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Abstract—Mobile crowdsensing has been intensively explored
recently due to its flexible and pervasive sensing ability. Although
many crowdsensing platforms have been built for various ap-
plications, the general issue of how to manage such systems
intelligently remains largely open. While recent investigations
mostly focus on incentivizing crowdsensing, the robustness of
crowdsensing toward uncontrollable sensing quality, another
important issue, has been widely neglected. Due to the non-
professional personnel and devices, the quality of crowdsensing
data cannot be fully guaranteed, hence the revenue gained from
mobile crowdsensing is generally uncertain. Moreover, the need
for compensating the sensing costs under a limited budget has
exacerbated the situation: one does not enjoy an infinite horizon
to learn the sensing ability of the crowd and hence to make
decisions based on sufficient statistics. In this paper, we present a
novel framework, Budget LImited robuSt crowdSensing (BLISS),
to handle this problem through an online learning approach.
Our approach aims to minimize the difference on average sense
(a.k.a. regret) between the achieved total sensing revenue and the
(unknown) optimal one, and our BLISS sensing policy is shown to
be asymptotically optimal. Finally, we use extensive simulations
to demonstrate the effectiveness of BLISS.

I. INTRODUCTION

Given the pervasive availability of hand-held mobile devices
(in particular the increasingly powerful smart phones), the
concept of Mobile Crowdsensing [1] has started a new sensing
paradigm, where human crowds (along with their mobile de-
vices) are not only consumers of the sensed data but also their
producers. Thanks to the huge number of pervasively available
mobile sensors (those embedded in smart phones) and their
virtually unlimited spatial-temporal coverage, the efficiency
(in gathering a sufficient amount of data) and the ubiquity (in
capturing relevant events) are the major strengths of this new
sensing paradigm. Consequently, there have recently emerged
many interesting mobile crowdsensing applications across a
wide variety of research and application domains [2].

However, compared with the traditional remote sensing
systems, the mobile crowdsensing paradigm has posed several
unique challenges. While an owner of a crowdsensing task
can save the expenditures of buying and deploying specialized
sensors, substantial (preferably monetary) compensation is
necessary to drive mobile crowdsensing [3]–[7]. This is so
because a participant to a mobile crowdsensing task needs
to i) move to specific areas where sensing is required, 2)
consume his/her smart phone, mostly in terms of the embedded
sensors and battery, and iii) probably pay for the 3G access

to upload sensing data [6]. Furthermore, as the crowdsensing
participants are usually unprofessional (hence resulting in
high data missing rate and low sensing quality), the data
readings acquired from a single participant may be noisy
and of poor data quality [8], [9]. This makes it necessary
to require a minimum number of participants for improving
sensing robustness. Actually, such a requirement is essential
in a lot of crowdsensing applications [3].

Based on the above observations, an astute sensing task
owner has to seriously set up a budget, and to carefully choose
participants so that it can harvest the most from information-
gathering under that budget. Whereas this problem seems to
fall in a conventional combinatorial optimization framework,
the uncertainness of data quality in mobile crowdsensing
makes it much more complicated. As neither the involved
sensors nor their operators (the crowdsensing participants) are
professional, the quality of sensing data cannot be perfectly
guaranteed at a certain level. As one typical example, the
amount of useful (or qualified) data gathered by a certain
participant during a given time span may well be a random
number instead of a deterministic function of the sampling
rate [9]–[12]. Consequently, the value of the sensing data to
the owner can be random, and the owner would certainly need
to seek robustness against such an uncertainty subject to the
budget limit. To the best of our knowledge, this issue has never
been tackled in the literature by far.

We study in this paper a novel robust sensing problem im-
posed by mobile crowdsensing: an owner aims to repetitively
conduct a sensing task under a limited budget, by choosing
from a set of available participants whose individual sensing
values are random with unknown probabilistic distributions.
The problem is combinatorial in nature due to the budget limit-
ed selection process, but it is made far more challenging due to
the non-deterministic sensing values of individual participants.
To this end, we propose Budget LImited robuSt crowdSensing
(BLISS) as a general framework to tackle the problem. To keep
the selection process robust to the uncertainty, we adopt an
online learning approach to acquire the statistical information
about the sensing values throughout the selection process.
Due to the uncontrollable sensing quality, the objective of our
robust crowdsensing is to minimize the difference on average
sense (a.k.a. regret) between the achieved total sensing revenue
and the optimal one computed by a genie. In summary, we
make the following major contributions in this paper:
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• We introduce the robust crowdsensing problem, a realistic
yet open issue for many crowdsensing scenarios.

• We propose Budget LImited robuSt crowdSensing (BLIS-
S) as a general framework to tackle this problem.

• We propose an online learning algorithm which has a
logarithmic regret bound on the expected total sensing
revenue, and we have proven its asymptotical optimality.

• We perform extensive simulations to demonstrate the
effectiveness of BLISS.

The remaining of our paper is organized as follows. We
introduce the background and models in Sec. II, where we
also formulate the BLISS framework. Then we present our
BLISS online learning algorithm in Sec. III, and analyze its
theoretical performance in Sec. IV. We report the results of our
extensive simulations in Sec. V. We finally discuss the related
work in Sec. VI, before concluding our paper in Sec. VII.
In order to maintain fluency, we postpone all the (sketched)
proofs to the Appendix.

II. MODELING AND PROBLEM FORMULATION

We shall first give a brief discussion on the application
scenarios, before diving into the mathematical formulations.

A. Background and Scenarios

One of the major revolutions brought by mobile crowd-
sensing is urban scale information gathering [13]–[15]. Tra-
ditionally, these information gathering procedures always rely
on professional operators and specialized (high-end) sensors
(e.g., traffic cameras) that have limited coverage. Mobile
crowdsensing, on the contrary, makes use of the pervasive
availability of human participants, so it can be made more scal-
able both spatially and temporally. Nevertheless, the sensing
data quality (in terms of data timeliness, relevancy, coverage,
etc. [10]) in crowdsensing cannot be perfectly guaranteed due
to the unprofessional sensors and the casual behaviours of the
participants. This problem gets even more prominent given
that many crowdsensing systems are designed to involve the
least user intervention (a.k.a. opportunistic sensing) [1], [11].
The sensing in these systems is autonomously activated if
predefined conditions have been satisfied, which can result
in uncertain data quality and high data-missing rate because
sufficient exposure time for sensors may not be guaran-
teed [9], [11]. Therefore, we cannot fully benefit from mobile
crowdsensing in revolutionizing our urban living and working
without handling this uncertainty on sensing data quality.

Let us take the dust level sensing task as an example,
for which a certain number of participants are chosen in
a city to gather information on the dust levels, and finally
get remunerated for the data gathered by them. One typical
constraint is that a minimum number of participants have to be
chosen. This requirement is meaningful to many crowdsensing
tasks, for example, the dust level sensing should involve a
sufficient amount of participants to improve the overall value
of the collected data and/or to cover a sensing area. While
the participants may always deliver a sequence of readings
either online or offline to claim their remunerations, it is

highly possible that not all the readings are qualified due
to, for example, a wrong placement of the sensing device.
Although other sensors can be used to identify and remove
unqualified data (e.g., accelerometers can be used to detect
if a smartphone is put into pocket [16] where the dust level
readings are not qualified), the amount of qualified data from
each participant (hence the sensing value of this participant to
the owner) becomes uncontrollable and random.

At the meantime, the task owner has at its disposal a budget
and a set of participants to recruit [17]. The owner bears the
wish that the total sensing revenue got from all participants is
maximized, but it cannot achieve this by a one-time participant
selection due to the randomness in data quality. Given the
amount of budget to support its mobile crowdsensing task for a
certain period of time (e.g., tens of days), a reasonable strategy
taken by the owner is to learn the sensing values gradually,
smartly reshuffle the selected participants every day, and aim
to minimize the gap on average sense between the achieved
total sensing revenue and the one obtained by a genie. To
summarize, the robust sensing problem raised by the realistic
crowdsensing applications share the following features:
F1: At least a minimum number of participants have to be

involved for a crowdsensing task.
F2: The sensing values of individual participants are random.
F3: The owner of a crowdsensing task has a limited budget

to recruit participants.

B. Models and Assumptions

Suppose that the owner of a crowdsensing task T has a
budget G to conduct its task that often lasts for a certain
amount of time slots (e.g., tens of days). The owner also has
a set of participants indexed by JdK = {1, 2, ..., d}1 at its
disposal to actually perform the sensing.

For each participant, we define his/her sensing value as
the amount of qualified data that he/she collected within
one time slot (e.g., a day). According to the discussions in
Sec. II-A, this quantity for participant i during the r-th time
slot is obviously a random variable, which we denote by
Xi,r : r ∈ Z+. The value of Xi,r can only be revealed after
participant i is selected and has finished his/her sensing for
the r-th time slot. Without loss of generality, we assume that
the sequence {Xi,1, Xi,2...} are i.i.d. non-negative random
variables following an unknown distribution with an unknown
expectation τi, but the distributions followed by Xi,1 and Xj,1

can be different if j 6= i. We also assume that Xi,r,∀i, r ∈ Z+

has normalized supports in [0, 1], but our results can be easily
extended to the case of arbitrary supports of Xi,r. To evaluate
the total sensing revenue, the owner has, for each participant
i, a weight ωi. This weight may represent several factors
related to the prior information on this participant’s ability of
performing the sensing task, such as the types and sampling
resolution of the participant’s sensors. As a result, the sensing
revenue obtained by the owner from participant i in the r-th
time slot can be expressed as ωiXi,r.

1We use JzK to denote the set {1, 2, ..., z} for any z ∈ Z+.



3

During each time slot, the owner selects a certain number
of participants to conduct the crowdsensing task. We assume
that selecting participant i for one time slot costs the owner
pi, which includes the cost of rewarding i and processing
the collected data. Moreover, to accomplish a meaningful
sensing task, the number of participants selected by the owner
during each time slot must be no less than a predefined
positive integer m : m ≤ d (see F1 of Sec. II-A). For this
requirement, we formally introduce the concept of Feasible
Sensing Engagement in Definition 1:

Definition 1 (FSE): A Sensing Engagement (SE) is a vec-
tor v = (v1, v2, · · · , vd), where vi ∈ {0, 1} indicates whether
participant i is selected for sensing. If

∑d
i=1 vi ≥ m, then we

term v a Feasible Sensing Engagement (FSE). The set of all
FSEs is denoted by V .

If a FSE v ∈ V is selected in the r-th time slot, the owner
would get a sensing revenue

∑d
i=1 ωiXi,rvi, but at a cost of

p(v) =
∑d
i=1 pivi. As the owner is not sure about the random

sensing values of individual participants, it would adaptively
select different FSEs at different points in time. However, as
the owner has a budget G, the total time span it can play this
“trial-and-error” procedure is limited. We formally define this
procedure as a Robust Sensing Policy:

Definition 2 (RSP): A Robust Sensing Policy of the owner
is a sequence Φ = (φ1,φ2, · · ·), where φr = (φ1,r, φ2,r, · · · ,
φd,r) ∈ V,∀r ∈ Z+ is the FSE selected for the r-th time slot.
Also, the policy satisfies

∑∞
r=1 p(φr) ≤ G. The total sensing

revenue of Φ is WG(Φ) =
∑∞
r=1

∑d
i=1 ωiXi,rφi,r.

Now the expected total revenue of a RSP Φ becomes:

RG(Φ) = E{WG(Φ)} =
∑∞

r=1

∑d

i=1
ωiτiφi,r (1)

Let τ denote the vector (τ1, τ2, ..., τd). For v ∈ V , we
denote its expected revenue by f(v, τ ) =

∑d
i=1 ωiτivi and

the set of selected participants in v by H(v) = {i|vi 6= 0∧i ∈
JdK}. The minimum and maximum total costs of an FSE are
denoted by pmin and pmax , respectively, where pmin is the
sum of m smallest pi’s and pmax =

∑d
i=1 pi.

C. Problem Formulation

Under our Budget LimIted robuSt crowdSensing (BLISS)
framework described in Sec. II-B, a desired objective is to
find an RSP Φ∗ such that RG(Φ∗) is maximized. In terms of
combinatorial optimization, Φ∗ is an optimal solution to the
following integer linear programming (ILP) problem:

[BLISS-ILP] Maximize RG(Φ) (2)

s.t.
∑

r

∑d

i=1
piφi,r ≤ G (3)∑d

i=1
φi,r ≥ m · yr (4)

φi,r ≤ yr (5)
yr ≥ yr+1 (6)

yr ∈ {0, 1}; φi,r ∈ {0, 1}; ∀r ∈ Z+; ∀i ∈ JdK

Constraints (3) and (4) are due to the above definitions of FSE
and RSP. The variable yr ∈ {0, 1} denotes whether the sensing

task is performed for the r-th time slot. Obviously, the number
of non-zero yr is bounded by bG/pminc. Constraint (6)
is artificially introduced to force these non-zero elements
appearing only at the beginning of the time sequence: it
confines the problem dimension without sacrificing generality.
Constraint (5) states that participants are chosen only when the
task is performed. Assuming that the expected sensing values
{τi} are known, BLISS-ILP can be proven as NP-hard.

Theorem 1: BLISS-ILP is NP-hard when τ is known.
However, in the BLISS problem, the expected sensing values
are not known to us. Therefore, it is not possible to solve
BLISS-ILP either optimally or approximately, and it only
serves as a benchmark in our performance evaluation.

Based on the above discussions, we will instead adopt an
online leaning approach to tackle the robust sensing problem,
i.e., the owner repetitively learns the participants’ sensing
values and chooses the next FSE accordingly until running
out of budget. The goal is then to minimize the difference
with respect to the optimal solution computed by a genie,
essentially a standard optimization objective in the field of
online learning [18]. Formally speaking, we aim at an RSP Φ
such that the regret RG(Φ∗)−RG(Φ) is minimized.

III. BLISS ONLINE LEARNING ALGORITHM

We shall first briefly motivate our algorithm, before present-
ing its details.

A. Motivations

According to Sec. II-C, we are confronting an “exploration
vs. exploitation” dilemma under the BLISS framework, i.e.,
balancing revenue maximization based on the already acquired
empirical knowledge of the sensing values with attempting
new FSEs to acquire further knowledge. A popular model for
solving such a kind of dilemma is the Multi-Armed Bandit
(MAB) problem in the area of reinforcement learning [19].
In [19], Auer et.al. study the problem of regret minimization
for pulling a row of slot machines (or one-armed bandits) with
unknown i.i.d. rewards over time, and the rule is to pull exactly
one arm each time. The UCB algorithm proposed in [19] for
multi-armed bandits achieves a storage and regret bound both
grow linearly in the number of arms.

Directly applying UCB to our problem faces two major
obstacles. Firstly, we have to model each FSE as an arm, hence
resulting in

∑d
i=m

(
d
i

)
= O(2d) arms in total. Consequently,

the regret bound and required storage can grow exponentially
in the number of participants. Secondly, pulling arms is
assumed to be free in UCB (hence the arms can be pulled
for ever), whereas our BLISS framework has a budget limit
in selecting FSEs. Actually, in the BLISS problem, we aim to
achieve a small regret bound while simultaneously respecting
the budget limit and the combinatorial nature of FSE selection,
which makes the problem extremely challenging.

B. Algorithm Details

To conquer the above difficulties, we propose a BLISS
online learning algorithm shown by Algorithm 1. In this
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Algorithm 1: BLISS Online Learning
Input: G,m, d,ω = (ω1, ..., ωd),p = (p1, ..., pd)
Output: Φ, N

1 for i = 1 to d do λi,0 ← 0; ki,0 ← 0
2 r ← 1; φr ← {1}d
3 (λr,kr, G)← Update(λr−1,kr−1, d, r,φr, G)
4 while true do
5 r ← r + 1

6 for i = 1 to d do λ̄i,r ← λi,r−1 +
√

5 ln r
2ki,r−1

7 Call Algorithm 2 to find an FSE v̄r
8 if p(v̄r) ≤ G then
9 φr ← v̄r

10 (λr,kr, G)← Update(λr−1,kr−1, d, r,φr, G)
11 else break
12 N ← r − 1
13 return (Φ, N)
14 Function Update(λr−1,kr−1, d, r,φr, G)
15 Perform crowdsensing for the r-th time slot based on φr
16 for i = 1 to d do
17 if φi,r > 0 then
18 λi,r ← λi,r−1ki,r−1+Xi,r

ki,r−1+1 ; ki,r ← ki,r−1 + 1

19 else
20 λi,r ← λi,r−1; ki,r ← ki,r−1

21 G← G− p(φr)
22 return (λr,kr, G)

algorithm, we maintain two vectors λr = (λ1,r, ..., λd,r) and
kr = (k1,r, ..., kd,r) as the empirical knowledge learnt from
the history. More specifically, λi,r is the sample mean of
participant i’s sensing value at the end of the r-th time slot
and ki,r is the number of time slots that i is selected (sampled)
by then. At the initialization stage (lines 1-3), the algorithm
selects all participants to acquire the initial information λ1

and k1. Then Algorithm 2 is invoked for each of the later
time slots to select FSEs based on current λr and kr (line 7).
Instead of directly using the sample means, we introduce a
new vector λ̄r by amending each λi,r with an additive factor
(line 6); it serves as improved estimations on the expected
sensing values and is used for actually selecting v̄r.

Algorithm 2 adopts a greedy strategy that selects an FSE
with the maximum Revenue-Cost Ratio (RCR henceforth) pa-
rameterized by λ̄r. In other words, Algorithm 2 should return
v̄r = v∗(λ̄r) so that θ∗r = f(v∗(λ̄r), λ̄r)/p

(
v∗(λ̄r)

)
is

maximized. This is essentially a fractional programming [20]
problem and we solve it optimally in polynomial time by
Algorithm 2 based on a parametric sorting method. More
detailed analysis of Algorithm 2 is given in Sec IV-A.

After identifying v̄r (lines 8–11), Algorithm 1 checks if
its cost is bigger than the current leftover budget. If so, the
algorithm stops and returns the FSEs selected so far as well as
the number of time slots during which the crowdsensing task
has been performed. Otherwise, it employs the participants

Algorithm 2: Selecting an FSE for the rth time slot

Input: λ̄r = (λ̄1,r, ..., λ̄d,r),m,ω, d,p, r
Output: v̄r

1 a← 0; b←
(∑d

i=1 ωiλ̄i,r

)
/pmin

2 for i = 1 to d do h[i]← i; v̄i,r ← 0
3 for j = d to 1 do
4 for i = 1 to j − 1 do
5 (a, b, z)← Max(a, b, h[i], h[i+ 1], λ̄r,m,ω, d,p)
6 if z = h[i+ 1] then h[i]↔ h[i+ 1]

7 Y ←
{〈∑

1≤t≤i ωh[t]λ̄h[t],r∑
1≤t≤i ph[t]

, i
〉 ∣∣∣∣m ≤ i ≤ d}

8 forall the 〈s, i〉 ∈ Y ∧ s ∈ [a, b] do
9 u← max

{∑j
t=1(ωh[t]λ̄h[t],r − ph[t]s)

∣∣m ≤ j ≤ d}
if u = 0 then break

10 for j = 1 to i do v̄h[j],r ← 1
11 return v̄r = (v̄1,r, v̄2,r, ..., v̄d,r)
12 Function Max(a, b, i′, j′, λ̄r,m,ω, d,p)
13 i← i′; j ← j′; if pi′ < pj′ then i↔ j
14 o← ωiλ̄i,r − ωj λ̄j,r
15 if o ≥ b(pi − pj) then return (a, b, i)
16 if o ≤ a(pi − pj) then return (a, b, j)
17 l← o/(pi − pj); U ← {ωtλ̄t,r − l · pt|1 ≤ t ≤ d}
18 S ← arg maxS⊆U∧|S|≥m

∑
s∈S s

19 if
∑
s∈S s > 0 then return (l, b, j)

20 else return (a, l, i)

indicated by φr = v̄r to perform sensing for the r-th time
slot and subtracts p(φr) from the current budget. The sensing
values learnt during this time slot are then used to update the
empirical knowledge.

IV. PERFORMANCE ANALYSIS

In this section, we provide theoretical performance analysis
for the BLISS online learning algorithm proposed in Sec. III.
We will first prove the optimality of Algorithm 2 in Sec. IV-A,
and then prove the regret bound of Algorithm 1 in Sec. IV-B.

A. Optimality of the FSE Selection

As we mentioned before, the objective of Algorithm 2 is to
find an FSE v̄r that maximizes RCR based on the estimated
sensing value vector λ̄r. A critical building block of Algorith-
m 2 is the function Max, which is a parametric comparison
function called by the sorting process in Algorithm 2. To
prove the optimality of v̄r, we first reveal two important
features of the function Max, as shown by Lemma 1:

Lemma 1: Suppose that the function Max(a, b, i′, j′, λ̄r,m,
ω, d,p) returns (a′, b′, z′). If θ∗r ∈ [a, b]. Then we must have

i) θ∗r ∈ [a′, b′].
ii) ∀µ ∈ [a′, b′] : z′ = arg maxt∈{i,j}(ωtλ̄t,r − µ · pt)
Clearly 0 ≤ θ∗r ≤

∑d
i=1 ωiλ̄i,r/pmin, hence θ∗r is guaran-

teed to be in [a, b] after line 1 of Algorithm 2 is executed.
As the parametric (bubble) sorting process in lines 3–6 of
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Algorithm 2 repetitively calls the function Max to compare
participants while at the same time to shrink [a, b], we know
that θ∗r is never excluded from [a, b] due to i) of Lemma 1.
Moreover, after the sorting is completed, the participants must
be in a decreasing order that satisfies the following property
due to ii) of Lemma 1:

∀µ ∈ [a, b] : ωiλ̄i,r − ωj λ̄j,r ≥ µ · (pi − pj), (7)

where (i, j) is any pair of participants such that i is “greater”
than j in the sorting result. Based on these, lines 7–10 of
Algorithm 2 then finds the optimal v̄r, and the correctness of
lines 7–10 is proved by Theorem 2:

Theorem 2: f(v̄r, λ̄r)/p(v̄r) = θ∗r .
We also show that Algorithm 2 is a polynomial-time

algorithm.
Theorem 3: The average time complexity of Algorithm 2

is O(d2 log2 d).

B. Regret Bound for BLISS

Now we are ready to prove the regret bound of Algorithm 1.
The overall idea of the proofs is the following: we show that
the expected participant sensing values learned by Algorith-
m 1 do not deviate much from the real values, so we do not
suffer a big loss by using them for selecting FSEs, compared
with using the real sensing value expectations for selection.
Note that the number of time slots during which Algorithm 1
runs (i.e., N ) is a random variable, hence most of our proofs
are based on conditional probabilities with respect to N .

Let q(r, s) =
√

5 ln r
2s for any r, s > 0. Using the Chernoff-

Hoeffding bound [21], we can show that if a participant i
is selected for a sufficient number of times in the history
(i.e., ki,r−1 is sufficiently large), then the sample mean of i’s
sensing value λi,r−1 will be close to the real expected sensing
value τi with high probability. In other words,

Pr
{
|λi,r−1 − τi| > q(r, ki,r−1)

∣∣N} ≤ 2r−4 (8)

Let η∗ = maxv∈V
f(v,τ )
p(v) and A =

{
v ∈ V

∣∣ f(v,τ )
p(v) < η∗

}
,

i.e., A is the set of FSEs with sub-optimal RCRs computed
by the real expected participant sensing values. If A 6= ∅, then
let γ and ξ be the smallest and largest discrepancy between
η∗ and the RCR of any FSE in A, i.e., γ = min{η∗ −
f(v, τ )/p(v)|v ∈ A} and ξ = max{η∗ − f(v, τ )/p(v)|v ∈
A}. Let β = max{

∑
i∈H(v) ωi/p(v)|v ∈ V}. Let the event

Er =
{
∀i ∈ H(φr) : ki,r−1 >

10β2

γ2 ln r
}

. Based on (8) and
Theorem 2, the following lemma reveals that, if all the selected
participants for the r-th time slots have been selected in the
past for a sufficient number of times (greater than 10β2

γ2 ln r),
then with high probability the FSE chosen for the r-th time
slot would maximize the RCR with respect to the real expected
sensing values.

Lemma 2: For any 1 < r ≤ N , we have Pr{Er ∧ (φr ∈
A)|N} ≤ 2dr−4

Using Lemma 2, we can bound the total number of non-
optimal FSEs that have been chosen; these FSEs do not
maximize the RCR with respected to the real sensing value

expectations, and are selected due to the deviations of our
empirically learned sensing values. Fortunately, Lemma 3
shows that the expected number of such FSEs is no more
than O(d logN).

Lemma 3: Let DN = {φr|r ∈ JNK ∧ φr ∈ A}. We have

E
{
|DN |

∣∣N} ≤ 1 +
10β2

γ2
d lnN +

dπ4

45

Bounding the number of sub-optimal FSEs chosen by
Algorithm 1 through Lemma 3 allows us to further bound
the total regret of choosing these FSEs. Moreover, repetitively
choosing optimal FSEs is an approximation policy to BLISS-
ILP, whose regret can also be derived. Based on these ideas,
we prove the regret bound of Algorithm 1 in Theorem 4:

Theorem 4: The regret of Algorithm 1 is no more than
pmax

(
η∗ + ξ + 10β2ξd

γ2 ln
(

G
pmin

)
+ ξdπ4

45

)
= O(d logG).

As a special case, note that if ∀v ∈ V : η∗ = f(v, τ )/c(v),
then we have A = ∅ and DN = ∅, hence the regret bound
shown in Theorem 4 would be a constant pmaxη∗.

The asymptotical optimality of this regret bound is further
proven as follows.

Theorem 5: Any algorithm for BLISS has a regret of at
least Ω(d logG).

Note that when G→∞, the average regret of Algorithm 1
per time slot goes to 0. This implies that Algorithm 1 is
Hannan consistent [18].

V. SIMULATIONS

In this section we evaluate the performance of our online
learning algorithm through extensive simulations. The simula-
tions focus on the effect of various crowdsensing conditions on
the performance of sensing policies generated by Algorithm 1
(denoted by BLISS in the simulations) and other related
algorithms. To the best of our knowledge, the closest algorithm
that can be adapted to our scenario is LLR proposed by [22]: it
solves network optimization problems (e.g., maximum weight-
ed matching) under a stochastic MAB model. However, as
the costs for pulling arms are neglected in LLR, its policy
behaves in a “myopic” way in our scenario by selecting all
the participants in every time slot to maximize the short-term
sensing revenue. We also implement a straightforward policy,
RANDOM, that randomly selects an FSE in each time slot.

In all our simulations, the weight of any participant i
(i.e. ωi) is randomly generated from the uniform distribution
U [0.1, 1.1], and pi is generated by the same method. The
sensing value Xi,r,∀i, r ∈ Z+ of participant i in any time
slot is randomly sampled from two candidate distributions:
the first one is the truncated Gaussian distribution with mean
τi, standard deviation τi

2 , and support [0, 2τi], and the second
one is the uniform distribution with support [0, 2τi].

A. On Regret

We first compare the regrets of different algorithms. Unlike
the other MAB algorithms such as [19], a major difficulty
for us to evaluate the regret of BLISS is the NP-hardness of
computing the optimal solution (see Theorem 1). Therefore,
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we only compare the regrets of BLISS, LLR and RANDOM
under a small case where d = 6, m = 3, and the budget
G scales from 10 to 300 with an increment of 10. For
any participant i, the expected sensing value τi is generated
randomly such that the support of Xi,r,∀r ∈ Z+ belongs to
[0, 1]. In such a small case, BLISS-ILP can be solved optimally
using an ILP solver (e.g., CPLEX [23]) in reasonable time, and
we can compute the optimal solution and hence the regrets of
all algorithms. The results are shown in Fig. 1, where each
algorithm’s regret is normalized with respect to the logarithm
of n–the number of time slots during which the algorithm
performs crowdsensing.

0 50 100 150 200 250 300

10
0

10
1

10
2

 G

R
e
g
re

t/
 l
o
g
(n

)

 

 

BLISS

LLR

RANDOM

Fig. 1. Regret Performance of BLISS and other algorithms

Obviously, the regret of BLISS is much lower than those of
LLR and RANDOM (note the logarithmic scale of the y-axis).
Actually, the normalized regrets of both LLR and RANDOM
grow linearly with respect to G, whereas that of BLISS levels
off to a constant. Since n = Θ(G) (as G

pmax
≤ n ≤ G

pmin
),

the results in Fig. 1 also strongly corroborate the theoretical
regret bound proved in Sec. IV-B.

B. On Sensing Revenue

We then study the performance of different algorithms in
terms of the total sensing revenue, which is the actual benefit
the owner gains in practice. The results are shown in Fig. 2
and Fig. 3, where τi is randomly generated from the uniform
distribution U [500, 1500] for any participant i. In Fig. 2,
all participants’ sensing values are sampled from Gaussian
distributions, whereas they are sampled from both Gaussian
and uniform distributions with equal chance in Fig. 3. All the
figures show the statistical summaries (i.e., means and standard
deviations) of 100 simulation results.

We study the impact of budget on the sensing revenue in
Fig. 2(a) and 3(a), where we set d = 100, m = 40 and
scale the budget G from 1000 to 10000 with an increment
of 1000. The sensing revenue of all the algorithms increasing
with the budget can be easily understood: more participants
can be employed for sensing under a larger budget.

In Fig. 2(b) and 3(b), we set G = 10000, m = 40 and scale
d from 100 to 1000 with an increment of 100. In this case, the
revenue of BLISS exhibits an uptrend with the increasing of
d, whereas those of LLR and RANDOM do not change much.
This can be explained by the reason that BLISS intelligently

selects participants based on their sensing values and costs,
so a larger group of participants brings a larger space for
selection and hence a higher revenue. On the contrary, LLR
and RANDOM either myopically or blindly select participants,
which makes their revenue insensitive to the enlargement of
participant groups.

In Fig. 2(c) and 3(c), we study the relation between the
sensing revenue and m by setting G = 10000, d = 200 and
scale m from 10 to 100 with a step of 10. The results show
that LLR and RANDOM give similar revenue under all the
values of m, while the revenue obtained by BLISS drops with
the increment of m. The reasons for this phenomenon is that
a larger m results in a smaller selection space for BLISS.
Actually, the revenue got by all algorithms would be similar
when m is very close to d, because all of them have to select
all the participants at each time slot under the extreme case
where m = d.

We can further make the following observations by com-
paring the three algorithms and contrasting Fig. 2 and 3.
• The sensing revenue obtained by BLISS is significantly

larger than those obtained by LLR and RANDOM under
all the cases, demonstrating the superiority of BLISS
under various crowdsensing conditions.

• BLISS is insensitive to the distributions of the sensing
values: it outperforms other algorithms without affected
by the specific sensing value distributions that the partic-
ipants follows.

VI. RELATED WORK

Recently, there has been a substantial growth on design-
ing crowdsensing systems for various applications, such as
(vehicle) traffic monitoring/prediction [13], localization [11],
parking space allocation/searching [14], and ambient (e.g.,dust
level) surveillance [15]. At the same time, theoretical investi-
gations on managing crowdsensing has also been conducted,
but most of them concentrate on the incentive problems of
crowdsensing [3]–[6]. Although certain data-quality related
problems for crowdsensing have been raised in [8]–[10], [12],
none of them has considered the problem of handling data-
quality uncertainty by intelligently recruiting the participants,
as we have done in this paper.

The study on stochastic MAB problems is pioneered by
Lai et.al. [24] and Auer et.al. [19], who provide algorithms
with regret bounds growing logarithmically with respect to the
number of arm-pullings. Following them, extensive proposals
on MAB problems have been proposed, and an excellent sur-
vey can be found in [25]. However, all these proposals assume
that playing arms is free, and the problem of considering arm-
playing costs for MAB only starts to attract attention very
recently [26].

We note that all the proposals in [24], [19] and [26] adopt
the classical MAB model, i.e., exactly one single arm can be
played at each step. This playing rule is revised by a recent
work [22], where multiple arms with certain combinatorial
structures can be played at the same time. The authors of [22]
indicate that traditional MAB algorithms that play one arm
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Fig. 2. Performance comparisons when the participants’ random sensing values are drawn from homogeneous distributions.
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Fig. 3. Performance comparisons when the participants’ random sensing values are drawn from heterogeneous distributions.

at each step (e.g., [19]) perform poorly in such a scenario
and propose new algorithms with provable regret bounds.
However, since [22] still assumes that playing arms is free
(the same as [24] [19]), the arms can be played perpetually to
acquire sufficient knowledge about them. Consequently, none
of the existing work in [19], [22], [24], [26] fits the BLISS
problem studied in this paper. Actually, to the best of our
knowledge, we are the first to consider a stochastic MAB
model where multiple arms (participants) with costs can be
played simultaneously under a combinatorial structure and the
regret should be minimized subject to a budget limit.

VII. CONCLUSION

We have raised and considered a novel but practical robust
crowdsensing problem, where the quality of sensing data
acquired by the participants are uncertain and a crowdsensing
task owner aims to maximize its expected total sensing revenue
under a limited budget for compensating the sensing costs.
To efficiently tackle such a problem, we have formulated the
Budget LImited robuSt crowdSensing (BLISS) as a high-level
general framework to characterize it, and we have further
proposed an online learning algorithm whose regret bound is
proven to be asymptotically optimal. We also have conducted
extensive simulations and the simulation results have strongly
demonstrated the effectiveness of our approach.
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APPENDIX

Proof of Theorem 1: We prove the NP-hardness of
BLISS-ILP by a reduction from the NP-complete Partition
problem [27]. Given a set of ` positive integers S =
{s1, s2, · · · , s`}, the Partition problem is to decide whether
S can be partitioned into two subsets such that the sum of
the numbers in one subset equals that in another. Suppose
that there are d = 2` participants in BLISS-ILP, and let
m = 1. Let ωi = 1, pi = τi = (2`+1 + 2i)`

∑`
j=1 sj

and p`+i = τ`+i = τi + si for ∀i ∈ J`K. Let the budget
G =

∑`
i=1 si

[
`22`+1 + `

∑`
i=1 2i + 2−1

]
. The decision ver-

sion of this special BLISS-ILP asks if there exists a solution
such that the value of the objective function (2) is no less than
G. It can be verified that this decision problem is equivalent
to the Partition problem on the set S (the detailed verification
is omitted due to page limit). Hence the theorem follows.

Proof of Lemma 1: We first prove i). Note that only
lines 19-20 of Algorithm 2 can make [a′, b′] 6= [a, b]. If line 19
is executed, then there must exist v̂ ∈ V such that∑

t∈H(v̂)
(ωtλ̄t,r − l · pt) =

∑
s∈S

s > 0

If θ∗r ≤ l in this case, then we must have

0 <
∑

t∈H(v̂)

(ωtλ̄t,r − l · pt) ≤
∑

t∈H(v̂)

(ωtλ̄t,r − θ∗r · pt)

which yields f(v̂, λ̄r)/p(v̂) > θ∗r ; a contradiction. Hence θ∗r ∈
[l, b] = [a′, b′]. Similarly, we can prove that the execution of
line 20 also guarantees θ∗r ∈ [a′, b′] = [a, l]. This completes
the proof for i).

Now we prove ii). For simplicity, we assume pi′ ≥ pj′ and
the case of pi′ < pj′ can be proved by symmetry. Due to
line 13 of Algorithm 2, we have i = i′, j = j′, and pi ≥ pj .
When b(pi − pj) ≤ ωiλ̄i,r − ωj λ̄j,r, we get z′ = i according
to line 15. Actually, in this case for any µ ∈ [a′, b′] = [a, b]
we have

(ωiλ̄i,r − µ · pi)− (ωj λ̄j,r − µ · pj) ≥ (b− µ)(pi − pj) ≥ 0

Hence ii) holds. Similarly, we can also prove that ii) is true
for ωiλ̄i,r − ωj λ̄j,r ≤ a(pi − pj) (line 16). If neither line 15
nor line 16 is executed, we must have l ∈ [a, b] according to
line 17. In this case, if line 19 is executed and [a′, b′, z′] =
[l, b, j], we must have

∀µ ∈ [l, b] : (ωiλ̄i,r − µ · pi)− (ωj λ̄j,r − µ · pj)
≤ (ωiλ̄i,r − ωj λ̄j,r)− l(pi − pj) = 0

hence ii) still holds. Similarly, the execution of line 20 allows
ii) to hold for [a′, b′, z′] = [a, l, i].

Proof of Theorem 2: According to Lemma 1, after
completing the parametric sorting process, we have θ∗r ∈ [a, b].
Moreover, for 1 ≤ i < j ≤ d and any µ ∈ [a, b], we have

ωh[i]λ̄h[i],r − µ · ph[i] ≥ ωj λ̄h[j],r − µ · ph[j] (9)

Let g(i, µ) =
∑i
t=1(ωh[t]λ̄h[t],r−µ·ph[t]). Using (9) we know

that, for any µ ∈ [a, b]:

maxv∈V

{∑
i∈H(v)

ωiλ̄i,r − µ
∑

i∈H(v)
pi

}
= max{g(i, µ)|m ≤ i ≤ d} (10)

Clearly, equation (10) equals 0 when µ = θ∗r . On the other
hand, if equation (10) equals 0 and µ < θ∗r , then we have∑
i∈H(v∗(λ̄r))

(ωiλ̄i,r − θ∗rpi) <
∑

i∈H(v∗(λ̄r))

(ωiλ̄i,r − µ · pi) ≤ 0

and hence θ∗r > f(v∗(λ̄r), λ̄r)/p(v
∗(λ̄r)), a contradiction.

Similarly we can prove that µ > θ∗r does not hold if
equation (10) equals 0. In other words, equation (10) is equal
to 0 iff µ = θ∗r . Now the theorem follows from lines 7-10.

Proof of Theorem 3: The dominant running time of
the function Max is spent on line 18, done by a quick sort
in O(d log d) time. Therefore, the loop in lines 3-6 runs in
O(d3 log2 d) time. The time spent on lines 7-10 is O(d2). So
the overall time complexity of Algorithm 2 is O(d3 log2 d).
However, if we replace the bubble sorting framework (used
to simplify our presentation) in lines 3-6 by a quick sort-
ing framework, then Algorithm 2 can be implemented in
O(d2 log2 d) time on average.

Proof of Lemma 2: Suppose that Er ∧ (φr ∈ A) holds.
Let Γmax = max{λ̄i,r − τi|i ∈ H(φr)}. Using Theorem 2
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we get f(φr, λ̄r)/p(φr) ≥ f(v∗(τ ), λ̄r)/p(v
∗(τ )). Besides,

f(φr, λ̄r)

p(φr)
− f(φr, τ )

p(φr)
≤
∑
i∈H(φr) ωi

p(φr)
· Γmax ≤ β · Γmax

So we have

f(v∗(τ ), λ̄r)/p(v
∗(τ ))− f(φr, τ )/p(φr) ≤ β · Γmax (11)

Note that when φr ∈ A, we must have

f(v∗(τ ), τ )/p(v∗(τ ))− f(φr, τ )/p(φr) ≥ γ (12)

Combining (11) and (12) yields

f(v∗(τ ), λ̄r)

p(v∗(τ ))
− f(v∗(τ ), τ )

p(v∗(τ ))
≤ β · Γmax − γ (13)

Case 1: ∀i ∈ JdK : λ̄i,r − τi ≥ 0;
In this case, we must have Γmax ≥ γ

β according to

equation (13). Since ∀i ∈ H(φr) : ki,r−1 > 10β2

γ2 ln r, we
have 2q(r, ki,r−1) < γ

β and hence ∃i ∈ H(φr) : λ̄i,r −
τi > 2q(r, ki,r−1). As λ̄i,r = λi,r−1 + q(r, ki,r−1), we get
∃i ∈ JdK : λi,r−1 − τi > q(r, ki,r−1).

Case 2: ∃i ∈ JdK : λ̄i,r − τi < 0;
In this case, we have ∃i ∈ JdK : λi,r−1−τi < −q(r, ki,r−1).

Synthesizing Case 1 and Case 2, we have

Pr{Er ∧ (φr ∈ A)|N}
≤ Pr

{
∃i ∈ JdK : |λi,r−1 − τi| > q(r, ki,r−1)

∣∣N}
≤

∑d

i=1
Pr
{
|λi,r−1 − τi| > q(r, ki,r−1)

∣∣N} (14)

≤ 2dr−4 (15)

where (14) holds because of the union bound and (15) is due
to (8). So the lemma follows.

Proof of Lemma 3: We define a set of random variables
{δi,r|i ∈ JdK, r ∈ JNK} as follows. For any i ∈ JdK, let
δi,1 = 1. For any 2 ≤ r ≤ N , if φr ∈ A, then we find
j = arg mini∈H(φr) δi,r−1 (breaking ties arbitrarily) and set
δj,r = δj,r−1 + 1. Any δi,r(2 ≤ r ≤ N) not involved in
the aforementioned rule remains the same with δi,r−1. Let
ε = 10β2

γ2 lnN . We have∑N

r=2
Pr{φr ∈ A|N}

≤
∑N

r=2

∑d

i=1
Pr{φr ∈ A ∧ δi,r > δi,r−1|N}

≤ dε+

N∑
r=2

d∑
i=1

Pr{φr ∈ A ∧ δi,r > δi,r−1 > ε|N}

Notice that if δi,r > δi,r−1 > ε, we must have i =
arg minj∈H(φr) δj,r−1, which implies ∀j ∈ H(φr) : δj,r−1 >

ε. Since ε ≥ 10β2

γ2 ln r and ∀i ∈ JdK : ki,r−1 ≥ δi,r−1, we
have ∑d

i=1
Pr{φr ∈ A ∧ δi,r > δi,r−1 > ε|N}

≤ Pr
{
φr ∈ A ∧ (∀j ∈ H(φr) : δj,r−1 > ε)

∣∣N}
≤ Pr

{
φr ∈ A ∧

(
∀j ∈ H(φr) : kj,r−1 >

10β2 ln r

γ2

) ∣∣∣∣N}
= Pr{Er ∧ (φr ∈ A)|N} ≤ 2dr−4

Hence

E
{
|DN |

∣∣N} ≤ 1 +
∑N

r=2
Pr{φr ∈ A|N}

≤ 1 +
10β2

γ2
d lnN +

N∑
r=2

2dr−4

≤ 1 +
10β2

γ2
d lnN +

dπ4

45
(16)

where (16) holds due to the Riemann zeta function∑∞
i=1 i

−4 = π4

90 [28].
Proof of Theorem 4: Let DN = {φr|1 ≤ r ≤ N}−DN .

Since Pr
{∑N

r=1 p(φr) > G− pmax
}

= 1, we have

G− pmax ≤ EN
{
E
{∑N

r=1
p(φr)

∣∣∣∣N}}
≤ EN

{
E
{∑

v∈DN

p(v)

∣∣∣∣N}}
+EN

{
E
{∑

v∈DN

p(v)

∣∣∣∣N}} (17)

Note that for any v ∈ DN , we have f(v,τ )
p(v) = η∗, hence

E
{∑

v∈DN

p(v)
∣∣N} =

1

η∗
E
{∑

v∈DN

f(v, τ )
∣∣N} (18)

On the other hand,

RG(Φ) = EN
{
E
{∑

v∈DN

f(v, τ )
∣∣N}}

+EN
{
E
{∑

v∈DN

f(v, τ )
∣∣N}} (19)

Combining (17),(18) and (19) we get

RG(Φ) ≥ EN
{
E
{∑

v∈DN

(f(v, τ )− η∗p(v))
∣∣N}}

+η∗G− pmaxη∗ (20)

Note that RG(Φ∗) ≤ Gη∗ and

∀v ∈ V : η∗p(v)− f(v, τ ) ≤ ξp(v) (21)

Therefore, using (20), (21) and Lemma 3 we get

RG(Φ∗)−RG(Φ)

≤ pmaxη
∗ + ξ · EN

{
E
{∑

v∈DN

p(v)
∣∣N}}

≤ pmaxη
∗ + ξ · EN

{
pmax · E

{
|DN |

∣∣N}}
≤ pmaxη

∗ + pmaxξ · EN
{

1 +
10β2

γ2
d lnN +

dπ4

45

}
≤ pmax

(
η∗ + ξ +

10β2ξd

γ2
ln

(
G

pmin

)
+
ξdπ4

45

)
(22)

where (22) holds because Pr
{
N ≤ G

pmin

}
= 1. Hence the

theorem follows.
Proof of Theorem 5: The proof is omitted due to the

lack of space.


