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Abstract

A general central limit theorem of the linear spectral statistics for sample covariance ma-
trices has been established. Such a theorem is then used to obtain the asymptotic channel
capacity of a multiple input multiple output system.
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1 Introduction

Consider a MIMO (multiple input multiple output) system with n antennas at the transmitter
and p antennas at the receiver. Such a channel can be modeled as

y = Zx+ n,

where y ∈ Cp denotes the received signal vector, x ∈ Cn denotes the transmitted signal vector,
Z is a complex channel matrix of size p×n consisting of independent and identically distributed
(i.i.d.) {Zij} and n ∈ Cp represents circularly-symmetric complex Gaussian noise with E(nn∗) =
I. Here n∗ denotes the transpose conjugate of n. The signal power is constrained by Ex∗x ≤ ρ.
We also assume that the realization of Z is known at the receiver but not at the transmitter
and that Z,x and n are independent.

It is of interest to evaluate the capacity of the above system. According to (Telatar (1999))
the MIMO instantaneous capacity is given by

C(Q) = log det(I+ ZQZ∗), (1.1)

where Q is the covariance matrix of x with trQ ≤ ρ and the MIMO channel capacity is

C = sup
Q≥0,trQ≤ρ

E[C(Q)]. (1.2)

Note that when the entries of Z, {Zij}, are i.i.d complex Gaussian with mean zero and variance
one, the distribution of Z is the same as that of ZU where U is any constant unitary matrix U
of size n× n. As in Section 4.1 of Telatar (1999) one then has

C = E log det(I+
ρ

n
ZZ∗),
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which implies that the optimizing Q is ρ
nI. Therefore, as in Kamath and Hughes (2005) and

Hachem et al. (2008), we consider the random variable

CZ = log det(I+
ρ

n
ZZ∗), (1.3)

referred to as Shannon’s mutual information.
Another quantity associated with the capacity is the outage rate. Given an outage probability

0 < q < 1, the outage rate is defined by

Cq = sup{R ≥ 0 : P
(
CZ < R

)
≤ q}, (1.4)

the largest rate of reliable communication for a fixed outage probability.
As pointed out in Kamath and Hughes (2005) Shannon’s mutual information and outage

rate are often evaluated by simulations since there is no explicit expression for CZ except a few
special cases. To overcome this, Telatar (1999) obtained a closed-form asymptotic formula for
the capacity (ECZ) by using random matrix theory and assuming that p

n → c > 0. The formula
obtained is more informative than finite-array results. Furthermore, Kamath and Hughes (2005)
investigates the fluctuation of CZ around its limit and obtains its central limit theorem (CLT).

When doing so, Telatar (1999) considers the classical Rayleigh fading model that the entries
of Z are assumed to be i.i.d. zero mean complex Gaussian with independent real and imaginary
parts sharing the same variance. Having independent real and imaginary parts, which share the
same variance, implies EZ2

11 = 0. Indeed, Kamath and Hughes (2005) and Hachem et al. (2008)
also impose such a condition that EZ2

11 = 0 to develop CLT of CZ when p/n → c > 0. However,
as pointed out by Fraidenraich et al. (2009) there is the case where the real and imaginary parts
of the entries have different variances, their modulus being therefore distributed according to
the Hoyt distribution (see Fraidenraich et al. (2009)). Indeed, the Hoyt distribution has found
applications in the error performance evaluation of digital communication, outage analysis in
cellular mobile radio system, or satellite channel modelling (see Fraidenraich et al. (2009)).

One of the aims of this work is to develop CLT of CZ when p/n → c > 0 without the
constraint that EZ2

11 = 0. Specifically, we consider the matrix Z = Zn under the following basic
assumptions.

(a) For each n, Zij = Z
(n)
ij , 1 ≤ i ≤ p, 1 ≤ j ≤ n are i.i.d complex variables. And the

variables satisfy the following moment conditions

EZ11 = 0, E|Z11|2 = 1, |EZ2
11| = Φ, E|Z11|4 = Ψ. (1.5)

(b) Assume p =: p(n) and p/n → c ∈ (0,+∞).

Then we have the following.

Theorem 1. Suppose that Z satisfies conditions (a) and (b) above. Let

λ+ = −1

2
(1− ρ+ ρc) +

1

2

√
(1− ρ+ ρc)2 + 4ρ,

λ− = −1

2
(1− ρ+ ρc)− 1

2

√
(1− ρ+ ρc)2 + 4ρ.

We have

log det(I+
ρ

n
ZZ∗)−

∫
log(1 + ρx)dFcn(x) → N(µ, σ2), (1.6)
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where cn =: p/n, Fcn(x) is the Marcenko and Pastur (M-P) law with parameter cn,

µ =
(Ψ− Φ2 − 2)c

2

(
λ+

1 + λ+

)2

+
1

2
log[1− Φ2c

(
λ+

1 + λ+

)2

] (1.7)

and

σ2 = (Ψ− Φ2 − 2)c

(
λ+

1 + λ+

)2

− log

(
1− ρ− λ+

ρ− λ−

)
+ log

1

1− Φ2c
(

λ+

1+λ+

)2 . (1.8)

2 Random matrices

To establish Theorem 1, we generalize an important CLT of Bai and Silverstein (2004) in the
field of random matrices. Random matrices have been used in wireless communication since
Grant and Alexanders 1996 conference presentation [9] and it has proven to be a powerful tool.

Let Zn = [Zij ]p×n satisfying (a) and (b). We consider the sample covariance matrix Bn =
1
nZnZ

∗
n in this section. To present our main results, we first introduce some notation. Define

the empirical spectral distribution (ESD) of an Hermitian matrix A by

FA(x) =
1

p

p∑
k=1

I(λk ≤ x),

where λk, k = 1, · · · , p denote the eigenvalues of A. Then FBn converges with probability one
to the M-P law with the density function

fc(x) =

{
(2πcx)−1

√
(b− x)(x− a) a ≤ x ≤ b.

0 otherwise.

It has point mass 1−c−1 at the origin if c > 1, where a = (1−
√
c)2 and b = (1+

√
c)2. Moreover,

we denote cn =: p/n and Fcn to be the M-P law with parameter cn. Set

Gn(x) =: p(FBn(x)− Fcn(x)).

For any test function f(x) we write

Ln(f) =

∫
f(x)dGn(x).

Theorem 2. Assume that Zn = [Zij ]p×n satisfy the conditions (a) and (b). Let m be any fixed
positive integer. Let f1, . . . , fm be functions analytic on an open region containing the interval
[I(0,1)(c)(1−

√
c)2, (1 +

√
c)2]. Then the random vector(

Ln(f1), Ln(f2), . . . , Ln(fm)
)

forms a tight sequence in n and converges weakly to a Gaussian vector (Lf1 , Lf2 , . . . , Lfm) with
mean vector µ whose components are, for any ℓ = 1, 2, . . . ,m,

ELfℓ = − 1

2πi

∫
C
fℓ(z)

c
(
1 + zs(z)

)3
1− c

(
1 + zs(z)

)2 [(Ψ− Φ2 − 2) +
Φ2

1− Φ2c
(
1 + zs(z)

)2 ]dz (2.1)
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and covariance matrix Σ̃ whose units are, for any ℓ, ν = 1, 2, . . . ,m,

Cov(Lfℓ , Lfν )

= − 1

4π2
c(Ψ− Φ2 − 2)

∫
C1

∫
C2

fℓ(z1)fν(z2)
(
z1s

′(z1) + s(z1)
)(
z2s

′(z2) + s(z2)
)
dz1dz2

− 1

4π2

∫
C1

∫
C2

fℓ(z1)fν(z2)
Φ2c

(
z1s

′(z1) + s(z1)
)(
z2s

′(z2) + s(z2)
)(

1− Φ2a(z1, z2)
)2 dz1dz2

− 1

4π2

∫
C1

∫
C2

fℓ(z1)fν(z2)
c
(
z1s

′(z1) + s(z1)
)(
z2s

′(z2) + s(z2)
)(

1− a(z1, z2)
)2 dz1dz2, (2.2)

where

a(z1, z2) = c
(
1 + z1s(z1)

)(
1 + z2s(z2)

)
.

The contours in (2.1) and (2.2) are contained in the analytic region of the functions f1, f2, . . . , fm
and enclose the support of Fcn(x) for all large n. Moreover, C1 and C2 are selected to be disjoint.

Remark 1. Theorem 2 is a generalization of the result of Bai and Silverstein (2004) by removing
the assumptions EZ2

11 = 0 and E|Z11|4 = 2 and also a generalization of that of Pan and Zhou
(2008) by removing the assumptions EZ2

11 = 0 under the special setting of T = Ip. Moreover,
our results can imply the classical real case (Ψ = 3,Φ = 1) and the classical complex case
(Ψ = 2,Φ = 0) in Bai and Silverstein (2004) directly (by setting T = Ip in Bai and Silverstein
(2004) and using the relation (3.3) below). And from our result it can also be easily seen that the
covariance function for the classical real case is 2 times of that for the classical complex case.

3 Proof of Theorem 2

To prove Theorem 2, we will follow the main strategy in Bai and Silverstein (2004). A lot of
existent results can be borrowed from their paper directly. Thus at first, we will introduce
some necessary known results without proofs. To present them, we shall further introduce more
concepts and notation below.

For any distribution function G(x), its Stieltjes transform is defined to be

sG(z) =

∫
1

λ− z
dG(λ), z ∈ C+ ≡ {z ∈ C,ℑz > 0}.

For convenience, we denote the M-P law with parameter c and its Stieltjes transform by Fc(x)
and s(z) respectively. It is well known that s(z) satisfies the following equation

s(z) =
1

1− z − c− czs(z)
. (3.1)

Now define Bn ≡ 1/nZ∗
nZn and denote its LSD and limiting Stieltjes transform by F c and

s = s(z) respectively. Noting that Bn and Bn share the same non-zero eigenvalues, thus it is
not difficult to see

F c = (1− c)I[0,∞) + cFc.
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Consequently, we can derive the relation between s(z) and s(z) as

s(z) = −1− c

z
+ cs(z). (3.2)

Moreover, by the equation (3.1) and the relation (3.2) we have

s(z) =
1

−z − zs(z)
. (3.3)

Hence

s(z) = − 1

zs(z)
− 1. (3.4)

Consequently, we also have

cs2(z)

(1 + s(z))2
= c(zs(z) + 1)2.

To lighten the notation we replace the symbols sFBn (z), sFcn
(z), sFBn (z), sF cn

(z) by

sn(z), s
0
n(z), sn(z), s

0
n(z) in the sequel. Let v0 be some small positive constant. Then basically,

if ℑz ≥ v0 one has

|sn(z)|, |s0n(z)|, |sn(z)|, |s0n(z)|, |s(z)|, |s(z)| ≤ v−1
0 ,

and

s0n(z) = s(z) + o(1), s0n(z) = s0(z) + o(1).

Now we set

Mn(z) = p[sn(z)− s0n(z)].

By definition, we also have

Mn(z) = n[sn(z)− s0n(z)].

To prove Theorem 2, the basic idea in Bai and Silverstein (2004) is to use the Cauchy integral
formula ∫

f(x)dG(x) = − 1

2πi

∫
C
f(z)sG(z)dz

valid for any c.d.f G and any function f analytic on an open set containing the support of G.
In our case

G(x) := Gn(x) = p(FBn(x)− Fcn(x)).

Note the support of Gn(x) is random. Fortunately, it is well known that the extreme eigenvalues
of Bn are highly concentrated around two edges of the support of the limiting M-P law Fc(x).
Then the contour C can be appropriately chosen. Moreover, it was shown in Bai and Silverstein
(2004) that one can replace the process {Mn(z), C} by a slightly modified process {M̂n(z), C}.
Below we present the definitions of the contour C and the modified process M̂n(z). Let xr be
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any number greater than (1 +
√
c)2. Let xl be any negative number if c ≥ 1. Otherwise we

choose xl ∈ (0, (1−
√
c)2). Now let

Cu = {x+ iv0 : x ∈ [xl, xr]}.

Then we define

C+ ≡ {xl + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]},

and C = C+ ∪ C+. Now we define the subsets Cn of C on which Mn(·) equals to M̂n(·). Let {εn}
be a sequence decreasing to zero satisfying for some α ∈ (0, 1),

εn ≥ n−α.

Now we set

Cl =
{

{xl + iv : v ∈ [n−1εn, v0]} if xl > 0,
{xl + iv : v ∈ [0, v0]} if xl < 0,

and

Cr = {xr + iv : v ∈ [n−1ε, v0]}.

Then we define Cn = Cl ∪ Cu ∪ Cr. The process M̂n(z) is defined as

M̂n(z) =


Mn(z) for z ∈ Cn,

Mn(xr + in−1εn) for x = xr, v ∈ [0, n−1εn],
Mn(xl + in−1εn) for x = xl, v ∈ [0, n−1εn].

And we set M̂n(z̄) = M̂n(z).
To prove Theorem 2, it has been shown in Bai and Silverstein (2004) that it suffices to prove

the CLT for M̂n(z) with z ∈ C. We state the result as the following lemma and then prove it.

Lemma 1. Under the assumptions of Theorem 2, {M̂n(·)} forms a tight sequence on C+. And

{M̂n(·) converges weakly to a two-dimensional Gaussian process {M(·)} satisfying for z ∈ C+

EM(z) =
c(1 + zs(z))3

[1− c(1 + zs(z))2]

[
(Ψ− Φ2 − 2) +

Φ2

1− Φ2c(1 + zs(z))2

]
,

and for zi, zj ∈ C

Cov(M(zi),M(zj)) = Γ(zi, zj) = (Ψ− Φ2 − 2)c(zis
′(zi) + s(zi))(zjs

′(zj) + s(zj))

+
Φ2c(zis

′(zi) + s(zi))(zjs
′(zj) + s(zj))

(1− Φ2a(zi, zj))2

+
c(zis

′(zi) + s(zi))(zjs
′(zj) + s(zj))

(1− a(zi, zj))2
,

where

a(zi, zj) = c(1 + zis(zi))(1 + zjs(zj)).
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By the discussions in Bai and Silverstein (2004), we see that Theorem 2 holds if Lemma 1 is
proved. Thus the remaining work will be devoted to the proof of Lemma 1. To this end, we shall
truncate the variables at first. By the discussion in Bai and Silverstein (2004), one can truncate
|Zij | at ηn

√
n without altering the limiting behavior of (Ln(f1), · · · , Ln(fk)). Here ηn is some

positive number slowly converging to 0. For instance, one can choose ηn ↓ 0 such that ηnn
1/5 →

∞. Moreover, one can further recentralize and renormalize the truncated variables to be with
means zero and variances 1 without altering the limiting behavior of (Ln(f1), · · · , Ln(fk)). Thus
without loss of generality, we can always assume that |Zij | ≤ ηn

√
n and

EZij = 0, E|Zij |2 = 1, |EZ2
ij | = Φ+ o(1), E|Zij |4 = Ψ+ o(1). (3.5)

Write for z ∈ Cn, Mn(z) = M
(1)
n (z) +M

(2)
n (z), where

M (1)
n (z) = p[sn(z)− Esn(z)]

and

M (2)
n (z) = p[Esn(z)− s0n(z)].

By the discussion in Bai and Silverstein (2004), it suffices to show the following four statements.

(i): M
(1)
n (z) is tight on Cn.

(ii): Finite-dimensional convergence of M
(1)
n (z) on Cn.

(iii): {M (2)
n (z)} for z ∈ Cn is bounded and equicontinuous.

(iv): The following convergence holds.

M (2)
n (z) → EM(z), z ∈ Cn.

In Bai and Silverstein (2004), the proofs of (i) and (iii) do not rely on the additional as-
sumptions of EZ2

11 = 0 and E|Z11|4 = 2. So they still work under our assumptions. We will
not present the proofs of these two statements here. Therefore, we will focus on the proofs of

(ii) and (iv) in the sequel. At first, we deal with the convergence of M
(2)
n (z), i.e. the statement

(iv). Our result can be stated as the following proposition

Proposition 1. Under the assumptions of Theorem 2, for z ∈ Cn, one has

M (2)
n (z) =

c(1 + zs(z))3

[1− c(1 + zs(z))2]

[
(Ψ− Φ2 − 2) +

Φ2

1− Φ2c(1 + zs(z))2

]
+ o(1).

Proof. For ease of presentation, we will omit the variable z from sn(z),s
0
n(z),sn(z),s

0
n(z), s(z)

and s(z) when there is no confusion. To derive the limit of

M (2)
n (z) = p[Esn − s0n] = n[Esn − s0n],

we use the following equation provided in Bai and Silverstein (2006)(see (9.11.1) of Bai and Silverstein
(2006)).

(Esn − s0n)

1−
cns0n

(1+Esn)(1+s0n)

−z + cn
1+Esn

−Rn

 = Esns0nRn, (3.6)
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where

Rn = cnn
−1

n∑
j=1

Eβjdj(Esn)−1,

dj = dj(z) =
1

Esn + 1
(−r∗j (B(j) − zI)−1rj + n−1tr(Bn − zI)−1),

β−1
j = 1 + r∗j (B(j) − zI)−1rj .

Here rj is the j-th column of 1/
√
nZn and B(j) = Bn − rjr

∗
j . Some arguments in Chapter 9 of

Bai and Silverstein (2006) (see pages 272-273) show that

sup
z∈Cn

|Esn(z)− s(z)| → 0, sup
z∈Cn

|s0n(z)− s(z)| → 0,

sup
z∈Cn

|Rn| → 0, n → ∞. (3.7)

Combining the fact

−z +
c

1 + s(z)
=

1

s(z)
(3.8)

with s0n(z) → s(z), we obtain

cns0n
(1+Esn)(1+s0n)

−z + cn
1+Esn

−Rn
→ cs2

(1 + s)2
. (3.9)

Thus by (3.6), (3.7) and (3.9), it suffices to evaluate the quantity nRn. Therefore, our task is
to estimate

cn

n∑
j=1

Eβjdj (3.10)

in the sequel. To this end, we shall further define some notations. Let

D := D(z) = Bn − zI, Dj := Dj(z) = D− rjr
∗
j = B(j) − zI,

Dij := Dij(z) = D− rir
∗
i − rjr

∗
j .

and

βj =
1

1 + r∗jD
−1
j rj

, β̄j =
1

1 + n−1trD−1
j

,

bn(z) =
1

1 + n−1EtrD−1
1

, γ̂j = r∗jD
−1
j rj − n−1trD−1

j .

Using the identity βj = β̄j−β̄2
j γ̂j+β̄2

j βj γ̂
2
j , then some routine arguments as those in Bai and Silverstein

(2006) (see the last line of page 273 therein) lead us to the estimation

cn

n∑
j=1

Eβjdj =
1

sn + 1

n∑
j=1

Eβ̄2
j γ̂

2
j −

1

sn + 1

n∑
j=1

Eβ2
j r

∗
jD

−2
j rj + o(1). (3.11)
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It was shown in Bai and Silverstein (2004) that both βj and β̄j can be estimated by −zs(z) in
the evaluation of the quantity (3.10). In fact one has

Eβj = bn +O(n−1), E|βj − bn|2 ≤ Kn−1, bn = −zs(z) + o(1), (3.12)

whereK is some positive constant. Moreover, bn(z) and |(zI−bn(z))
−1| are bounded. For details

of these results, we refer to (4.14) of Bai and Silverstein (2004) and the discussion above it. The
boundness of bn(z) can be found in page 581 of Bai and Silverstein (2004). Consequently, one
has

1

sn + 1
Eβ2

j r
∗
jD

−2
j rj =

1

n

z2s2

s+ 1
EtrD−2

j + o(1). (3.13)

Moreover,

1

sn + 1

n∑
j=1

Eβ̄2
j γ̂

2
j =

z2s2

s+ 1

n∑
j=1

Eγ̂2j (1 + o(1)) (3.14)

Thus a key step is to estimate the values of Eγ̂2j for j = 1, · · · , n. We see from definition that

Eγ̂2j is in the form of

E(r∗jPrj − trP)(r∗jQrj − trQ)

=

p∑
i=1

(E|Z11|4 − |EZ2
11|2 − 2)Epiiqii + |EZ2

11|2EtrPQ′ + EtrPQ. (3.15)

Here P = (pij),Q = (qij) are p× p matrices independent of rj .
Letting P = Q = D−1

j , we have

Eγ̂2j =
1

n2

(
p∑

i=1

(Ψ− Φ2 − 2)E[D−1
j ]2ii +Φ2EtrD−1

j (D−1
j )′ + EtrD−2

j

)
.

We claim that

E[D−1
j ]2ii = s2(z) + o(1),

1

n
EtrD−2

j = cs′(z) + o(1). (3.16)

Indeed, the first equation can be seen from the estimation (4.1) in Pan and Zhou (2008) (by
choosing T = Ip therein). And the second one follows from

sup
z∈Cn

E|1
p
trD−2

j − s′(z)| = sup
z∈Cn

E|
∫

dFB(j)(x)

(x− z)2
−
∫

dFc(x)

(x− z)2
| = o(1).

Thus the main task is to calculate the limit of the quantity

1

n
EtrD−1

j (D−1
j )′, 1 ≤ j ≤ n.

Now we set

βij =: βij(z) =
1

1 + r∗iD
−1
ij ri

.
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And we use the following decomposition, which has been presented in Bai and Silverstein (2004)(see
(2.9) therein):

D−1
j (z) = −(z − n− 1

n
bn(z))

−1I

+
∑
i̸=j

βij(z)(z −
n− 1

n
bn(z))

−1rir
∗
iD

−1
ij (z)

−n− 1

n
bn(z)(z −

n− 1

n
bn(z))

−1D−1
j (z)

=: −(z − n− 1

n
bj(z))

−1I+ bn(z)A(z) +B(z) +C(z), (3.17)

where the matrices A(z),B(z),C(z) are

A(z) = (z − n− 1

n
bn(z))

−1
∑
i̸=j

(rir
∗
i − n−1I)D−1

ij (z),

B(z) = (z − n− 1

n
bn(z))

−1
∑
i̸=j

(βij(z)− bn(z))rir
∗
iD

−1
ij (z),

C(z) = n−1bn(z)(z −
n− 1

n
bn(z))

−1
∑
i̸=j

(D−1
ij −D−1

j (z)).

Note that by the fact that bn(z) and |(z − bn(z))
−1| are bounded, one see for sufficiently large

n, |(z − n−1
n bn(z))

−1| is also bounded. Moreover, by (4.15) and (4.16) of Bai and Silverstein
(2004), one has for any p× p matrix M, there exist

E|trB(z)M| ≤ K(E||M||4)1/4n1/2, |trC(z)M| ≤ K(E||M||2)1/2. (3.18)

When M is non-random, we also have for any j,

E|trA(z)M| ≤ K||M||n1/2. (3.19)

Using this inequality, by the bounds provided in (3.1) of Bai and Silverstein (2004) and the
decomposition (3.17), it is not difficult to see

1

n
EtrD−1

j (z)(D−1
j (z))′ = cn(z −

n− 1

n
bn(z))

−2 +
1

n
Etrbn(z)A(z)(D−1

j )′(z) + o(1)

= cn(z + zs(z))−2 +
1

n
bn(z)EtrA(z)(D−1

j )′(z) + o(1)

= cn(z + zs(z))−2 + bn(z)(z −
n− 1

n
bn(z))

−1

× 1

n
Etr(

∑
i̸=j

(rir
∗
i − n−1I)D−1

ij (z))(D−1
j )′(z) + o(1). (3.20)

Using the fact

D−1
j (z)−D−1

ij (z) = −D−1
ij (z)rir

∗
iD

−1
ij (z)βij(z), (3.21)

we can write

Etr(
∑
i̸=j

(rir
∗
i − n−1I)D−1

ij (z))(D−1
j )′ = A1(z) +A2(z),

10



where

A1(z) = −Etr(
∑
i̸=j

rir
∗
iD

−1
ij (z))(βij(z)D

−1
ij (z)rir

∗
iD

−1
ij (z))′,

A2(z) = −Etr
∑
i ̸=j

n−1D−1
ij (z)(D−1

j (z)−D−1
ij (z))′.

Similar to (4.18) of Bai and Silverstein (2004), we have

|A2(z)| ≤ K.

Thus it suffices to estimate A1(z). Note that by definition we have

A1(z) = −E
∑
i ̸=j

βij(z)r
∗
iD

−1
ij (z)(D−1

ij (z))′r̄ir
′
i(D

−1
ij (z))′ri. (3.22)

To evaluate (3.22), we need the following lemma.

Lemma 2. For non-random p× p matrices Ak, k = 1, · · · ,m and Bl, l = 1, · · · , q, there exists∣∣∣∣∣E
(

m∏
k=1

r′tAkrt

q∏
l=1

[r∗tBlr̄t − n−1E(Z̄11)
2trBl]

)∣∣∣∣∣
≤ Kn−(1∧q)η(2q−4)∨0

n

m∏
k=1

||Ak||
q∏

l=1

||Bl||.

And the inequality also holds if we replace (rt, Z11) by (r̄t, Z̄11).

Remark 2. The proof of Lemma 2 is nearly the same as that of (9.9.6) of Bai and Silverstein
(2006), and thus here we omit it.

With the aid of Lemma 2 and (3.12), it is not difficult to see that

Eβij(z)r∗iD−1
ij (z)(D−1

ij (z))′r̄ir
′
i(D

−1
ij (z))′ri

= bn(z)
Φ2

n2
EtrD−1

ij (z)(D−1
ij (z))′EtrD−1

ij (z) + o(1) (3.23)

by using the bounds provided in (3.1) of Bai and Silverstein (2004). Above we used the fact
that

EZ2
11EZ̄2

11 = Φ2.

Further, by (3.1)-(3.3), (3.6) and (4.3) of Bai and Silverstein (2004), one has both

EtrD−1
ij (z)− EtrD−1

j (z)

and

EtrD−1
ij (z)(D−1

ij (z))′ − EtrD−1
j (z)(D−1

j (z))′

are bounded. Thus we also have

Eβij(z)r∗iD−1
ij (z)(D−1

ij (z))′r̄ir
′
i(D

−1
ij (z))′ri

= bn(z)
Φ2

n2
EtrD−1

j (z)(D−1
j (z))′EtrD−1

j (z) + o(1).

11



Consequently, we have

A1(z) +
n− 1

n2
Φ2bn(z)EtrD−1

j (z)(D−1
j (z))′EtrD−1

j (z) = o(1).

Therefore, by using (3.12) one can get

1

n
ETrD−1

j (z)(D−1
j (z))′(1− cΦ2 z2s2(z)

(z + zs(z))2
) = c(z + zs(z))−2 + o(1),

which implies

1

n
ETrD−1

j (z)(D−1
j (z))′ =

c

(z + zs(z))2 − Φ2cz2s2(z)
+ o(1)

=
cs2(z)

1− Φ2c(1 + zs(z))2
+ o(1).

Here we used the fact that 0 ≤ Φ ≤ 1 and

|c s2(z)

(1 + s(z))2
| < 1,

which is implied by (4.5) of Bai and Silverstein (2004). Consequently one has

nγ̂2j = (Ψ− Φ2 − 2)cs2(z) +
cΦ2s2(z)

1− Φ2c(1 + zs(z))2
+ cs′(z) + o(1).

Then by (3.11)-(3.14), we have

cn

n∑
j=1

Eβjdj =
z2s2

s+ 1
((Ψ− Φ2 − 2)cs2(z) +

cΦ2s2(z)

1− Φ2c(1 + zs(z))2
) + o(1).

Therefore, by the discussions in (3.6)-(3.10) we have

n(Esn(z)− s0n(z))

= c

z2s3

s+1

(1− cs2

(1+s)2
)

[
(Ψ− Φ2 − 2)s2(z) +

Φ2s2(z)

1− Φ2c(1 + zs(z))2

]
+ o(1)

=
c(1 + zs(z))3

[1− c(1 + zs(z))2]

[
(Ψ− Φ2 − 2) +

Φ2

1− Φ2c(1 + zs(z))2

]
+ o(1),

where at the last step above we have used the relation (3.4).

Next, we come to prove the finite dimensional convergence of {M (1)
n (z); z ∈ Cn}, i.e. the

statement (ii).

Proposition 2. Under the conditions of Theorem 2, for any set of k points {zs, s = 1, · · · , k} of

Cn, the random vector ({M (1)
n (z1) · · · ,M (1)

n (zk)}) converges weakly to a k-dimensional zero-mean
Gaussian distribution with covariance matrix given by

Γ(zi, zj) = (Ψ− Φ2 − 2)c(zis
′(zi) + s(zi))(zjs

′(zj) + s(zj))

+
Φ2c(zis

′(zi) + s(zi))(zjs
′(zj) + s(zj))

(1− Φ2a(zi, zj))2

+
c(zis

′(zi) + s(zi))(zjs
′(zj) + s(zj))

(1− a(zi, zj))2
, (3.24)
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where

a(zi, zj) = c(1 + zis(zi))(1 + zjs(zj)).

Proof. By resorting to the CLT of martingale, Bai and Silverstein (2004) showed that it suffices
to develop the limit (in probability) of the following quantity. That is

n∑
j=1

Ej−1[Yj(z1)Yj(z2)],

where

Yj(z) = −Ej
d

dz
β̄j(z)γ̂j(z).

It was shown in Bai and Silverstein (2004) that it suffices to evaluate the limit of

∂2

∂z2∂z1

n∑
j=1

Ej−1[Ej(β̄j(z1)γ̂j(z1))Ej(β̄j(z2)γ̂j(z2))].

only for z1, z2 ∈ Cu. Thus in the sequel, we always assume that ℑz1,ℑz2 = v0 > 0. On Cu, we
have some more precise bounds such as

|(z − n− 1

n
bn(z))

−1| ≤
1 + p

nv0

v0
,

E|βij(z)− bn(z)|2 ≤ K/n (3.25)

with some positive constant K. A further step taken in Bai and Silverstein (2004)(see (2.7) of
Bai and Silverstein (2004)) leads us to estimate the following quantity instead. That is

∂2

∂z2∂z1

n∑
j=1

bn(z1)bn(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]. (3.26)

To determine the limit (in probability) of (3.26), we use (3.15) again. It is not difficult to
see

nEj−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

=
1

n

( p∑
i=1

(Ψ− Φ2 − 2)[EjD
−1
j (z1)]ii[EjD

−1
j (z2)]ii

+Φ2trEj(D
−1
j (z1))Ej(D

−1
j (z2))

′ + trEj(D
−1
j (z1))Ej(D

−1
j (z2))

)
. (3.27)

By Pan and Zhou (2008), we have

[EjD
−1
j (z)]ii

P−→ − 1

zs(z) + z
= s(z). (3.28)

Moreover we also have the following fact proved by Bai and Silverstein (2004),

1

n
trEj(D

−1
j (z1))Ej(D

−1
j (z2)) =

cs(z1)s(z2)

1− j−1
n c(1 + z1s(z1))(1 + z2s(z2))

+ oL1(1). (3.29)

Here and after oL1(1) represents some random variable ξ := ξn satisfying E|ξ| → 0 as n → ∞.
Then it suffices to prove the following lemma

13



Lemma 3. Under the assumptions of Theorem 2, for z1, z2 ∈ Cu, one has

1

n
trEj(D

−1
j (z1))Ej(D

−1
j (z2))

′ =
cs(z1)s(z2)

1− j−1
n Φ2c(1 + z1s(z1))(1 + z2s(z2))

+ oL1(1).

Proof. To prove Lemma 3, we begin with the decomposition (3.17). Then by using the bounds
(3.18) and (3.19) and the fact that ||Dj(z2)|| is bounded in Cu we have

1

n
trEj(D

−1
j (z1))(D

−1
j (z2))

′

= − 1

n
(z1 −

n− 1

n
bn(z1))

−1trD−1
j (z2) +

1

n
bn(z1)trEj(A(z1))(D

−1
j (z2))

′ + oL1(1).

(3.30)

Note that the main task is to estimate the second term of the right hand side of (3.30).
Again we can use the definition of A(z) and (3.21) to write

trEj(A(z1))(D
−1
j (z2))

′ = B1(z1, z2) +B2(z1, z2) +B3(z1, z2),

where

B1(z1, z2) = −(z1 −
n− 1

n
bn(z1))

−1

×tr(
∑
i<j

rir
∗
i [EjD

−1
ij (z))](βij(z2)D

−1
ij (z2)rir

∗
iD

−1
ij (z2))

′,

B2(z1, z2) = −(z1 −
n− 1

n
bn(z1))

−1

×tr
∑
i<j

n−1[EjD
−1
ij (z1)](D

−1
j (z2)−D−1

ij (z2))
′,

B3(z1, z2) = (z1 −
n− 1

n
bn(z1))

−1tr
∑
i<j

(rir
∗
i − nI)[EjD

−1
ij (z1)](D

−1
ij (z2))

′.

Similar to the discussions on the terms of (2.14) of Bai and Silverstein (2004), we can see that

|B2(z1, z2)| ≤ K, E|B3(z1, z2)| ≤ Kn1/2.

Consequently, it suffices to estimate B1(z1, z2) in the sequel. In other words, we have

1

n
bn(z1)trEj(A(z1))(D

−1
j (z2))

′

= − 1

n
bn(z1)(z1 −

n− 1

n
bn(z1))

−1

×
∑
i<j

βij(z2)r
∗
i [EjD

−1
ij (z1)][D

−1
ij (z2)]

′r̄ir
′
i[D

−1
ij (z2)]

′ri + oL1(1).

Similar to (3.23), by using Lemma 2 and (3.25) , it is not difficult to get

E|βij(z2)r∗i [EjD
−1
ij (z1)][D

−1
ij (z2)]

′r̄ir
′
i[D

−1
ij (z2)]

′ri

−bn(z2)n
−2Φ2tr[EjD

−1
ij (z1)][D

−1
ij (z2)]

′trD−1
ij (z2)| ≤ Kn−1/2. (3.31)
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Consequently one has

1

n
bn(z1)trEj(A(z1))(D

−1
j (z2))

′

= −Φ2

n3
bn(z1)bn(z2)(z1 −

n− 1

n
bn(z1))

−1

×
∑
i<j

tr[EjD
−1
ij (z1)][D

−1
ij (z2)]

′tr[D−1
ij (z2)] + oL1(1). (3.32)

By (2.2) of Bai and Silverstein (2004) we can replace Dij by Dj in (3.32), and thus obtain

1

n
bn(z1)trEj(A(z1))(D

−1
j (z2))

′

= −Φ2

n3
bn(z1)bn(z2)(z1 −

n− 1

n
bj(z1))

−1

×(j − 1)tr[EjD
−1
j (z1)][D

−1
j (z2)]

′tr[D−1
j (z2)] + oL1(1). (3.33)

Combining (3.30) and (3.33) we can get

1

n
trEj(D

−1
j (z1))Ej(D

−1
j (z2))

′

×
(
1 +

(j − 1)Φ2

n2
bn(z1)bn(z2)(z1 −

n− 1

n
bn(z1))

−1trD−1
j (z2)

)
= − 1

n
(z1 −

n− 1

n
bn(z1))

−1trD−1
j (z2) + oL1(1),

which implies

1

n
trEj(D

−1
j (z1))Ej(D

−1
j (z2))

′

×
(
1 +

(j − 1)Φ2

n
bn(z1)bn(z2)(z1 −

n− 1

n
bn(z1))

−1cns(z2) + oL1(1)

)
= − 1

n
(z1 −

n− 1

n
bn(z1))

−1cns(z2) + oL1(1).

By taking the relations (3.3) and (3.12) into account, we can further write

1

n
trEj(D

−1
j (z1))Ej(D

−1
j (z2))

′

×
(
1− c

j − 1

n
Φ2z1s(z1)z2s(z2)(z1 + z1s(z1))

−1(z2 + z2s(z2))
−1 + oL1(1)

)
= c(z1 + z1s(z1))

−1(z2 + z2s(z2))
−1 + oL1(1).

Note that by (2.19) of Bai and Silverstein (2004) and the fact that Φ ≤ 1, we have

|cΦ2s(z1)s(z2)(1 + s(z1))
−1(1 + s(z2))

−1| < 1.
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Thus finally we have

1

n
trEj(D

−1
j (z1))Ej(D

−1
j (z2))

′

= c(z1 + z1s(z1))
−1(z2 + z2s(z2))

−1

×
(
1− c

j − 1

n
Φ2z1s(z1)z2s(z2)(z1 + z1s(z1))

−1(z2 + z2s(z2))
−1

)−1

+ oL1(1)

=
cs(z1)s(z2)

1− j−1
n Φ2c(1 + z1s(z1))(1 + z2s(z2))

+ oL1(1).

Thus we complete the proof of Lemma 3.

By using (3.27),(3.28), (3.29) and Lemma 3 we have

nEj−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

= (Ψ− Φ2 − 2)cs(z1)s(z2) +
Φ2cs(z1)s(z2)

1− j−1
n Φ2c(1 + z1s(z1))(1 + z2s(z2))

+
cs(z1)s(z2)

1− j−1
n c(1 + z1s(z1))(1 + z2s(z2))

+ oL1(1).

By (3.12), one has

n∑
j=1

bn(z1)bn(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

= c(1 + z1s(z1))(1 + z2s(z2))

[
(Ψ− Φ2 − 2)

+
1

n

n∑
j=1

Φ2

1− j−1
n Φ2c(1 + z1s(z1))(1 + z2s(z2))

+
1

n

n∑
j=1

1

1− j−1
n c(1 + z1s(z1))(1 + z2s(z2))

]
+ oL1(1).

Setting

a(z1, z2) = c(1 + z1s(z1))(1 + z2s(z2)),

we obtain
n∑

j=1

bn(z1)bn(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

= a(z1, z2)

[
(Ψ− Φ2 − 2) +

∫ 1

0

Φ2

1− tΦ2a(z1, z2)
dt+

∫ 1

0

1

1− ta(z1, z2)
dt

]
+ oL1(1).

Consequently one has

∂2

∂z1∂z2

n∑
j=1

bn(z1)bn(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

= (Ψ− Φ2 − 2)
∂2

∂z1∂z2
a(z1, z2) +

∂

∂z2

Φ2 ∂
∂z1

a(z1, z2)

1− Φ2a(z1, z2)
+

∂

∂z2

∂
∂z1

a(z1, z2)

1− a(z1, z2)
+ oL1(1).
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By an elementary calculation one has

∂

∂z2

Φ2 ∂
∂z1

a(z1, z2)

1− Φ2a(z1, z2)
=

Φ2c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

(1− Φ2a(z1, z2))2
.

Finally we obtain

∂2

∂z1∂z2

n∑
j=1

bn(z1)bn(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

= (Ψ− Φ2 − 2)c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

+
Φ2c(z1s

′(z1) + s(z1))(z2s
′(z2) + s(z2))

(1− Φ2a(z1, z2))2

+
c(z1s

′(z1) + s(z1))(z2s
′(z2) + s(z2))

(1− a(z1, z2))2
+ oL1(1).

Thus we complete the proof of Proposition 2.

4 Proof of Theorem 1

For convenience, we will focus on the case of c ≤ 1 at first. At the end, we will extend the
result to the case of c > 1 simply by a reciprocal relation. In this section, we will choose the
contours C, C1, C2 in Theorem 2 to cross the real axis in the interval (−ρ−1, 0) and (b,∞), where
b = (1 +

√
c)2. And we will set fℓ(z) = fν(z) = log(1 + ρz) in the sequel.

We start with (1.7). We use the following elementary relations

1 + zs(z) =
s(z)

1 + s(z)
, s′(z) =

s2(z)

1− c( s(z)
1+s(z))

2

which can be derived from (3.4) and (3.8) easily. Therefore, we have

ELfℓ = −(Ψ− Φ2 − 2)
1

2πi

∫
C
fℓ(z)

c( s(z)
1+s(z))

3

1− c( s(z)
1+s(z))

2
dz

− 1

2πi

∫
C
fℓ(z)

Φ2c( s(z)
1+s(z))

3

(1− c( s(z)
1+s(z))

2)(1− Φ2c( s(z)
1+s(z))

2)
dz

= (Ψ− Φ2 − 2)
1

2πi

∫
C̃
log(1 + ρz(s))

cs

(1 + s)3
ds

+
1

2πi

∫
C̃
log(1 + ρz(s))

Φ2cs

(1 + s)3
(
1− Φ2c s2

(1+s)2

)ds, (4.1)

where C̃ is a contour crossing the real axis in the interval (−(1 +
√
c)−1, 0) and (s(−ρ−1),∞).

The choice of C̃ depends on the fact that

(s(−ρ−1), s(0−)) = (s(−ρ−1),∞), (s(b), s(∞)) = (−(1 +
√
c)−1, 0).
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At first, we come to calculate the first term on the r.h.s of (4.1). Note that

1

2πi

∫
C̃
log(1 + ρz(s))

cs

(1 + s)3
ds

=
1

2πi

∫
C̃
log(1 + ρz(s))

c

(1 + s)2
ds− 1

2πi

∫
C̃
log(1 + ρz(s))

c

(1 + s)3
ds

=
1

2πi

∫
C̃
(log(1 + ρz(s)))′s

c

1 + s
ds− 1

4πi

∫
C̃
(log(1 + ρz(s)))′s

c

(1 + s)2
ds

=
1

2πi

∫
C̃

c

1 + s
· ρ[(1 + s)2 − cs2]

s(1 + s)[s(1 + s)− ρ(1 + s) + ρcs]
ds

− 1

4πi

∫
C̃

c

(1 + s)2
· ρ[(1 + s)2 − cs2]

s(1 + s)[s(1 + s)− ρ(1 + s) + ρcs]
ds

=
1

2πi

∫
C̃

cρ[(1 + s)2 − cs2]

s(1 + s)2(s− λ+)(s− λ−)
ds− 1

4πi

∫
C̃

cρ[(1 + s)2 − cs2]

s(1 + s)3(s− λ+)(s− λ−)
ds (4.2)

where

λ+ = −1

2
(1− ρ+ ρc) +

1

2

√
(1− ρ+ ρc)2 + 4ρ,

λ− = −1

2
(1− ρ+ ρc)− 1

2

√
(1− ρ+ ρc)2 + 4ρ

are two solutions of the equation

s(1 + s)− ρ(1 + s) + ρcs = 0.

It is not difficult to check that λ− ≤ −1 and

λ+(λ+ + 1) = ρ(1− c)λ+ + ρ, λ+λ− = −ρ, 1 + 2λ+ + ρ(1− c) = λ+ − λ−,

(4.3)

thus

(λ+ + 1)2 − cλ2
+ = ρ−1λ+(λ+ + 1)(λ+ − λ−). (4.4)

Now by the choice of C̃, it suffices to consider the poles 0 and λ+ = s(−ρ−1) in two integrals in
(4.2). Therefore,

1

2πi

∫
C̃
log(1 + ρz(s))

cs

(1 + s)3
ds =

[
cρ

λ+λ−
+

cρ
(
(1 + λ+)

2 − cλ2
+

)
λ+(1 + λ+)2(λ+ − λ−)

]

−1

2

[
cρ

λ+λ−
+

cρ
(
(1 + λ+)

2 − cλ2
+

)
λ+(1 + λ+)3(λ+ − λ−)

]
= − c

2
+

c

1 + λ+
− 1

2

c

(1 + λ+)2
. (4.5)
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Now we come to deal with the second term on the r.h.s of (4.1).

1

2πi

∫
C̃
log(1 + ρz(s))

Φ2cs

(1 + s)3
(
1− Φ2c s2

(1+s)2

)ds
=

1

2πi

∫
C̃
log(1 + ρz(s))

[
1

1 + s
− 1 + s− Φ2cs

(1 + s)2 − Φ2cs2

]
ds

=
1

2πi

∫
C̃
log(1 + ρz(s))

[
1

1 + s
− 1

2

(
log[(1 + s)2 − Φ2cs2]

)′
s

]
ds

=
1

2πi

∫
C̃

1

2
log[(1 + s)2 − Φ2cs2] (log(1 + ρz(s)))′s ds−

1

2πi

∫
C̃
log(1 + s) (log(1 + ρz(s)))′s ds

=
1

2πi

∫
C̃

1

2

ρ[(1 + s)2 − cs2] log[(1 + s)2 − Φ2cs2]

s(1 + s)(s− λ+)(s− λ−)
ds− 1

2πi

∫
C̃

ρ[(1 + s)2 − cs2] log(1 + s)

s(1 + s)(s− λ+)(s− λ−)
ds.

Above we have chosen C̃ such that log[(1 + s)2 − Φ2cs2] is analytic in the region enclosed by C̃.
Such C̃ does exit since we have Φ2 ≤ 1 and the assumption that c ≤ 1. Therefore,

1

2πi

∫
C̃
log(1 + ρz(s))

Φ2cs

(1 + s)3
(
1− Φ2c s2

(1+s)2

)ds = 1

2
log[(1 + λ+)

2 − Φ2cλ2
+]− log(1 + λ+).(4.6)

Then (4.5) and (4.6) together imply that

ELfℓ = (Ψ− Φ2 − 2)

[
− c

2
+

c

1 + λ+
− 1

2

c

(1 + λ+)2

]
+

1

2
log[(1 + λ+)

2 − Φ2cλ2
+]− log(1 + λ+).

Now we start to verify (1.8). Note that we have

zs′(z) + s(z) =
s′(z)

(1 + s(z))2
, a(z1, z2) = c

s(z1)s(z2)

(1 + s(z1))(1 + s(z2))
.

Therefore, one has

Φ2c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

(1− Φ2a(z1, z2))2
=

Φ2c s′(z1)s′(z2)
(1+s(z1))2(1+s(z2))2

(1− Φ2c s(z1)s(z2)
(1+s(z1))(1+s(z2))

)2
(4.7)

and analogously,

c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

(1− a(z1, z2))2
=

c s′(z1)s′(z2)
(1+s(z1))2(1+s(z2))2

(1− c s(z1)s(z2)
(1+s(z1))(1+s(z2))

)2
. (4.8)

Actually, for (4.8), we can simplify it further as follows. Note that

a(z1, z2) =
s(z1)s(z2)

s(z2)− s(z1)

(
c

1 + s(z1)
− c

1 + s(z2)

)
.

Using the equation

s(z) =
1

−z + c
1+s(z2)

,
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we can get

a(z1, z2) = 1 +
s(z1)s(z2)

s(z2)− s(z1)
(z1 − z2). (4.9)

Then by (4.8), it is not difficult to see that

c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

(1− a(z1, z2))2
=

∂

∂z2

(
∂

∂z1
a(z1, z2)

1− a(z1, z2)

)
.

Now by (4.9) we have

∂
∂z1

a(z1, z2)

1− a(z1, z2)
= −s′(z1)

s(z1)
− 1

z1 − z2
− s′(z1)

s(z2)− s(z1)
.

Consequently, we have

c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

(1− a(z1, z2))2
=

s′(z1)s
′(z2)

(s(z2)− s(z1))2
− 1

(z1 − z2)2
.

Rewrite (4.7) as

Φ2c(z1s
′(z1) + s(z1))(z2s

′(z2) + s(z2))

(1− Φ2a(z1, z2))2
=

Φ2cs′(z1)s
′(z2)

((1 + s(z1))(1 + s(z2))− Φ2cs(z1)s(z2))2
.

Therefore, one has

Cov(Lfℓ , Lfν )

= − 1

4π2
(Ψ− Φ2 − 2)

∫
C1

∫
C2

fℓ(z1)fν(z2)c
s′(z1)s

′(z2)

(1 + s(z1))2(1 + s(z2))2
dz1dz2

− 1

4π2

∫
C1

∫
C2

fℓ(z1)fν(z2)
Φ2cs′(z1)s

′(z2)(
(1 + s(z1))(1 + s(z2))− Φ2cs(z1)s(z2)

)2dz1dz2
− 1

4π2

∫
C1

∫
C2

fℓ(z1)fν(z2)
s′(z1)s

′(z2)

(s(z2)− s(z1))2
dz1dz2

= − 1

4π2
(Ψ− Φ2 − 2)

∫
C̃1

∫
C̃2

fℓ(z(s1))fν(z(s2))
c

(1 + s1)
2(1 + s2)

2
ds1ds2

− 1

4π2

∫
C̃1

∫
C̃2

fℓ(z(s1))fν(z(s2))
Φ2c(

(1 + s1)(1 + s2)− Φ2cs1s2
)2ds1ds2

− 1

4π2

∫
C̃1

∫
C̃2

fℓ(z(s1))fν(z(s2))
1

(s2 − s1)
2
ds1ds2, (4.10)

where the contours C̃1 and C̃2 cross the real axis in the interval (−(1+
√
c)−1, 0) and (s(−ρ−1),∞)

and C̃1 is inside C̃2. Note that when fℓ(x) = fν(x) = log(1 + ρx), the last term on the r.h.s. of
(4.10) has been calculated in Kamath and Hughes (2005), that is

− 1

4π2

∫
C̃1

∫
C̃2

log(1 + ρz(s1)) log(1 + ρz(s2))
1

(s2 − s1)
2
ds1ds2 = − log

(
1− ρ− λ+

ρ− λ−

)
.
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Now we come to calculate the first term of the r.h.s. of (4.10). It suffices to deal with∫
C̃1

fℓ(z(s1))

(1 + s1)
2
ds1 =

∫
C̃1

log(1 + ρz(s1))

(1 + s1)
2

ds1

=

∫
C̃1

ρ[s−2
1 − c(1 + s1)

−2]

(1 + s1)[1− ρs−1
1 + ρc(1 + s1)

−1]
ds1

=

∫
C̃1

ρ[(1 + s1)
2 − cs21]

s1(1 + s1)
2(s1 − λ+)(s1 − λ−)

ds1

Again, it suffices to consider the poles 0 and λ+, thus

1

2πi

∫
C̃1

fℓ(z(s1)

(1 + s1))
2
ds1 =

ρ

λ+λ−
+

ρ[(1 + λ+)
2 − cλ2

+]

λ+(1 + λ+)2(λ+ − λ−)
=

1

1 + λ+
− 1,

where the last step follows from (4.3) and (4.4). Therefore, we have

− 1

4π2
(Ψ− Φ2 − 2)

∫
C̃1

∫
C̃2

fℓ(z(s1))fν(z(s2))
c

(1 + s1))
2(1 + s2)

2
ds1ds2

= (Ψ− Φ2 − 2)c

(
λ+

1 + λ+

)2

.

It remains to calculate the second term of the r.h.s. of (4.10)

− 1

4π2

∫
C̃1

∫
C̃2

log(1 + ρz(s1)) log(1 + ρz(s2))
Φ2c(

(1 + s1)(1 + s2)− Φ2cs1s2
)2ds1ds2.

At first, using integral by parts we have

1

2πi

∫
C̃1

Φ2c log(1 + ρz(s1))(
(1 + s1)(1 + s2)− Φ2cs1s2

)2ds1
=

1

2πi

Φ2cρ

1 + s2 − Φ2cs2

∫
C̃1

s−2
1 − c(1 + s1)

−2(
(1 + s1)(1 + s2)− Φ2cs1s2

)
(1− ρs−1

1 + ρc(1 + s1)
−1)

ds1

=
1

2πi

Φ2cρ

1 + s2 − Φ2cs2

∫
C̃1

(1 + s1)
2 − cs21

s1(1 + s1)
(
(1 + s1)(1 + s2)− Φ2cs1s2

)
(s1(1 + s1)− ρ(1 + s1) + ρcs1)

ds1

=
1

2πi

Φ2cρ

(1 + s2 − Φ2cs2)
2

∫
C̃1

(1 + s1)
2 − cs21

s1(1 + s1)
(
s1 +

1+s2
1+s2−Φ2cs2

)
(s1 − λ+)(s1 − λ−)

ds1. (4.11)

Let D̃1 be the region enclosed by C̃1. Actually we can always choose appropriate C̃1 and C̃2 such
that

s1 +
1 + s2

1 + s2 − Φ2cs2
̸= 0, for all s1 ∈ D̃1, s2 ∈ C̃2.

To see this, we denote t = 1− Φ2c for simplicity. If there are some s1 ∈ D̃1, s2 ∈ C̃2 such that

s1 = − 1 + s2
1 + ts2
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we also have

s2 = − 1 + s1
1 + ts1

. (4.12)

Note that it is easy to choose C̃1 such that in D̃1 we always have

ℜ(− 1 + s1
1 + ts1

) ≤ −(1 +
√
c)−1.

Then it is easy to construct C̃2 enclosing C̃1 such that (4.12) does not hold for any s2 ∈ C̃2.
Analogously, we only need to consider the poles 0 and λ+ in the integral in (4.11). Therefore,

we have

1

2πi

∫
C̃1

Φ2c log(1 + ρz(s1))(
(1 + s1)(1 + s2)− Φ2cs1s2

)2ds1
=

Φ2cρ

(1 + s2 − Φ2cs2)
2

 (1 + λ+)
2 − cλ2

+

λ+(1 + λ+)
(
λ+ +

1+s2
1+s2−Φ2cs2

)
(λ+ − λ−)

+
1

1+s2
1+s2−Φ2cs2

λ+λ−


=

Φ2c

λ+(1 + s2 − Φ2cs2)
2 + (1 + s2)(1 + s2 − Φ2cs2)

− Φ2c

(1 + s2 − Φ2cs2)(1 + s2)
.

Now recall the notation t = 1− Φ2c, we can write

1

2πi

∫
C̃1

Φ2c log(1 + ρz(s1))(
(1 + s1)(1 + s2)− Φ2cs1s2

)2ds1
= A1

1

(s2 − λ̃+)(s2 − λ̃−)
+A2

1

(s2 + 1)(s2 + t−1)
,

where

A1 =
1− t

λ+t2 + t
, A2 = −1− t

t
(4.13)

and

λ̃+ =
−(1 + 2λ+t+ t) +

√
(1 + 2λ+t+ t)2 − 4(λ+ + 1)(λ+t2 + t)

2(λ+t2 + t)

λ̃− =
−(1 + 2λ+t+ t)−

√
(1 + 2λ+t+ t)2 − 4(λ+ + 1)(λ+t2 + t)

2(λ+t2 + t)
.

Note that √
(1 + 2λ+t+ t)2 − 4(λ+ + 1)(λ+t2 + t) = 1− t,

thus we have

λ̃+ = − 1 + λ+

1 + tλ+
, λ̃− = −1

t
.
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Hence, when c ≤ 1 we have 0 < t ≤ 1, thus λ̃+, λ̃− ≤ −1 < −(1 +
√
c)−1. Therefore, we have

− 1

4π2

∫
C̃1

∫
C̃2

Φ2c log(1 + ρz(s1)) log(1 + ρz(s2))(
(1 + s1)(1 + s2)− Φ2cs1s2

)2 ds1ds2

=
A1

2πi

∫
C̃2

log(1 + ρz(s2))

(s2 − λ̃+)(s2 − λ̃−)
ds2 +

A2

2πi

∫
C̃2

log(1 + ρz(s2))

(s2 + 1)(s2 + t−1)
ds2

= (λ̃− − λ̃+)
−1 A1

2πi

∫
C̃2

log[(s2 − λ̃+)/(s2 − λ̃−)](log(1 + ρz(s2)))
′ds2

−(t−1 − 1)−1 A2

2πi

∫
C̃2

log[(s2 + 1)/(s2 + t−1)](log(1 + ρz(s2)))
′ds2

= (λ̃− − λ̃+)
−1 ρA1

2πi

∫
C̃2

log[(s2 − λ̃+)/(s2 − λ̃−)]
(
(s2 + 1)2 − cs22

)
s2(s2 + 1)(s2 − λ+)(s2 − λ−)

ds2

−(t−1 − 1)−1 ρA2

2πi

∫
C̃2

log[(s2 + 1)/(s2 + t−1)]
(
(s2 + 1)2 − cs22

)
s2(s2 + 1)(s2 − λ+)(s2 − λ−)

ds2

= (λ̃− − λ̃+)
−1ρA1

(
log[(λ+ − λ̃+)/(λ+ − λ̃−)]

(
(λ+ + 1)2 − cλ2

+

)
λ+(λ+ + 1)(λ+ − λ−)

+
log[λ̃+/λ̃−]

λ+λ−

)

−(t−1 − 1)−1ρA2

(
log[(λ+ + 1)/(λ+ + t−1)]

(
(λ+ + 1)2 − cλ2

+

)
λ+(λ+ + 1)(λ+ − λ−)

+
log t

λ+λ−

)
. (4.14)

Substituting (4.4) and (4.13) into (4.14) we have

− 1

4π2

∫
C̃1

∫
C̃2

Φ2c log(1 + ρz(s1)) log(1 + ρz(s2))(
(1 + s1)(1 + s2)− Φ2cs1s2

)2 ds1ds2

= −(λ̃− − λ̃+)
−1A1 log

λ̃+(λ+ − λ̃−)

λ̃−(λ+ − λ̃+)
− (t−1 − 1)−1A2 log

λ+ + 1

1 + tλ+

Note that

(λ̃− − λ̃+)
−1A1 = (t−1 − 1)−1A2 =

Φ2c

t− 1
= −1.

Finally we can get

− 1

4π2

∫
C̃1

∫
C̃2

Φ2c log(1 + ρz(s1)) log(1 + ρz(s2))(
(1 + s1)(1 + s2)− Φ2cs1s2

)2 ds1ds2

= log[tλ̃2
+(λ+ − λ̃−)/(λ+ − λ̃+)] = log[(1 + λ+)

2/(1 + 2λ+ + (1− Φ2c)λ2
+)]. (4.15)

Note that we have proved Theorem 1 for c ≤ 1 through the above discussions. For c > 1, by
the simple fact that

log det(I+
ρ

n
ZZ∗) = log det(I+

ρc

p
Z∗Z),

we can use (c−1, ρc) to replace (c, ρ) in the above discussion. Then it is easy to check that
Theorem 1 still holds when c > 1 by the definition of λ+, λ−. Therefore, we conclude the proof
of Theorem 1.
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Marčenko, V. A. and Pastur, L. A.(1967). Distribution for some sets of random matrices. Math.
USSR-Sb. 1, 457-483.

Pan, G.M. and Zhou, W.(2008). Central limit theorem for signal-to-interference ratio of reduced
rank linear receiver. Ann. App. Probab. 18(3), 1232-1270.

Telatar E. Capacity of Multi-antenna Gaussian Channels (1999). European Trans. on Telecom-
munications, Vol. 10, No 6, 1999, 585-595.

24


