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a b s t r a c t

This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same
family. Taking the over-segmentation results as input, our approach clusters the primitive patches to
generate an initial guess. Then, it iteratively builds a statistical model to describe each cluster of parts
from the previous estimation, and employs the multi-label optimization to improve the co-segmentation
results. In contrast to the existing ‘‘one-shot’’ algorithms, our method is superior in that it can improve
the co-segmentation results automatically. The experimental results on the Princeton Segmentation
Benchmark demonstrate that our approach is able to co-segment 3D shapes with significant variability
and achieves comparable performance to the existing supervised algorithms and better performance than
the unsupervised ones.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The past few years has witnessed an increasing research trend
towards the high-level analysis of 3D shapes to derive structural
and semantic shape information. This research heavily relies
on low-level geometric properties, in particular, the semantic
knowledge based shape segmentation [1,2]. Recently, researchers
observed that segmenting a set of 3D shapes as a whole into
consistent parts can infermore knowledge than from an individual
shape, which leads to a new research problem of co-segmentation.
The existing co-segmentation algorithms can be classified into two
categories, i.e., supervised and unsupervised. Taking advantage of
the training sets, the supervised ones [2,3] are able to generate
consistent results, however, the training process usually requires
a large amount of manual labeling on the trainingmodels, which is
tedious and time consuming. The unsupervised algorithms [4–7],
on the other hand, are flexible and effective in segmenting shapes
in a heterogenous shape database, however, these approaches
either depend on accurate alignment of input shapes or cannot
guarantee the consistency of the final consistency of the final co-
segmentations across the whole set.

In this paper, we propose a new framework for unsupervised
co-segmentation of a set of 3D shapes. Our algorithm first
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segments all input shapes into the primitive patches, which
are then clustered into corresponding parts to generate an
initial estimation of co-segmentation. Next, the initial guess is
automatically improved by an iterative optimization scheme,
which generates a statistical model for the estimated clusters of
all shapes and performs multi-labeling optimization for individual
shapes respectively.

It is well known that shape descriptors play an important role
in analyzing the surface geometry and a classical application of
surface descriptors is shape segmentation [8].While two perceived
corresponding parts of models may differ in some features
significantly. Our method adopts multiple shape descriptors such
that they are rich enough to classify the faces belonging to
different clusters. Our framework distinguishes the intrinsic and
extrinsic shape descriptors in the two phases. Specifically, in phase
one, it focuses on the intrinsic shape descriptors, e.g., average
geodesic distance (AGD) [9,10], to generate a rough estimation
of co-segmentation by grouping the primitive patches. Then the
extrinsic descriptors, e.g., shape diameter function (SDF) [11], play
a more important role in the subsequent optimization procedure
aiming to classify the faces into their corresponding labels.

The novelty of our approach is twofold. First, the iterative
optimization is able to improve the initial rough co-segmentation
results automatically and allows us to handle a large shape library
without prior correspondences or alignments. Second, our method
distinguishes the intrinsic and extrinsic shape descriptors at
different levels of 3D shape co-analysis. In particular, our method
relies more on the intrinsic descriptors in the initial grouping
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Fig. 1. Unsupervised co-segmentation results of our approach. Corresponding
segments are shown with the same color. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

of primitive patches, while it utilizes more extrinsic ones in the
subsequent classifying of faces at the semantic level. This feature
allows us to consistently segment a set of shapes with significant
diversity.

We evaluate the proposed approach on the Princeton Segmen-
tation Benchmark and make comparisons with state-of-the-art
techniques. Fig. 1 shows our co-segmentation results on the class
of four-leg animals. The experimental results demonstrate that our
approach is able to achieve comparable performance to the super-
vised approach and produces better results than the unsupervised
ones.

The remainder of the paper is organized as follows. Section 2
reviews the related work in shape segmentation and shape de-
scriptors. Section 3 presents the overview of our co-segmentation
framework followed by the detailed description of the initial co-
segmentation in Section 4 and the iterative optimization in Sec-
tion 5. Then, we document the experimental results and make a
comparison with state-of-the-art techniques in Section 6. Finally,
Section 7 concludes this paper.

2. Related work

2.1. Shape segmentation

Shape segmentation plays an important role in high-level shape
analysis. Despite much effort devoted to segment single shapes
into meaningful parts [8], a recent evaluation shows that no
segmentation algorithm performs well for all models because
individual shapes may not provide sufficient geometric cues to
distinguish all parts that would be perceived as meaningful to a
human observer [12].

To tackle the challenge in individual shape segmentation,
consistently segmenting a set of shapes from the same family
into semantic parts, or co-segmentation, has received increased
attention [13,4,14,7]. Golovinskiy and Funkhouser formulate a
graph clustering problem [4], which takes a global rigid alignment
between matching parts and then finds the connection between
corresponding parts using the iterative closest point. Due to the
lack of shape semantics, their approach works only for limited
model types. To handle the non-homogenous part stretching of
shapes, Xu et al. [7] firstly group the shapes based on their
styles and then perform part correspondences in each style group.
However their approach is computationally expensive within the
group generation process.

There are also data-driven techniques that utilize information
from multiple shapes. Kalogerakis et al. [2] propose a super-
vised approach to segmentation, demonstrating significant im-
provement over single shape segmentation algorithms. van Kaick
et al. [3] incorporate prior knowledge imparted by a set of pre-
segmented and labeled models with content-driven analysis for
performing part correspondence. Although consistent segmenta-
tion may be established based on the knowledge observed from
multiple examples from the same family, these supervised ap-
proaches still require a large number ofmanually segmented train-
ing shapes to learn from.

Very recently, two promising unsupervised techniques [5,6]
have been proposed for co-segmentation. Aided by the co-analysis
in a descriptor space, Sidi et al.’s algorithm [5] can co-segment a
set of shapes with large variability, revealing the semantic shape
parts and establishing their correspondences. However, due to
the initial segmentations required for co-analysis, Sidi et al.’s
algorithmmay fail if the single-shape segmentation is poor. Huang
et al. [6] present a novel linear programming approach to jointly
segment the shapes in a heterogeneous shape library, producing
comparable results to the supervised approaches on the Princeton
Segmentation Benchmark. They observed that the segmentations
produced in themulti-way joint condition are generally better than
those produced in the pairwise joint condition, as the variability
can be further exploited from the database in the former case. This
variation-dependent feature, however, may reduce the algorithm
to single-shape segmentation if the input models are lacking
of variability. Moreover, this approach produces only mutually
consistent segmentation but cannot guarantee the consistent
segmentations across a shape class.

In a concurrent effort, Hu et al. [15] present an unsupervised
co-segmentation algorithm that generates the segmentations
by grouping the primitive patches of the shapes directly and
obtains their correspondences simultaneously. However, unlike
our approach, this technique does not guarantee that all the
underlying segmentation can be captured well, since the final
segmentations of each shape are generated from the initially
computed patches.

2.2. Shape descriptor

Shape descriptors, characterizing the geometric features of
input shapes, are widely used in digital geometry processing.
Gatzke et al. [16] construct the curvature map signature for
shape matching relying on geodesic distance. Lai et al. [17]
propose a feature-sensitive metric by combing geodesic and
isophotic distances for sampling, remeshing and multi-scale
feature selection. Other metrics, such as shape distribution [18]
and average geodesic field [19], have also been used to derive
global shape properties in shape retrieval.

Shape segmentation has to face the problem of defining a part
or part boundary. As one of the best known rules, the minimal rule
[20] inducing part boundaries along negative curvature minima
is typically realized via curvature measurements. On the other
hand, volumetric considerations for part analysis appear to be
more closely linked to skeletal shape representations, e.g. shape
diameter function [11], and volumetric shape image [21]. Specific
to shape segmentation [22–24], it is critical to find the proper
metric which can capture the essence of the semantic components.
Kalogerakis et al.’s algorithm automatically selects the most
informative features from a given set of shape descriptors to train
the JointBoost classifier [2]. Inspired by their work, our algorithm
also adopts multiple shape descriptors to distinguish the faces at
different analysis levels.
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(a) Over-
segmentation.

(b) Iterative optimization. (c) Co-segmentation
results.

Fig. 2. Overview of our approach. (a) The over-segmentation is computed for each shape. (b) In place of one-shot labeling, we iteratively improve the segmentation of
shapes using multi-label optimization from the initial guess of co-segmentation. (c) The final co-segmentation of the set is obtained until convergence.
3. Overview

Our co-segmentation approach takes as input a set of 3D
meshes from the same class and provides a consistent segmenta-
tion of these meshes. Our approach contains three stages, as illus-
trated in Fig. 2. In the first stage, we compute a set of primitive
patches for each input mesh independently. In the second stage,
we perform a clustering in the common space of all patches and
obtain an initial estimate of co-segmentation. Finally, in the third
stage, we iteratively build the statistical model to describe each
part cluster from previous estimation, and adopt the multi-label
optimization to improve the co-segmentation quality.

Over-segmentation. Inspired by the computation of superpixels
for image segmentation [25], we first decompose each shape
into primitive patches to generate an over-segmentation [6]. To
this end, we employ the normalized cuts [26,27] to compute the
primitive patches for each shape, and further align the patch
boundaries with shape features by fuzzy cuts [28].

Initial co-segmentation. To generate the initial estimate of
co-segmentation of 3D shapes, we perform a clustering in a
common space of primitive patches for all shapes. To this
end, we construct an affinity matrix based on the similarities
between pairs of primitive patches, which can be computed by
the distances between shape descriptors. By carrying out the
normalized cuts [26], we obtain an initial co-segmentation in
which a single cluster potentially represents a certain class of
semantic parts. As this stage was performed at the primitive
patch level, we emphasize the shape descriptors with intrinsic
properties, e.g. average geodesic distance (AGD), and conformal
factor (CF) [29], to measure the similarities of primitive patches.

Iterative multi-label optimization. Given the initial guess of co-
segmentation of shapes, we build a statistical model to describe
each cluster of parts, and employ the multi-label optimization
scheme to produce the improved segmentation of input meshes.
With the new estimate of co-segmentation, we can iteratively
improve the segmentation of all shapes in the set. In place of a one-
shot algorithm, our iterative scheme has the advantage of allowing
automatic refinement of the co-segmentation. Specifically, the
statistical model can be driven in terms of Gaussian mixture
models (GMM) which are learned from the clusters via the shape
descriptors. In contrast to the initial stage, we put more emphasis
on the extrinsic shape descriptors, e.g. shape diameter function
(SDF), to define the properties of each face for the labeling at
a semantic level. As newly labeled faces for each cluster are
provided, we can refine the GMM parameters to further improve
the co-segmentation of the shapes in the set. We terminate the
algorithm when the optimization converges or the accuracy of the
co-segmentation result is good enough (e.g. ≥0.90).
4. Initial co-segmentation

Starting with the primitive patches computed individually for
each shape, we compute an initial estimate of co-segmentation
by clustering them into the potential classes of parts. As a large
variability may exist within the shape library, a simple clustering
will not group the primitive patches into proper classes. Rather
than focusing on local features, we aim at extracting the global
similarities of the patches. To further explore the similarities of
patches, we first compute the pairwise affinities between patches
by a set of shape descriptors, then apply the Normalized Cuts [26]
method to produce a more accurate grouping of patches.

Descriptor space. Aiming to classify the primitive patches, we
prefer to collect a set of shape descriptors exploiting geometric
features. Observing the study on feature selection in [2], we chose
four shape descriptors in this paper, average geodesic distance
(AGD), conformal factor (CF), shape diameter function (SDF) and
shape contexts (SC) [30]. All shape descriptors are defined and
computed on the normalized shapes for overall scale. Hence for
each face, we define a feature vector obtained from all D(D = 4)
shape descriptors,

S(f ) = (. . . , widi(f ), . . .) i = 1, . . . ,D. (1)

By adjusting the weight value w for the corresponding descriptor,
we can perform co-analysis of the shapes for different purposes.

In order to perform clustering of primitive patches, we need
to construct the affinity matrix of the patches reflecting their
pair-wise similarities. Considering the variability of the shape
library, in this stage we prefer to emphasize the intrinsic shape
descriptors, e.g. AGD, and CF, by enlarging the weights w of
those descriptors. Based on the weighted face-level descriptors,
we formulate the patch-level descriptors as the histograms that
capture the distribution of each descriptor for all faces within the
primitive patch. For each face-level descriptor d, we compute the
histogram as the patch-level descriptor for patch pi, denoted as
hd
i . As a result, every patch is associated with a set of histograms.

Thence, we define the distance between two patches pi and pj as
follows:

d(pi, pj) =


d

EMD2(hd
i , h

d
j ) (2)

where EMD() is the earthmover’s distance, commonly used to
measure the dissimilarity between two probability distributions.

With the distance measure between patches, we apply a
Gaussian kernel to the distance aiming to construct the affinity
matrix A, with elements

Aij = exp(−d(pi, pj)/2σ 2). (3)
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(a) Initial GMM.

(b) After optimization.

Fig. 3. The GMM for each cluster before and after the optimization. Clearly, the ranges of GMMs are narrowed down after optimization, as the face labeling has become
more accurate.
Clustering. After obtaining the affinitymatrix, we then apply the
Normalized Cuts [26] technique based on a generalized eigenvalue
problem to group the patches into the potential clusters of parts
that exist in the shape set. The user could specify the number of
clusters, approximately corresponding to the number of semantic
parts that constitute the shapes.

The clustering results serve as the initial guess of the co-
segmentation of shapes, and can be improved iteratively in the
next stage. Various initial segmentations have been tried in our
framework. For the initial segmentations, it is more important to
be meaningful than to be precise. Thus distinct from the methods
which proceed on the facet level, we perform the clustering
directly from the patches, allowing us to handle more kinds of
categories.

5. Iterative multi-label optimization

This sectiondescribes the iterative scheme for co-segmentation:
iterative estimation and multi-label optimization.

Cluster modeling. For each cluster of parts, we can construct
a statistical model, e.g. Gaussian mixture model (GMM) in our
approach, based on the shape descriptors. In contrast to the initial
stage, we focus more on the extrinsic descriptors, e.g. SDF, and SC,
to define the properties of each face for the labeling at a semantic
level. For each cluster, the feature vector obtained from all shape
descriptors for all faces in the cluster are collected to estimate
the multi-dimensional Gaussian mixture model. Each GMM is
taken to be a full-covariance Gaussianmixture with K components
(typically K = 3 in our approach). Therefore, the statistical model
for the cluster ci is as follows,

p(f |ci) =

K
k=1

wkg(f |µk, Σk), (4)

where f is a D-dimensional vector computed by the shape
descriptors, and wk and g(f |µk, Σk) are the mixture weight and
the Gaussian density for the k-th component. The mixture weights
satisfy the constraint that

K
k=1 wk = 1. All GMM parameters
λ = wk, µk, Σk, k = 1, . . . , K for each cluster are estimated using
the iterative expectation-maximization algorithm.

Co-segmentation. Once the statistical model for all clusters is
constructed, we treat the co-segmentation as a multi-labeling
optimization, solved for each shape in the set individually.
Consider the dual graph of mesh G = {V, E} with V denoting the
set of faces and E denoting the set of edges between neighboring
faces. We formulate the segmentation for each shape as a face-
labeling problem that minimizes the energy,

E(L) =


v∈V

Ed(lv) + ω


(v,u)∈E

Es(lv, lu), (5)

where the data term Ed(lv) describes the penalty of assigning a
label lv to a face, the smoothness term Es depicts the penalty
for assigning different labels to two adjacent faces, and ω is the
weight to regulate the influence of the smoothness term in the total
energy.

In our setting, we define the data term as

Ed(lv) = −ln(p(clv |v) + ε), (6)

where p(clv |v) is the probability measured by the statistical model
of cluster clv , and ε (ε = 1e − 6) is a small threshold to avoid
zero value in the logarithm function. Similar to [5,14], we define
the smoothness term as follows,

Es(lv, lu) =


0 if lu = lv
−ln(θvu/π) · evu otherwise (7)

where θvu denotes the dihedral angle between the faces v and u,
and evu denotes the length of the edge between the two faces.

Finally, we employ the multi-label optimization technique [31]
tominimize the energy E(L). Therefore, the co-segmentation of the
set is composed of the labeling results for each shape.

Iterative optimization. Rather than one-shot labeling, the energy
minimization scheme proceeds iteratively in our approach. This
has the advantage of allowing automatic refinement of the co-
segmentation, as the updated clusters are used to fit the GMM
parameters λ. The iterative optimization scheme is given as
follows:
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Fig. 4. Co-segmentation results on the categories: Candle, Chair and Guitar. Corresponding segments in each class are shown with the same color. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
1. Learn GMM parameters λ from the shape descriptors for all
faces in each cluster.
2. Compute the probability p that an unknown face f belongs
to each cluster c.
3. Estimate the improved co-segmentation of the shapes
using multi-label optimization algorithm.
4. Repeat from step 1 until convergence.

In general, the above procedure converges within a few
iterations. In our implementation, we terminate the algorithm
when the accuracy is above 0.9 or the number of iterations is 5.

Fig. 3 illustrates that, for the four-leg model (shown in Fig. 1)
the iterative optimization in our approach can increase the
classification of the GMMs, relative to the one-shot labeling. It is
obvious that the GMMs are better separated after iteration.

6. Results and discussions

In this section we describe experimental results and demon-
strate the performance of our unsupervised co-segmentation ap-
proach.

Data set. To evaluate the performance of our proposed co-
segmentation algorithm, we have collected an experimental
dataset with 23 different object categories, of which 4 categories
(candelabra, goblets, guitars and lamps) are from [5] and the other
19 categories are from the Princeton Segmentation Benchmark
(PSB) [12]. The ground truth of the categories selected from [5]
is provided by the authors. For the categories selected from the
PSB, we use the ground truth based on the labeled database [2].
Specifically for the human category from the PSB, only 15 models
are chosen in our experiments since the other human models are
not suitable for co-segmentation owing to inseparable parts from
the bodies.

Furthermore the ground truth associatedwith the experimental
dataset is also employed for evaluation. To assist the comparison
between the co-segmentation results and ground truth, we have
manually merged the labels for the categories with too detailed
labels, e.g. airplane, armadillo and hand categories, according to a
specific labeling scheme.

Experimental results. The proposed approach is entirely unsu-
pervised. As mentioned in Section 4, we combine the intrinsic and
extrinsic descriptors into a blended metric which can perform co-
analysis of the shapes at different levels by adjusting the weight
value w for specific descriptors. Specifically, in the initial stage we
focusmore on the intrinsic descriptors by setting theweight vector
w to (0.7, 0.7, 0.3, 0.3) for the shape descriptors AGD, CF, SDF, and
SC respectively to suppress the outliers in the initial estimation.
The weights are then changed to (0.3, 0.3, 0.7, 0.7) in the subse-
quent optimization procedure with the aim to enhance the ability
to classify the faces into their corresponding labels. Without re-
Fig. 5. Co-segmentation results on the representative categories from the
Princeton Segmentation Benchmark [12]. (Top: Airplane, Ant, Glass; Middle:
Human, Hand, Table; Bottom: Bird, Teddy, Octopus.)

quiring any manual parameter tuning, the fixed parameters work
well for all experimental results in this paper.

Fig. 4 shows the co-segmentation results for the shapes of
categories selected from [5]. The resulting co-segmentation for
the candelabra category demonstrates that outlier segments are
allowed in our approach, as the detection of holders only on those
candles that contain them in the category. For the chair models,
our method is able to identify their main consistent parts with
different topologies. Noting the similarities of geometric features
between the legs and middle parts of the backs, our approach can
still extract the common parts and yield a coherent labeling owing
to the power of our iterative optimization procedure.

We have also tested our proposed approach on the Princeton
Segmentation Benchmark. Fig. 5 shows the co-segmentation
results for some presentative categories. Our method successfully
segmented these models into corresponding parts, demonstrating
its insensitivity to poses and shape variations, especially by the co-
segmentation results of the human, hand, and ant categories. From
these experimental results, we can see that our algorithm works
well for a large variety of shape sets, including organic models,
articulated models and man-made models as shown in Figs. 1, 4
and 5.

Like previous work, our algorithm tends to produce better
results when the input data set contains more models, but does



M. Meng et al. / Computer-Aided Design 45 (2013) 312–320 317
Fig. 6. Consistent segmentation results can be obtained by applying our approach
on different subsets of Cup models, e.g. 5 and 10 models for the top set and bottom
set respectively.

not require a large number of models in the input set. Fig. 6 shows
the co-segmentation results of two subsets of the Cup category.We
can see that our algorithm still works well for these subsets with
few models and can generate consistent segmentation results for
different subsets on the common category.

Thanks to the combined shape descriptors and iterative
optimization scheme, our algorithm exhibits a substantial degree
of flexibility when applying to a set of shapes with significant
variability. As shown in Fig. 7, our algorithm is able to co-segment
the Armadillos at two levels, producing the corresponding parts
according to the desired cluster number, which is specified by the
user.

To further access the performance of our algorithm in a
quantitative manner, we need to define an error function which
measures the quality of the experimental results. Similar to [2,5],
Fig. 7. Multi-level co-segmentation of the Armadillos.

we adopt the accuracymetric tomeasure the amount of area of the
given shape that is labeled correctly,

Accuracy(l, t) =


i

aiδ(li − ti)


i

ai


(8)

where ai is the area of face i, l and t are the labeling computed by
the co-segmentation and corresponding ground truth respectively,
and the Dirac delta function δ(x) is 1 only if x = 0. We then
average the labeling accuracies over all shapes from the same
category. The statistical evaluation of our co-segmentation results
for the categories in the dataset is shown in Table 1. Our algorithm
has obtained an average accuracy of 91.6% over all categories in
our dataset. We notice that the accuracies are at least 83.2% or
higher except the Bust category for which it is difficult to extract
meaningful parts even for the data-driven techniques.

Fig. 8 shows the accuracy improvement by using our iterative
optimization. Starting from the rough initial guess, our method
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Table 1
Average accuracies of our co-segmentation results.

Category Accuracy Category Accuracy

Human 83.2 Bird 86.1
Cup 99.2 Armadillo 90.8
Glasses 93.6 Bust 63.6
Airplane 92.7 Mech 97.6
Ant 96.3 Bearing 89.8
Chair 90.4 Vase 86.1
Octopus 99.1 Four-leg 90.7
Table 97.2 Candle 94.7
Teddy 99.2 Guitar 98.6
Hand 92.7 Goblet 99.2
Plier 89.5 Lamp 88.3
Fish 87.2 Average 91.6

Fig. 8. Our iterative optimization scheme is very effective to improve the
accuracy. The horizontal axis shows the iteration number. The accuracy of the
co-segmentation results declare a visible trend of improvement for the co-
segmentation.

gradually improves the accuracy of the co-segmentation for the
categories shown in the paper. The general trend of the accuracy
curves clearly demonstrates that the co-segmentation accuracy
is improved as more iterations are performed. In place of one-
shot labeling, the iterative scheme can automatically refine the co-
segmentation, providing more accurate labeling for all shapes.

Comparison. We have compared our approach to the data-
driven approach [2] on the Princeton Segmentation Benchmark.
The comparison is carried out between our co-segmentation
results and their leave-one-out-error experimental results, the
most accurate correspondence results shared by the author. The
comparison is shown in Fig. 9(bottom). The average accuracies
for [2] on the whole benchmark are 93.8%, which is better
than ours, 90.8%. However, the supervised approach requires
substantial work for preparing the training set, which is tedious
and time-consuming. It is also worth noting that their results
are guided by the training data where the knowledge can be
automatically inferred by our unsupervised method.

In addition to the supervised algorithm, we have compared
the presented technique to the unsupervised algorithms of
Sidi et al. [5] and Huang et al. [6]. The comparison with the
unsupervised algorithm [5] was performed on six categories of
shapes provided by the authors of [5]. The average accuracies
for [5] and ours are 88.2% and 92.6% respectively. As shown in
Fig. 9(top), our results get higher accuracy than theirs for most
cases, except for the Lamp category as it contains corresponding
parts which are very difficult to classify with purely geometry
Fig. 9. Comparison with the state-of-the-art techniques [5] and [2] using accuracy
measure. Higher values indicate closer similarity to human-generated ground truth.

features. Furthermore, it is worth noting that their approach relies
on good initial per-object segmentations which are difficult to
obtain for the organicmodels, e.g. four-legmodels. Therefore, poor
initial segmentation may result in unsatisfactory co-segmentation
in their method.With the proposed iterative optimization scheme,
our method can gradually improve the co-segmentation accuracy,
which significantly reduces the dependence on the initial guess.

We also compared to the unsupervised algorithm [6] on the
Princeton Segmentation Benchmark. Bymeans of the experimental
results provided in the paper [6], we use the Rand index
measure [12] to carry out the comparison between our co-
segmentation results and their segmentation results produced
in the JointAll condition, the generally better results provided
in their paper. The average Rand index scores for [6] and ours
are 10.1% and 10.8% respectively, lower values indicate better
closer similarity to human-generated ground truth. As shown in
Fig. 10, the overall performance of these two approaches is similar,
although their behavior on individual categories is quite different.
The algorithm [6] performs generally better than our approach
in the categories with large variation, e.g. the Human category.
On the other hand, our technique outperforms their algorithm
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Fig. 10. Comparison with the state-of-the-art technique [6] using Rand index
scores. Lower values indicate closer similarity to human-generated ground truth.

Fig. 11. Our approach groups the upper part of one lamp (lower right) into the
lower part, as they are very similar in geometry.

when the variation in the category is small, e.g. the Airplane
categorywhich containsmanyhighly similar shapes. However, this
variation-dependent feature may reduce their algorithm to single-
shape segmentation when the input category lacks variability.
Moreover, their algorithm cannot guarantee the consistency of the
final segmentations across a shape class while our approach can
generate consistent co-segmentations by classifying the similar
parts of all the shapes into the same cluster.

Performance. All experiments were conducted on a workstation
with an Intel(R) Dual-core 2.67 GHz CPU and 12 GB RAM. Our
algorithm takes around 8min for a categorywith 20medium-sized
shapes. It is worth noting that our algorithm performs most of the
analysis at the patch or part level rather than face level and it does
not require any data-training or pre-alignment of shapes. Thus, our
method is more efficient than [2,5].
Limitation. Purely driven by the geometric features, our
algorithm does not employ the pre-alignment of the shapes or any
prior knowledge. Thus, it may fail for some ambiguous caseswhere
the corresponding parts are very difficult to classify based on
purely geometry features, such as the Lampmodel shown in Fig. 11.

7. Conclusion

In this paperwehave developed an approach for co-segmenting
a set of shapes from a common family. By performing clustering in
the space of primitive patches and exploiting the power of iterative
multi-label optimization, we are able to consistently co-segment
the shapes from the set exhibiting significant variability. We have
evaluated our approach on the Princeton SegmentationBenchmark
[12] which consists of multiple shape categories, and compared to
the state-of-the-art techniques of co-segmentation. Experimental
results have demonstrated that the proposed algorithm can
properly extract consistent parts across the model set, achieving
comparable performance to the data-driven method.
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