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1. INTRODUCTION. In his “A Note of Welcome” in the first issue of the
Journal of Graph Theory [5], Paul Turdn wrote of his experience in a labor camp
during the Second World War.

There were some kilns where the bricks were made and some open storage yards where the
bricks were stored. All the kilns were connected by rail with all the storage yards. The bricks
were carried on small wheeled trucks to the storage yards. ...the work was not difficult; the
trouble was only at the crossings. The trucks generally jumped the rails there, and the bricks fell
out of them; in short this caused a lot of trouble and loss of time ... the idea occurred to me that
this loss of time could have been minimized if the number of crossings of the rails had been
minimized. But what is the minimum number of crossings?...This problem has become a
notoriously difficult unsolved problem; the present state of it and the ensuing general problems
one can see in the interesting paper of Guy [2].

We can abstract from Turan’s story the following general question. Given m
“kilns” to be joined by “tracks to n “storage areas”,what is the minimum number
of crossings of tracks possible? If we call the kilns and storage areas “vertices” and
the tracks “edges”, we are asking what is the minimum number of pairwise
crossings of edges in a planar drawing of the complete bipartite graph K, ,,, which
has two sets of vertices, one with m vertices and the other with », such that each
vertex in one set is joined to every vertex in the other set. See Figure 1 for two
drawings of K, , in the plane.

Figure 1

In general, for a graph G, the minimum number of pairwise crossings of edges
among all drawings of G in the plane is the crossing number of G and is denoted
by cr(G). Thus, cr(K; ,) = 2. We remark that Figure 1 shows that cr(K; ) < 2. It
is an interesting exercise for the reader to prove that cr(K;,) = 2. At present,
there is no known efficient algorithm to calculate the crossing number of an
arbitrary graph. In fact, the problem of calculating the crossing number of a graph
is NP-complete [1], so it is unlikely that such an efficient algorithm exists. Yet one
might hope that the crossing number of a graph with special structure can be
calculated.

The complete graph on n vertices is the graph K, having n vertices such that
every pair is joined by an edge. Figure 2 shows a drawing of K, with only 3
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Figure 2

crossings, which turns out to be optimal. Since the complete graphs have a very
special structure indeed, we can hope to calculate their crossing numbers.

There are conjectures for the crossing numbers of both the complete and
complete bipartite graphs [3]:

o =35 =

R B

However, these remain open. Some partial results are known: the former has been
verified for n < 10, while the latter holds for m < 6 and all # [4] and for m = 7
and n < 10 [7].

The best known drawings of K,, , and K, achieve these values. The description
of such a drawing for K,, , is quite simple. Divide both the m-set and the n-set
into two as-equal-as-possible parts. Place the m along the y-axis, with half above
the x-axis and half below. Similarly, place the n along the x-axis, with half to the
left of the y-axis and half to the right. Now join the m to the n using straight lines.
The second drawing in Figure 1 is such a drawing of K ,.

Turan’s story suggests a variant of the crossing number problem for complete
bipartite graphs: find the smallest number of crossings in a cylindrical drawing of
K, ,,thatis a drawing of K, , on a cylinder such that each class of n vertices is on
one of the two boundaries of the cylinder.

One way to get a drawing of K,, in the plane is start with a cylindrical drawing
of K, , and then use the top and bottom of the cylinder to complete the drawing
of K,,. See Figure 3 for the case n = 4.

and

Obviously, this drawing of K,, has 2 Z more crossings than the cylindrical

this type of drawing of K,, is described in [6]. With an
the conjectured crossing number

drawing of K, ,;
appropriate choice of cylindrical drawing of K
of K,, is obtained this way.

One might hope that some better cylindrical drawing of K, , exists and,
therefore, a better drawing of K,, would result. In Section 2, we associate a
quadratic form with such drawings. Minimizing the quadratic form, we find the
best cylindrical drawing of K, ,, and so get the best drawing of K,, of this type.

n,n’

n,n’
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Figure 3

In Section 3 we shall discuss asymptotic values of the crossing numbers of K,
and K, ,. It is easy to see (and will be discussed in Section 3) that the sequences

2
cr(K,)/ (2) and cr(K, )/ (;) are monotonically increasing and each term is less

than 1. Therefore, the limits

cr(K, cr(K, ,
lim —(———) and lim —(—72
n—ow n n-—o n
(4) 2)

both exist and are at most 1. The conjectures on the values of the crossing numbers
cr(K,) and cr(K, ) imply that the limits are 3/8 and 1/4, respectively. We prove
in Section 3 that the latter implies the former.

2. CYLINDRICAL DRAWINGS OF K, ,. We want to determine a lower bound
on the number of crossings in any cylindrical drawing of K,, ,. We need to discover
just what forces a crossing in the drawing. Consider, first, a single vertex v of K, .
All the edges incident with v are drawn across the cylinder to vertices on the other
boundary. No two of these edges cross in an optimal drawing; see Figure 4.

Figure 4

Now consider two vertices v and w on the same boundary. There are several
possibilities for how the edges incident with these vertices are drawn, but we can
see (Figure 5) that no two edges cross more than once in an optimal drawing. So
how can two edges be forced to cross?
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becomes

Figure 5

A little thought yields a simple observation.

For each vertex i on the inside boundary, there is a vertex x; € {1,2,...,n} on the outside
boundary such that the simple closed curve consisting of the edges from i to each of x; and
x; + 1 (the arithmetic being taken modulo n), together with the little segment of the outer
boundary of the cylinder joining x; and x; + 1 bounds a disc containing the inner boundary of
the cylinder.

As examples, in Figure 6, x; = 5 and x, = 7.

Figure 6

Now it is a simple matter to get a lower bound on the number of crossings given
that the values of x;, x,,..., x, are known. We need only deal with these in pairs,
ie., it suffices to calculate the number of crossings among edges incident with the
vertices i and j on the inside boundary. If we pick two vertices » and s between
x; + 1 and x;, say, then, among the four edges with ends i or j and r or s, there
must be at least one crossing (Figure 7a). Similarly, if » and s are both between
X; + 1 and x;. But if one is between x; + 1 and x; and the other is between x;+1
and x;, then there need not be a crossing (Figure 7b).

Assuming that 1 <x; <x; < n, it follows that there are at least
+ n+x; - xj)

2
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Figure 7

crossings in the drawing among edges incident with i and j. Therefore, a lower
bound for the total number of crossings in the drawing is

|x; — x;] n—|x; — x|
y ( [N AN
1<i<j<n 2 2

Using the relation (;) =y(y — 1)/2, we see that the lower bound is the

function
n)’ 2
fer ) = (3) 4 T b=xP) = T sexl)
1<i<j<n 1<i<jsn
Ordering the variables so 1 <x; <x, < - <x, <n, we see that the lower

bound is given by the quadratic function
2
2
P = (2] +( 2 =) =n[ T y-m)
1<i<j<n 1<i<j<n

Clearly F has a minimum, which we shall determine.
The function* F is differentiable and

oF ' . n )

- = 2§.(xi—xj) +n(n—2i+1) =2n.x,-—2.21xj+n(n -2i+1).
i j#i j=

Setting § = XF_,x; and VF = 0, we find that
28 —n(n —2i+1)

Y 2n

It is an easy calculation to see that x;,, — x; = 1 and, therefore, setting x; =i
yields a solution to these equations. Moreover, every other solution is obtained
from this one by adding the same quantity ¢ to each x;.

This means that there is an integral minimum for F, namely x; =i, i =
1,2,...,n. Thus, a lower bound for the number of crossings in a cylindrical
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drawing of K, , is

F(1,2,....n)= X (J_’) + ¥ (”_’ +’)
1<i<j<n 2 1<i<j<n 2
n n-1
Y (];)(n K+ ¥ (’2‘)1«
k=1 k=1
n—1
k n
=L (8] =3
o1 \2 3
This is attainable; see Figure 3 for the case n = 4. The drawing of K,, obtained
from this optimal cylindrical drawing of K, , has the same number of crossings as
the conjectured crossing number of K,,.

3. ASYMPTOTICS. The following classical counting argument estimates the
crossing number of K, ,; in terms of the crossing number of K,. Deleting in turn
each vertex from a drawing of K, ,, yields n + 1 different drawings of K,. Each
of these must have at least ¢r(K,) crossings, so we estimate the crossing number of
K,., by (n + Decr(K)).

How many times do we count a given crossing? A given crossing from K,
occurs in one of the drawings of K, if the four vertices that are the ends of the
edges involved in the crossing are all in the K, we pick. Given that we must have
these four vertices, there are n — 4 vertices left to be picked from the remaining
n — 3 vertices of the K, . Thus, the four vertices (and so the particular crossing)
are in n — 3 of the K,. Thus, each crossing is counted n — 3 times and we have
the estimate

n+1
cr(Kn+1) = n—73 cr(Kn)‘

This estimate is equivalent to
cr(Kn+l) cr(Kn)

"3t ()

Therefore, the sequence cr(K,)/ Z is nondecreasing. Since it is bounded above

by 1, it has a limit, say LC (for Limit of Complete graphs).
2
An entirely analogous argument shows that cr(K, ,)/ (;) has a limit LB (for

Limit of complete Bipartite graphs). The drawings of K, , such as the second
drawing in Figure 1'show that LB < 1/4.

It is easy to see that the conjectures as to the crossing numbers for K, and
K, , imply that LC =3/8 and LB =1/4. We now show there is a relation

between these limits.
Theorem. LC > (3/2)LB. If LB = 1/4, then LC = 3/8.

Proof: Let K,, be drawn with cr(K,,) crossings. Within this drawing, there are
many different drawings of K, ,. We need to estimate how many drawings of K, ,
there are and how many of these contain a given crossing.

We shall count ordered K, ,’s, i.., those where we first pick one set of n and

then the other set of n. There are, evidently, (Zn”) such graphs.
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Now consider a given crossing involving the edges ab and cd of K,,. One of a
and b must be in the first set of n chosen, and similarly for ¢ and d. Thus, there
are 4 ways to distribute a, b, c, d into the first set of n chosen, if this crossing is to
occur in the resulting K, ,. There are 2n — 4 vertices left, of which n — 2 are to

be put into the first set of n. Therefore, there are 4(2n" __24) different K, ,’s that

)
_\n;
2n — 4
4( n—z)
2n
4

cr(KZn) 3 cr(Kn,n)
> —
2n 2 (n)?
4 2
Now taking the limit as » tends to infinity, we have the relation

LC > (3/2)LB.

It follows that if LB = 1/4, then LC > 3 /8. Since we have previously noted
LC < 3/8, it follows that if LB = 1/4, then LC = 3/8. |

contain the given crossing, and hence

cr(Ky,) = cr(K, ).

Divide both sides of this inequality by ( ) and do some easy arithmetic to get

This theorem shows that the conjecture for cr(K, ,) implies the conjecture for
cr(K,,), at least asymptotically. Does the converse hold?

Probably this cannot be derived by counting. The reason why the proof of the
theorem works (as the proof shows!) is that any (almost) optimal drawing of K,
contains a drawing of K, , that is economical in the sense that it has (almost) as
few crossings as the conjectured value for cr(K,, ,).

For the converse, however, we do not know of a natural way to extend (almost)
optimal drawings of K, , to economical drawings of K,,. The optimal cylindrical
drawings of K, , have many more than cr(K, ,) crossings.
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