodes that route their data to the
sink through node i are called the descendants of i. We
hereby formally specify the abstract model for the hybrid CS
aggregation scheme.

Definition 1 (Hybrid CS Aggregation): Given a certain
routing tree T , the outgoing traffic from node i is

xij:(i,j)∈T =

{∑
j:(j,i)∈T xji + 1, if

∑
j:(j,i)∈T xji < k − 1;

k, otherwise.

While the first case corresponds to the non-aggregation where
the conventional flow conservation holds, the second case

represents the CS coding for which the encoded traffic is
always k. We call a node that performs CS coding as an
aggregator and otherwise a forwarder hereafter.

In fact, Definition 1 exhibits a special aggregation function,
which is nonlinear and heavily dependent on the routing
strategy. Therefore, our minimum energy compressed data
aggregation (MECDA) problem aims at allocating the traffic
load x properly in a given round, through joint routing and
aggregator assignment, such that the total energy consumption
is minimized. By investigating the interactions between CS ag-
gregation and routing tree structure, we draw some interesting
observations and present them in the next section.

B. Characterizing the Optimal Solution

Each optimal solution of MECDA suggests an optimal
configuration, in terms of routing paths and aggregator as-
signment. We present several conditions that characterize an
optimal configuration in this section.

Proposition 1: In an optimal configuration, we have
1) The network is partitioned into two disjoint sets: aggre-

gator set A (s ∈ A) and forwarder set F , i.e., A ⊆ V ,
F ⊆ V , A ∪ F = V , and A ∩ F = ∅.

2) The routing topology for nodes in A is a minimum
spanning tree (MST) of the subgraph induced by A.

3) For every node i ∈ F , the routing path from it to some
node ĵ ∈ A is a shortest path, and ĵ is the one that min-
imizes the length of this path, i.e., piĵ = minj∈A(SPij),
where SPij refers to the shortest path from i to j.

4) Each member of F has less than k − 1 descendants,
whereas each leaf of the MST induced by A and rooted
at the sink has no less than k − 1 descendants in F .

The proof is postponed to Appendix A to maintain fluency,
here we just illustrate an optimal configuration by Fig. 2. In

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Fig. 2. An optimal CS aggregation tree in a 1024-node WSN, with k = 150.
The sink is represented by the pentagram and the aggregators are marked as
squares; the rest are forwarders. The original graph G is a complete graph,
with the edge cost being a function of the distance between its two ends. We
only plot the tree edges to avoid confusion.

fact, the above conditions assert that an optimal configuration
is a spanning tree rooted at s. It consists of a “core” – an MST
for A, as well as a “shell” – a set of shortest path trees (SPTs)

that connect F to A. As the cost minimization within each set
is trivial, the difficulty in solving the problem should lie in
the partition of V into A and F . Note that, if the plain CS
aggregation is applied, we have A = V and F = ∅. Therefore,
the optimal solution is trivial: an MST of G. As a result, we
focus on investigating the hybrid CS aggregation hereafter.

IV. COMPLEXITY ANALYSIS

Based on our characterization in Sec. III-B, MECDA does
not appear to admit a straightforward solution of polyno-
mial time complexity, given its graph partitioning nature.
Therefore, we hereby analyze the problem complexity. Our
results establish the NP-completeness of MECDA, through
a nontrivial reduction from the maximum leaf spanning tree
(MLST) problem [14]. As a byproduct, we also obtain the
inapproximability of MECDA.

We first introduce the decision version of MECDA, termed
CS Aggregation Tree Cost Problem (CSATCP).

INSTANCE: A graph G = (V,E), a cost assignment
c : E → R+

0 , an aggregation factor (integer) k, and
a positive number B.
QUESTION: Is there a CS aggregation tree such that
the total cost is less than B?

We denote by CSATCPk the problem instance with a specific
value for the aggregation factor k. Since we need MLST in
the later proof, we also cite it from [14].

INSTANCE: A graph G = (V,E), a positive integer
K ≤ |V |.
QUESTION: Is there a spanning tree for G in which
K or more vertices have degree 1?

We first show that, for two specific values of k, CSATCPk

can be solved in polynomial time.
Proposition 2: CSATCP1 and CSATCPn−1 are both P-

problems.
Proof: For k = 1, every node belongs to A and sends out

only one sample. Therefore, a (polynomial time) minimum
spanning tree oracle would answer the question properly. For
k = n− 1 (or any larger values), every node apart from s can
be put into to F and no CS coding is performed. Therefore, a
(polynomial time) shortest path tree oracle would answer the
question properly.
The proof also suggests that the traditional min-energy
lossy aggregation and non-aggregation are both special cases
of MECDA. Unfortunately, other parameterized versions of
CSATCP (hence MECDA) are intractable.

Proposition 3: CSATCPk, with 2 ≤ k < n − 1, are all
NP-complete problems.
We again postpone the proof to the Appendices (Appendix B),
where we construct a reduction from MLST to CSATCPk.
As a byproduct of this proof, we are also able to state the
inapproximability of MECDA as an optimization problem.

Corollary 1: MECDA does not admit any polynomial time
approximation scheme (PTAS).
The proof is omitted due to the space limitation; it follows
directly from the MAX SNP-completeness of the MLST
(optimization) problem [17] and our proof to Proposition 3.

V. MIN-ENERGY COMPRESSED DATA AGGREGATION

Given the hardness and inapproximability results for
MECDA, we take two strategies to tackle MECDA in this
section. We first come up with a nontrivial mixed-integer
programming (MIP) formulation, which allows us to obtain
optimal solutions to MECDA in small scale WSNs. Then
we propose a heuristic that solves the problem efficiently. A
randomized algorithm is borrowed from [18] to benchmark
our heuristic in large scale WSNs.

A. A Mixed Integer Program Formulation

Essentially, we formulate the MECDA problem as a special
minimum-cost flow problem. The main difference between
hybrid CS aggregation and non-aggregation is the flow con-
servation: hybrid CS aggregation does not conserve flow
at the aggregators. Therefore, we need to extend the flow
conservation constraint for every node i ∈ V \{s}:∑

j:(i,j)∈E xij −
∑

j:(j,i)∈E xji + (n− k)yi ≥ 1∑
j:(i,j)∈E xij − (k − 1)yi ≥ 1

where yi = 1 if node i is an aggregator; otherwise yi = 0.
The first constraint is just the conventional flow conservation
if i is not an aggregator (remember we assume that every node
generates one unit of data in each round of data collection). If
i is an aggregator (yi = 1), the first constraint trivially holds,
as we have n−

∑
j:(j,i)∈E xji as a lower bound on the LHS if

we plug in the second constraint. The second constraint states
the constant outgoing flow if i is an aggregator; otherwise∑

j:(i,j)∈E xij ≥ 1 trivially holds.
It is not sufficient to have only the extended flow conserva-

tion constraints, as the extension may allow loops. According
to Proposition 1, we need to constrain that the set of links
carrying positive flows form a spanning tree. Let zij ∈ {0, 1}
be an indicator of whether a link is a tree edge and x̄ ≥ 0 be
a virtual link flow assignment, we first propose an alternative
formulation of a spanning tree.4∑

j:(i,j)∈E

x̄ij −
∑

j:(j,i)∈E

x̄ji −
1

n− 1
≥ 0 ∀i ∈ V \{s}

zij − x̄ij ≥ 0 ∀(i, j) ∈ E∑
(i,j)∈E zij − (n− 1) = 0

The proof for the correctness of this formulation is omitted; it
follows directly from the fact that a connected subgraph whose
vertex set is V and whose edge set has a cardinality n−1 is a
spanning tree of G. Indeed, the first constraint asserts that the
subgraph is connected: there is a positive flow between every
node i and s. Another two constraints confine the cardinality
of the edge set involved in the subgraph. Note that the virtual
flow vector x̄ is used only to specify the connectivity, it has
nothing to do with the real flow vector x.

The final step is to make the connection between xij and
zij , such that only edges carrying positive flows are indicated

4Conventional spanning tree formulation (e.g., [19]) involves an exponential
number of constraints

∑
(i,j):i∈S,j∈S zij ≤ |S| − 1, ∀S ⊆ V .

as tree edges. This is achieved by two inequalities applied to
every edge (i, j) ∈ E,

xij − zij ≥ 0 and zij − k−1xij ≥ 0,

which imply that xij = 0⇔ zij = 0 and xij > 0⇔ zij = 1.
In summary, we have the following extended min-cost flow
problem as the MIP formulation of MECDA.

minimize
∑

(i,j)∈E

cijxij (2)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji + (n− k)yi ≥ 1 ∀i ∈ V \{s} (3)

∑
j:(i,j)∈E

xij − (k − 1)yi ≥ 1 ∀i ∈ V \{s} (4)

xij − zij ≥ 0 ∀(i, j) ∈ E (5)
zij − k−1xij ≥ 0 ∀(i, j) ∈ E (6)∑

j:(i,j)∈E

x̄ij −
∑

j:(j,i)∈E

x̄ji −
1

n− 1
≥ 0 ∀i ∈ V \{s} (7)

zij − x̄ij ≥ 0 ∀(i, j) ∈ E (8)∑
(i,j)∈E

zij − (n− 1) = 0 (9)

xij , x̄ij ≥ 0, zij ∈ {0, 1} ∀(i, j) ∈ E (10)
yi ∈ {0, 1} ∀i ∈ V \{s}(11)

We will use the optimal solutions obtained by solving this MIP
to benchmark the performance of our heuristics in small scale
WSNs in Sec. VI-B.

B. A Greedy Heuristic

As explained in Sec. III-B, the difficulty of MECDA lies
in partitioning V into A (the “core”) and F (the “shell”).
One can expect that in general |A| � |F | for practical
network topology and aggregation factor. Observing that, we
now present a greedy heuristic that is based on the principle
of “growing the core”. The details are given in Algorithm 1.

The algorithm maintains two lists, A and F , recording
respectively the aggregator set and forwarder set. We term
by MST(A) the MST induced by A, and by SPF(F,A)
the shortest path forest (SPF) that connects each i ∈ F
through the shortest path to its nearest aggregator ĵ =
arg minj∈A(SPij). While the former is readily computed by
Prim’s algorithm [20], the latter can be obtained by simply
performing linear searches on an all-pairs shortest paths table
(obtained in advance by Floyd-Warshall algorithm [20]). The
outcome of MST(A) and SPF(F,A) includes the edge costs
in MST(A) (costMST =

∑
(i,j)∈MST(A) cij), path costs in

SPF(F,A) (costSPF =
∑

i∈F minj∈A SPij), the leaf node
set L in MST(A), and a vector t that counts the number of
descendants for every node in A. The cost incurred by a certain
partition A and F is the sum of costMST and costSPF.

Starting with a trivial assignment that A = {s} and
F = V \{s}, the algorithm proceeds in iterations. We denote
by B(A) = {i ∈ F |∃j ∈ A : (i, j) ∈ E} the neighboring

Algorithm 1: MECDA Greedy
Input: G(V,E), s, k
Output: T , A

1 A = {s}; F = V \{s}; cost =∞
2 repeat
3 forall the i ∈ B(A) do
4 Atest = A ∪ {i}; Ftest = F\{i}
5 {costMST, L} ← MST(Atest)
6 {costSPF, t} ← SPF(Ftest, Atest)
7 if costMST + costSPF ≤ cost AND

minl∈L tl ≥ k − 1 then
8 cost = costMST + costSPF

9 Acand = Atest; Fcand = Ftest
10 end
11 end
12 A = Acand; F = Fcand
13 until A unchanged;
14 T = MST(A) ∪ SPF(F,A)
15 return T , A

nodes of A. For each round, the algorithm greedily moves
one node from B(A) to A following two criterions: 1) the
optimality characterization for A is satisfied, i.e., every leaf
node in MST(A) has no less than k−1 descendants, and 2) the
action leads to the greatest cost reduction. Consequently, the
core keeps growing, and the algorithm terminates if no further
core expansion is allowed. Upon termination, the algorithm
returns the aggregation tree T = MST(A) ∪ SPF(F,A),
along with the aggregator set A. It is easy to verify that
{T,A} satisfy all the conditions, in particular 4), stated in
Proposition 1, because otherwise A can be further expanded
and the algorithm would not have terminated.

Proposition 4: Algorithm 1 has a polynomial time com-
plexity, which is O

(
(n− k)2n2 + n3

)
.

We refer to Appendix C for the detailed proof.

C. A Randomized Algorithm

In large scale WSNs, computing the optimal configuration
becomes extremely hard. To this end, we seek to benchmark
our greedy heuristic by a randomized algorithm [18] whose
approximation ratio is provably good. Given a graph G(V,E),
a set D ⊆ V of demands, and a parameter M > 1, the so
called connected facility location (CFL) aims at finding a set
A ⊆ V of facilities to open, such that the connection cost
within A and that between D and A is minimized. By setting
D = V and M = k, MECDA is reduced to CFL, hence the
upper bounds for CFL also hold for MECDA. The main body
of this algorithm is given in Algorithm 2. Here ρ is the
approximation ratio for the Steiner tree problem given by a
specific algorithm. Later we will approximate the Steiner tree
by constructing an MST on the extended graph where each
edge weight is redefined as the shortest distance between the
two ends on the communication graph. So we have ρ = 2 [21]
in our implementation of the randomized algorithm.

Algorithm 2: CFL Random

1 Each node i ∈ V \{s} becomes an aggregator with a
probability 1/k, denote the aggregator set by A and the
forwarder set by F ;

2 Construct a ρ-approximate Steiner tree on A that forms
the CS aggregation tree on the core;

3 Connect each forwarder j ∈ F to its closest aggregator in
A using the shortest path.

Note that even though Algorithm 2 is a (2 + ρ)-
approximation for CFL [18] and hence for MECDA, it hardly
suggests a meaningful solution for MECDA as it barely
improves the network energy efficiency compared with non-
aggregation, which we will show in Sec. VI-C. Therefore, we
use the randomized algorithm only to benchmark our greedy
heuristic rather than solving MECDA.

D. A Practical Implementation

We hereby present a practical implementation adapted from
Algorithm 1 in Sec. V-B. Due to the iterative computations
for the core and shell, it is too costly (in message passing)
to rely on a fully distributed implementation. Instead, we
shift the computation load to the sink: it first acquires the
network topology information, then computes {T,A} using
Algorithm 1, and finally disseminates the information to the
whole WSN. The network topology can be acquired in a
distributed fashion. Firstly, nodes exchange information locally
within a WSN, such that each node obtains the knowledge
of its one-hop neighbors. The neighborhood information is
then collected by the sink, which is used to recover the
underlying network topology and to compute the aggregation
tree. After this tree initialization phase, nodes may still join
(new deployments) or leave (failures) the WSN. For gradual
node joining or leaving, the tree can be adapted by locally
growing or pruning the core A. However, the adapted tree
might not satisfy conditions 2) and 3) stated in Proposition 1.
Therefore, after a massive node joining or leaving (supposed to
be a rare event), the aggregation tree needs to be re-initialized.

VI. NUMERICAL SIMULATIONS

In this section, we first introduce our experiment setting, and
then present the results obtained from the solution techniques
described in Sec. V.

A. Experiment Setting

To obtain the optimal solution, we use CPLEX [22] to solve
the MIP formulation given in Sec. V-A. The greedy and ran-
domized solvers are developed in C++, based on Boost graph
library [23]. We consider two types of network topologies: in
grid networks, nodes are aligned in lattices with sink being
at a corner; and in arbitrary networks, nodes are randomly
deployed with sink being at the center. We also consider
networks of different size where the node density is identical.
The underlying communication graph is a complete graph;
each link has a weight proportional to the cube of the distance

between its two ends. Note that such a communication graph is
actually the worst case for a given vertex set V , as it results in
the largest edge set. Less sophisticated communication graphs
could be produced by a thresholding technique, i.e., removing
edges whose weights go beyond a certain threshold, but that
would just simplify the solution. The randomized solver runs
ten times on each network deployment, so the mean value is
taken for comparison. For arbitrary networks, we generate ten
different deployments for each network size and we use the
boxplot to summarize the results, which shows five quantities:
lower quartile (25%), median, upper quartile (75%), and the
two extreme observations.

B. Efficacy of Greedy Algorithm

In this section, we compare the results obtained from the
MIP and the greedy heuristic, aiming at demonstrating the
near-optimality of the greedy algorithm. As MECDA is an NP-
complete problem, the optimal solution to its MIP formulation
can be obtained only for WSNs of small size. Therefore,
we report the results for WSNs with 20 and 30 nodes, with
k ∈ {4, 6, 8, 10}, in Fig. 3. It is evident that the (empirical)
approximation ratio is very close to 1, confirming the near-
optimality of our heuristic.

4 6 8 10 4 6 8 10

1

1.01

1.02

1.03

1.04

1.05

1.06

Aggregation Factor k

A
pp

ro
xi

m
at

io
n

R
at

io

20−node nets
30−node nets

Fig. 3. Benchmarking the greedy heuristics in small networks.

C. Efficiency of Hybrid CS Aggregation

Once the efficacy of the greedy algorithm is validated in
Sec. VI-B, we are now ready to study the energy efficiency
gained by properly applying the CS-based aggregation in
large scale WSNs. Fig. 4 shows the comparisons of energy
consumption between hybrid CS aggregation and plain CS
aggregation, as well as that between hybrid CS aggregation
and non-aggregation.

We first compare hybrid CS aggregation (results of greedy
solver) with plain CS aggregation, showing the incompetence
of the latter one. As depicted in Fig. 4(a), the results are
obtained from grid networks consisting of 625 nodes and
1225 nodes, with aggregation factor k ranging from 100 to
300. Evidently, plain CS aggregation always consumes several
times more energy than hybrid CS aggregation. The reason
can be explained as follows: plain CS aggregation overacts
by forcing every node to be an aggregator, even though the

(a) grid networks (b) 1225-node grid network (c) 2048-node arbitrary networks

100 120 140 160 180 200 220 240 260 280 300

104

105

106

Aggregation Factor k

E
ne

rg
y

C
on

su
m

pt
io

n

Plain CS (1225−node)
Hybrid CS (1225−node)
Plain CS (625−node)
Hybrid CS (625−node)

100 120 140 160 180 200 220 240 260 280 300
1

1.5

2

2.5

3

3.5

4

4.5

5

x 104

Aggregation Factor k

E
ne

rg
y

C
on

su
m

pt
io

n

Non−aggregation
Hybrid CS (Randomized)
Hybrid CS (Greedy)

100 120 140 160 180 200 220 240 260 280 300
2

2.5

3

3.5

4

4.5

5

5.5
x 104

Aggregation Factor k

E
ne

rg
y

C
on

su
m

pt
io

n

Non−aggregation
Hybrid CS (Randomized)
Hybrid CS (Greedy)

Fig. 4. Comparing the total energy consumption for plain CS aggregation, hybrid CS aggregation, and non-aggregation schemes.

aggregators are often in the minority for optimal configurations
(see Fig. 2). In fact, plain CS aggregation is less energy
efficient than non-aggregation unless k becomes unreasonably
small (� 100). Therefore, we shall later only compare hybrid
CS aggregation with non-aggregation.

To demonstrate the efficiency of hybrid CS aggregation,
we first consider a special case, a grid network with 1225
nodes in Fig. 4(b), then we proceed to more general cases,
arbitrary networks with 2048 nodes in Fig. 4(c). We again set
k ∈ [100, 300]. Three sets of results are compared, namely
non-aggregation, and hybrid CS aggregation from both the
greedy and randomized solvers. One immediate observation is
that, compared with non-aggregation, hybrid CS aggregation
brings a remarkable cost reduction. In grid networks, almost
half the energy is saved in the worst case; even for the arbitrary
networks, hybrid CS aggregation leads to over 20% energy
saving in the worst case. The difference gap is slightly nar-
rowed down as k increases, because the increase of k leads to
the “shrinking” of the core, making the aggregation tree more
and more like the SPT. Nevertheless, we have demonstrated
in our companion work that k = 10%n is sufficient to allow
a satisfactory recovery. Therefore, we can expect the hybrid
CS aggregation to significantly outperform non-aggregation in
general. Moreover, as the results obtained from our greedy
solver are always bounded from above by those from the
randomized solver (which has a proven approximation ratio),
the efficacy of our greedy algorithm in large scale networks
is also confirmed. This also explains why the randomized
algorithm is not suitable for solving MECDA: it may lead to
solutions that are less energy efficient than non-aggregation,
whereas our greedy solver always finds a solution better than
non-aggregation.

VII. RELATED WORK AND DISCUSSIONS

Data aggregation is one of the major research topics for
WSNs, exactly due to its promising effect in reducing data
traffic. Due to the page limitation, we only discuss, among
the vast literature, a few contributions that are closely related
to our proposal. Applying combinatorial optimizations to data
aggregation was introduced in [24], assuming an aggregation

function concave in the input. Whereas [24] aims at deriv-
ing an algorithm with a provable bound (albeit arbitrarily
large) for all aggregation functions, we are considering a
specific aggregation function that is inspired by the hybrid
CS aggregation, and we propose fast near-optimal solution
techniques for practical use. Involving the correlation structure
of sensory data, other types of optimal data aggregation trees
are derived in [25], [8]. However, as we explained in Sec. I,
such approaches are too correlation structure dependent, hence
not as flexible as our CS-based aggregation.

Compressed sensing is a recent development in signal pro-
cessing field, following several celebrated contributions from
Candés, Donoho, and Tao (see [10] and the references therein).
It has been applied to WSN for single hop data gathering [11],
but only a few proposals apply CS to multihop networking.
In [12], a throughput scaling law is derived for the plain CS
aggregation. However, as we pointed out in Sec. VI-C, plain
CS aggregation is not an energy efficient solution. In addition,
our results in [15] also demonstrate the disadvantage of plain
CS aggregation in terms of improving throughput. In [13],
the focus is rather on creating sparse CS projection through
clustering than finding optimal routing topology. Though we
assume reliable transmissions throughout this paper, unreliable
links can be handled by applying oversampled CS source
coding [26]. Thanks to its inherent randomization, compressive
oversampling can neutralize the stochastic nature of wireless
link disturbances and hence compensate channel erasures,
which eventually makes the data recovery at the sink largely
immune to packet losses.

For specific surveillance scenarios where the physical phe-
nomena are identically distributed in the network area and
the sensor nodes are uniformly distributed, we may assume
that the sparse dimension m of the sensory data is propor-
tional to the network size n, which directly translates to
the proportionality between k and n. As we mentioned in
Sec. VI-C, the core grows larger as k decreases, leading
to an increasing energy efficiency. If we can partition the
network into several sub-networks, and carry out the hybrid
CS aggregation independently within each part, we are able to
further cut down the energy consumption. For instance, every

tree branch rooted at the sink may serve as a sub-network
[15]. Also, if a proper sparse projection [13] can be found, the
resulting k for each cluster is also smaller than that for the
whole network. We are on the way of exploring this direction
to further improve the energy efficiency of CS aggregation.

VIII. CONCLUSION

In this paper, we have investigated the energy efficiency
aspect of applying compressed sensing (CS) to data collection
in wireless sensor networks (WSNs). We have first defined
the problem of minimizing energy consumption through joint
routing and compressed aggregation. Then we have charac-
terized the optimal solution to this optimization problem, and
also proven its NP-completeness. We have further proposed
two solution techniques to obtain both the optimal (for small
scale problems) and the near-optimal (for large scale problems)
aggregation trees. We have shown the prominent improvement
in energy efficiency of our CS-based data aggregation through
numerical simulations.

We plan to extend our current work in mainly two direc-
tions. On one hand, we are interested in further reducing the
energy consumption by involving network partition, as dis-
cussed in Sec.VII. On the other hand, we are also considering
the cases where not all nodes are sources, which may require
different heuristics to tackle.

IX. ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their
constructive feedback.

REFERENCES

[1] R. Subramanian and F. Fekri, “Sleep Scheduling and Lifetime Maxi-
mization in Sensor Networks: Fundamental Limits and Optimal Solu-
tions,” in Proc. of 5th ACM IPSN, 2006.

[2] X.-Y. Li, W.-Z. Song, and W. Wang, “A Unified Energy-Efficient Topol-
ogy for Unicast and Broadcast,” in Prof. of the 11th ACM MobiCom,
2005.

[3] G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous Design Algorithms
for Wireless Sensor Networks with a Mobile Base Station,” in Prof. of
the 9th ACM MobiHoc, 2008.

[4] S. He, J. Chen, D. Yau, and Y. Sun, “Cross-layer Optimization of
Correlated Data Gathering in Wireless Sensor Networks,” in Prof. of
the 7th IEEE SECON, 2010.

[5] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny
AGgregation Service for Ad-hoc Sensor Networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, 2002.

[6] S. Cheng, J. Li, Q. Ren, and L. Yu, “Bernoulli Sampling Based (ε, δ)-
Approximate Aggregation in Large-Scale Sensor Networks,” in Proc. of
the 29th IEEE INFOCOM, 2010.

[7] D. Slepian and J. Wolf, “Noiseless Encoding of Correlated Information
Sources,” IEEE Trans. on Information Theory, vol. 19, no. 4, 1973.

[8] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network Correlated Data Gathering with Explicit Communication:
NP-completeness and Algorithms,” IEEE/ACM Trans. on Networking,
vol. 14, no. 1, 2006.

[9] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient Gathering of
Correlated Data in Sensor Networks,” ACM Trans. on Sensor Networks,
vol. 4, no. 1, 2008.

[10] E. Candès and M. Wakin, “An Introduction to Compressive Sampling,”
IEEE Signal Processing Mag., vol. 25, no. 3, 2008.

[11] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, “Compressed Sensing
for Networked Data,” IEEE Signal Processing Mag., vol. 25, no. 3, 2008.

[12] C. Luo, F. Wu, J. Sun, and C.-W. Chen, “Compressive Data Gathering
for Large-Scale Wireless Sensor Networks,” in Proc. of the 15th ACM
MobiCom, 2009.

[13] S. Lee, S. Pattem, M. Sathiamoorthy, B. Krishnamachari, and A. Ortega,
“Spatially-Localized Compressed Sensing and Routing in Multi-hop
Sensor Networks,” in Proc. of the 3rd GSN (LNCS 5659), 2009.

[14] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: Freeman, 1979.

[15] J. Luo, L. Xiang, and C. Rosenberg, “Does Compressed Sensing Improve
the Throughput of Wireless Sensor Networks?” in Proc. of the IEEE
ICC, 2010.

[16] “IEEE 802.15.4-2006.” [Online]. Available:
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf

[17] G. Galbiati, F. Maffol, and A. Morzenti, “A Short Note on the Approx-
imability of the Maximum Leaves Spanning Tree Problem,” Elsevier
Information Processing Letters, vol. 52, no. 1, 1994.

[18] A. Gupta, A. Kumar, and T. Roughgarden, “Simpler and Better Ap-
proximation Algorithms for Network Design,” in Proc. of the 35th ACM
STOC, 2003.

[19] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver, Combina-
torial Optimization. New York: John Wiley and Sons, 1998.

[20] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. Cambridge: The MIT Press, 2001.

[21] V. Vazirani, Approximation Algorithms. New York: Springer-Verlag,
Berlin, 2001.

[22] “IBM-ILOG CPLEX 11.0.” [Online]. Available: http://www.cplex.com/
[23] “Boost.” [Online]. Available: http://www.boost.org/
[24] A. Goel and D. Estrin, “Simultaneous Optimization for Concave Costs:

Single Sink Aggregation or Single Source Buy-at-Bulk,” in Proc. of the
14th ACM-SIAM SODA, 2003.

[25] P. von Richenbach and R. Wattenhofer, “Gathering Correlated Data in
Sensor Networks,” in Proc. of the 2nd ACM DIALM-POMC, 2004.

[26] Z. Charbiwala, S. Chakraborty, S. Zahedi, Y. Kim, M. Srivastava, T. He,
and C. Bisdikian, “Compressive Oversampling for Robust Data Trans-
mission in Sensor Networks,” in Proc. of the 29th IEEE INFOCOM,
2010.

APPENDIX A
CHARACTERIZING THE OPTIMAL SOLUTION OF MECDA

Condition 1) holds trivially, as the partition is determined by
performing CS coding or not, while each node is bounded to
fall into either side. For every aggregator i ∈ A, the following
statement holds: all nodes on the routing path from i to s
are aggregators. This is so because the fact i is an aggregator
implies that i has at least k − 1 descendants in the spanning
tree. Consequently, the parent of i has at least k descendants,
justifying itself as an aggregator. Repeating this reasoning on
the path from i to s confirms that the above statement is
true. Now, as every aggregator sends out exactly k units of
data, the minimum energy routing topology that spans A is
indeed an MST for the subgraph induced by A, which gives
us condition 2). Note that it is condition 1) that allows us
to decompose the minimization problem into two independent
problems: one for A and one for F .

For nodes in F , as they do not perform CS coding, the
minimum energy routing topology should be determined by
the shortest path principle. However, the destination of these
shortest paths is not s, but the whole set A, as the energy
expense inside A is independent of that of F . Therefore, for
each node i ∈ F , it needs to route its data to a node ĵ ∈ A that
minimizes the path length; this is indeed condition 3). Con-
dition 4) follows directly from the property of an aggregator:
it has at least k − 1 descendants in the spanning tree. One
may verify that, if the condition did not hold, either the node
should be an aggregator (for a member of F) or it should not
be an aggregator (for a leaf of A). Q.E.D.

APPENDIX B
NP-COMPLETENESS OF CSATCPk

We first show that CSATCPk is in NP. If a non-deterministic
algorithm guesses a spanning tree, the partition of V into
A and F can be accomplished in polynomial time (O(n`)
for a rough estimation), simply by counting the number of
descendants for each node. Then to test if the total cost is
below B or not only costs another n − 1 summations and
multiplications to compute the total cost of the spanning tree.
This confirms the polynomial time verifiability of CSATCPk,
hence its membership in NP.

Next, we prove the NP-completeness of CSATCPk for 2 ≤
k < n − 1 through a reduction from MLST. In fact, given
an instance G(V,E) of MLST, the goal is to partition V into
two sets: leaf and non-leaf, which is similar to what needs
to be done for CSATCPk. We first extend G(V,E) in three
steps. First, we add an auxiliary node s and connect it to every
vertex in V . Second, we attach to every vertex in V a path
containing k−2 auxiliary vertices. Now, we have an extended
graph G′(V ′, E′), as shown in Fig. 5. Finally, we assign a cost

s

G

G’

Paths of length -k 2

Fig. 5. Reduction from MLST to CSATCPk . Given an instance G(V,E) of
MLST, we extend the graph by (1) adding an auxiliary node s and connect
it to every vertex in V and (2) attach to every vertex in V a path containing
k − 2 auxiliary vertices.

1 to every edge in E′, except those between V and s whose
costs are set to be k+ε with ε being a small positive number.
Given a certain parameter B, the answer to CSATCPk can be
obtained by finding the minimum cost spanning tree on G′.
Note that the special cost assigned to the edges between s and
V forces this spanning tree to use exactly one edge between
s and V (incurring a constant cost of k(k+ε)), and to choose
other edges in the rest of the graph G′.

Due to the condition 4) of Proposition 1, a minimum cost
configuration of CSATCPk will put all the auxiliary nodes on
the paths attached to V into F , and the total cost of these paths
is a constant 1

2 (k−1)(k−2)|V |. The remaining configuration
partitions V into A and F k−1, with nodes in the second set
each sending k − 1 units of data, such that the total cost is
minimized. This is equivalent to the following problem:

minimize (k − 1)|F k−1| + k|A| (12)
F k−1 ∪A = V (13)

F ∩A = ∅ (14)

with an additional constraint that A induces a connected
subgraph of G. Since k

(
|F k−1|+ |A|

)
= k|V | is a constant,

the objective is actually to maximize the cardinality of |F k−1|.
Therefore, if we consider F k−1 as the leaf set of the spanning
tree for V , this problem is exactly MLST.

In summary, what we have shown is the following: sup-
pose we have an oracle that answers CSATCPk correctly,
then for every instance G of MLST, we simply extend it
to G′ following the aforementioned procedure. Given the
above shown equivalence, the oracle will also answer MLST
correctly. In particular, if the answer to CSATCPk with B =
k(k + ε) +

[
1
2 (k − 1)(k − 2) + k

]
|V | − K is true, then the

answer to MLST is true. Now, given the NP membership of
CSATCPk and the NP-completeness of MLST [14], we have
the NP-completeness of CSATCPk. Q.E.D.

According to the proof, we may also show that MECDA
does not admit any PTAS. This idea is to reduce an ap-
proximation of MLST to that of MECDA. Consequently, the
inapproximability of MECDA follows from the MAX SNP-
completeness of MLST [17].

APPENDIX C
COMPUTATIONAL COMPLEXITY OF MECDA GREEDY

Recall in Algorithm 1, for each round of adding one
aggregator, all i ∈ B(A) are tested, within each testing phase
an MST and an SPF are computed. The iteration proceeds
until no further expansion for the core. We analyze the
computational complexity for Algorithm 1 in the following.
First, the all-pairs shortest paths are computed in advance,
which leads to a complexity of O(n3) and contributes addi-
tively to the overall complexity. Considering the r-th outer
iteration, we have r + 1 elements in A and n − r − 1
elements in F for each testing partition. While the complexity
of SPF(F,A) is O ((r + 1)(n− r − 1)) as only pairwise
distances are compared from j ∈ F to A, MST(A) incurs
a complexity of O((r + 1)2) for the best implementation
[20]. The cardinality of B(A) is bounded by n − r, so the
whole testing phase for admitting the r + 1-th aggregator
costs O

([
(r + 1)2 + (r + 1)(n− r − 1)

]
(n− r)

)
. And the

program proceeds at most n − k iterations before ending.
Therefore, the total complexity of all iterations is

O

(
n−k∑
r=1

[
(r + 1)2 + (r + 1)(n− r − 1)

]
(n− r)

)

= O

(
n

n−k∑
r=1

(r + 1)(n− r)

)
= O

(
n2
∑n−k

r=1 r
)

= O
(
(n− k)2n2

)
Now, adding the initial complexity O(n3) of computing the
all-pairs shortest paths, the complexity of Algorithm 1 is
O
(
(n− k)2n2 + n3

)
Q.E.D.

In fact, the n − k outer iterations only happen for linear
networks. Given an arbitrary network, the algorithm may
require far less than n − k outer rounds to terminate, which
suggests that the actual complexity could be much lower.

