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We report the ultraviolet light emission from ultrathin indium oxide �In2O3� nanowires fabricated by
the vapor-liquid-solid method. The high crystalline quality of the samples is confirmed by using
x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Strong
ultraviolet light emission is consistently observed in the temperature dependent photoluminescence
measurements carried out between 10 and 300 K. Emissions related to free excitons and bound
exciton complexes, donor-acceptor pair transition and its relevant longitudinal optical phonon
replicas are identified and their temperature-dependent evolution is discussed in details. © 2010
American Institute of Physics. �doi:10.1063/1.3284654�

In recent years, there has been intensive research on low-
dimensional nanomaterials because of their unique physical
properties and potential applications in nanoelectronics and
nanophotonics.1–5 Indium oxide �In2O3� is a very important
wide band gap �3.50–3.75 eV� semiconductor,6,7 which has
been widely used as a transparent conductor in window heat-
ers, solar cells, and flat-panel displays.8 In2O3 has the bixby-
ite structure, being body-centered cubic with space group
I213,9 and a=1.011 nm. Over the past few years, there have
been an increasing number of reports on the synthesis of
In2O3 nanostructures via various routes such as vapor-solid
method, laser ablation process, vapor-liquid-solid �VLS�
technique, and so on.10–12 However, most of the effort has
focused on optimizing the material fabrication and exploring
the electrical properties, while the optical properties of In2O3

nanostructures, especially their light emission characteristics,
have been rarely investigated.

Although bulk In2O3 does not emit light at room tem-
perature, there have been recent reports on the blue-green
photoluminescence �PL� in thin films, nanoparticles, and
nanowires.13–18 These reports suggested that the broad light
emission peaked in the range of 400–650 nm can be attrib-
uted to the high-density oxygen vacancies, thus referred as
deep-level or trap-state emissions.15,16,18 However, large dis-
crepancies exist in the literatures regarding the emission
characteristics because they originate from the incomplete
oxidation during the materials synthesis, which may varies in
different experiments. Up till now ultraviolet �UV� emission
in In2O3 has been sparsely documented.19,20 In a very recent
report, a UV emission peaked at 378 nm ��3.28 eV� with a
narrow FWHM of 13 nm was observed in vertical In2O3

nanowires grown on a-plane sapphire substrates.20 Although
these reports are encouraging, the lack of systematic study
on the low temperature PL properties of In2O3 prevents a
clear understanding on the emission mechanisms and the ex-
citonic characteristics.

In this letter, high crystalline quality In2O3 nanowires
were fabricated via a VLS route and their optical properties
have been investigated in details by temperature dependent
and excitation-power dependent PL experiments. Rich fine
structures in the UV region of the PL spectra have been
observed, and systematic analysis allow us the assign these
fine structures to the recombination of free exciton �FX�,
bound exciton complexes �BECs�, and donor-acceptor pairs
�DAP�.

In2O3 nanowire samples were prepared on silicon sub-
strates �with �4 nm Au catalyst� via a vapor transport
growth route similar to our previous reports on the growth of
high quality oxide nanowires.21,22 In2O3/graphite powder
with a 2:3 weight ratio was used as the source. Growth took
place at 900° C with argon containing 0.05% oxygen as the
carrying gas. The structure and morphology of the samples
were determined by x-ray powder diffraction �XRD�, scan-
ning electron microscopy �SEM�, and transmission electron
microscopy �TEM�. For PL measurements, the 325 nm line
from a He-Cd laser was used as the excitation source. The
PL signal was dispersed by a 750 mm monochromator and
collected by a photo multiplier tube in a backscattering ge-
ometry using the standard lock-in technique.

The XRD pattern of the as-grown In2O3 nanowires was
shown in Fig. 1�a�. All of the diffraction peaks can be in-
dexed as the bixbyite In2O3 structure �a=1.011 nm�, which
is consistent with the JCPDS file No. 89–4595. This indi-
cates that the nanowires are composed of pure In2O3. Figures
1�b� and 1�c� are the low magnification and the cross-
sectional SEM images of the In2O3 nanowires, respectively.
The nanowires cover the surface of the substrate uniformly.
They are 1 �m in length and 20–40 nm in diameter, and the
Au catalyst particles on the top of nanowires can be clearly
seen. Figure 1�d� shows the high resolution TEM image of a
single In2O3 nanowire. The lattice spacing of 0.255 nm is
corresponding to the �400� planes of In2O3, indicating that
the nanowires grow along �100�. Low resolution TEM image
and energy dispersive x-ray spectroscopy �EDS� element
mappings of In, O, and Au were taken on an individual nano-
wire �Figs. 1�e� and 1�h��. It can be seen that the nanowire is
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composed of indium and oxygen with a gold nanoparticle on
the top.

Figure 2�a� shows the PL spectrum of In2O3 nanowires
in an extended wavelength range taken at 10 K. Besides the
prominent UV emission, a broad emission band is located at
�2.450 eV. This deep level emission band is believed to
originate from the crystal defects, e.g., oxygen vacancies in
the nanowires.18 Its much lower intensity compared to the
UV emission indicates the very high crystalline quality of the
sample. It is interesting to note that this defect-related emis-
sion band has a fine structure with a fixed energy separation
of 72 meV, which is close to the phonon energy of In2O3.23

Although there has been no report on this feature in In2O3 so
far, an analogous feature has been observed in ZnO,24 which
indicates a very strong electron-phonon interaction in the
material.

Let’s focus our discussion on the UV emission depicted
in Fig. 2�b�, which is the dominant feature of the spectrum.
The UV emission consists of six distinct peaks at 3.369,
3.359, 3.354, 3.350, 3.305, and 3.232 eV, which were labeled
as peaks A-F, respectively. Such fine features in the UV re-
gime have not been reported so far. We assign the peak A to
FX, and the peaks B, C, and D to BECs, which we will
discuss below in details. The peaks E and F are related to the
recombination of DAP and its first-order longitudinal optical
�LO�-phonon replica, respectively. This assignment was evi-
denced by the excitation-power dependent PL measurement
which is shown in the inset of Fig. 2�b�. The energy of DAP
luminescence can be expressed as: Eg−ED−EA+e2 /4��r,
where Eg is the band gap energy, ED and EA are the donor
and acceptor binding energy, e is the elementary electric
charge, � is the dielectric constant, and r is the donor-
acceptor pair distance. With increased excitation power, the
density of photon excited DAP becomes higher, leading to
the decrease in the DAP distance. Thus, the DAP peak ex-
hibits a blueshift when the laser power density is increased,
or smaller r, which in turn increases the DAP energy. This
was confirmed in our data—the DAP band exhibits a 3 meV
blueshift as the excitation power increases from 3 to 12 mW.
The energy spacing between the peak F and the DAP emis-
sion �peak E� is 73 meV, which is close to the phonon energy
involved in the deep level emission as shown in Fig. 2�a�,
and therefore peak F can be attributed to the first-order LO
phonon replica of DAP �DAP-1LO�. In the Franck–Condon
model, the coupling strength between the radiative transition
and the LO-phonon can be characterized by the Huang–Rhys
factor S.25,26 The relative intensity of the nth phonon replica
In is related to the zero-phonon peak I0 by the S factor as
In= I0�Sne−s /n!�, where n is a natural number. From the mea-
sured spectrum, the S factor associated with DAP is esti-
mated to be 0.25.

Figure 3�a� shows the temperature dependent PL spectra
taken on the sample between 10 and 300 K. The intensity of
peaks B, C, and D, which are labeled by dots, decreases very
quickly with increasing temperature and cannot be resolved
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FIG. 1. �Color online� �a� XRD pattern of In2O3 nanowires. The powder
diffraction data �JCPDS Card No. 89–4595� is also shown. �b� Typical SEM
image of the as-synthesized nanowires. �c� Cross-sectional SEM image of
In2O3 nanowires. �d� High-resolution TEM image of a single In2O3 nano-
wire. ��e�–�h�� Low resolution TEM image and EDS element mappings of
In, O, and Au.
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FIG. 2. �Color online� �a� PL spectrum of In2O3 nanowires measured at
10 K. �b� High resolution PL spectrum of the sample in the UV regime. The
inset is the excitation-power dependent PL spectra of In2O3 nanowires at
10 K.
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FIG. 3. �Color online� �a� Temperature dependent PL spectra from 10 to
300 K. �b� The temperature dependence of the peak positions. The solid line
is the fitting curve of the experimental data according to the Varshni equa-
tion. The dashed lines are guide to the eyes.
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at temperatures higher than 100 K. At the same time, peak A
which appears as the higher energy shoulder at 3.369 eV
becomes more and more pronounced at higher temperatures.
This characteristic is very similar to the emission transforma-
tion from bound exciton, or BECs, to FX. As the temperature
increases, the bound excitons have enough thermal energy to
dissociate and become FX, which is a well-known phenom-
enon for wide band gap semiconductors like ZnO.27 How-
ever, is has not been reported for In2O3 so far presumably
due to the lack of low temperature PL studies on high quality
samples. The excitation power dependent PL data also sup-
ports assigning peaks B, C, and D as BECs because their
peak energy exhibits a slight red shifts which is probably due
to the heating effect under the high excited power, as ob-
served in other semiconductors.28 At temperatures higher
than 100 K, the PL spectra of In2O3 nanowires are mainly
composed of FX and DAP emissions. At room temperature,
the PL peak is dominated by the DAP emission at 3.265 eV,
which is accompanied by the FX emission appearing as a
higher energy shoulder around 3.290 eV. This result corrobo-
rates the data of 3.280 eV �378 nm� previously reported on
In2O3 nanowires.20

The temperature dependence of the peak energies of the
peaks is shown in Fig. 3�b�. The dashed lines through DAP
and its LO phonon replica are guide to the eyes. It clearly
shows that the energy difference between DAP and its LO-
phonon replica is well defined to be 73 meV in the whole
range of measurement temperature. This further confirms the
previous assignment. The FX peak energy decreases mono-
tonically with increasing temperature, which can be well de-
scribed by the empirical Varshni equation,29,30

E�T� = E�0� −
�T2

T + �
, �1�

where E�0� is the excitonic band gap at 0 K, and � and � are
the corresponding thermal coefficients. The open squares in
Fig. 3�b� are the experimental data of FX peak energy and
the red line is the fitting curve obtained by using the Varsh-
ni’s equation. It is clearly shown that the curve fits our ex-
perimental data very well. The value of E�0� obtained from
the fitting is 3.370 eV, with �=4.7�10−4 eV /K and �
=205.5 K. The value of the band gap in In2O3 and its direct/
indirect nature are still under intensive discussion. The re-
ported data in the previous literatures range from 3.50 to
3.75 eV.6,7 E�0� of 3.370 eV should be taken as the lower
bound of the band gap due to the finite exciton binding en-
ergy of In2O3. Our results call for more in-depth investiga-
tions on the physical properties of high-quality In2O3
samples to determine the associated band structure.

In summary, high quality In2O3 nanowires have been
fabricated by using the VLS growth method, and character-
ized by XRD, SEM, and TEM. Through high resolution PL
measurements, we have observed rich fine structures in the
UV regime. The recombination of FX, bound exciton com-
plexes, DAP, and their LO replicas have been identified by
detailed analysis of the temperature- and excitation intensity-

dependent PL spectra. Such high quality In2O3 nanowires
may help to shed light on its electronic band structures and
find application in photonic and light emitting devices.
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