ATME: Accurate Traffic Matrix Estimation in both

Public and Private Datacenter Networks
Zhiming Hu, Student Member, IEEE, Yan Qiao and Jun Luo, Member, IEEE

Abstract—Understanding the pattern of end-to-end traffic flows in datacenter networks (DCNs) is essential to many DCN designs and
operations (e.g., traffic engineering and load balancing). However, little research work has been done to obtain traffic information
efficiently and yet accurately. Researchers often assume the availability of traffic tracing tools (e.g., OpenFlow) when their proposals
require traffic information as input, but these tools may have high monitoring overhead and consume significant switch resources even
if they are available in a DCN. Although estimating the traffic matrix (TM) between origin-destination pairs using only basic switch
SNMP counters is a mature practice in IP networks, traffic flows in DCNs show totally different characteristics, while the large number
of redundant routes in a DCN further complicates the situation. To this end, we propose to utilize resource provisioning information in
public cloud datacenters and the service placement information in private datacenters for deducing the correlations among top-of-rack

switches, and to leverage the uneven traffic distribution in DCNs for reducing the number of routes potentially used by a flow. These
allow us to develop ATME as an efficient TM estimation scheme that achieves high accuracy for both public and private DCNs. We
compare our two algorithms with two existing representative methods through both experiments and simulations; the results strongly

confirm the promising performance of our algorithms.

Index Terms—Measurements, Traffic Matrix, Datacenter Networks, Cloud Computing.

1 INTRODUCTION

AS datacenters that house a huge number of inter-
connected servers become increasingly central for
commercial corporations, private enterprises and universi-
ties, both industrial and academic communities have started
to explore how to better design and manage the datacenter
networks (DCNs). The main topics under this theme include,
among others, network architecture design [1]], [12], [13],
traffic engineering [2], scheduling in wireless DCNs [9],
[16], capacity planning [21], and anomaly detection [11].
However, little is known so far about the characteristics
of traffic flows within DCNs. For instance, how do traffic
volumes exchanged between two servers or top-of-rack
(ToR) switches vary with time? Which server communicates
to other servers the most in a DCN? In fact, these real-time
traffic characteristics, which are normally expressed in the
form of traffic matrix (TM for short), serve as critical inputs
to all the above DCN operations.

Existing proposals in need of detailed traffic flow in-
formation collect the flow traces by deploying additional
modules on either switches [2]] or servers [10] in small scale
DCNs. However, both methods require substantial deploy-
ments and high administrative costs, and they are difficult
to be implemented thanks to the heterogeneous nature of
the hardware in DCNs [28]. More specifically, the switch-
based approaches, on one hand, need all the ToRs to support
flow tracing tools such as OpenFlow [26], and consume a

e Zhiming Hu and Jun Luo are with the School of Computer Engineering,
Nanyang Technological University, Singapore. E-mail: {zhu007, jun-
luo}@ntu.edu.sg.

o Yan Qiao is with School of Information and Computer, Anhui Agricultural
University, China. The work was done when she was a post-doctoral
researcher at NTU. E-mail: ginoyan101@gmail.com.

e Preliminary results were presented in Proceedings of the 13th IFIP
Networking, 2014 [19].

substantial number of switch resources to maintain the flow
entriesE] On the other hand, the server-based approaches,
which require instrumenting all the servers or VMs to sup-
port data collection, are unavailable in most datacenters [22]]
and are nearly impossible to be implemented peacefully and
quickly while supporting a lot of cloud services in large
scale DCNs.

It is natural then to ask whether we could borrow from
network tomography, where several well-known techniques
allow traffic matrices (TMs) of IP networks to be inferred
from link level measurements (e.g., SNMP counters) [29],
[34], [35]. As link level measurements are ubiquitously
available in all DCN components, the overhead introduced
by such an approach can be very light. Unfortunately, both
experiments in medium scale DCNs [22] and our simu-
lations (see Sec. [/) demonstrate that existing tomographic
methods perform poorly in DCNs. This attributes to the
irregular behavior of end-to-end flows in DCNs and the
large quantity of redundant routes between each pair of
servers or ToR switches.

There are actually two major barriers to apply tomo-
graphic methods to DCNs. One is the sparsity of TM among
ToR Pairs. This refers to the fact that one ToR switch may
only exchange flows with a few other ToRs, as demonstrated
in [15], [22], [30]. This fact substantially violates the under-
lying assumption of tomographic methods including, for
example, the amount of traffic a node (origin) would send
to another node (destination) is proportional to the traffic
volume received by the destination [34]. The other barrier is
the highly under-determined solution space. In other words,

1. To the best of our knowledge, no existing switch with OpenFlow
support is able to maintain so many entries in its flow table due to the
huge number of flows generated per second in each rack.

a huge number of flow solutions may potentially lead to the
same SNMP byte counts. For a medium size DCN, the num-
ber of end-to-end routes is up to ten thousands [22] while
the number of link constrains is only around hundreds.

As TMs are sparse in general, correctly identifying the
zero entries in them may serve as crucial priors. In both
public and private DCNs, if two VMs/servers are occupied
by different users, which can be derived from resource
provisioning information, we can be rather sure that these
VMs/servers would not communicate with each other in
most cases. Moreover, in private DCNSH we may further
take advantage of having the service placement information.
This allows us to deduce that two VMs/servers belonging
to same user would probably not communicate with each
other if they host different services, because different ser-
vices in DCNs rarely exchange information [8].

In this paper, we aim at conquering the aforementioned
two barriers and making TM estimation feasible for DCNs,
by utilizing the distinctive information or features inher-
ent to these networks. First, we make use of the resource
provisioning information in a public cloud and the service
placement information in a private datacenter (both can
be obtained from the controller node of DCNs) to derive
the correlations among ToR switches. The communication
patterns among ToR pairs inferred by such approaches
are far more accurate than those assumed by conventional
traffic models (e.g., the gravity traffic model [34]). Second,
by analyzing the statistics of link counters, we find that
the utilizations of both core links and aggregation links are
extremely uneven. In other words, there are a considerable
amount of links undergoing very low utilization during
a particular time interval. This observation allows us to
eliminate the links whose utilization is under a certain
(small) threshold and to substantially reduce the number
of redundant routes. Combining the aforementioned two
methods, we propose ATME (Accurate TM Estimation) as
an efficient estimation scheme to accurately infer the traffic
flows among ToR switch pairs without requiring any extra
measurement tools. In summary, we make the following
contributions in our paper.

o We creatively use resource provisioning information
in public datacenters for deriving the prior TM
among ToRs. We group all the VMs into several
clusters with respect to different users, resulting in
the effect that communications only happen within
the same cluster and the potential traffic patterns are
epitomized among all VMs in turn.

e We pioneer in using the service placement informa-
tion in private datacenters to deduce the correlations
of ToR switch pairs, and we also propose a simple
method to evaluate the correlation factor for each
ToR pair. Our traffic model, assuming that ToR pairs
with a high correlation factor may exchange higher
traffic volumes, is far more accurate for DCNs than
conventional models used for IP networks.

e Weinnovate in leveraging the uneven link utilization
in DCNs to remove potentially redundant routes.
Essentially, we may consider links with very low

2. For private DCNs, the owner knows everything about what ser-
vices are deployed and where the services are hosted in the datacenter.

2

utilization as non-existent without affecting much
the accuracy of TM estimation, while they effectively
lessens the redundant routes in DCNs, resulting in
a more determined tomography problem. Moreover,
we also demonstrate that changing a low-utilization
threshold has an effect of trading estimation accuracy
for its complexity.

o We propose ATME as an efficient scheme to infer the
TM for DCN ToRs with high accuracy in both public
and private DCNs. ATME first calculates a prior
assignment of traffic volumes for each ToR pairs us-
ing aggregated traffic of VM pairs (in public DCNs)
or the correlation factors (in private DCNs). Then
it removes lowly utilized links and thus operates
only on a sub-graph of the DCN topology. It finally
adapts a quadratic programming to determine the
TM under the constraints of the tomography model,
the enhanced prior assignments, and the reduced
DCN topology.

e We validate ATME with both experiments on a rel-
atively small scale datacenter and extensive large
scale simulations in ns-3. All the results strongly
demonstrate that our new method outperforms two
representative traffic estimation methods on both
accuracy and running speed.

The rest of the paper is organized as follows. We first
survey the related work in Sec. 2l Then we present system
model and formally describe our problem in Sec.[3} In Sec.[4}
we reveal some traffic characteristics in DCNs and propose
the architecture of our system design motivated by those
traffic characteristics. After that, we present the way we
compute the prior TM among ToRs and the link utilization
aware network tomography in Sec. [5|and Sec.[6} respectively.
We evaluate ATME using both real testbed and different
scales of simulations in Sec. [/} before concluding our paper
in Sec.

2 RELATED WORK

As datacenter networking has recently emerged as a hot
topic for both academia and industry, numerous studies
have been conducted to improve its performance [1], [2],
[5], [11]-[13], [21]. However, little work has been devoted to
the traffic measurement, although the awareness of traffic
flow pattern is a critical input to all above network designs
or operations. Most proposals, when in need of TMs, rely on
either switch-based or server-based methods.

The switch-based methods (e.g., [2]) normally adopt
programmable ToR switches (e.g., OpenFlow [26] switch)
to record flow data, then utilize those flow data for higher
layer applications or measurements [25], [32], [33]. However,
these methods may not be feasible for three reasons. First,
they incur high switch resource consumptions to maintain
the flow entries. For example, if there are 30 servers per
rack, the default lifetime of a flow entry is 60 seconds,
and on average 20 flows are generated per host per sec-
ond [31], then the ToR switch should be able to maintain
30x60x20 = 36, 000 entries, while the commodity switches
with OpenFlow support such as HP ProCurve 5400zl can
only support up to 1.7k OpenFlow entries per linecard [10].
Second, hundreds of controllers are needed to handle the

Core Switches

Aggregation
Switches

Top-of-Rack
Switches

Fig. 1. An example of conventional DCN architecture, suggested by
Cisco |20].

huge number of flow setup requests. In the above example,
the number of control packets can be as many as 20M per
second. And a NOX controller can only process 30,000 pack-
ets per second [31]; thus it needs about 667 controllers to
handle the flow setups. Finally, not all the ToR switches are
programmable in DCNs with legacy equipments, while the
datacenter owners may not be willing to pay for upgrading
the switches.

The server-based methods require to instrument all the
servers to support flow data collection [7], [10]. In an op-
erating datacenter, it is very difficult to instrument all the
servers while supporting a lot of ongoing cloud services.
Also, the heterogeneity of servers may also complicate the
problem: dedicated softwares may need to be prepared for
different servers and their OSs. Moreover, it does cost server
resources to perform flow monitoring. Finally, similar to
the switch-based approaches, the willingness of datacenter
owners to upgrade all servers may yet be another obstacle.

Network tomography has long been an important and
efficient approach to obtain traffic information in IP net-
works. For example, tomogravity [34] adapts the gravity
model to get the prior TM, and SRMF [35] is shown to
perform better than others when the TM is lowly ranked.
One study that has partially motivated our work is [22]: it
investigates the nature of DCN traffic on a single MapRe-
duce datacenter and poses the question that whether TMs
can be inferred from link counters by tomographic methods.
In a way, the answer given in [22] is negative due to the
fundamental differences between DCNs and IP networks,
which invalidate the assumptions made by conventional
tomographic methods [34], [35]; we explained these in Sec.
as two obstacles. We have proposed methods to get the
coarse-grained TM in [27], but we hereby aim to overcome
these obstacles and hence make a fine-grained TM estima-
tion viable in DCN.

3 DEFINITIONS AND PROBLEM FORMULATION

We consider a typical DCN as shown in Fig. [1] It consists
of n ToR switches, aggregation switches, and core switches
connecting to the Internet. Note that our method is not
confined to this commonly used DCN topology; it accom-
modates other more advanced topologies also, e.g., VL2 [12],
fat-tree [1]], as will be shown in our simulations.

We let ;_.; denote the estimated volume of traffic sent
from the i-th ToR to the j-th ToR and zi,,; denote the
estimated volume of traffic exchanged between the two
switches. Given the volatility of DCN traffic, we further

3

introduce x;_.;(t) and w7, ;(t) to represent values of these
two variables at discrete time t, where t € [I,F]EI Note
that although these variables would form the TM for con-
ventional IP networks, we actually need more detailed
information of the DCN traffic pattern: the routing path(s)
taken by each traffic flow. Therefore, we split x;,, ;(t) on
all possible routes between the i-th and j-th ToRs. Let
x(t) = [z1(t),x2(t), -+ ,zp(t)] represents the volumes of
traffic on all possible routes among ToR Pairs, where p is the
total number of the routes. Consequently, the traffic matrix
X = [x(1),x(2),--- ,x(T")], where T is the total number of
time periods, is the one we need to estimate. Our commonly
used notions are listed in Table |1, where we drop time
indices for brevity.

The observations that we utilize to make the estima-
tion are the SNMP counters on each port of the switches.
Basically, we poll the SNMP MIBs for bytes-in and bytes-
out of each port every 5 minutes. The SNMP data obtained
from a port can be interpreted as the load of the link with
that port as one end; it equals to the total volume of the
flows that traverse the corresponding link. In particular,
we denote ToR!" and ToR!" the total “in” and “out”
bytes at the i-th ToR. We represent links in the network
as 1 = {ly,l2, -+ ,l;n}, where m is the number of links in
the network. Let b = {by,bo, -+ ,b;,} denote the band-
width of the links, and y(¢t) = {y1(t),y2(t), - ,ym(t)}
denote the traffic loads of the links at discrete time ¢, and
Y = [y(1),y(2), - ,y(I')] becomes the load matrix. [}

Based on the network tomography, the correlation be-
tween traffic assignment x(¢) and link load assignment y (¢)
can be formulated as

y(t) = Ax(1

where A denotes the routing matrix, with rows correspond-
ing to links and columns indicating routes among ToR
switches. apy = 1 if the ¢-th route traverses the k-th link;
are = 0 otherwise. In this paper, we aim to efficiently
estimate the TM X using the load matrix ¥ derived from
the easy-collected SNMP data.

Although Eqn. (1)) is a typical system of linear equations,
it is impractical to solve it directly. On one hand, the traffic
pattern in DCNs is practically sparse and skewed [30]. As
shown in Fig.[2} the sparse and skew nature of TM in DCNs
can be immediately seen from the figure: only a few ToRs
are hot and most of their traffic goes to a few other ToRs.
On the other hand, as the number of unknown variables is
much more than the number of observations in Eqn. (),
the problem is highly under-determined. For example in
Fig. |1} the network consists of 8 ToR switches, 4 aggregation
switches and 2 core switches. The number of possible routes
in the architecture is more than 100, while the number of
link load observations is only 24. Even worse, the difference
between these two numbers grows exponentially with the
number of switches (i.e., the DCN scale). Consequently,
directly applying tomographic methods to solve Eqn.

tzla"'vra (1)

3. Involving time as another dimension of the TM was proposed
earlier in [29], [35].

4. We only consider intra-DCN traffic in this paper. However, our
methods can easily take care of DCN-Internet traffic by considering the
Internet as a “special rack”.

TABLE 1
Commonly used notations

Notation Description

n The number of ToR switches in the DCN

m The number of links in the DCN

p The number of routes in the DCN

r The number of services running in the DCN

T The number of time periods

A Routing matrix

1 1= [l;]i=1,... ,m, where [; is the i-th link

b b = [bi]i=1,... ,m, Where b; is the bandwidth of [;

y Y = [¥ili=1,... ,m, where y; is the load of [;

Aq The number of servers belonging to the i-th rack

@i The estimated volume of traffic send from
the i-th ToR to the j-th ToR

2 iesj The estimated volume of traffic exchanged between
the i-th and j-th ToRs

x X = [x4]i=1,... p, where z; is the traffic on the r-th
routing path

z; The prior estimation of the traffic on the i-th
routing path.

ToR!™ The total “in” bytes of the i-th ToR
during a certain interval

ToR?™ The total “out” bytes of the i-th ToR

during a certain interval
S S = [sijli=1,.-- ,r;j=1,--- ,n, Where s;; is the number of
servers under the j-th ToR that run the i-th service

corTij The correlation coefficient between the i-th
and j-th ToR.
0 The threshold of link utilization
T The set of tuples for (userld, serverld, rackld)
Tu The set of VMs owned by the u-th user
T The set of VMs in i-th rack.
UM The total “in” bytes of i-th VM
during a certain interval.
vt The total “out” bytes of i-th VM
during a certain interval.
eab The volume of traffic from a-th VM to b-th VM.
u The set of all users.
q The total number of VMs in the datacenter.

would not work, and we need to derive a new method to
handle TM estimation in DCNs.

4 OVERVIEW

As directly applying network tomography to DCNs is in-
feasible for several challenges, we first reveal some obser-
vations about the traffic characteristics in DCNs. Then we
present the system architecture of ATME that applies these
observations to conquer the challenges.

4.1 Traffic Characteristics of DCNs

As mentioned earlier, several proposals including [15], [22],
[30] have indicated that the TM among ToRs is very sparse.
More specifically, for each ToR in a DCN, it only exchanges
data flows with a few other ToRs rather than most of them.
Fig. |2 adopted from [30]], plots the traffic normalized vol-
umes among ToR switches in a DCN with 75 ToRs. In Fig.
we can see that each ToR is exchanging major flows with no
more than 10 out of 74 other ToRs; the remaining ToR pairs
share either very minor flows or nothing. Therefore our first
observation is the following:

1.0

5 |t :]
= 0.8
S| e . e - - -
N |- e e e T ol T o
x~] -~ [
5} 0.6
© e e - mm W
o |- . I - L.
"'6 0.4
8‘ R - . ! g
= 0.2
(@]
'_

" - " - g " = = L 0.0

From TZ)p of Rack Switch

Fig. 2. The TM across ToR switches reported in |30].

1 ; .
0.8 |
|
TELRERE] -
0.6 rET=
% LRk T EEE R I
(@] r- i
041
02p T Private_core
University_core
— -Testbed_aggregation
0 L L T

0.01 0.1 1 10 100
Link Utilization

Fig. 3. Link utilizations of three DCNs, with “private” and “university”
from [6] and “testbed” being our own DCN.

Observation 1: TMs among ToRs are very sparse,
so prior TMs among ToRs should also be sparse
with similar sparse patterns to gain enough accu-
racy for the final estimation.

Although we may infer the skewness in the TM in some
way (more details can be found in the following sections),
the existence of multiple routes between every ToR pair still
persists. Interestingly, literature does suggest that some of
these routing paths can be removed to simplify the DCN
topology by making use of link statistics. According to
Benson et al. [6], the link utilizations in DCNs are rather
low in general. They collect the link counts from 10 DCNs
ranging from private DCNs, university DCNs to Cloud
DCNs and reveal that about 60% of aggregation links and
more than 40% of core links have low utilizations (e.g. in
the level of 0.01%). To give more concrete examples, we
retrieve the data sets publicized along with [6], as well as
the statistics obtained from our DCN, then we draw the
CDF of core/aggregation link utilizations in three DCNs for
one representative interval selected from several hundred 5-
minute intervals in Fig.|3| As shown in the figure, more than
30% of the core links in a private DCN, 60% of core links in
an university DCN and more than 45% of aggregation links
in our testbed DCN have the utilizations less than 0.01%.

Due to the low utilization of certain links, eliminating
them will not affect much the estimation accuracy but will
greatly reduce the number of possible routes between two
racks. For instance, in an conventional DCN shown in Fig.
eliminating a core link will reduce 12.5% of the routes

between any two ToRs, while cutting an aggregation link
halves the outgoing paths from the ToR below it. Therefore,
we may significantly reduce the number of potential routes
between any two ToRs by eliminating the lowly utilized
links. Though this comes at a cost of slightly losing actual
flow counts, the overall estimation accuracy or the running
speed should be improved, thanks to the elimination of the
ambiguity in the actual routing path taken by the major
flows. Another of our observations is:

Observation 2: Eliminating the lowly utilized links
can greatly mitigate the under-determinism of our
tomography problems in DCNs; it thus has the
potential to increase the overall accuracy and the
speed of the TM estimation.

4.2 ATME Architecture

Based on these two observations, we design ATME as a
novel prior-based TM estimation method for DCNs. In a
nutshell, we periodically compute the prior TM among
different ToRs and eliminate lowly utilized links. This al-
lows us to perform network tomography under a more
accurate prior TM and a more determined system (with
fewer routes). To the best of our knowledge, ATME is the
first practical system for accurate TM estimation in both
public and private DCN.

l——_ T |
Get Prior TM among ToRs ATME: Accurate Traffic Matrix Estimation in

both Public and Private DCNs
Resource Provisioning m - —
Enhanced Prior Public DCNs Link Utilization

|
|
|
|
| OR ”| Aware Tomography
|
|
|
|

|

|

|

|

Correlation Enhanced | <2 5 | |
Piror Private DCNs Traffic Engineering, :

|

Resource Provisioning

A
Operational Logs

Datacenter Networks (DCNs)

Fig. 4. The ATME architecture.

As shown in Fig. 4, our system ATME contains two
algorithms in total: ATME-PB for public DCNs and ATME-
PV for private DCNs. Both of them take two main steps to
estimate the TM for DCN ToRs. They have different ways to
compute the prior TM among ToRs, while share the same
link utilization aware tomography process as the second
step. More specifically, first of all, ATME calculates the
prior TM among different ToRs based on SNMP link counts
and some other operational information such as resource
provisioning information in a public DCN or the service
placement information in a private DCN motivated by
Observation 1. We elaborate the first step in Sec. 5 Second,
it eliminates the lowly utilized links to reduce redundant
routes and narrows the searching space of potential TMs
suggested by the load vector y according to Observation 2.
After that, it takes the prior TM among ToRs and network
tomography constrains as input and solve the optimization
problem to estimate the TM. We discuss the second step
later in Sec. [6l

5 GETTING THE PRIOR TM AMONG TORS

An accurate prior TM is a good beginning for our prior-
based network tomography algorithm. In this section, we
introduce two light-weighted methods to get the prior TM
x" with the help of operational information in DCNs. More
specifically, as only resource provisioning information is
available in public DCNs, we use them to deduce the rela-
tionship between communication pairs. Since service place-
ment information provides more information than resource
provisioning information in private DCNs, we adopt service
placement information instead to enhance the estimation
accuracy of x’ in private DCNS.

5.1 Computing the Prior TM among ToRs by Resource
Provisioning Information in Public DCNs

In a public cloud datacenter, we can only know which part
of VMs is occupied by whom, but we have no idea about
how users will use their VMs for privacy issues. However
we can still use the resource provisioning information,
which specify the mappings between VMs and users, to
infer the sparse prior TM among ToRs for the following
reasons. In a multi-tenant datacenter or IaaS platform, the
hardware resources are provisioned to different users, with
users accessing only their own VMs. Thus the VMs belong-
ing to one user may only communicate with each other and
would not communicate with VMs occupied by other users.
The volume of traffic between two ToRs can be computed by
the volume of traffic among VMs (occupied by same uses)
in these two racks. Therefore, the problem of computing the
prior TM among ToRs can be converted to computing the
volume of traffic among VMs belonging to the same user.
To better illustrate the algorithm details, here are some
notations that will be used in the following sections. After
analyzing the resource provisioning information, we can get
a tuple set 7, with each tuple containing the userld, vmId
and rackld, respectively. For instance, for a tuple (¢, j, k) €
T, it means that the i-th user is using the j-th VM located at
the k-th rack. Here one VM can only be located in one rack
at a certain moment. For simplicity, 7,, denotes the set of
VMs owned by the u-th user. All the VMs in the ¢-th rack is
stored in 7. We also use U to denote the set of all the users
in the public DCNs. Because the computation process also
takes the VMs into account, we also need the total in/out
bytes of every VM during a certain interval, which can be
easily collected through the hypervisor (Domain 0) of VMs.
We use vi" and v?“! to denote in/out bytes of the i-th VM.

5.1.1 Building Blocks of ATME-PB

5.1.1.1 Deriving VM Locations: After analyzing the
resource provisioning information, we can easily know the
number of VMs and the locations of VMs owned by each
user. Here for the location, we are only concerned with the
index of the rack that one VM belongs to. For instance, if
user; has two VMs (vin; (rack;), ving (racks)) and users has
one VM (vmy (rack;)) allocated in a datacenter, we should
get the following tuples after deriving the VM locations:
(usery, vmy, racky), (users, vims, rack;) and (user;, vmsg,
racks). In this example, 77 is (vm; (rack;), vinz (racks)),
which denotes the set of VMs owned by user;, and T
consists of (vi; (rack;), viny (rack;)), which specifies the
set of VMSs located at rack;.

51.1.2 Computing the TM among VMs in each
cluster: There are roughly two steps in computing the TM
among VMs. The first step is to group the VMs in T by user
and to get 7, for all the users. Then in the second step, we
need to compute the TM among VMs belonging to each user,
given the total volume of traffic sent and received by each
VM recorded by SNMP link counts during each interval.
As we assume each VM will only communicate with other
VMs that belong to the same user, a wise choice may be the
gravity model [23], which is well suited to all-to-all traffic
pattern. Therefore the volume of traffic from the a-th VM to
the b-th VM e, can be computed by the gravity model as
follows: 4

v
ke, Vi
We conduct the same process for each group of VMs
grouped by user and obtain the TM among VMs.

5.1.1.3 Computing Rack to Rack Prior: After getting
the TM among VMs for each user, we then compute the rack
to rack prior TM based on the locations of VMs. As we have
computed the volumes of traffic among VMs and we also
know the racks where VMs are, we can just sum up those
volumes of traffic among VMs in different racks to get the
estimated prior TM among ToRs. For example, if vin; and
viny belong to rack; and racks respectively, then the volume
of traffic from rack; to racks will add the volume of traffic
from vmy to vims.

__ ..out
€ab = VU,

@

5.1.2 The Algorithm Details

We present the details of computing resource provisioning
enhanced prior TM among ToRs with ¢/ and in/out bytes
of each VM as the input in Algorithm [I} where ¢ is the
total number of VMs in the DCN. It returns the prior traffic
vector among ToRs x’. More specifically, in line [1} we get
T from resource provisioning information as additional
information. From line [2] to line [} we compute the prior
volume of traffic among different VMs belonging to the
same user. For each user u© € U, the volume of traffic
from the a-th VM to the b-th VM is calculated by Eqn. (),
according to the gravity traffic model. We then present our
new ways to compute the prior volume of traffic between
the i-th rack and the j-th rack in lines [/H9] Here, line
calculates the volume of traffic from the i-th ToR to the j-
th ToR z’;_.; by summing up the volumes of traffic from
a-th VM to b-th VM e, that originating at the i-th ToR
and ending at the j-th ToR. Line [§| calculates z’;_.; in the
similar way. 2’;, j inline |§| denotes the total volumes across
the i-th ToR and the j-th ToR that equals to the summation
of 2/;_.; and 2’;_.;. As the algorithm runs for every time
instance t, we drop the time indices. The complexity of the
algorithm, which is dominated by the part that computes
eab, is O(JU|T;2). T, is normally small, so the complexity is
almost linear to the number of users. In other words, the
approximate complexity is O(|U|).

5.1.3 A Working Example

Here we give an example about how to estimate the TM
among ToRs. As shown in Fig. [5 there are three users in
total. The VMs owned by those users are listed below:

o usery: vy (racky), vimg(racks), viniy 12(racke),

Algorithm 1: Compute Resource Provisioning En-
hanced Prior TM among ToRs

Input: U, {v2a=1,---, ¢}, {vi"lb=1,---, ¢}
Output: x’

1 Get 7 by analyzing the resource provisioning
information.

2 forall the u € U/ do

3 forall the a, b € T, do

in

_ t Uy

4 Cap = VU % —b——
ab a YceTy, V&

fori=1tondo
forj =7+ 1tondo
2'isj ¢ YaeTs 2abeTs Cad
' jsi = DaeTi 2opeTi Cab
| Tioj @iy + 25

© o NN S »

10 return x’

Internet

Fig. 5. Each color represent one user. Here there are totally three users.
v3, v5, v7, v8 are not used by any user in this case.

o usery: vmy(racks), vimg(racks), vimis 14(racks),
. users: ving (rackl), Vil (rack5), Vm15716(rack8).

Those information can be gathered in the process of resource
provisioning for the cloud users. Here for simplicity, the
volume of traffic that each vin sends out and receives is
10000 bytes and 1000 bytes for userl and user3 in a certain
interval, respectively. Then if we want to know the volume
of traffic from ToR; to ToRj5, we should know the volume
of traffic from v1 to v9 and the volume of traffic from v2
to v10, respectively. The volume of traffic from v1 to v9 is

computed by the gravity model among v1, v9, v11 and v12.
1000

Therefore e; 9 = 1000 * OO0 1990+ 1000+ T000 = 250. We can
also get ey 10 = 100 * 1010041007100 — 25. Thus based

on our algorithm, the estimated prior volume of traffic from
ToR; to ToRs is 275. Similarly, we can also compute the
prior volume of traffic from ToR5 to ToR;.

5.2 Computing the Prior TM among ToRs by Service
Placement Information in Private DCNs

In ATME-PB, we assume that only VMs/servers belonging
to the same user may exchange information. However,
it may not be the case if a user deploys different and
irrelevant services on two VMs/servers. As we can also
take advantage of service placement information in private
DCN, it is natural for us to utilize the service placement

information to derive more fine-grained relationship among
communication pairs in private DCNs.

As stated in Observation 1, the TM among ToRs in
DCN:s is very sparse. According to the literature, as well as
our experience with our own datacenter, the sparse nature
of TM in DCNs may originate from the correlation between
traffic and service. In other words, racks running the same
services have higher chances to exchange traffic flows, and
the volume of the flows may be inferred by the number
of instances of the shared services. Bodik et al. [8] has
analyzed a medium scale DCN and claimed that only 2% of
distinct service pairs communicates with each other. More-
over, several proposals such as [4], [14] allocate almost all
virtual machines of the same service under one aggregation
switch to prevent traffic from going through oversubscribed
network elements. Consequently, as each service may only
be allocated to a few racks and the racks hosting the same
services have a higher chance to communicate with each
other, it naturally leads to sparse TMs among DCN ToRs.
To better illustrate this phenomenon in our DCN, we show
the placement of services in 5 racks using the percentage
of servers occupied by individual services in each rack
in Fig. and we depict the traffic volumes exchanged
among these 5 racks in Fig. [6(b)] Clearly, the racks that
host more common services tend to exchange greater vol-
ume of traffic (e.g., for racks 3 and 5, more than 50% of
the traffic flows are generated by the “Hadoop” service),
whereas those do not share any common services rarely
communicate (e.g., racks 1 and 3). Therefore, we propose
to compute the prior TM among ToRs by service placement
information in private DCNs.

In ATME-PV, we use service placement information
recorded by controllers of a private datacenter as the extra
information. Suppose there are r services running in a
DCN, we can then get the service placement matrix S =
[8ijli=1,-- r;j=1,... n With rows corresponding to services
and columns representing the ToR switches. In particular,
s;j = k means that there are k£ servers under the j-th ToR
running the i-th service in the DCN. We also denote)\; the
number of servers belonging to the j-th rack.

5.2.1 Building Blocks of ATME-PV

The first step stems from Observation 1: we design a novel
way to evaluate the correlation coefficient between two
ToRs, leveraging on the easily obtained service placement
information. We use corr;; to quantify the correlation be-
tween the i-th and the j-th ToRs, and we calculate it as
follows:

T

corrij = Z[(s;” X ski) /(A X A 4,5=1,---,n, (3)
k=1

where the concerning quantities are derived from the service
placement information.

In the second step, we derive a new way to compute the
prior TM among ToRs based on the correlation coefficient
among ToRs and the total in/out bytes of the ToRs during
a certain interval. More specifically, we first compute z;,;

VIC

=

© o
o =]

(o2}
O

20

Percent of Servers per Service
S

0 Rack 1 Rack 2 Rack 3 Rack 4 Rack 5

Datacenter Racks

[IlDatabase B M ultimedia |_JHadoop] Web Il Other s

(a) Percentages of servers per service in our DCN. Only
services in 5 racks are shown.

1
Rack5|

0.8
Rack4|

0.6
Rack3

0.4
Rack?2

0.2
Rack]|

Rackl Rack2 Rack3 Rack4 Rack5

(b) The traffic volume from one rack (row) to another
(column) with the service placements in (a).

Fig. 6. The correlations between traffic and service in our datacenter.

as the volume of traffic between ToR; and ToR; by the

following procedure based on the correlation coefficients.
COTT 5

S op_q corrik

il

t .
i, = ToR™ x ,7=1,---.,m,

!

Tiej = i>j:1>"'an'

Due to symmetry, z;—.; can also be computed through
T 0R§” in similar ways.

As our TM estimation takes the time dimension into
account (to cope with the volatile DCN traffics), one may
wonder whether the correlation coefficient [corr;;] has to
be computed for each discrete time ¢. In fact, as it often
takes a substantial amount of time for servers to accommo-
date new services, the service placements will not change
frequently [8]. Therefore, once [corr;;] is computed, they
can be used for a certain period of time. Recomputing these
coefficients are needed only when a new service is deployed
or an existing service quits. Even under those circumstances,
we only need to re-compute the coefficients among the ToRs
that are affected by service changes.

5.2.2 The Algorithm Details

We show the pseudocode of calculating correlation en-
hanced prior TM in Algorithm [2| This algorithm takes
service placement matrix S and the ToR SNMP counts as
the main inputs, and it also returns the prior traffic vector
among ToRs x’. After computing the correlation coefficients
in line [I} we compute the volume of traffic exchanged
between the i-th and j-th ToR using ToR?", TOR;-“” and the
computed correlation coefficients in lines @6} The complex-
ity of the algorithm is O(n?), where n is the number of racks

in the datacenter. As n is generally small, the computation
times are acceptable as we will see in the evaluations.

Algorithm 2: Compute Correlation Enhanced Prior TM
among ToRs
Input: S, { ToR{"|i=1,--- ,n}
Output: x’
1 [corri;| <= Correlation(S)
2 fori=1ton do
3 forj =i+ 1tondo
4 x'i ;= ToRI™ % corrij /(31 <pe, COTTik)
5
6

/ out

' ji = ToRJ"™ x corrij /(321 <<y COTTE))
!/ !/ /

T iesj <—$i4j+xj4i

7 return x’

5.2.3 A Working Example

Fig. [/] presents an example to illustrate how ATME-PV
works. The three colors represent three services deployed
in the datacenter as follows:

o servicep: servera(racky), serverys(rackg),

o services: servery(racks), serverg(racks),
serveryz 14(racky),

o services: serverg(racky), serveryg(racks).

The correlation coefficients among the ToR pairs are shown
in Table 2| More specifically, ToR; is related to ToR3 and

TABLE 2
Correlation Coefficients of the Working Example

[ToRPairs [1:2-5 [1:6 [1:78 | 2.3 [2:4-6 [2.7 [28
[Corr.Coef. | 0 [025 | 0 025 0 [05] 0

[37 [45
[05 [025

ToR7 by a coefficient of 0.25 and 0.5, respectively. So if
ToRj totally sends out 10000 bytes during the 5 minutes
interval, the traffic sent to ToR3 and ToR; should be 10000 *
0.25/(0.254-0.5) = 3334 and 10000%0.5/(0.25+0.5) = 6667,
respectively. Similarly, we can compute the traffic volume
that ToR7 sends to ToR5. Then we add the traffic of two
directions together to get the traffic volumes between ToR
and ToR7. A similar situation applies to ToRy and ToRs.
The estimated prior TM is then fed to the final estimation,
as discussed later in Sec. [l

S9 S10 S11 S12 S13S14 S15 S16

Fig. 7. Four different line styles represent four flows and three different
colors represent three services.

8

6 LINK UTILIZATION AWARE NETWORK TOMOG-
RAPHY

In this section, we first propose to eliminate the links with
low utilizations to turn the network tomography problem
in DCNs into a more determined one. We then compute the
prior volumes of traffic on the routes in DCNs and feed it to
the network tomography constrained optimization problem.

6.1 Eliminating Lowly Utilized Links and Computing
Prior Vector

This step is motivated by Observation 2, which states that
there are plenty of lowly utilized links in DCNs. As we
all know, there are many redundant routes between any
two ToR switches in DCNs. Thus in the perspective of net-
work tomography, the number of available measurements
(link counts) is much smaller than the number of variables
(routes). To this end, we eliminate the lowly utilized links to
turn the original network tomography problem into a more
determined one. More specifically, we collect the SNMP link
counts and compute the link utilization for each link. If the
link utilization of a link is below a certain threshold 8, we
consider the flow volumes of the routes that pass the link
as zero, which effectively removes this link from the DCN
topology. As a result, the number of variables in the equa-
tion system Eqn. (1) can be substantially reduced, resulting
in a more determined tomography problem. On one hand,
this threshold sets non-zero link counts to zero, possibly
resulting in estimation errors. On the other hand, it removes
redundant routes and mitigates the under-determinism of
the tomography problem, potentially improving the esti-
mation accuracy or running speed of algorithms. In our
experiments, we shall try different values of the threshold
to see the trade-off between these two sides.

Fig. 8 is the result of reducing lowly utilized links
through thresholding, hence we can estimate the traffic
volumes on the remaining routes from one ToR to another.
In order to compute the prior vector X (we omit time slice
t, so the TM at time slot t is a vector), we estimate the
traffic volumes on each route by dividing the total number
of bytes between two ToRs, which are also stored in x’
and can be computed by Algorithm [I] or Algorithm
equally on every path connecting them. The reason for this
equal share is the widely used ECMP [17] in DCNs; it by
default selects routing paths between two switches with
equal probability on each. The computed prior vector X will
give us a good start in solving a quadratic programming
problem to determine the final estimation.

6.2 Combining Prior TM with Network Tomography
constraints

Here we provide more details on the computation involved
in getting the final estimation, which is also a QuadProgram.
Basically, we want to obtain x that is as close as possible to
the prior X but also satisfies the tomographic constrains.
This problem can be formulated as follows:

[x = x[| + | Ax -y 4)

where ||x — X|| is the distance between the final solution and
the prior, ||Ax — y|| is the deviation from the tomographic
constrains, and || - || is Lz-norm of a vector.

Minimize

Internet

Fig. 8. After reducing the lowly utilized links in Fig.

Algorithm 3: Link Utilization-aware Network Tomog-
raphy
Input: A, b, y, 0, x’
Output: X
1 fork =1tomdo
2 if yi/br, < 0 then
3 forall the r ¢ P;; do
4 L if r contains l;, then
5

L Pij < Pij —{r}; Adjust A, xand y

6 fort: =1ton do
7 forj =7+ 1tondo
8 | forall the r € P;j do Z, + xj.,;/|Pil ;

9 X < QuadProgram(4,X,y)
10 return X

To tackle this problem, we first compute the deviation
of prior values y = y — AX, then we solve the following
constrained least square problem in Eqn.(5) to obtain the X
as the adjustments to X for offsetting the deviation y.

Minimize |AX — ¥|| 5)
s.t. /x> —X

We use a tunable parameter 8, 0 < # < 1 to make the
tradeoff between the similarity to the prior solution and
the precise fit to the link loads. The constraint is meant to
guarantee a non-negative final estimation X. Finally, X is
obtained by making a tradeoff between the prior and the
tomographic constraint as X = X + SX. According to our
experience, we take 8 = 0.8 to give a slightly more bias
towards the prior.

6.3 The Algorithm Details

We summarize the link utilization aware network tomogra-
phy in Algorithm [3] It takes routing matrix A, the vector
of link capacities b, link counts vector y, threshold of link
utilization ¢ and the prior TM among ToRs x’ as the main
inputs. Its output is the vector of final estimations of the
traffic volume on each path among ToRs X. In particular, we
first check each of the links to see whether their utilizations
are below @ (lines [2). If so, we remove the paths which
contain such links from the path set P;; (includes all paths
between the i-th ToR and the j-th ToR), and adjust the
matrix A, vector x and y by removing the corresponding

9

rows and components (line [5). Here, the utilization of link
k is computed by yi/bg, where y; is the load on link
k, and by is the link’s bandwidth. Then for each of the
ToR pairs (4,7), and the loads on the remaining paths in
Pi; are calculated by averaging the total traffic across the
two ToRs o (line . Finally, the algorithm applies a
quadratic programming to refine X to obtain x subject to
the constraints posed by y and A (line E])

Obviously, The dominant running time of the algorithm
is spent on QuadProgram(A4,X,y), whose main compo-
nent Eqn. @ is equivalent to a non-negative least squares
(NNLS) problem. The complexity of solving this NNLS
is O(m? + p?), but can be reduced to O(plogm) though
parallel computing in a multi-core system [24].

7 EVALUATION

In this section, we evaluate ATME-PB and ATME-PV with
both hardware testbed and extensive simulations.

7.1 Experiment Settings

We implement ATME-PB and ATME-PV together with two
representative TM inference algorithms:

Tomogravity [34] is known as a classical TM esti-
mation algorithm that performs well in IP networks.
In contrast to ATME, it assumes traffic flows in the
networks follow the gravity traffic model, and traffic
exchanged by two ends is proportional to the total
traffic on the two ends.

Sparsity Regularized Matrix Factorization (SRMF for
short) [35] is a state-of-art traffic estimation algo-
rithm. It leverages the spatio-temporal structure of
traffic flows, and utilizes the compressive sensing
method to infer TM by rank minimization.

These algorithms serve as benchmarks to evaluate ATME-
PB and ATME-PV under different network settings.

We quantify the performance of the three algorithms us-
ing four metrics: Relative Error (RE), Root Mean Squared Error
(RMSE), Root Mean Squared Relative Error (RMSRE) and the
computing time. RE is defined for individual elements as:

RE; = |@; — 24|/, (6)

where z; denotes the true TM element and Z; is the corre-
sponding estimated value. RMSE and RMSRE are metrics
to evaluate the overall estimation errors:

RMSE = | — 3 (2 — 2,)7, @)

T =1

RMSRE(r) = | — Z (x_x)Z ®)

nr 1=1,x;>T

Similar to [34], we use 7 to pick up the relative large
traffic flows since larger flows are more important for engi-
neering DCNs. n, is the number of elements in the ground
truth x and n, is the number of elements z; > 7.

7.2 Testbed Evaluation of ATME-PB

7.2.1 Testbed Setup

We use a testbed with 10 switches and about 300 servers as
shown in Fig.[9]for our experiments, and the architecture for
this testbed is a conventional tree similar to the one in Fig.
The testbed hosts a variety of services and part of which has
been shown in Fig. We gather the resource provisioning
information and SNMP link counts for all switches. We also
record the flows exchanged among servers by using Linux
iptable in each server (not a scalable approach) to form the
ground truth. The data are all collected every 5 minutes. The
capacities of links are all 1Gbps.

(a) The outside view of our DCN. (b) The inside view of our DCN.

Fig. 9. Hardware testbed with 10 racks and more than 300 servers.

7.2.2 Testbed Results

Fig. depicts the relative errors of the three algorithms.
As we can see in this figure, our algorithm can accurately
infer about 80% of TM elements, while the two other com-
petitive algorithms can only infer less than 60% of them. We
can also clearly see that about 99% of percent of inference
results of our algorithm has the relative error less than 0.5.
An intuitive explanation for this is that our algorithm can
clearly separate the traffic into many groups by user in
the multi-tenant cloud datacenter. Consequently, it is closer
to the real traffic patterns and is more suitable for the
assumptions of gravity model after clustering. Therefore,
our algorithm can get a more accurate prior TM and final
estimated TM than the state-of-art algorithms.

We then present the RMSRE of the algorithms in
Fig. Clearly we can see that our algorithm has the
lowest RMSRE as the flow size increases. When the flow
size is less than 4000Mbit (500MBytes), the RMSRE is stable
with the flow size, and it starts to decrease after the flow
size is greater than 500MBytes, which demonstrates that
our algorithm performs even better when handling elephant
flows in the network.

7.3 Testbed Evaluation of ATME-PV
7.3.1 Testbed Setup

We use the same testbed as stated in Sec. and we also
use the Linux iptable in each server to collect the real TM as
the ground truth. Besides all the SNMP link counts in the
servers and switches, we also gather the service placement
information in the controller nodes of the datacenter. All the
data are collected every 5 minutes.

10

7.3.2 Testbed Results

Fig. plots the CDF of REs of the three algorithms.
Clearly, ATME-PV performs significantly better than the
other two: it can accurately estimate the volumes of more
than 78% of traffic flows. As the TM of our DCN may not be
of low rank, SRMF performs similarly to tomogravity.

We then study these algorithms with respect to the
RMSRE:s in Fig. It is natural to see that the RMSREs
of all three algorithms are non-increasing with 7, because
estimation algorithms are all subject to noise for the light
traffic flows, but they normally performs better for heavy
traffic flows. However, ATME-PV still achieves the lowest
RMSRE for all values of 7 among the three. As our exper-
iments with real DCN traffic are confined by the scale of
our testbed, we conduct extensive simulations with larger
DCNs in ns-3.

7.4 Simulation Evaluation of ATME-PB

7.4.1 Simulation Setup

We adopt both the conventional datacenter architecture [20]
and fat-tree architecture [1] in our simulations. For the
conventional tree, there are 32 ToR switches, 16 aggregation
switches, and 3 core switches; for fat-tree, we use k£ = 8
fat-tree with the same number of ToR switches as the con-
ventional tree, but with 32 aggregation switches, 16 core
switches. The link capacities are all set to be 1Gbps. We
could not conduct simulations on BCube [13] because it does
not arrange servers into racks. It would be an interesting
problem to study how to extend our proposal for estimating
the TM for servers in BCube.

We take the simulated datacenter as a multi-tenant en-
vironments, so there are many users in the datacenter and
all the users are sending or receiving traffic in their own
VM/servers independently. In our simulations, we record
the resource provisioning information, which are used to
enhance the network tomography results.

We install both on-off and bulk-send applications in 7s-3.
The packet size is set to be 1400 bytes (varying the packet
size has little effect on the performance of our scheme in our
experiments), and the flow sizes are randomly generated
but still follows the characteristics of real DCNs [6]], [11f],
[22]. For instance, 10% of the flows contributes to about 90%
of the total traffic in a DCN [2]], [12]. We use TCP flows in
our simulations [3]], and apply the widely used ECMP [17]
as the routing protocol.

We record the total number of bytes and packets that
enter and leave every port of each switch in the network
every 5 minutes. We also record the total bytes and packets
of flows on each route in the corresponding time periods as
the ground truth. For every setting we run simulations for
10 times.

To evaluate the computing time, we measure the time
period starting from when we input the topologies and link
counts to the algorithm until the time when all TM elements
are returned. All the three algorithms are implemented by
Matlab (R2012b) on 6-core Intel Xeon CPU @3.20GHz, with
16GB of memory and the Windows 7 64-bit OS.

7.4.2 Simulation Results

We set § to be 0.001. In Fig. [12(a)} we plot the CDF of rela-
tive errors of the three algorithms under conventional tree

— ATME-PB
|7 =-SRMF

- Tomogravitz

0 0.5 1 1.5 2
Relative Error

(a) The CDF of RE.

11

0.7

0.6 — - - - T
I R
z 0.5
‘é’ — ATME-PB
~ 04

---SRMF
o3 == Tomogravity |1
0.2 A A A A
0 2000 4000 6000 8000 10000
T (Mb

(b) The RMSRE under different 7

Fig. 10. The CDF of RE and RMSRE of ATME-PB and two baselines on testbed.

1 T
0.8
o 0.6
a
© 04}
— ATME-PV
0.2} “|=--SRMF
0 ; S e Tomogravity
0 0.5 1 1.5 2

Relative Error
(a) The CDF of RE.

: : : — ATME-PV
0.6f pre pres e ---SRMF
YT SR ST S S— - = Tomogravity
% 0.4}
go.
& 0.3
0.2
o1 ; ; ; ; ; ;
0 2000 4000 6000 8000 10000 12000

T (Mb)
(b) The RMSRE under different ~

Fig. 11. The CDF of RE and RMSRE of ATME-PV and two baselines on testbed.

1 0.9, 0000
aman — ATME_PB \\\\\\\
0.8 0.8 . - - -SRMF
B Rt s Tomogravity 9000
E 0.6 % 0.7, e ———— =
&) s S 8000
0.4 , Z 0.6 2
— ATME-PB
0.2 “|---srRMF 0Sfp o 7000
. - - ‘== Tomogravity| 0.4 I—ATME—PBi
0 0.5 1 15 2 0 50 100 150 200 600008 0.10 0.12 0.14
Relative Error T (Mb) 0

(a) The CDF of RE

(b) The RMSRE under different 7

(c) The RMSE under different 6.

Fig. 12. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of ATME-PB and two baselines for estimating TM under tree architecture.

architecture. Our algorithm has the lowest relative errors
when compared with the other two state-of-art algorithms.
More specifically, about 80% of the relative errors are less
than 0.5. While for the other two algorithms, about 80%
of the relative errors is bigger than 0.5. We draw RMSREs
of the three algorithms under different threshold of flow
size in Fig[I2(b)] In this figure, all the three algorithms
show declining trends with the increasing size of flows.
However, our algorithm still performs the best among the
three algorithms. The reason for these two figures is that no
matter how the traffic changes in datacenter, our algorithm
can accurately identify the communication groups by the
easily collected resource provisioning information. When
tomogravity fails to get a good prior TM, a bad final esti-

mation would be obtained. For SRME, it may get the TMs,
which are much more sparse than the ground truth due
to the rank minimization approach. We also present how
the RMSEs change with the threshold 6 of link utilization.
As we can see that, the curve is stable when 6 is smaller
than 0.10 and becomes fluctuant afterwards. As removing
the lowly utilized links can decrease the running time of
the algorithm, it is a good trade off between accuracy and
running speed if we set the 6 properly (less than 0.10 in this
case).

We also set 6 to be 0.001 in the fat-tree case. We draw the
CDF of relative errors of the three algorithms under fat-tree
architecture in Fig. Here our algorithm still has the
best performance among the three algorithms. About 90% of

12

0.7—— x10
— ATME-PB N — ATME-PB 3. —
|---srmF o . - --SRMF [=ATME-PH]
-~ Tomogravity] o I Tomogravity| 3.49
] SrRAETIIIEY .
S 05 Z 3.48f
& %
04 ¥ 347
1 15 2 0 100 200 300 400 46 0.1 02 0.3 0.4
Relative Error T (Mb) 0

(a) The CDF of RE

(b) The RMSRE under different 7

(c) The RMSE under different 6.

Fig. 13. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of ATME-PB and two baselines for estimating TM under fat-tree architecture.

TABLE 3
The Computing Time (seconds) of ATME-PB, Tomogravity and SRMF
under Different Scales of DCNs (Fat-tree)

TABLE 4
The Computing Time (seconds) of ATME-PV, Tomogravity and SRMF
under Different Scales of DCNs (Tree)

Computing Time Computing Time
Switches | Links | Routes ATME-PB Tomo- SRMF Switches | Links | Routes ATME-PV Tomo- SRMF
0=0 | =01 | gravity 0 =0.001 | 0 =0.01 | gravity
80 256 7360 4.90 3.60 4.28 251.12 51 112 5472 0.54 0.51 2.54 1168.22
125 500 28625 48.08 40.10 45.32 - 102 320 46272 8.12 7.81 73.59 -

the relative errors are smaller than 0.5. The corresponding
percentage for the other two algorithms is about 40%. In
Fig. we can see that the RMSRE of our algorithm
decreases from 0.4 and approximates 0 with the increase of
the size of flows. Finally, we also depict how RMSE changes
with 6 in Fig. In this figure, the RMSE is stable when
6 is lower than 0.1 and increases slowly with 6 after that,
which also demonstrates that removing some lowly utilized
links will not decrease the accuracy of our algorithm. While
we will see that it can decrease the running time instead if
we set properly, as shown in Tab.

Tab. [3| lists the computing time of the three algorithms
under fat-tree architecture. Obviously, ATME-PB also per-
forms faster than both tomogravity and SRMF with proper
threshold settings. SRMF often cannot deliver a result for
several hours when the topology is big. If we slightly
increase ¢, we may further reduce the computing time, as
shown in Tab. |3} In other words, our proposal, ATME-PB,
can run even faster without sacrificing accuracy by setting
the threshold 6 properly as we can see in the table and

Fig.

7.5 Simulation Evaluations of ATME-PV
7.5.1 Simulation Setup

The simulation setup is almost the same with the setup
in Sec. [Z4 we simulate datacenters with conventional tree
and fat-tree architecture by ns-3. The differences are that we
randomly deploy services in the DCN and record the service
placement information.

7.5.2 Simulation Results

Fig. compares the CDF of REs of the three algorithms
under conventional tree architecture and we set § = 0.001.
We can clearly see that ATME-PV has much smaller relative
errors. The advantage of ATME-PV over the other two
algorithms stems from the fact that ATME-PV can clearly
find out the ToR pairs that do not communicate with each

other. Tomogravity has the worst performance because it
gives each ToR pair a communication traffic whenever one
of them has “out” traffic and the other has “in” traffic, thus
introducing non-existing positive TM entries. SRMF obtains
the TM by rank minimization, so it performs better than
tomogravity when the traffic in DCNs does lead to low
ranked TM. The worse performance of SRMF (compared
with ATME-PV) may be its over-fitting of the sparsity in
eigenvalues, according to [22].

We then study the RMSREs of the three algorithms
under different 7 in Fig. Again, ATME-PV exhibits the
lowest RMSRE and a (expectable) reducing trend with the
increase of 7, while the other two remain almost constant
with 7. In Fig. we then study how the RMSE changes
with the threshold 6 of link utilizations. As we can see in this
figure, when we gradually increase the threshold, RMSE
does slightly decrease until the sweet point § = 0.12. While
the improvement on accuracy may be minor, the computing
time can be substantially reduced as we will show later.

Fig. [15] evaluates the same metrics as Fig. [14] but under
fat-tree architecture, which has even more redundant routes.
We set & = 0.001. Since TM in fat-tree DCNs is far more
sparse, the errors are evaluated only against the non-zero
elements in TM. In general, ATME-PV retains its superiority
over others in both RE and RMSRE. The effect of # becomes
more interesting in Fig. (compared with Fig. [14(c));
it clearly shows a “valley” in the curve and a sweet point
around ¢ = 0.03. This is indeed the trade-off effect of 6
mentioned in Sec. it trades the estimation accuracy of
light flows for that of heavy flows.

Tab. [4] lists the computing time of the three algorithms
under conventional tree architecture. Obviously, ATME-PV
performs much faster than both tomogravity and SRMF.
While both ATME-PV and tomogravity have their comput-
ing time grow quadratically with the scale of the DCNs,
SRMF often cannot deliver a result within a reasonable time
scale. In fact, if we slightly increase 6, we may further reduce
the computing time, as shown in Tab. [} In summary, our

13

=
208
<
I~ 0.6]
— ATME-PV — ATME-PV
---SRMF 0.41- - - SRMF
‘== Tomogravity] 02—
1 5 2 "0 500 1000
Relative Error T

(a) The CDF of RE

13X 10
— ATME-P

S T S 12
2

= 1.1
~

1

1500 2000 2500 0% 0.06 0.12 0.18 0.24 0.3

(b) The RMSRE under different 7

0
(c) The RMSE under different 6.

Fig. 14. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of ATME-PV and two baselines for estimating TM under tree architecture.

2, 4
— ATME-PV 26810
---SRMF
‘== Tomogravity
w15 2.4
& =)
< <
2 2,
— ATME-PV Qﬂm_-\.‘-_ LR IT FCTE IR I Y RE IF JE NCVE NF R I NCNE RE) o
---SRMF
== Tomogravity| 0 H H . : . i I—ATME—P;I
0 0.5 1 15 2 0 200 400 600 800 £ 0.03 0.06 0.09 0.12 0.15
Relative Error T (Mb) 0

(a) The CDF of RE

(b) The RMSRE under different 7

(c) The RMSE under different 6.

Fig. 15. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of ATME-PV and two baselines for estimating TM under fat-tree architecture.

algorithm has both a higher accuracy and faster running
speed compared to the two state-of-art algorithms.

8 CONCLUSION

To meet the increasing demands for detailed traffic charac-
teristics in DCNs, we make the first step towards estimating
the TM among ToRs in both public and private DCNs,
relying only on the easily accessible SNMP counters and the
datacenter operational information. We pioneer in applying
tomographic methods to DCNs by overcoming the barriers
of solving the ill-posed linear system in DCNs for TM
estimation. We first obtain two major observations on the
rich statistics of traffic data in DCNs. The first observation
reveals that the TMs among ToRs of DCNs are extremely
sparse. The other observation demonstrates that eliminating
part of lowly utilized links can potentially increase both
overall accuracy and the efficiency of TM estimation. Based
on these two observations, we develop a new TM estimation
system ATME, which is applicable to most prevailing DCN
architectures without any additional infrastructure sup-
ports. We validate ATME with both hardware testbed and
simulations, and the results show that ATME outperforms
the other two well-known TM estimation methods on both
accuracy and efficiency. Particularly, ATME can accurately
estimate more than 80% traffic flows in most cases with far
less computing time.

Although both several recent proposals [8], [30] and our
testbed experiments revealed the facts that different services
rarely communicate with each other and communications
could only happen within the same user’s VMs. Some spe-
cial cases that violates these assumptions actually exist. In
our future work, such special cases that fail to follow the two
assumptions will be considered. We will try to figure out the

correlations among different services and the VMs belong-
ing to different users using learning methods. Besides, we
are also interested in combining network tomography with
direct measurements offered by software defined network
(SDN) to derive a hybrid network monitoring scheme. The
Initial results have been reported in [18].

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In Proc. of ACM SIGCOMM,
pages 63-74, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In Proc. of USENIX NSDI, 2010.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz,]. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center Tcp
(DCTCP). In Proc. of ACM SIGCOMM, pages 63-74, 2010.

[4] H. Ballani, P. Costa, T. Karagiannis, and A. I. Rowstron. Towards
Predictable Datacenter Networks. In Proc. of ACM SIGCOMM,
pages 242-253, 2011.

[5] D. Belabed, S. Secci, G. Pujolle, and D. Medhi. On Traffic Fairness
in Data Center Fabrics. In Proc. of IEEE CloudNet, 2014.

[6] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Charac-
teristics of Data Centers in the Wild. In Proc. of ACM IMC, pages
267-280, 2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine
Grained Traffic Engineering for Data Centers. In Proc. of ACM
CoNEXT, pages 8:1-8:12, 2011.

[8] P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica. Surviving Failures in Bandwidth-Constrained Datacen-
ters. In Proc. of ACM SIGCOMM, pages 431442, 2012.

[9] Y. Cui, H. Wang, X. Cheng, D. Li, and A. Yla-Jaaski. Dynamic
Scheduling for Wireless Data Center Networks. Parallel and Dis-
tributed Systems IEEE Transactions on, 24(12):2365-2374, 2013.

[10] A.R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead
Datacenter Traffic Management Using End-host-based Elephant
Detection. In Proc. of IEEE INFOCOM, pages 1629-1637, 2011.

[11] P. Gill, N. Jain, and N. Nagappan. Understanding Network Fail-
ures in Data Centers: Measurement, Analysis, and Implications. In
Proc. of ACM SIGCOMM, pages 350-361, 2011.

(12]

(13]

[14]

[15]
[16]
[17]
(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Greenberg,]. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A.Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible
Data Center Network. In Proc. of ACM SIGCOMM, pages 51-62,
2009.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. In Proc. of ACM SIG-
COMM, pages 63-74, 2009.

C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. Secondnet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees. In Proc. of ACM Co-
NEXT, pages 15:1-15:12. ACM, 2010.

D. Halperin, S. Kandula,]. Padhye, P. Bahl, and D. Wetherall.
Augmenting Data Center Networks with Multi-Gigabit Wireless
Links. In Proc. of ACM SIGCOMM, pages 38-49, 2011.

K. Han, Z. Hu, and J. Luo. RUSH: RoUting and Scheduling for
Hybrid Data Center Networks. In Proc. of IEEE INFOCOM, 2015.
C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm, 2000.
Z. Hu and]. Luo. Cracking Network Monitoring in DCNs with
SDN. In Proc. of IEEE INFOCOM, 2015.

Z.Hu, Y. Qiao, and J. Luo. CREATE: CoRrelation Enhanced trAffic
maTrix Estimation in Data Center Networks. In Proc. of IFIP
Networing, pages 1-9, 2014.

C. D. C. Infrastructure. 2.5 Design Guide, 2007.

J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. Joint VM
Placement and Routing for Data Center Traffic Engineering. In
Proc. of IEEE INFOCOM, pages 2876-2880, 2012.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken.
The Nature of Data Center Traffic: Measurements & Analysis. In
Proc. of ACM IMC, pages 202208, 2009.

J. P. Kowalski and B. Warfield. Modelling Traffic Demand between
Nodes in a Telecommunications Network. In Proc. of ATNAC95.
Citeseer, 1995.

Y. Luo and R. Duraiswami. Efficient Paraller Non-Negative Least
Square on Multi-core Architectures. SIAM Journal on Scientific
Computing, 33(5):2848-2863, 2011.

M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma. Intelligent
SDN based traffic (de)Aggregation and Measurement Paradigm
(iSTAMP). In Proc. of IEEE INFOCOM, pages 934 — 942, 2014.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM CCR, 38(2):69—
74, 2008.

Y. Qiao, Z. Hu, and J. Luo. Efficient Traffic Matrix Estimation for
Data Center Networks. In Proc. of IFIP Networing, pages 1-9, 2013.
C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In Proc. of ACM SoCC, pages 7:1-7:13, 2012.

A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian,
A. Nucci, M. Crovella, and C. Diot. Traffic Matrices: Balancing
Measurements, Inference and Modeling. In Proc. of ACM SIGMET-
RICS, pages 362-373, 2005.

K. Srikanth, P. Jitendra, and B. Paramvir. Flyways To De-Congest
Data Center Networks. In Proc. of ACM HotNets, 2009.

A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying
NOX to the Datacenter. In Proc. of HotNets, 2009.

N. L. M. Van Adrichem, C. Doerr, and F. A. Kuipers. OpenNet-
Mon: Network monitoring in OpenFlow Software-Defined Net-
works. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1-8, 2014.

M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with OpenSketch. In Proc. of USENIX NSDI, pages 29 — 42, 2013.
Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
Accurate Computation of Large-scale IP Traffic Matrices from Link
Loads. In Proc. of ACM SIGMETRICS, pages 206-217, 2003.

Y. Zhang, M. Roughan, W. Willinger, and L. Qiu. Spatio-temporal
Compressive Sensing and Internet Traffic Matrices. In Proc. of ACM
SIGCOMM, pages 267-278, 2009.

14

Zhiming Hu received his BS degree in computer
science from Zhejiang University, China, in 2011.
He is currently a PhD candidate at the School of
Computer Engineering, Nanyang Technological
University, Singapore. His research interests are
big data, datacenter networking and cloud com-
puting.

Yan Qiao is a lecturer in School of Informa-
tion and Computer, Anhui Agriculture University.
She worked as a post-doctoral fellow in School
of Computer Engineering, Nanyang Technolog-
ical University. She received her Ph.D. degree
of computer science from Beijing University of
Posts and Telecommunications in 2012. She
now focuses on fault diagnosis and network
monitoring in IP networks and datacenter net-
works.

Jun Luo received his BS and MS degrees in
Electrical Engineering from Tsinghua University,
China, and the PhD degree in Computer Science
from EPFL (Swiss Federal Institute of Technol-
ogy in Lausanne), Lausanne, Switzerland. From
2006 to 2008, he has worked as a post-doctoral
research fellow in the Department of Electrical
and Computer Engineering, University of Water-
loo, Waterloo, Canada. In 2008, he joined the
faculty of the School of Computer Engineering,
Nanyang Technological University in Singapore,
where he is currently an associate professor. His research interests
include wireless networking, mobile and pervasive computing, applied
operations research, as well as network security. More information can
be found at http://www3.ntu.edu.sg/home/junluo.

	Introduction
	Related Work
	Definitions and Problem Formulation
	Overview
	Traffic Characteristics of DCNs
	ATME Architecture

	Getting the Prior TM among ToRs
	Computing the Prior TM among ToRs by Resource Provisioning Information in Public DCNs
	Building Blocks of ATME-PB
	The Algorithm Details
	A Working Example

	Computing the Prior TM among ToRs by Service Placement Information in Private DCNs
	Building Blocks of ATME-PV
	The Algorithm Details
	A Working Example

	Link Utilization Aware Network Tomography
	Eliminating Lowly Utilized Links and Computing Prior Vector
	Combining Prior TM with Network Tomography constraints
	The Algorithm Details

	Evaluation
	Experiment Settings
	Testbed Evaluation of ATME-PB
	Testbed Setup
	Testbed Results

	Testbed Evaluation of ATME-PV
	Testbed Setup
	Testbed Results

	Simulation Evaluation of ATME-PB
	Simulation Setup
	Simulation Results

	Simulation Evaluations of ATME-PV
	Simulation Setup
	Simulation Results

	Conclusion
	References
	Biographies
	Zhiming Hu
	Yan Qiao
	Jun Luo

