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1. Introduction

Recently, there has been a great interest in investigating the empirical spec-

tral distribution function of the eigenvalues of large dimensional random ma-

trices. The majority of the literature focuses on the asymptotic theory (see,

for example, [3]–[7], [11]–[15] and [18]–[19]). In the paper by [12], the author

provides an extensive discussion about the need to study sample covariance

matrices and their large sample theory.

This paper motives such a discussion from a different aspect. Suppose that

Zij are real–valued random variables. For 1 ≤ j ≤ p, let Zj = (Zj1, · · · , Zjn)T

denote the j–th time series and Z = (Z1, · · · ,Zp)T be a panel of p time se-

ries, where n usually denotes the sample size in each of the time series data.

In both theory and practice, it is not uncommon to assume that each of the

time series (Zj1, Zj2, · · · , Zjn) is statistically dependent, but it may be unre-

alistic to assume that Z1,Z2, · · · ,Zp are independent and even uncorrelated.

This is because there is no natural ordering for cross–sectional indices. There

are such cases in various disciplines. In economics and finance, for example,

it is not unreasonable to expect that there is significant evidence of cross–

sectional dependence in output innovations across p countries and regions in

the World. In the field of climatology, there is also some evidence to show that

climatic variables in different stations may be cross–sectionally dependent and

the level of cross–sectional dependence may be determined by some kind of

physical distance. Moreover, one would expect that climatic variables, such

as temperature and rainfall variables, in a station in Australia have higher–

level dependence with the same type of climatic variables in a station in New

Zealand than those in the United States.

In such situations, it may be necessary to test whether Z1,Z2, · · · ,Zp are

uncorrelated before a statistical model is used to model such data. In the

econometrics and statistics literature, several papers have considered testing

for cross–sectional independence for the residuals involved in some specific re-

gression models. Such studies include [16] for the parametric linear model
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case, [9] for the parametric nonlinear case, and [8] for the nonparametric non-

linear case. As the main motivation of this paper, we will propose using an

empirical spectral distribution function based test statistic for cross–sectional

uncorrelatedness of Z1,Z2, · · · ,Zp.

In the discussion of different types of hypothesis testing problems, existing

studies include [10], [14] and [20]. Their common feature is to assume that the

components of Z are all independent random variables.

The main contribution of this paper is summarized as follows:

• This paper establishes an asymptotic theory for the empirical spectral

distribution function of the eigenvalues of a large dimensional random

matrix A under a general dependent structure for the case of p
n
→ 0.

Such an asymptotic theory complements the main theory by [17] and [4]

for the case where there is some dependence structure in the columns

of a matrix and p
n
→ c ∈ (0,∞).

• Because of the involvement of a symmetric deterministic matrix, the

main structure of this paper covers some special but important cases.

As a consequence, some existing results in the field become corollaries

of the main theorem of this paper.

• In addition to the contribution to the theoretical development, we dis-

cuss the applicability of the empirical spectral distribution function in

the construction of a general test for cross–sectional uncorrelatedness

for a panel of time series.

The organization of this paper is as follows. Section 2 establishes the almost

sure convergence of the empirical spectral distribution function to a given

distribution function. Section 3 discusses how such an asymptotic convergence

may be used to establish an asymptotically consistent test for cross–sectional

uncorrelatedness. Conclusions and discussion are given in Section 4. The

mathematical proof is given in Section 5.
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2. Large sample theory

Suppose that Xij are independent and identically distributed (i.i.d.) real–

valued random variables. Let sj = (X1j, · · · , Xnj)
T denote the j–th column

vector of random variables and X = (s1, · · · , sn), where n usually denotes the

sample size.

For any p × p matrix A with real eigenvalues, define its empirical spectral

distribution function by

(2.1) FA(x) =
1

n

n∑
k=1

I(λk ≤ x),

where λk, k = 1, · · · , p denote the eigenvalues of A.

When p → ∞ and n → ∞ with p
n
→ c > 0, matrices of the form S =

1
n
XXT have been investigated in [15] and [11] and it has been shown that FSn

converges to Marcenko and Pastur law’s with probability one or in probability.

For more detailed reading of the recent literature up to the year of 2005, see

the monograph by [3].

Surprisingly, in the setting of p→∞ and n→∞ with p
n
→ 0, Bai and Yin

[2] prove that for the matrix 1
2
√
np

(XX′−nI), its empirical spectral distribution

converges, with probability one, to the semicircle law with density

(2.2) f(x) =

 2
π

√
1− x2, |x| < 1

0, , |x| > 1
.

This density is also the limit of the empirical spectral distribution of a

symmetric random matrix whose diagonal are i.i.d. random variables and

above diagonal elements are also i.i.d. (see [19]).

In this paper under the setting of p → ∞ and n → ∞ with p
n
→ 0, we

consider the following matrix

(2.3) Sn =
1

n
T1/2XXTT1/2,

where T is a p × p symmetric nonnegative definite matrix and (T1/2)2 = T.

To develop the limiting spectral distribution for Sn we then re-normalize it as
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follows:

(2.4) A =

√
n

p
(Sn −T) .

The moment method, in conjunction with sophisicated graph theory and

combinatorial argument, was used in [2] to establish the semi-circle law. In-

stead, we use another popular tool in random matrix theory, Stieltjes trans-

form, in this paper. The Stieltjes transform for any function G(x) is given

by

(2.5) mG(z) =

∫
1

λ− z
dG(λ), z ∈ C+ ≡ {z ∈ C, v = Imz > 0},

where Im(·) stands for the imaginary part of a complex number. The main

result is listed as below.

Theorem 1. Suppose that

1) {Xij} are i.i.d. real random variables with E [X11] = 0, E [X2
11] = 1 and

E [X4
11] <∞.

2) p
n
→ 0 with p→∞ and n→∞.

3) T is a symmetric nonnegative definite matrix with FT(x)
D−→ H(x), a

probability distribution function as p→∞.

Then FA(·) converges, with probability one, to a fixed distribution function,

F (·), whose Stieltjes transform satisfies

(2.6) s1(z) = −
∫

dH(t)

z + ts2(z)
,

where s2(z) is the unique solution in C+ to

(2.7) s2(z) = −
∫

tdH(t)

z + ts2(z)
.

The proof of the theorem is given in Section 5 below.

Remark 1. Apparently, this result recovers Theorem in [5] when T = I.
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3. Hypothesis testing

Let Zij be real–valued random variables, Zj = (Zj1, · · · , Zjn)T denote the

j–th column vector for 1 ≤ j ≤ p and Z = (Z1, · · · ,Zp)T be a panel of p

vectors. Consider testing the null hypothesis H0 versus an alternative H1 of

the form:

H0 : E[Zi1Zj1] = 0 for all 1 ≤ i 6= j ≤ p versus(3.1)

H1 : E[Zi1Zj1] = ρij 6= 0 for at least one pair (i, j): 1 ≤ i 6= j ≤ p,(3.2)

where {ρij} is a set of real numbers.

Let X and T be as defined in Section 2 above. Let Z = T
1
2X. Then we

have

(3.3) E[Zi1Zj1] = tij,

where {tij} is the (i, j)–th element of matrix T. In this case, equations (3.1)

and (3.2) correspond to

(3.4) H0 : T = I versus H1 : T 6= I.

Let FA
i (·) and Fi(·) correspond to FA(·) and F (·), respectively, under Hi

for i = 0, 1.

Consider a Cramér-von Mises type of test statistic of the form

(3.5) Ln =

∫ (
FA

1 (x)− FA
0 (x)

)2
dFA

0 (x).

Theorem 1 then implies the following proposition.

Proposition 3.1. Under the conditions of Theorem 1, we have with probability

one

(3.6) Ln →


∫

(F0(x)− F0(x))2 dF0(x)dx = 0 under H0∫
(F1(x)− F0(x))2 dF0(x)dx > 0 under H1.

where Fi(·) corresponds to the limit of FA(·) with T = I under H0 and T 6= I

under H1, respectively.
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Equation (3.6) may suggest that there is some Cn →∞ such that

(3.7) Mn ≡ CnLn →D

 Z under H0

∞ under H1,

where Z is a random variable.

Since the proof of (3.7) is quite challenging, we have not been able to include

a rigorous proof in this paper. Hopefully, it may be given in a future paper.

4. Conclusions and discussion

This paper has considered establishing the empirical spectral distribution

of a sample covariance matrix of the form
√

n
p
( 1
n
T1/2XXTT1/2 − T), where

X = (Xij)p×n consists of independent and identically distributed real random

variables and T is a symmetric nonnegative definite nonrandom matrix. The-

orem 1 has established the almost sure convergence of the empirical spectral

distribution function to a fixed distribution function for the case where p→∞,

n→∞ and p
n
→ 0.

It has been discussed that such an asymptotic convergence may be used to

derive the asymptotic consistency of a test statistic for cross–sectional uncor-

relatedness. Future topics include a rigorous proof of equation (3.7) and the

discussion of the size and power properties of the resulting test.

5. Proof of Theorem 1

The whole argument consists of four steps. The first step deals with the tightness

of FA and almost sure convergence of the random part of the Stieltjes transform of

FA. The main difficulty is to prove that the limit of the Stieltjes transform of EFA

satisfies equations (2.6) and (2.7). To do that, we first investigate the corresponding

matrix with Gaussian elements and then finish the proof by Lindeberg’s method,

along with the proof of uniqueness. These are accomplished, respectively, in steps

2–4.

Throughout the paper, M denotes a constant which may stand for different values

at different places and the limits are taken as p goes to infinity (n may be viewed
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as n(p), the function of p). Additionally, let ‖ · ‖ denote the Euclidean norm of a

vector or the spectral norm of a matrix.

5.1. Step 1: Almost sure convergence of the random part. In this subsection,

we prove that FA is tight with probability one. In addition, we establish a general

and useful result of the form

(5.1) E

∣∣∣∣1ptr (A−1(z)D
)
− E

[
1

p
tr
(
A−1(z)D

)]∣∣∣∣2 ≤ M

p2

for an application at a late stage, where (A− zI)−1 is denoted by A−1(z) and D is

some non-random matrix with the spectral norm ‖D‖ ≤ M . Here z = u + iv with

v > 0.

We start with the truncation of the spectral of the matrix T and of the elements of

X. Denote the spectral decomposition of T by UTΛU where Λ = diag(λ1, · · · , λp)
is a diagonal matrix, λ1, · · · , λn are eigenvalues of T and U is the corresponding

eigenvector matrix. Then

(5.2) T1/2 = UTΛ1/2U,

where Λ1/2 = diag(
√
λ1, · · · ,

√
λp).

Moreover, with τ being a pre-chosen positive constant such that τ is a continu-

ity point of FT(t), define Λτ = diag(λ1I(λ1 ≤ τ), · · · , λpI(λp ≤ τ)) and
√

Λτ =

diag(
√
λ1I(λ1 ≤ τ), · · · ,

√
λτI(λp ≤ τ)). Set Tτ = UTΛτU and T

1/2
τ = UT

√
ΛτU.

Then, by Lemmas 2.4 and 2.5 in [18]∣∣∣∣∣∣∣∣FA − F
√
n
p

(Sn−Tτ )
∣∣∣∣∣∣∣∣ ≤ 1

p
rank(T−Tτ )→ 1− FT(τ),∣∣∣∣∣∣∣∣F√

n
p

(Sn−Tτ ) − F
√
n
p

( 1
n
T

1/2
τ XXTT

1/2
τ −Tτ )

∣∣∣∣∣∣∣∣ ≤ 2

p
rank(T1/2 −T1/2

τ )

→ 2(1− FT(τ)).

In addition,

(5.3) FTτ →
∫ x

0
I(u ≤ τ)dH(u) + 1− FT(τ) , Hτ (x).

The value of 1−FT(τ) can be arbitrary small if τ is sufficiently large. Therefore

by Propositions 3.1 and 3.2 in [1] in order to finish Theorem 1 it suffices to prove that

F

√
n
p

( 1
n
T

1/2
τ XXTT

1/2
τ −Tτ )

converges with probability one to a nonrandom distribution
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function F τ (x) whose Stieljtes transform satisfies (2.6) and (2.7) with H(x) being

replaced by Hτ (x). Consequently, we may assume that the spectral λ1, · · · , λn are

bounded, say by τ . To simplify the notation we still use T instead of using Tτ .

Additionally, let X̌ij = XijI(|Xij | ≤ n1/4εp) and X̃ij = X̌ij − E
[
X̌ij

]
, where εp

is chosen such that εp → 0, εpp
1/4 →∞ and P (|X11| ≥ εpp1/4) ≤ εp/n.

Set X̃ = (X̃ij) and Ã =
√

n
p ( 1

nT
1/2X̃X̃TT1/2 −T).

Then, as in [5], one may prove that

(5.4)
∣∣∣∣∣∣F Ã − FA

∣∣∣∣∣∣ a.s.−→ 0.

In addition, we may also show that re-normalization of X̃ij does not affect the

limiting spectral distribution of Ã with probability one. In view of the truncation

above we may assume that

(5.5) ‖T‖ ≤ τ, |Xij | ≤ n1/4εp, E [Xij ] = 0, E
[
X2
ij

]
= 1.

Also, we use Xij for X̃ij to simplify the notation.

We now verify that FA is tight with probability one. Note that

(5.6)
1

p
tr
(
A2
)
≤ τ2

p
tr

[√
n

p
(
1

n
XXT − I)

]2

=
τ2

np2

∑
i 6=j

(ŝTi ŝj)
2+

τ2

np2

p∑
i=1

(ŝTi ŝi−n)2,

where s̃Tj denotes the j–th row of X. It is easy to verify that the expectation of

the term on the right hand above converges to one. It follows from Burkholder’s

inequality that

E

∣∣∣∣∣ 1

np2

p∑
i=1

(ŝTi ŝi − n)2 − E(ŝTi ŝi − n)2

∣∣∣∣∣
2

=
1

n2p4

p∑
i=1

E
∣∣(ŝTi ŝi − n)2 − E(ŝTi ŝi − n)2

∣∣2
≤ M

n2p4

p∑
i=1

E
(
ŝTi ŝi − n

)4 ≤ M

n2p4

p∑
i=1

 n∑
j=1

E
[
X4
ij

]2

+
M

n2p4

p∑
i=1

n∑
j=1

E
[
X8
ij

]
≤ M

p2
.
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A direct calculation indicates that

E

 τ2

np2

∑
i 6=j

(ŝTi ŝj)
2 − E(ŝTi ŝj)

2

2

=
1

n2p4

∑
i1 6=j1,i2 6=j2

E
( [

(ŝTi1 ŝj1)2 − E(ŝTi1 ŝj1)2
] [

(ŝTi2 ŝj2)2 − E(ŝTi2 ŝj2)2
] )
≤ M

p2
,

which may be obtained by distinguishing different cases for i1 6= j1, i2 6= j2. We

then conclude that

(5.7)
1

p
tr

[√
n

p
(
1

n
XXT − I)

]2
a.s.−→ 1,

which ensures that FA is tight with probability one.

We then turn to the proof of (5.1). To this end, let Fk denote the σ-field generated

by s1, · · · , sk, Ek = E(·|Fk) denote conditional expectation and E0 unconditional

expectation. Denote by Xk the matrix obtained from X with the k–th column

deleted.

Moreover, to simplify the notation, set Ak =
√

n
p ( 1

nT
1/2XkX

T
kT

1/2 −T), (Ak −

zI)−1 = A−1
k (z) and rTk = sTkT

1/2. We will frequently use the following formulas

throughout this paper:

(5.8) (C + ukv
T
k )−1 = C−1 −

C−1ukv
T
kC
−1

1 + vTkC
−1uk

,

(5.9) (C + ukv
T
k )−1uk =

C−1uk
1 + vTkC

−1uk
,

and

(5.10) C−1 −B−1 = C−1(B−C)B−1,

holding for any two invertible matrices C and B of size p× p, and uk,vk ∈ Rp.
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We then apply (5.10) and (5.9) to write

1

p
trA−1(z)D− E 1

p
trA−1(z)D =

1

p

n∑
k=1

Ek(trA
−1(z)D)− Ek−1(trA−1(z)D)

=
1

p

n∑
k=1

(Ek − Ek−1)tr
(
A−1(z)D− trA−1

k (z)D
)

=
1

p

n∑
k=1

(Ek − Ek−1)tr
(
A−1(z)(Ak −A)A−1

k (z)D
)

= −1

p

n∑
k=1

(Ek − Ek−1)
( 1√

npr
T
kA
−1
k (z)DA−1

k (z)rk

1 + 1√
npr

T
kA
−1
k (z)rk

)
,

= −1

p

n∑
k=1

(Ek − Ek−1)(fn1 + fn2),

where

fn1 =
( 1
√
np

rTkA
−1
k (z)DA−1

k (z)rk −
1
√
np
trA−1

k (z)DA−1
k (z)T

) 1

1 + 1√
np trA

−1
k (z)T

,

fn2 =
1
√
np

rTkA
−1
k (z)DA−1

k (z)rk

1√
npr

T
kA
−1
k (z)rk − 1√

np trA
−1
k (z)T

(1 + 1√
np trA

−1
k (z)T)(1 + 1√

npr
T
kA
−1
k (z)rk)

.

In the last step above we use

1

1 + 1√
npr

T
kA
−1
k (z)rk

=
1

1 + 1√
np trA

−1
k (z)T

−
1√
npr

T
kA
−1
k (z)rk − 1√

np trA
−1
k (z)T

(1 + 1√
npr

T
kA
−1
k (z)rk)(1 + 1√

np trA
−1
k (z)T)

,

Ek

( 1√
np trA

−1
k (z)DA−1

k (z)T

1 + 1√
np trA

−1
k (z)T

)
= Ek−1

( 1√
np trA

−1
k (z)DA−1

k (z)T

1 + 1√
np trA

−1
k (z)T

)
.

Note that

(5.11)

∣∣∣∣∣
1√
npr

T
kA
−1
k (z)DA−1

k (z)rk

1 + 1√
npr

T
kA
−1
k (z)rk

∣∣∣∣∣ ≤
1√
np‖r

T
kA
−1
k (z)‖2‖D‖

Im(1 + 1√
npr

T
kA
−1
k (z)rk)

≤ 1

v
.

Also, since

(5.12)

∣∣∣∣ 1
√
np
trA−1

k (z)T

∣∣∣∣ ≤√ p

n

M

v
,
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we have

(5.13)

∣∣∣∣∣ 1

1 + 1√
np trA

−1
k (z)T

∣∣∣∣∣ ≤ 1

1−
√

p
n
M
v

→ 1.

Therefore by Burkholder’s inequality for the martingale differences in [6] and

Lemma 2.7 in [2] we obtain

(5.14) E

∣∣∣∣∣1p
n∑
k=1

(Ek − Ek−1)fn2

∣∣∣∣∣
2

≤ M

p2
E

n∑
k=1

E
[
|fn2|2

]
≤ M

p2
.

Similarly, one can also obtain

(5.15) E

∣∣∣∣∣1p
n∑
k=1

(Ek − Ek−1)fn1

∣∣∣∣∣
2

≤ M

p2
.

Thus the proof of (5.1) is completed. It follows from Borel–Cantelli’s lemma and

(5.1) that

(5.16)
1

p

(
tr
(
A−1(z)

)
− E

[
tr
(
A−1(z)

)]) a.s.−→ 0.

5.2. Step 2: Convergence of E
[

1
p trA

−1(z)
]
with the Gaussian elements.

The aim in this subsection is to find the limit of E
[

1
p trA

−1(z)
]

when Xij ’s are i.i.d.

Gaussian random variables with E [Xij ] = 0 and E
[
X2
ij

]
= 1.

Recalling T = UTΛU, pre-multiplying and post-multiplying A−1(z), respectively,

by U and UT we obtain a key identity

(5.17) E

[
1

p
trA−1(z)

]
= E

[
1

p
tr

(√
n

p

(
1

n
YYT − Λ

)
− zIp

)−1
]
,

where Y = (ŷ1, · · · , ŷn) =
(
yT1 , · · · ,yTp

)T
= (Ykj)p×n and ŷk are independent

Gaussian vectors with covariance matrix Λ. In addition, we remark that yk’s are also

independent Gaussian vectors and, moreover, the components of each yk are i.i.d

Gaussian random variables with E
[
Y 2
kk

]
= λk. Here we would remind the reader

that E
[
Y 4
kk

]
≤M . Consequently, it is enough to investigate the matrix on the right

hand side of (5.17).
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Before proceeding, let us introduce some notation. Let ek be the p×1 vector with

the k-th element being 1 and others zero and

hTk =
1
√
np

(yTk y1, · · · ,yTk yk−1,y
T
k yk − nλk,yTk yk+1 · · · ,yTk yp),

Y−1(z) = (

√
n

p
(
1

n
YYT − Λ)− zIp)−1, Y−1

k (z) = (

√
n

p
(
1

n
YkY

T − Λk)− zIp)−1,

Y−1
(k)(z) = (

√
n

p
(
1

n
YkY

T
k − Λk)− zIp)−1, an =

1

p
E
( p∑
k=1

λk

z(1 + hTkY
−1
k (z)ek)

)
,

where the matrix Yk is obtained from Y with the entries on its k-th row being

replaced by zero, Λk obtained from Λ with the k-th diagonal element being replaced

by zero and Ip is the identity matrix of size p.

Apparently, we have

(5.18) Y = Yk + eky
T
k .

With respect to the above notation we would make the following remarks: hTk is

the k-th row of
√

n
p ( 1

nYYT−Λ);
√

n
p ( 1

nYkY
T−Λk) is obtained from

√
n
p ( 1

nYYT−Λ)

with the entries on its k-th row being replaced by zero; and
√

n
p ( 1

nYkY
T
k − Λk) is

obtained from
√

n
p ( 1

nYkY
T −Λk) with the entries on its k-th column being replaced

by zero.

Write

(5.19)

√
n

p

(
1

n
YYT − Λ

)
=

p∑
k=1

ekh
T
k .

Then, we conclude from (5.10) and (5.9) that

1

p
tr
(
Y−1(z)

)
− 1

p
tr
(
(anΛ− zIp)−1

)
=

1

p
tr

(
Y−1(z)

(
anΛ−

√
n

p
(
1

n
YYT − Λ)

)
(anΛ− zIp)−1

)
=

an
p
tr
(
Y−1(z)Λ(anΛ− zIp)−1

)
− 1

p

p∑
k=1

hTk (anΛ− zIp)−1Y−1(z)ek

=
an
p
tr
(
Y−1(z)Λ(anΛ− zIp)−1

)
− 1

p

p∑
k=1

hTk (anΛ− zIp)−1Y−1
k (z)ek

1 + hTkY
−1
k (z)ek

.
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First taking expectation on both sides of the equality above and then using the

definition of an we obtain

E

[
1

p
tr
(
Y−1(z)

)
− E

[
1

p
tr (anΛ− zIp)−1

]]
(5.20)

= −1
p

p∑
k=1

E

(
zhTk (anΛ−zIp)−1Y−1

k (z)ek−λkE
[
1
p
tr(Y−1(z)Λ(anΛ−zIp)−1)

]
z(1+hTkY

−1
k (z)ek)

)
.

We then investigate zhTkCY−1
k (z)ek with C equal to (anΛ − zIp)

−1 or I. By

definition of hTk we have

(5.21) hTk =
1
√
np

yTkY
T
k +

√
n

p

(
yTk yk
n
− λk

)
eTk .

This, together with (5.8) and (5.18), ensures that

zhTkCY−1
k (z)ek =

z
√
np

yTkY
T
kCY−1

k (z)ek(5.22)

+ z

√
n

p
(
yTk yk
n
− λk)eTkCY−1

k (z)ek

=
z
√
np

yTkY
T
kCY−1

(k)(z)ek −
z

np

yTkY
T
kCY−1

(k)(z)Ykyke
T
kY
−1
(k)(z)ek

1 + eTkY
−1
(k)(z)Ykyk/

√
np

+ z

√
n

p
(
yTk yk
n
− λk)eTkCY−1

(k)(z)ek −
z

p

(
yTk yk
n − λk)eTkCY−1

(k)(z)Ykyke
T
kY
−1
(k)(z)ek

1 + eTkY
−1
(k)(z)Ykyk/

√
np

= − 1
√
np

yTkY
T
kCY−1

(k)(z)ek +
1

np
yTkY

T
kCY−1

(k)(z)Ykyk

−
√
n

p
(
yTk yk
n
− λk)eTkCek +

1

p
(
yTk yk
n
− λk)eTkCY−1

(k)(z)Ykyk.

The last step is based on the following observation. Since the entries on the k-th

row and k-th column of
√

n
p

(
1
nYkY

T
k − Λk

)
− zIp are all zero except that the entry

on the (k, k) position is −z, we have

(5.23) Y−1
(k)(z)ek = −1

z
ek and eTkY

−1
(k)(z)ek = −1

z
.

Also, by the structure of Yk we have

(5.24) eTkY
−1
(k)(z)Ykyk/

√
np = 0.
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Applying (5.22) with C = I yields that the imaginary part of zhTkY
−1
k (z)ek is

nonnegative. That is

(5.25) Im(zhTkY
−1
k (z)ek) ≥ 0.

This implies

(5.26) Im(−an) ≥ 0.

Thus we have

‖C‖ ≤ max(1/v, 1).

As will be seen, the second term on the right hand side of the equality (5.22)

contributes to the limit and all the remaining terms are negligible.

We now demonstrate the details. A simple calculation implies

(5.27) E

∣∣∣∣√n

p
(
yTk yk
n
− λk)eTkCek

∣∣∣∣2 ≤ nM

p
E

∣∣∣∣yTk ykn
− λk

∣∣∣∣2 ≤ M

p
.

With x = (x1, · · · , xn)T = eTkCY−1
(k)(z)Yk, we obtain

E
∣∣∣eTkCY−1

(k)(z)Ykyk

∣∣∣2 =

n∑
j=1

E
[
x2
jY

2
kj

]
≤M E

[∣∣xTx∣∣2]
= M E

[∣∣∣eTkCY−1
(k)(z)YkY

T
kY
−1
(k)(z̄)C̄ek

∣∣∣]
≤ M E

(∣∣∣∣∣∣eTkCY−1
(k)(z)‖‖YkY

T
kY
−1
(k)(z̄)

∣∣∣∣∣∣ · ∣∣∣∣C̄ek
∣∣∣∣)

≤ M
√
npE

[∣∣∣∣∣∣∣∣Y−1
(k)(z̄)

YkY
T
k√

np

∣∣∣∣∣∣∣∣]
≤ M

√
npE [||Ip||] +M

√
npE

[∣∣∣∣∣∣∣∣Y−1
(k)(z)

(√
n

p
Λk + zIp

)∣∣∣∣∣∣∣∣] ,
≤ M n,(5.28)

where C̄ is the complex conjugate of C and Y−1
(k)(z̄) the complex conjugate of Y−1

(k)(z).
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This, together with Holder’s inequality, implies

E

∣∣∣∣1p(
yTk yk
n
− λk)eTkCY−1

(k)(z)Ykyk

∣∣∣∣
≤ 1

p

(
E

[∣∣∣∣yTk ykn
− λk

∣∣∣∣2
]
· E
[∣∣∣eTkCY−1

(k)(z)Ykyk

∣∣∣2])1/2

≤ M

p
.(5.29)

The argument for (5.28) also gives E

[∣∣∣ 1√
npy

T
kY

T
kCY−1

(k)(z)ek

∣∣∣2] ≤ nM. Thus all

terms except the second term in (5.22) are negligible, as claimed.

Consider the second term in (5.22) now. We conclude from Lemma 2.7 in [4] that

E

[∣∣∣∣ 1

np
yTkY

T
kCY−1

(k)(z)Ykyk −
λk
np
trYT

kCY−1
(k)(z)Yk

∣∣∣∣2
]

≤ M

n2p2
E
(
tr
(
YT
kCY−1

(k)(z)YkY
T
kY
−1
(k)(z̄)C̄Yk

))
≤ M

p
,(5.30)

because of

1

n2p2
tr
(
CY−1

k (z)YkY
T
kY
−1
k (z̄)C̄YkY

T
k

)
≤ 1

n2p

∣∣∣∣CY−1
k (z)YkY

T
k

∣∣∣∣ · ∣∣∣∣Y−1
k (z̄)C̄YkY

T
k

∣∣∣∣
≤ ‖C‖

2

n2p

∣∣∣∣Y−1
k (z)YkY

T
k

∣∣∣∣2 ≤ ‖C‖2
n
‖Ip‖2 +

‖C‖2

n

∣∣∣∣∣∣∣∣Y−1
k (z)

(√
n

p
Λk + zIp

)∣∣∣∣∣∣∣∣2 ≤ M

p
.

Meanwhile, we also have

λk
np
tr
(
YT
kCY−1

(k)(z)Yk

)
=

λk√
np
tr (C) +

λk
p
tr
(
CY−1

k (z)Λk
)

+ z
λk√
np
tr
(
CY−1

k (z)
)
,

which implies∣∣∣∣λknptr (YT
kCY−1

(k)(z)Yk

)
− λk

p
tr
(
CY−1

k (z)Λk
)∣∣∣∣ ≤ M

√
p

√
n
→ 0.

The next aim is to prove that

(5.31) E

∣∣∣∣1ptr (CY−1
k (z)Λk

)
− 1

p
tr
(
CY−1(z)Λ

)∣∣∣∣ ≤ M

p
.

Evidently, ∣∣∣1
p
tr
(
CY−1

k (z)Λk
)
− 1

p
tr
(
CY−1

k (z)Λ
) ∣∣∣ ≤ λk‖C‖

pv
≤ M

pv
.
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Moreover, we conclude from (5.10) and (5.18) that

1

p
tr
(
CY−1

k (z)Λ
)
− 1

p
tr
(
CY−1(z)Λ

)
=

1

p
tr
(
ΛCY−1

k (z)
) [√n

p

(
1

n
YYT − Λ

)
−
√
n

p

(
1

n
YkY

T
k − Λk

)]
Y−1(z)

= bn1 + bn2 + bn3,

where

bn1 =
1

p

√
n

p

(
yTk yk
n
− λk

)
eTkY

−1(z)ΛCY−1
k (z)ek

=
1

p

√
n

p

(
yTk yk
n
− λk

)[
eTkY

−1(z)ΛCY−1
(k)(z)ek +

1

z
√
np

eTkY
−1(z)ΛCY−1

(k)(z)Ykyk

]
,

bn2 =
1

p
√
np

yTkY
T
kY
−1(z)ΛCY−1

k (z)ek

=
1

p
√
np

yTkY
T
kY
−1(z)ΛCY−1

(k)(z)ek +
1

znp2
yTkY

T
kY
−1(z)ΛCY−1

(k)(z)Ykyk,

bn3 =
1

p
√
np

eTkY
−1(z)ΛCY−1

k (z)Ykyk =
1

p
√
np

eTkY
−1(z)ΛCY−1

(k)(z)Ykyk.

Here the further simplified expressions for bnj , j = 1, 2, 3 are obtained by (5.23)

and (5.24), as in (5.22). The arguments for (5.28) and (5.29) imply that the first

absolute moments of bn1, bn3 and the first term of bn2 have an order of 1/p.

As for the second term of bn2, we have

E

∣∣∣∣| 1

np2
yTkY

T
kY
−1(z)ΛCY−1

(k)(z)Ykyk

∣∣∣∣
≤ M

np2
E
(
‖yTkYT

k ‖2 · ‖Y−1(z)ΛCY−1
(k)(z)‖

)
≤ M

np2
E‖yTkYT

k ‖2

≤
Mα2

p

np3
E
[∣∣yTkYT

kYkyk − trYT
kYk

∣∣]+
M

np3
E
[∣∣tr (YT

kYk

)∣∣]
≤ M

np2

(
E
[
tr
(
YT
kYk

)]2)1/2
≤ M

np2

p p∑
j=1

E
(
yTj yj

)21/2

≤ M

p
.(5.32)

Thus, equation (5.31) follows.

Repeating the argument for (5.1) we may obtain

(5.33) E

∣∣∣∣1ptr (CY−1(z)Λ
)
− E

[
1

p
tr
(
CY−1(z)Λ

)]∣∣∣∣2 ≤ M

p2
.
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Thus, summarizing the argument from (5.30)-(5.33) we have proved that

E

∣∣∣∣− 1

np
yTkY

T
kCY−1

(k)(z)Ykyk + E

[
λk
p
trCY−1(z)Λ

]∣∣∣∣ ≤ M
√
p
.(5.34)

It follows from from (5.22), (5.27), (5.28) and (5.34) that

(5.35) E

∣∣∣∣zhTkCY−1
k (z)ek − E

[
λk
p
tr
(
CY−1(z)Λ

)]∣∣∣∣ ≤ M
√
p
.

We then conclude from (5.25), (5.35) and (5.20) that

(5.36) E

[
1

p
tr
(
Y−1(z)

)]
− E

[
1

p
tr
(

(anΛ− zIp)−1
)]
→ 0 as p→∞.

Moreover, denote the spectral decomposition of Y−1(z) by

VT
nY
−1(z)Vn = diag

(
1

µ1 − z
, · · · , 1

µp − z

)
,

where µ1, · · · , µp are eigenvalues of
√

n
p

(
1
nYYT − Λ

)
and Vn is the corresponding

eigenvector matrix. It follows that

1

p
tr
(
Y−1(z)Λ

)
=

1

p

p∑
k=1

(VTΛV)kk
µk − z

,

where (·)kk is the k-th diagonal element of VTΛV. This implies

(5.37) Im(z + λkE
1

p
trY−1(z)Λ) = v + v

λk
p

p∑
k=1

E

[
(VTΛV)kk
|µk − z|2

]
≥ v,

because for each k

(VTΛV)kk ≥ λmin(VTΛV) ≥ 0,

where λmin(VTΛV) stands for the minimum eigenvalue of VTΛV.

Thus, applying (5.35) with C = I and (5.25) we have

(5.38) an −
1

p

p∑
k=1

λk

z + λkE
[

1
p tr (Y−1(z)Λ)

] → 0.

It is necessary to have one more equation to find a solution from (5.36) and (5.38).

To this end, as in (5.19), write√
n

p

(
1

n
YYT − Λ

)
− zI =

p∑
k=1

ekh
T
k − zI
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Post–multiplying both sides of the above equality by Y−1(z), then taking trace

and expectation, and finally dividing by p on both sides of the above equality, we

obtain

1 =
1

p

p∑
k=1

E
(
hTkY

−1(z)ek

)
− zE

[
1

p
tr
(
Y−1(z)

)]
.

Furthermore, equation (5.9) yields

1 =
1

p

p∑
k=1

E
( hTkY

−1
k (z)ek

1 + hTkY
−1
k (z)ek

)
− zE

[
1

p
tr
(
Y−1(z)

)]
,

which is equivalent to

1

p

p∑
k=1

E
( 1

z(1 + hTkY
−1
k (z)ek)

)
= −E

[
1

p
tr
(
Y−1(z)

)]
.

Applying (5.35) with C = I, together with (5.25) and (5.37), ensures that as

p→∞,

(5.39) E

[
1

p
tr
(
Y−1(z)

)]
+

1

p

p∑
k=1

E

 1

z + λkE
[

1
p tr (Y−1(z)Λ)

]
→ 0.

Since E
[

1
p tr
(
Y−1(z)

)]
and E

[
1
p tr
(
Y−1(z)Λ

)]
are both bounded we may choose

a subsequence p′ such that E
[

1
p tr
(
Y−1(z)

)]
and E

[
1
p tr
(
Y−1(z)Λ

)]
converge to

their respective limits, say s1(z) and s2(z), as p′ →∞.

In addition, by (5.26)

Im(−ant+ z) ≥ v

and it is verified in the next subsection that

(5.40) Im(−t
∫

xdH(x)

z + xs2(z)
+ z) ≥ v.

Thus ∣∣∣∣∣∣ 1

ant− z
− 1

t
∫ xdH(x)
z+xs2(z) − z

∣∣∣∣∣∣ ≤ M

v2

∣∣∣∣an − ∫ xdH(x)

z + xs2(z)

∣∣∣∣
and by (5.37)∣∣∣∣∣∣ x

z + E
[

1
p tr (Y−1(z)Λ)

] − x

z + xs2(z)

∣∣∣∣∣∣ ≤ M

v2

∣∣∣∣E [1

p

(
trY−1(z)Λ

)]
− s2(z)

∣∣∣∣ .
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It follows from (5.36), (5.38) and (5.39) that

(5.41) s1(z) =

∫
dH(t)

t
∫ xdH(x)
z+xs2(z) − z

and

(5.42) s1(z) = −
∫

dH(t)

z + ts2(z)
.

When

H(t) =

1 t ≥ 0

0 t < 0
,

equation (5.41) or (5.42) determines s1(z) = −1/z.

In what follows, suppose that H(t) is not a degenerate distribution at the point

zero. By (5.41) and (5.42), s2(z) satisfies

(5.43)

∫
dH(t)

z + ts2(z)
= −

∫
dH(t)

t
∫ xdH(x)
z+xs2(z) − z

.

This is equivalent to(
s2(z) +

∫
xdH(x)

z + xs2(z)

)(∫ t

(z + ts2(z))(t
∫ xdH(x)
z+xs2(z) − z)

dH(t)
)

= 0.

Moreover, it is shown in the next subsection that s2(z) is the unique solution to

(2.7) in C+ and that

(5.44)

∫
t

(z + ts2(z))(t
∫ xdH(x)
z+xs2(z) − z)

dH(t) 6= 0.

Therefore, we have

(5.45) E

[
1

p
tr
(
A−1(z)

)]
→ −

∫
dH(t)

z + ts2(z)
,

where s2(z) is the unique solution in C+ to the equation below

(5.46) s2(z) = −
∫

xdH(x)

z + xs2(z)
.
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5.3. Step 3: Proof of (5.44) and uniqueness of solution of (5.46). In this

section, we verify (5.44) and (5.40), and show that s2(z) is the unique solution to

(5.46) in C+. We should keep in mind that H(t) is not a degenerate distribution at

the point zero.

We first verify (5.44). Let z = u+iv and s2(z) = m1+im2. From (5.37) we see that

Im
(
E
[

1
p tr
(
Y−1(z)Λ

)])
≥ 0 and hence m2 ≥ 0. It follows that v + tm2 ≥ v > 0

and t
∫ (v+xm2)xdH(x)

|z+xs2(z)|2 + v ≥ v > 0, which implies (5.40). We calculate the complex

number involved in (5.44) as follow.

g(z) ,
(
z̄ + ts2(z)

)(
t

∫
xdH(x)

z + xs2(z)
− z̄

)

= [u+ tm1 − i(v + tm2)]

[
t

∫
(u+ xm1)xdH(x)

|z + xs2(z)|2
− u+ i

(
t

∫
(v + xm2)xdH(x)

|z + xs2(z)|2
+ v

)]
= (u+ tm1)

[
t

∫
(u+ xm1)xdH(x)

|z + xs2(z)|2
− u
]

+ (v + tm2)

(
t

∫
(v + xm2)xdH(x)

|z + xs2(z)|2
+ v

)
+ i

[
(u+ tm1)

(
t

∫
(v + xm2)xdH(x)

|z + xs2(z)|2
+ v

)
− (v + tm2)

(
t

∫
(u+ xm1)xdH(x)

|z + xs2(z)|2
− u
)]

,

where the symbol “ x ” denotes the complex conjugate of complex number x.

If (u + tm1) and
[
t
∫ (u+xm1)xdH(x)

|z+xs2(z)|2 − u
]

are both nonnegative or both negative,

then the real part of g(z) is positive.

If

(u+ tm1) ≥ 0,
[
t

∫
(u+ xm1)xdH(x)

|z + xs2(z)|2
− u
]
< 0,

or

(u+ tm1) < 0,
[
t

∫
(u+ xm1)xdH(x)

|z + xs2(z)|2
− u
]
≥ 0,

then the absolute value of the imaginary part of g(z) is positive. Also, note that the

imaginary parts of z + ts2(z) and −t
∫ xdH(x)
z+xs2(z) + z are both greater than v.

Therefore, we have obtained∫
t

(z + ts2(z))(t
∫ xdH(x)
z+xs2(z) − z)

dH(t)

=

∫
tg(z)

|z + ts2(z)|2|t
∫ xdH(x)
z+xs2(z) − z|2

dH(t) 6= 0,

as claimed.
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We next prove uniqueness. Suppose that there is s3(z) ∈ C+ satisfying (5.46).

Then, we have

s2(z)− s3(z) = −
∫

xdH(x)

z + xs2(z)
+

∫
xdH(x)

z + xs3(z)

= (s2(z)− s3(z))

∫
x2dH(x)

(z + xs2(z))(z + xs3(z))
.(5.47)

Considering the imaginary part of the both sides of (5.46), we have

(5.48) m2 =

∫
xv + x2m2

|z + xs2(z)|2
dH(x) > m2

∫
x2

|z + xs2(z)|2
dH(x),

which implies

(5.49) 1 >

∫
x2

|z + xs2(z)|2
dH(x).

Here one should note that
∫

x
|z+xs2(z)|2dH(x) 6= 0 and hence the equality in (5.48)

implies m2 > 0. By Holder’s inequality∣∣∣∣∫ x2dH(x)

(z + xs2(z))(z + xs3(z))

∣∣∣∣2 ≤ ∫ x2dH(x)

|z + xs2(z)|2

∫
x2dH(x)

|z + xs3(z)|2
< 1.

Therefore, in view of (5.47), s3(z) must be equal to s2(z).

5.4. Step 4: From Gaussian distribution to general distributions. This

subsection is devoted to showing that the limit found for the Gaussian random

matrices in the last subsection also applies for the nonGaussian distributions.

Define

1

p
tr
(
(D− zI)−1

)
=

1

n
tr

((√
n

p

(
1

n
T1/2WWTT1/2 −T

)
− zI

)−1
)
,

where W = (Wij)p×n consists of i.i.d Gaussian random variables with E [W11] = 0

and E
[
W 2

11

]
= 1, and Wij are independent of Xij .

The aim in this subsection is to prove that as p→∞

(5.50) E

[
1

p
tr
(
A−1(z)

)]
− E

[
1

p
tr
(

(D− zI)−1
)]
→ 0.

Inspired by [7] and [13], we use Lindeberg’s method to prove (5.50). In what

follows, to simplify the notation, denote (A− zI)−2 by A−2(z),

X11, · · · , X1n, X21, · · · , Xpn by X̂1, · · · , X̂n, X̂n+1, · · · , X̂pn
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and W11, · · · ,W1n,W21, · · · ,Wpn by Ŵ1, · · · , Ŵn,Ŵn+1, · · · , Ŵpn.

For each j, 0 ≤ j ≤ pn, define

Zj = (X̂1, · · · , X̂j , Ŵj+1, · · · , Ŵpn) and Z0
j = (X̂1, · · · , X̂j−1, 0, Ŵj+1, · · · , Ŵpn).

Note that all random variables in A constitute the random vector Zpn and so

denote 1
p tr
(
A−1(z)

)
by 1

p tr
(

(A(Zpn)− zI)−1
)

. We then define the mapping f

from Rnp to C as

f(Zpn) =
1

p
tr
(

(A(Zpn)− zI)−1
)
.

Moreover, we use the components of Zj , j = 0, 1, · · · , pn − 1, respectively, to

replace X̂1, · · · , X̂pn, the corresponding components of Zpn, in A to form a series

of new matrices. For these new matrices, we define f(Zj), j = 0, 1, · · · , pn − 1 as

f(Zpn) is defined for the matrix A. For example, 1
p tr
(

(D− zI)−1
)

= f(Z0). Then,

we write

E

[
1

p
tr
(
A−1(z)

)]
− E

[
1

p
tr
(

(D− zI)−1
)]

=

pn∑
j=1

E
(
f(Zj)− f(Zj−1)

)
.

In addition, a third Taylor expansion gives

f(Zj) = f(Z0
j ) + X̂j∂jf(Z0

j ) +
1

2
X̂2
j ∂

2
j f(Z0

j ) +
1

2
X̂3
j

∫ 1

0
(1− t)2∂3

j f
(
Z

(1)
j (t)

)
dt,

f(Zj−1) = f(Z0
j ) + Ŵj∂jf(Z0

j ) +
1

2
Ŵ 2
j ∂

2
j f(Z0

j ) +
1

2
Ŵ 3
j

∫ 1

0
(1− t)2∂3

j f
(
Z

(2)
j−1(t)

)
dt,

where ∂rj f(·), r = 1, 2, 3, denote the r-fold derivative of the function f in the jth

coordinate,

Z
(1)
j (t) = (X̂1, · · · , X̂j−1, tX̂j , Ŵj+1, · · · , Ŵpn) and

Z
(2)
j−1(t) = (X̂1, · · · , X̂j−1, tŴj , Ŵj+1, · · · , Ŵpn).

Note that X̂j and Ŵj are both independent of Z0
j , and that E

[
X̂j

]
= E

[
Ŵj

]
= 0

and E
[
X̂2
j

]
= E

[
Ŵ 2
j

]
= 1. Thus

E

[
1

p
tr
(
A−1(z)

)]
− E

[
1

p
tr
(

(D− zI)−1
)]

(5.51)

=
1

2

pn∑
j=1

E
[
X̂3
j

∫ 1

0
(1− t)2∂3

j f
(
Z

(1)
j (t)

)
dt− Ŵ 3

j

∫ 1

0
(1− t)2∂3

j f
(
Z

(2)
j−1(t)

)
dt
]
.
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Evaluate ∂3
j f
(
Z

(1)
j (t)

)
next. In what follows, we make the use of the following

results:

(5.52)
1

p

∂tr
(
A−1(z)

)
∂Xij

= −1

p
tr

(
∂A

∂Xij
A−2(z)

)
and

(5.53)
∂A

∂Xij
=

1
√
np

T1/2eie
T
j X

TT1/2 +
1
√
np

T1/2Xeje
T
i T

1/2.

It follows that

1

p

∂2tr
(
A−1(z)

)
∂Xij

=
2

p
tr

(
∂A

∂Xij
A−1(z)

∂A

∂Xij
A−2(z)

)
− 2

p
√
np

eTi T
1/2A−2(z)T1/2ei

and

1

p

∂3tr
(
A−1(z)

)
∂Xij

=
8

p
√
np

eTi T
1/2A−2(z)

∂A

∂Xij
A−1(z)T1/2ei

−6

p
tr

(
∂A

∂Xij
A−1(z)

∂A

∂Xij
A−1(z)

∂A

∂Xij
A−2(z)

)
.(5.54)

Recalling the definition of sj given in the introduction, we have

eTj X
TT1/2 = sTj T

1/2 = rTj .

Let êi = T1/2ei. Then, using (5.53) and (5.9), we further write

(5.55)
1

p
√
np

êTi A
−2(z)

∂A

∂Xij
A−1(z)êi = cn1 + cn2 + cn3,

where

cn1 =
1

np2
êTi A

−2(z)êi
rTj A

−1
j (z)êi

1 + 1√
npr

T
j A
−1
j (z)rj

,

cn2 =
1

np2

êTi A
−2
j (z)rj

1 + 1√
npr

T
j A
−1
j (z)rj

êTi A
−1(z)êi,

cn3 = − 1

n3/2p5/2

êTi A
−1
j (z)rjr

T
j A
−2
j (z)rj

(1 + 1√
npr

T
j A
−1
j (z)rj)2

êTi A
−1(z)êi,

where the definition of A−1
j (z) is given in the subsection 2.1, equation (5.8) is also

used to obtain cn2 and cn3, and define (Aj − zI)−2 by A−2
j (z).
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We then claim that

(5.56)
‖A−1

j (z)rj‖/(np)1/4∣∣∣1 + 1√
npr

T
j A
−1
j (z)rj

∣∣∣ ≤ M

v

‖rj‖
(np)1/4

.

To this end, we need a result which states the relationship between the real part

and the imaginary part of the Stieltjes transform, say m(z), of any probability

distribution function:

(5.57) |Re(m(z))| ≤ v−1/2
√
Im(m(z)),

whose proof is straightforward or one may refer to Theorem 12.8 in[3].

Note that 1√
npr

T
j A
−1
j (z)rj/

‖rj‖2√
np can be viewed as the Stieltjes transform of a

probability distribution function. It follows from (5.57) that∣∣∣∣Re( 1
√
np

rTj A
−1
j (z)rj

)∣∣∣∣ ≤ ‖rj‖√
v(np)1/4

√
Im
( 1
√
np

rTj A
−1
j (z)rj

)
.

Therefore, it follows∣∣∣∣1 +
1
√
np

rTj A
−1
j (z)rj

∣∣∣∣ ≥ 1−
∣∣∣∣Re( 1

√
np

rTj A
−1
j (z)rj)

∣∣∣∣ ≥ 2/3,

if
‖rj‖√
v(np)1/4

√
Im
(

1√
npr

T
j A
−1
j (z)rj

)
≤ 1

3 .

This implies

‖A−1
j (z)rj‖/(np)1/4∣∣∣1 + 1√

npr
T
j A
−1
j (z)rj

∣∣∣ ≤ 3‖rj‖
2v(np)1/4

.

If
‖rj‖√
v(np)1/4

√
Im
(

1√
npr

T
j A
−1
j (z)rj

)
> 1

3 , then

‖A−1
j (z)rj‖/(np)1/4∣∣∣1 + 1√

npr
T
j A
−1
j (z)rj

∣∣∣ ≤ 1√
vIm( 1√

npr
T
j A
−1
j (z)rj)

≤ 3‖rj‖
v(np)1/4

,

which completes the proof of (5.56).

Applying (5.56) gives

(5.58) E
[∣∣X3

ijcn1

∣∣] ≤ M

np2
E
[∣∣X3

ij‖rj‖
∣∣] ≤ M

np3/2
(E
[
X4

11

]
+
(
E
[
X2

11

]
)1/2

)
.
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Similarly

(5.59) E
[∣∣X3

ijcn2

∣∣] ≤ M

np3/2
and E

[∣∣X3
ijcn3

∣∣] ≤ M

np3/2
,

because, as in (5.11),

(5.60)

∣∣∣∣∣
1√
npr

T
j A
−2
j (z)rj

1 + 1√
npr

T
j A
−1
j (z)rj

∣∣∣∣∣ ≤ 1

v
.

Consider the second term in (5.54), which, by (5.9) and (5.53), equals to

1

n3/2p5/2
tr
[
(êir

T
j + rj ê

T
i )A−1(z)(êir

T
j + rj ê

T
i )A−1(z)(êir

T
j + rj ê

T
i )A−2(z)

]
(5.61)

= 2dn1 + 2dn2 + 2dn3 + 2dn4,

where

dn1 =
1

n3/2p5/2

(
rTj A

−1
j (z)êi

1 + 1√
npr

T
j A
−1
j (z)rj

)2

rTj A
−2(z)êi,

dn2 =
1

n3/2p5/2

rTj A
−1
j (z)êi(

1 + 1√
npr

T
j A
−1
j (z)rj

)2 r
T
j A
−1
j (z)rj ê

T
i A
−2(z)êi,

dn3 =
1

n3/2p5/2

rTj A
−1
j (z)rj(

1 + 1√
npr

T
j A
−1
j (z)rj

) êTi A
−1(z)êir

T
j A
−2(z)êi,

dn4 =
1

n3/2p5/2
êTi A

−1(z)êir
T
j A
−1
j (z)êi

rTj A
−2
j (z)rj(

1 + 1√
npr

T
j A
−1
j (z)rj

)3 .

By (5.56) and recalling that |Xij | ≤ n1/4εp, we have

E
[∣∣X3

ijdn1

∣∣] ≤ M

n3/2p5/2
E
[∣∣X3

ij‖rTj ‖3
∣∣]

≤ M

n3/2p5/2

E [|Xij |6
]

+ E
[∣∣X3

ij

∣∣] E

∣∣∣∣∣∣
p∑
k 6=i

X2
kj

∣∣∣∣∣∣
3/2



≤ M

np5/2
+

M

n3/2p
≤ M

np3/2
.

Obviously, this argument also gives for k = 2, 3, 4

E
[∣∣X3

ijdnk
∣∣] ≤ M

n3/2p5/2
E
[∣∣X3

ij‖rTj ‖3
∣∣] ≤ M

np3/2
.



27

Summarizing the above, we have proved that

(5.62) E

[∣∣∣∣∣X3
ij

1

p

∂3tr
(
A−1(z)

)
∂Xij

∣∣∣∣∣
]
≤ M

np3/2
.

Moreover, in the derivation above, we only use the facts that Xij are independent

with mean zero and finite fourth moment. In the meantime, note that Xij and Wij

play the same role in their corresponding matrices. Additionally, all these random

variables are independent with mean zero and finite fourth moment. Therefore, the

above argument apparently works for all matrices.

We finally conclude from (5.62) and (5.51) that∣∣∣∣E [1

p
tr
(
A−1(z)

)]
− E

[
1

p
tr
(

(D− zI)−1
)]∣∣∣∣

≤ M

pn∑
j=1

[∫ 1

0
(1− t)2

∣∣∣E(X̂3
j ∂

3
j f
(
Z

(1)
j (t)

))∣∣∣dt
+

∫ 1

0
(1− t)2E

∣∣∣(Ŵ 3
j ∂

3
j f
(
Z

(2)
j−1(t)

))∣∣∣dt] ≤ M
√
p
.

Therefore, the proof of Theorem 1 is completed.
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