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Abstract

This paper proposes a new statistic to test independence between two high
dimensional random vectors x : p1× 1 and y : p2× 1. The proposed statistic is
based on the sum of regularized sample canonical correlation coefficients of x
and y. The asymptotic distribution of the statistic under the null hypothesis is
established as a corollary of general central limit theorems (CLT) for the linear
statistics of classical and regularized sample canonical correlation coefficients
when p1 and p2 are both comparable to the sample size n. As applications
of the developed independence test, various types of dependent structures,
such as factor models, ARCH models and a general uncorrelated but depen-
dent case etc., are investigated by simulations. As an empirical application,
cross-sectional dependence of daily stock returns of companies between differ-
ent sections in New York Stock Exchange (NYSE) is detected by the proposed
test.

Keywords: Canonical correlation coefficients; Independence test; Empir-
ical spectral distribution; Large dimensional random matrix theory; Stieltjes
transform; Central limit theorem.

1 Introduction

A prominent feature of data collection nowadays is that the number of variables is compara-
ble with the sample size. This type of data poses great challenges because traditional multi-
variate approaches do not necessarily work, which were established for the case of the sam-
ple size n tending to infinity and the dimension p remaining fixed (See Anderson (1984)).
There have been a substantial body of research work dealing with high dimensional data,
e.g. Bai and Saranadasa (1996), Fan, Guo and Hao (2012), Huang, Horowitz and Ma (2008),
Fan and Fan (2008), Bai and Ng (2002), Birke and Dette (2005), etc.

The importance of the independence assumption for inference arises in many aspects of
multivariate analysis. For example, it is often the case in multivariate analysis that a number of
variables can be rationally classified into several mutually exclusive categories. When variables
can be grouped in such a way, a natural question is whether there is any significant relationship
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between the groups of variables. In other words, can we claim that the groups are mutually
independent so that further statistical analysis such as classification and testing hypothesis of
equality of mean vectors and covariance matrices could be conducted ? When the dimension p
is fixed, Wilks (1935) used the likelihood ratio statistic to test independence for k sets of normal
distributed random variables and one may also refer to Chapter 12 of Anderson (1984) regarding
to this point. Relying on the asymptotic theory of sample canonical correlation coefficients, this
paper proposes a new statistic to test independence between two high dimensional random
vectors.

Specifically, the aim is to test the hypothesis

H0 : x and y are independent; against H1 : x and y are dependent, (1.1)

where x = (x1, . . . , xp1)
T and y = (y1, . . . , yp2)

T . Without loss of generality, suppose that
p1 ≤ p2.

It is well known that canonical correlation analysis (CCA) deals with the correlation structure
between two random vectors (see Chapter 12 of Anderson (1984)). Draw n independent and
identically distributed (i.i.d.) observations from these two random vectors x and y, respectively
and group them into p1 × n random matrix X = (x1, · · · ,xn) = (Xij)p1×n and p2 × n random
matrix Y = (y1, · · · ,yn) = (Yij)p2×n respectively. CCA seeks the linear combinations aTx and
bTy that are most highly correlated, that is to maximize

γ = Corr(aTx,bTy) =
aTΣxyb√

aTΣxxa
√
bTΣyyb

, (1.2)

where Σxx and Σyy are the population covariance matrices for x and y respectively and Σxy

is the population covariance matrix between x and y. After finding the maximal correlation r1
and associated vectors a1 and b1, CCA continues to seek a second linear combination aT2 x and
bT
2 y that has the maximal correlation among all linear combinations uncorrelated with aT1 x and

bT
1 y. This procedure can be iterated and successive canonical correlation coefficients γ1, . . . , γp1

can be found.
It turns out that the population canonical correlation coefficients γ1, . . . , γp1 can be recast

as the roots of the determinant equation

det(ΣxyΣ
−1
yyΣ

T
xy − γ2Σxx) = 0. (1.3)

About this point, one may refer to page 284 of Mardia (1979). The roots of the determinant
equation above go under many names, because they figure equally in discriminant analysis,
canonical correlation analysis, and invariant tests of linear hypotheses in the multivariate analysis
of variance.

Traditionally, sample covariance matrices Σ̂xx, Σ̂xy and Σ̂yy are used to replace the cor-
responding population covariance matrices to solve the nonnegative roots ρ1, ρ2, . . . , ρp1 to the
determinant equation

det(Σ̂xyΣ̂
−1
yyΣ̂

T
xy − ρ2Σ̂xx) = 0

where

Σ̂xx =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T , Σ̂xy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)T ,

Σ̂yy =
1

n

n∑
i=1

(yi − ȳ)(yi − ȳ)T , x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi.
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However, it is inappropriate to use these types of sample covariance matrices to replace popu-
lation covariance matrices to test (10.31) in some cases. We demonstrate such an example in
Section 6.3.

Therefore, in this paper we instead consider the nonnegative roots r1, r2, . . . , rp1 of an alter-
native determinant equation as follows

det(AxyA
−1
yyA

T
xy − r2Axx) = 0, (1.4)

where

Axx =
1

n
XXT , Ayy =

1

n
YYT , Axy =

1

n
XYT .

We also callAxx, Ayy andAxy sample covariance matrices, as in the random matrix community.
However, whichever sample covariance matrices are used they are not consistent estimators of
population covariance matrices, which is called ‘curse of dimensionality’, when the dimensions
p1 and p2 are both comparable to the sample size n. As a consequence it is conceivable that the
classical likelihood ratio statistic (see Wilks (1935) and Anderson (1984)) does not work well in
the high dimensional case (in fact, it is not well defined and we will discuss this point in the
later section).

Moreover, from (1.4), when p1 < n, p2 < n, one can see that r21, r
2
2, . . . , r

2
p1 are the eigenvalues

of the matrix

Sxy = A−1
xxAxyA

−1
yyA

T
xy. (1.5)

Evidently A−1
xx and A−1

yy do not exist when p1 > n and p2 > n. For this reason, we also consider
the eigenvalues of the regularized matrix

Txy = A−1
tx AxyA

−
yyA

T
xy, (1.6)

where A−1
tx = ( 1nXXT + tIp1)

−1, t is a positive constant number and Ip1 is a p1 × p1 identity
matrix, and A−

yy denotes the Moore-Penrose pseudoinverse matrix of Ayy. Hence Txy is well
defined even in the case of p1, p2 ≥ n. Moreover Txy reduces to Sxy when p1, p2 are both smaller
than n and t = 0.

We now look at CCA from another perspective. The original random vectors x and y can
be transformed into new random vectors ξ and η as( x

y

)
→

( ξ
η

)
=

( A′
0

0 B′

)( x
y

)
(1.7)

such that ( A′
0

0 B′

)( Σxx Σxy

Σyx Σyy

)( A 0
0 B

)
=

( Ip1 P
P ′

Ip2

)
, (1.8)

where P = (P1,0), P1 = diag(γ1, . . . , γp1) and A = Σ
−1/2
xx Q1, B = Σ

−1/2
yy Q2, with Q1 : p1 × p1

and Q2 : p2 × p2 being orthogonal matrices satisfying

Σ
−1/2
xx ΣxyΣ

−1/2
yy = Q1PQ2.

Hence testing independence between x and y is equivalent to testing independence between ξ
and η. The covariance between ξ and η has the following simple expression

V ar
( ξ

η

)
=

( Ip1 P
P ′

Ip2

)
. (1.9)
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In view of this, if the joint distribution of x and y is Gaussian, independence between x and y is
equivalent to asserting that the population canonical correlations all vanish: γ1 = · · · = γp1 = 0.
Details can be referred to Chapter 11 of Fujikoshi et. (2010). A natural criteria for this test
should be

∑p1
i=1 γ

2
i .

As pointed out, ri is not a consistent estimator of the corresponding population version γi
in the high dimensional case. However, fortunately, the classical sample canonical correlation
coefficients r1, r2, . . . , rp1 or its regularized analogous still contain important information so that
hypothesis testing for (10.31) is possible although the classical likelihood ratio statistic does
not work well in the high dimensional case. This is due to the fact that the limits of the
empirical spectral distribution (ESD) of r1, · · · , rp1 under the null and the alternative could be
different so that we may use it to distinguish dependence from independence (one may see the
next section). Our approach essentially makes use of the integral of functions with respect to
the ESD of canonical correlation coefficients. The proposed statistic turns out a trace of the
corresponding matrices, i.e.

∑p1
i=1 r

2
i . In order to apply it to conduct tests we further propose

two modified statistics by either dividing the total samples into two groups or estimating the
population covariance matrix of x in a framework of sparsity.

In addition to proposing a statistic for testing (10.31), another contribution of this paper is to
establish the limit of the ESD of regularized sample canonical correlation coefficients and central
limit theorems (CLT) of linear functionals of the classical and regularized sample canonical
correlation coefficients r1, r2, . . . , rp1 respectively. This is of an independent interest in its own
right in addition to providing asymptotic distributions for the proposed statistics.

To derive the CLT for linear spectral statistics of classical and regularized sample canonical
correlation coefficients, the strategy is to first establish the CLT under the Gaussian case, i.e.
the entries of X are Gaussian distributed. In the Gaussian case, the CLT for linear spectral
statistics of the matrix Sxy can be linked to that of an F -matrix, which has been investigated
in Zheng (2012). We then extend the CLT to general distributions by bounding the difference
between the characteristic functions of the respective linear spectral statistics of Sxy under the
Gaussian case and nonGaussian case. To bound such a difference and handle the inverse of a
random matrix we use an interpolation approach and a smooth cutoff function. The approach
of developing the CLT for linear spectral statistics of the matrix Txy is similar to that for Sxy

except we first have to develop CLT of perturbed sample covariance matrices in the supplement
material for establishing CLT of the matrix Txy when the entries of X are Gaussian.

Here we would point out some works on canonical correlation coefficients under the high
dimensional scenario. In the high dimensional case Wachter (1980) investigated the limit of the
ESD of the classical sample canonical correlation coefficients r1, r2, . . . , rp1 and Johnstone (2008)
established the Tracy-Widom law of the maximum of sample correlation coefficients when Axx

and Ayy are Wishart matrices and x, y are independent.
The remainder of the paper is organized as follows. Section 2 proposes a new test statistic

for (10.31) based on large dimensional random matrix theory and contains the main results.
Two modified statistics are further provided in Section 3. Section 4 provides the powers of
the test statistics. Two examples as statistical inference of independence test are explored in
Section 5. Simulation results for several kinds of dependent structures are provided in Section
6. An empirical analysis of cross-sectional dependence of daily stock returns of companies from
two different sections in New York Stock Exchange (NYSE) is investigated by the proposed
independence test in Section 7. The proof of Theorem 1 is given in Appendix A in Section 8.
Some useful lemmas and proofs of Theorems 2-7 are relegated to Appendix B while one theorem
about the CLT of a sample covariance matrix plus a perturbation matrix is provided in the

4



supplementary material.

2 Methodology and theory

Throughout this paper we make the following assumptions.

Assumption 1. p1 = p1(n) and p2 = p2(n) with p1
n → c1 and p2

n → c2, c1, c2 ∈ (0, 1), as
n → ∞.

Assumption 2. p1 = p1(n) and p2 = p2(n) with p1
n → c

′
1 and p2

n → c
′
2, c

′
1 ∈ (0,+∞) and

c
′
2 ∈ (0,+∞), as n → ∞.

Assumption 3. X = (Xij)
p1,n
i,j=1 and Y = (Yij)

p2,n
i,j=1 satisfy X = Σ

1/2
xx W and Y = Σ

1/2
yy V,

whereW = (w1, · · · ,wn) = (Wij)
p1,n
i,j=1 consists of i.i.d real random variables {Wij} with EW11 =

0 and E|W11|2 = 1; V = (v1, · · · ,vn) = (Vij)
p2,n
i,j=1 consists of i.i.d real random variables with

EV11 = 0 and E|V11|2 = 1; Σ
1/2
xx and Σ

1/2
yy are Hermitian square roots of positive definite

matrices Σxx and Σyy respectively so that (Σ
1/2
xx )2 = Σxx and (Σ

1/2
yy )2 = Σyy.

Assumption 4. FΣxx
D→ H, a proper cumulative distribution function.

Remark 1. By the definition of the matrix Sxy, the classical canonical correlation coefficients
between x and y are the same as those between w and v when w and {wi} are i.i.d, and v and
{vi} are i.i.d.

We now introduce some results from random matrix theory. Denote the ESD of any n × n
matrix A with real eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn by

FA(x) =
1

n
#{i : µi ≤ x}, (2.1)

where #{· · · } denotes the cardinality of the set {· · · }.
When the two random vectors x and y are independent and each of them consists of i.i.d

Gaussian random variables, under Assumptions 1 and 3, Wachter (1980) proved that the em-
pirical measure of the classical sample canonical correlation coefficients r1, r2, · · · , rp1 converges
in probability to a fixed distribution whose density is given by

ρ(x) =

√
(x− L1)(x+ L1)(L2 − x)(L2 + x)

πc1x(1− x)(1 + x)
, x ∈ [L1, L2], (2.2)

and atoms size of max(0, (1 − c2)/c1) at zero and size max(0, 1 − (1 − c2)/c1) at unity where
L1 = |

√
c2 − c2c1−

√
c1 − c1c2| and L2 = |

√
c2 − c2c1+

√
c1 − c1c2|. Here the empirical measure

of r1, r2, · · · , rp1 is defined as in (10.54) with µi replaced by ri.
Yang and Pan (2012) proved that (2.2) also holds for classical sample canonical correlation

coefficients when the entries of x and y are not necessarily Gaussian distributed. For easy
reference, we state the result in the following proposition.

Proposition 1. In addition to Assumptions 1 and 3, suppose that {Xij , 1 ≤ i ≤ p1, 1 ≤ j ≤ n}
and {Yij , 1 ≤ i ≤ p2, 1 ≤ j ≤ n} are independent. Then the empirical measure of r1, r2, . . . , rp1
converges almost surely to a fixed distribution function whose density is given by (2.2).
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Under Assumptions 2-4, instead of FSxy , we analyze the ESD, FTxy , of the regularized ran-
dom matrix Txy given in (10.11). To this end, define the Stieltjes transform of any distribution
function G(x) by

mG =

∫
1

x− z
dG(x), z ∈ C+ = {z ∈ C,ℑz > 0},

where ℑz denotes the imaginary part of the complex number z.
It turns out that the limit of the empirical spectral distribution (LSD) of Txy is connected

to the LSD of S1S
−1
2t defined below. Let

S1 =
1

p2

p2∑
k=1

wkw
T
k , S2t =

1

n− p2

n∑
k=p2+1

wkw
T
k + t

n

n− p2
Σ−1

xx , y1 =
c
′
1

c
′
2

, y2 =
c
′
1

1− c
′
2

.

In the definition of S2t we require n > p2. The LSD of S2t and its Stieltjes transform are denoted
by Fy2t and my2t(z) respectively. Under Assumptions 2-4, from Silverstein and Bai (1995) and
Pan (2010), my2t(z) is the unique solution in C+ to

my2t(z) = mHt

(
z − 1

1 + y2my2t(z)

)
, (2.3)

where mHt(z) denotes the Stieltjes transform of the LSD of the matrix t n
n−p2

Σ−1
xx (one may

also see (1.4) in the supplement material). Let n = (n1, n2) and y = (y1, y2) with n1 =
p1 and n2 = n − p2. The Stieltjes transforms of the ESD and LSD of the matrix S1S

−1
2t

are denoted by mn(z) and my(z) respectively while those of the ESD and LSD of the matrix
1
p2

∑p2
k=1w

T
k S

−1
2t wk are denoted by mn(z) and my(z) respectively. Observe that the spectral of

S1S
−1
2t and 1

p2

∑p2
k=1w

T
k S

−1
2t wk are the same except zero eigenvalues and this leads to

my(z) = −1− y1
z

+ y1my(z). (2.4)

We are now in a position to state the LSD of Txy.

Theorem 1. In addition to Assumptions 2-4, suppose that {Xij , 1 ≤ i ≤ p1, 1 ≤ j ≤ n} and
{Yij , 1 ≤ i ≤ p2, 1 ≤ j ≤ n} are independent.

a) If c
′
2 ∈ (0, 1), then the ESD, FTxy(λ), converges almost surely to a fixed distribution

F̃ ( λ
q(1−λ)) with q =

c
′
2

1−c
′
2

where F̃ (λ) is a nonrandom distribution and its Stieltjes transform

my(z) is the unique solution in C+ to

my(z) = −
∫

dFy2t(1/λ)

λ(1− y1 − y1zmy(z))− z
. (2.5)

b) If c
′
2 ∈ [1,∞), then FTxy(λ), converges almost surely to a fixed distribution G̃( t

1−λ − t)

where G̃(λ) is a nonrandom distribution and its Stieltjes transform satisfies the equation

mG̃(z) =

∫
dH(λ)

λ(1− c′1 − c′1zmG̃(z))− z
. (2.6)

Remark 2. Indeed, taking t = 0 in (2.5) recovers Wachter (1980)’s result (one may refer to
the result of F matrix in Bai and Silverstein (2009)).
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Let us now introduce the test statistic. Under Assumption 1 and Assumption 3, behind our
test statistic is the observation that the limit of FSxy(x) can be obtained from (2.2) when x and
y are independent, while the limit of FSxy(x) could be different from (2.2) when x and y have
correlation. For example, if y = Σ1w and x = Σ2w with p1 = p2 and both Σ1 and Σ2 being
invertible, then

Sxy = I,

which implies that the limit of FSxy(x) is a degenerate distribution. This suggests that we may
make use of FSxy(x) to construct a test statistic. Thus we consider the following statistic∫

ϕ(x)dFSxy(x) =
1

p1

p1∑
i=1

ϕ(r2i ). (2.7)

A perplexing problem is how to choose an appropriate function ϕ(x). For simplicity we choose
ϕ(x) = x in this work. That is, our statistic is

Sn =

∫
xdFSxy(x) =

1

p1

p1∑
i=1

r2i . (2.8)

Indeed, extensive simulations based on Theorems 2 and 3 below have been conducted to help
select an appropriate function ϕ(x). We find that other functions such as ϕ(x) = x2 does not
have an advantage over ϕ(x) = x.

In the classical CCA, the maximum likelihood ratio test statistic for (10.31) with fixed
dimensions is

MLRn =

p1∑
i=1

log(1− r2i ) (2.9)

(see Wilks (1935) and Aderson (1984)). That is, ϕ(x) in (10.29) takes log(1− x). Note that the
density ρ(x) has atom size of max(0, 1 − (1 − c2)/c1) at unity by (2.2). Thus the normalized
statistic MLRn is not well defined when c1 + c2 > 1 ( because

∫
log(1 − x2)ρ(x)dx is not

meaningful). In addition, even when c1+ c2 ≤ 1, the right end point of ρ(x), L2, can be equal to
one so that some sample correlation coefficients ri are close to one. For example L2 = 1 when
c1 = c2 = 1/2. This in turns causes a big value of the corresponding log(1 − r2i ). Therefore,
MLRn is not stable and this phenomenon is also confirmed by our simulations.

Under Assumptions 2-4, we substitute Txy for Sxy and use the statistic

Tn =

∫
xdFTxy(x). (2.10)

We next establish the CLTs of the statistics (10.29) and (2.10). To this end, write

G(1)
p1,p2(λ) = p1

(
FSxy(λ)− F c1n,c2n(λ)

)
, (2.11)

and

G(2)
p1,p2(λ) = p1

(
FTxy(λ)− F c

′
1n,c

′
2n(λ)

)
, (2.12)

where F c1n,c2n(λ) and F c
′
1n,c

′
2n(λ) are obtained from F c1,c2(λ) and F c

′
1,c

′
2(λ) with c1, c2, c

′
1, c

′
2

and H replaced by c1n = p1
n , c2n = p2

n , c
′
1n = p1

n , c
′
2n = p2

n and FΣxx respectively; F c1,c2(λ) and
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F c
′
1,c

′
2(λ) are the limiting spectral distributions of the matrices Sxy and Txy respectively. The

density of F c1,c2(λ) can be obtained from ρ(x) in (2.2) while the density of F c
′
1,c

′
2(λ) can be

recovered from (2.5). We re-normalize (10.29) and (2.10) as∫
ϕ(λ)dG(1)

p1,p2(λ) := p1
( ∫

ϕ(λ)dFSxy(λ)−
∫

ϕ(λ)dF c1n,c2n(λ)
)
, (2.13)

and ∫
ϕ(λ)dG(2)

p1,p2(λ) := p1
( ∫

ϕ(λ)dFTxy(λ)−
∫

ϕ(λ)dF c
′
1n,c

′
2n(λ)

)
. (2.14)

Also, let

ȳ1 :=
c1

1− c2
∈ (0,+∞), ȳ2 :=

c1
c2

∈ (0, 1), h =
√
ȳ1 + ȳ2 − ȳ1ȳ2, a1 =

(1− h)2

(1− ȳ2)2
,

a2 =
(1 + h)2

(1− ȳ2)2
, gȳ1,ȳ2(λ) =

1− ȳ2
2πλ(ȳ1 + ȳ2λ)

√
(a2 − λ)(λ− a1), a1 < λ < a2. (2.15)

Theorem 2. Let ϕ1, · · · , ϕs be functions analytic in an open region in the complex plane con-
taining the interval [a1, a2]. In addition to Assumptions 1 and 3, suppose that

EX4
11 = 3. (2.16)

Then, as n → ∞, the random vector( ∫
ϕ1(λ)dG

(1)
p1,p2(λ), . . . ,

∫
ϕs(λ)dG

(1)
p1,p2(λ)

)
(2.17)

converges weakly to a Gaussian vector (Xϕ1 , . . . , Xϕs) with mean

EXϕi
= lim

r↓1

1

4πi

∮
|ξ|=1

fi
(1 + h2 + 2hR(ξ)

(1− ȳ2)2
)[ 1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + ȳ2
h

]
dξ, (2.18)

and covariance function

cov(Xϕi
, Xϕj

) = − lim
r↓1

1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

fi
(1+h2+2hR(ξ1)

(1−ȳ2)2

)
fj
(1+h2+2hR(ξ2)

(1−ȳ2)2

)
(ξ1 − rξ2)2

dξ1dξ2, (2.19)

where fi(λ) = ϕi(
1

1+(
1−c2
c2

)λ
); R denotes the real part of a complex number; and r ↓ 1 means that

r approaches to 1 from above.

Remark 3. When ϕ(x) = x, the mean of the limit distribution in Theorem 2 is 0 and the

variance is
2h2y21y

2
2

(y1+y2)4
. These are calculated in Example 4.2 of Zheng (2012). Moreover, the

assumption (10.38) can be replaced by EY 4
11 = 3 since X and Y have an equal status in the

matrix Sxy.
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Before stating the CLT of the linear spectral statistics for the matrix Txy, we make some
notation. Let r be a positive integer and introduce

mr(z) =

∫
dHt(x)

(x− z +ϖ(z))r
, ϖ(z) =

1

1 + y2my2t(z)
, g(z) =

y2(my2t(−my(z)))
′

(1 + y2my2t(−my(z)))
2

s(z1, z2) =
1

1 + y2my2t(z1)
− 1

1 + y2my2t(z2)
, h(z) =

−m2
y(z)

1− y1m2
y(z)

∫ dFy2t(x)

(x+my(z))
2

,

where (my2t(z))
′ stands for the derivative with respect to z.

Theorem 3. Let ϕ1, · · · , ϕs be functions analytic in an open region in the complex plane contain-
ing the support of the LSD F̃ (λ) whose stieltjes transform is (2.5). In addition to Assumptions
2-4, suppose that

EX4
11 = 3. (2.20)

a) If c
′
2 ∈ (0, 1), then the random vector( ∫

ϕ1(λ)dG
(2)
p1,p2(λ), . . . ,

∫
ϕs(λ)dG

(2)
p1,p2(λ)

)
(2.21)

converges weakly to a Gaussian vector (Xϕ1 , . . . , Xϕs) with mean

EXϕi
= − 1

2πi

∮
C
ϕi

( qz

1 + qz

)( y1
∫
my(z)

3x[x+my(z)]
−3dFy2t(x)

[1− y1
∫
my(z)

2(x+my(z))
−2dFy2t(x)]

2

+h(z)
y2ϖ

2(−my(z))m3(−my(z)) + y22ϖ
4(−my(z))m

′
y2t(−my(z))m3(−my(z))

1− y2ϖ2(−my(z))m2(−my(z))

−h(z)
y22ϖ

3(−my(z))m
′
y2t(−my(z))m2(−my(z))

1− y2ϖ2(−my(z))m2(−my(z))

)
dz (2.22)

and covariance

Cov(Xϕi
, Xϕj

) = − 1

2π2

∮
C1

∮
C2

ϕi

( qz1
1 + qz1

)
ϕj(

qz2
1 + qz2

)
( m

′
y(z1)m

′
y(z2)

(my(z1)−my(z2))
2
− 1

(z1 − z2)2

− h(z1)h(z2)

(−my(z2) +my(z1))
2
+

h(z1)h(z2)[1 + g(z1) + g(z2) + g(z1)g(z2)]

[−my(z2) +my(z1) + s(−my(z1),−my(z2))]
2

)
dz1dz2. (2.23)

Here q is defined in Theorem 1. The contours in (2.22) and (2.23)(two in (2.23), which may be
assumed to be nonoverlapping) are closed and are taken in the positive direction in the complex
plain, each enclosing the support of F̃ (λ).

b) If c
′
2 ∈ [1,+∞) (p2 ≥ n), (10.69) converges weakly to a Gaussian vector (Xϕ1 , . . . , Xϕs)

with mean

EXϕi
= − 1

2πi

∮
C
ϕi

( t−1z

1 + t−1z

) c
′
1

∫
(1 + λs(z)3)−3s(z)3λ2dH(λ)(

1− c
′
1

∫
s(z)2λ2(1 + λs(z))−2dH(λ)

)2dz (2.24)

and

Cov(Xϕi
, Xϕj

) = − 1

2π2

∮
C1

∮
C2

ϕi

( t−1z1
1 + t−1z1

)
ϕi

( t−1z2
1 + t−1z2

) s
′
(z1)s

′
(z2)(

s(z1)− s(z2)
)2dz1dz2, (2.25)
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where s(z) is Stieltjes transform of the LSD of the matrix 1
nW

TΣxxW. The contours in (2.24)
and (2.25)(two in (2.25), which may be assumed to be nonoverlapping) are closed and are taken
in the positive direction in the complex plain, each enclosing the support of G̃(λ).

Here we would like to point out that the idea of testing independence between two random
vectors x and y by CCA is based on the fact that the uncorrelatedness between x and y is
equivalent to independence between them when the random vector of size (p1+p2) consisting of
the components of x and y is a Gaussian random vector. See Wilks (1935) and Anderson (1984).
For nonGaussian random vectors x and y, uncorrelatedness is not equivalent to independence.
CCA may fail in this case. Yet, since Theorems 2 and 3 hold for nonGaussian random vectors x
and y CCA can be still utilized to capture dependent but uncorrelated x and y such as ARCH
type of dependence by considering the high power of their entries. See Section 6.5 for the further
discussion.

Following Lytova and Pastur (2009) condition (10.38) can be removed. However it will sig-
nificantly increase the length of this work and we will not pursue it here.

3 Test statistics

Note that the regularized statistic
∫
λdG

(2)
p1,p2(λ) in (2.14) (when ϕ(λ) = λ) involves the unknown

covariance matrix Σxx through F c
′
1n,c

′
2n(λ). In order to apply it to conduct tests, one needs to

estimate the unknown parameter. It is well known that estimating the population covariance
matrix Σxx is very challenging unless it is sparse. El Karoui (2008) and Bai et al. (2010) pro-
posed some approaches to estimate the limit of the ESD of Σxx or its moments. However the
convergence rate is not fast enough to offset the order of p1. Indeed, Theorem 1 of Bai et al.
(2010) implies that the best possible convergence rate is Op(

1
n). In view of this, we provide two

methods to deal with the problem. One is to estimate
∫
λdF c

′
1n,c

′
2n(λ) in a framework of sparsity

while the other one is to eliminate this unknown parameter by dividing the samples into two
groups.

3.1 Plug-in estimator under sparsity

When c′2 < 1, it turns out that∫
λdF c′1n,c

′
2n(λ) =

p2
p1

− p2
p1

1

1 + c′1nmnt
, (3.1)

where mnt is a solution to the equation

mnt = an − ant

p1
tr(a−1

n Σxx + tI)−1 (3.2)

with an = 1 + c′1nmnt (see the proof of Theorem 8). An estimator of mnt is then proposed as
m̂nt which is a solution to the equation

m̂nt = ân − ânt

p1
tr(â−1

n Σ̂xx + tI)−1, (3.3)

with ân = 1 + c′1nm̂nt. Here we use a thresholding estimator Σ̂xx to estimate Σxx, slightly
different from that proposed by Bickel and Levina (2008). Specifically speaking, suppose that
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the underlying random variables {Xij} are mean zero and variable one. Then define Σ̂xx to be
a matrix whose diagonal entries are all one and the off diagonal entries are σ̂ijI(|σ̂ij | ≥ ℓ) with

ℓ = M
√

log p1
n and M being some appropriate constant (M will be selected by cross-validation).

Here σ̂ij denotes the entry at the (i, j)th position of sample covariance matrix 1
nXXT . Therefore

the resulting test statistic is

p1

(∫
λdFTxy(λ)− (

p2
p1

− p2
p1

1

1 + c′1nm̂nt
)
)
. (3.4)

When p2 ≥ n, it turns out that∫
λdF c′1n,c

′
2n(λ) = 1− tm(1t)

n , (3.5)

where m
(1t)
n satisfies the equation

m(1t)
n =

1

p1
tr
(
(1− c′1n + c′1ntm

(1t)
n )Σxx + tI

)−1
. (3.6)

We then propose the resulting test statistic

p1

(∫
λdFTxy(λ)− (1− tm̂(1t)

n )
)

(3.7)

where m̂
(1t)
n satisfies the equation

m̂(1t)
n =

1

p1
tr
(
(1− c′1n + c′1ntm̂

(1t)
n )Σ̂xx + tI

)−1
. (3.8)

Theorem 4. In addition to Assumptions in Theorem 3, suppose that EX2
ij = 1, sup

i,j
E|Xij |17 <

∞ for all i and j and that

so(p1)
( log p1

n

)(1−q)/2
→ 0, (3.9)

where
∑
i̸=j

|σij |q = so(p1) with 0 ≤ q < 1.

a) If c′2 < 1, then p1

( ∫
λdFTxy(λ) − (p2p1 − p2

p1
1

1+c′1nm̂nt
)
)

converges weakly to a normal

distribution with the mean and variance given in (2.22) and (2.23) with ϕ(λ) = λ.

b) If c′2 ≥ 1, then p1

( ∫
λdFTxy(λ)− (1− tm̂

(1t)
n )

)
converges weakly to a normal distribution

with the mean and variance given in Part (b) of Theorem 3 with ϕ(λ) = λ.

We demonstrate an example of sparse covariance matrix in the simulation parts, satisfying
the sparse condition (3.9).

3.2 Strategy of dividing samples

If (3.9) is not satisfied, we then propose a strategy of dividing the total samples into two groups.
Specifically speaking, we divide the n samples of (x,y) into two groups respectively, i.e.

Group 1 : X(1) = (x1,x2, . . . ,x[n/2]), Y(1) = (y1,y2, . . . ,y[n/2]) (3.10)
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and

Group 2 : X(2) = (x[n/2]+1,x[n/2]+2, . . . ,xn), Y(2) = (y[n/2]+1,y[n/2]+2, . . . ,yn), (3.11)

where [n/2] is the largest integer not greater than n/2. When n is odd, we discard the last
sample. However, if the above strategy of dividing samples into two groups is directly used,
then the asymptotic means of the resulting statistic (the difference between the statistics in
(2.14) obtained from two subsamples) are always zero in both null hypothesis and alternative
hypothesis due to similarity of two groups so that the power of the test statistic is very low. This
is also confirmed by simulations. Therefore we further propose its modified version as follows.

For Y(2) in Group 2, we extract a sub-data Ỹ(2), i.e.

Ỹ(2) = (ỹ[n/2]+1, ỹ[n/2]+2, . . . , ỹn),

where ỹj consists of the first [p2/2] components of yj , for all j = [n/2] + 1, [n/2] + 2, . . . , n. We

use Ỹ(2) to form a new group

Modified Group 2 : X(2) = (x[n/2]+1,x[n/2]+2, . . . ,xn), Ỹ(2) = (ỹ[n/2]+1, ỹ[n/2]+2, . . . , ỹn).

For Group 1, it follows from Theorem 3 that∫
λdp1

(
FT

(1)
xy (λ)− F 2c

′
1n,2c

′
2n(λ)

)
d→ Z1, (3.12)

where T
(1)
xy is obtained from Txy with X and Y replaced by X(1) and Y(1) respectively and Z1

is a normal random variable with mean and variance given in Theorem 3 with c′1 and c′2 replaced
by 2c′1 and 2c′2 respectively and ϕ(λ) = λ. Similarly, with Modified Group 2, by Theorem 3∫

λdp1

(
FT

(2)
xy (λ)− F 2c

′
1n,c

′
2n(λ)

)
d→ Z2, (3.13)

where T
(2)
xy is Txy with X and Y replaced by X(2) and Ỹ(2) respectively and Z2 is a normal

random variable with the mean and variance given in Theorem 3 with ϕ(λ) = λ and c′1 replaced
by 2c′1.

We next investigate the relation between
∫
λdF 2c

′
1n,2c

′
2n(λ) and

∫
λdF 2c

′
1n,c

′
2n(λ), and then

calculate some difference between the two statistics in (3.12) and (3.13) in order to eliminate

the unknown parameters
∫
λdF 2c

′
1n,2c

′
2n(λ) and

∫
λdF 2c

′
1n,c

′
2n(λ).

When c′2 < 1/2 we have∫
λdF 2c

′
1n,2c

′
2n(λ) =

p2
p1

− p2
p1

1

1 + 2c
′
1nm̃nt

, (3.14)

where m̃nt is obtained from mnt satisfying (3.2) with c
′
1n replaced by 2c

′
1n. On the other hand∫

λdF 2c
′
1n,c

′
2n(λ) =

p2/2

p1
− p2/2

p1

1

1 + 2c
′
1nm̃nt

. (3.15)

It follows that ∫
λdF 2c

′
1n,2c

′
2n(λ) = 2

∫
λdF 2c

′
1n,c

′
2n(λ). (3.16)
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When [p2/2] > [n/2], we have∫
λdF 2c

′
1n,2c

′
2n(λ) =

∫
λdF 2c

′
1n,c

′
2n(λ) = 1− tm̃(1t)

n , (3.17)

where m̃
(1t)
n is m

(1t)
n satisfying (3.6) with c

′
1n replaced by 2c

′
1n.

The last case is [p2/2] ≤ [n/2] and c′2 ≥ 1/2. For this case, if we still consider Group 1 and
Modified Group 2, then∫

λdF 2c
′
1n,2c

′
2n(λ) = 1− tm̃(1t)

n ,

∫
λdF 2c

′
1n,c

′
2n(λ) =

[p2/2]

p1
− [p2/2]

p1

1

1 + 2c
′
1nm̃nt

.

From the above formulas it is difficult to figure out the relation between
∫
λdF 2c

′
1n,2c

′
2n(λ) and∫

λdF 2c
′
1n,c

′
2n(λ) depending on the unknown parameter Σxx. To overcome this difficulty, we

also apply a ‘sub-data’ trick to Group 1. Specifically speaking, consider a modified Group 1 as
follows.

Modified Group 1 : X(1) = (x1,x2, . . . ,x[n/2]), Ẏ(1) = (ẏ1, ẏ2, . . . , ẏ[n/2]),

where ẏk consists of the last [p2/2] components of yk, i.e. the i-th component of ẏk is the
([p2/2] + i)-th component of yk, for all i = 1, 2, . . . , [p2/2] and k = 1, 2, . . . , [n/2]. For Modified
Group 1, by Theorem 3, we have∫

λdp1

(
F T̃

(1)
xy (λ)− F 2c

′
1n,c

′
2n(λ)

)
d→ Z3, (3.18)

where T̃
(1)
xy is Txy with X and Y replaced by X(1) and Ẏ(1) respectively; and Z3 is a normal

random variable with the mean and variance given in Theorem 3 with ϕ(λ) = λ and c
′
1 replaced

by 2c
′
1. Since the unknown parameters in (3.13) and (3.18) are the same the difference between

(3.13) and (3.18) can be taken as the modified statistic.
The asymptotic distributions of the three resulting statistics are given in Theorem 5.

Theorem 5. Suppose that Assumptions in Theorem 3 hold.

a) If c
′
2 < 1/2, the statistic

∫
λdFT

(1)
xy (λ) − 2

∫
λdFT

(2)
xy (λ) converges weakly to a normal

distribution with the mean (µ1 − 2µ2) and variance (σ2
1 + 4σ2

2), where µ1 and σ2
1 are given in

(2.22) and (2.23) respectively with c
′
1, c

′
2 replaced by 2c

′
1, 2c

′
2 respectively and ϕ(λ) = λ; µ2 and

σ2
2 are given in (2.22) and (2.23) respectively with c

′
1 replaced by 2c

′
1 and ϕ(λ) = λ.

b) If c
′
2 ≥ 1, the statistic

∫
λdFT

(1)
xy (λ) −

∫
λdFT

(2)
xy (λ) converges weakly to a normal distri-

bution with the mean zero and variance 2σ2
3, where σ2

3 is given in (2.25) with c
′
1 replaced by 2c

′
1

and ϕ(λ) = λ.

c) If 1/2 ≤ c
′
2 < 1, the statistic

∫
λdF T̃

(1)
xy (λ) −

∫
λdFT

(2)
xy (λ) converges weakly to a normal

distribution with mean zero and variance 2σ2
4, where σ2

4 is given in (2.23) with c
′
1 replaced by

2c
′
1 and ϕ(λ) = λ.

Remark 4. Unlike using Group 2 of (3.11) although the asymptotic means of the statistics in
the cases (b) and (c) are zero under the null hypothesis, they are not necessarily equal to zero
under the alternative hypothesis so that the power of the resulting test statistic becomes much
better.
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Remark 5. The asymptotic means and variances of the resulting statistics involve Σxx. Estima-
tors of the high dimensional covariance matrix Σxx have been developed in many literature, e.g.
Bickel and Levina (2008) and Fan, Liao and Mincheva (2013), etc. We apply their approaches
to estimate Σxx in the section of simulations. Such replacements do not affect the asymptotic
distribution by Slutsky’s theorem.

4 The power under local alternatives

This section is to evaluate the power of Sn or Tn under a kind of local alternatives. Consider
the alternative hypothesis

H1 : x and y are dependent,

satisfying condition (4.1) below. Draw n samples from such alternatives x and y to form the
respective analogues of (1.5) and (10.11) and denote them by S and T respectively. Suppose
that the underlying random variables involved in Sxy,Txy and S,T are in the same probability
space (Ω, P ).

Recall the definitions of G
(i)
p1,p2 , i = 1, 2 in (10.65) and (10.66) and let R

(i)
n =

∫
λdG

(i)
p1,p2 .

Theorem 6. In addition to assumptions in Theorem 2 or Theorem 3 suppose that for any
M > 0

P
(∣∣∣tr(S− Sxy)

∣∣∣ ≥ M
)
→ 1, P

(∣∣∣tr(T−Txy)
∣∣∣ ≥ M

)
→ 1, (4.1)

Then

lim
n→∞

P (R(i)
n > z

(i)
1−α or R(i)

n < z(i)α |H1) = 1, (4.2)

where z
(i)
1−α and z

(i)
α are, respectively, (1 − α) and α quantiles of the asymptotic distribution of

the statistic R
(i)
n under the null hypothesis.

Remark 6. For example one may take S = (XLXT )−1XLYT (YLYT )−1YLXT and Sxy =
(XXT )−1XPyX

T with L being a random matrix and Py = YT (YYT )−1Y. Particularly, if
L = I + eeT with e = x2(1, 1, · · · , 1) and x2 having finite moment, then under assumptions in
Theorem 2 or Theorem 3 it can be proved that

tr
(
S− Sxy

)
= Op(n)

satisfying (4.1).

Next, we evaluate the powers of the modified statistics with the dividing-sample method.

Draw n samples from alternatives x and y to form the respective analogues of T
(i)
xy, i = 1, 2,

T̃
(1)
xy and denote them by T(i), i = 1, 2, T̃(1) respectively. Let

J (1)
n =

∫
λdFT(1)

(λ)− 2

∫
λdFT(2)

(λ),

J (2)
n =

∫
λdFT(1)

(λ)−
∫

λdFT(2)
(λ),

J (3)
n =

∫
λdF T̃(1)

(λ)−
∫

λdFT(2)
(λ).

14



Theorem 7. In addition to assumptions in Theorem 3, suppose that for any M > 0,

P
(∣∣tr(T(1))− 2tr(T(2))−

(
tr(T

(1)
xy)− 2tr(T

(2)
xy)

)∣∣ ≥ M
)
→ 1, if c

′
2 < 1/2; (4.3)

P
(∣∣tr(T(1))− tr(T(2))−

(
tr(T

(1)
xy)− tr(T

(2)
xy)

)∣∣ ≥ M
)
→ 1, if c

′
2 ≥ 1; (4.4)

P
(∣∣tr(T̃(1))− tr(T(2))−

(
tr(T̃

(1)
xy)− tr(T

(2)
xy)

)∣∣ ≥ M
)
→ 1, if 1/2 ≤ c

′
2 < 1. (4.5)

Then

lim
n→∞

P (J (i)
n > z

(i)
1−α or J (i)

n < z(i)α |H1) = 1 i = 1, 2, 3,

where z
(i)
1−α and z

(i)
α are, respectively, (1 − α) and α quantiles of the asymptotic distribution of

the statistic J
(i)
n under the null hypothesis, i=1,2,3.

5 Applications of CCA

This section explores some applications of the proposed test. We consider two examples from
multivariate analysis and time series analysis respectively.

5.1 Multivariate regression test with CCA

Consider the multivariate regression(MR) model as follows:

Y = XB+E, (5.1)

where

Y = [y1,y2, . . . ,yp1 ]n×p1 , X = [1n,x1,x2, . . . ,xp2 ]n×p2 ,

B = [β1,β2, . . . ,βp1 ]p2×p1 , E = [e1, e2, . . . , ep1 ]n×p1 ,

and each of the vectors yj , xj , ej , for j = 1, 2, . . . , p1 is n× 1 vectors and {βi, i = 1, 2, . . . , p1}
are p2 × 1 vectors.

Let Axy = 1
nX

TY and Axx = 1
nX

TX. We have the least square estimate of B

B̂ = A−1
xxAxy. (5.2)

The most common hypothesis testing is to test whether there exists linear relationship between
the two sets of variables (response variables and predictor variables) or the overall regression
test

H0 : B = 0. (5.3)

To test H0 : B = 0, Wilks’ Λ criterion is

Λ =
det(E)

det(E+H)
=

s∏
i=1

(1 + λi)
−1, (5.4)
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where

E = YT
(
I−X(XTX)−1XT

)
Y (5.5)

and

H = B̂T (XTX)B̂; (5.6)

and {λi : i = 1, . . . , s} are the roots of det(H − λE) = 0, s = min(k, p). An alternative
form for Λ is to employ sample covariance matrices. That is, H = AyxA

−1
xxAxy and E = Ayy−

AyxA
−1
xxAxy, so that det(H−λE) = 0 becomes det

(
AyxA

−1
xxAxy−λ(Ayy−AyxA

−1
xxAxy)

)
= 0.

From Theorem 2.6.8 of N.H.Timm (2001) we have det(H − θ(H + E)) = det
(
AyxA

−1
xxAxy −

θAyy

)
= 0 so that

Λ =
s∏

i=1

(1 + λi)
−1 =

s∏
i=1

(1− θi) =
det(Ayy −AyxA

−1
xxAxy)

det(Ayy)
. (5.7)

Evidently, the quantities r2i = θi, i = 1, . . . , s are sample canonical correlation coefficients.
Therefore the test statistic (10.10) can be rewritten as

log Λ =

s∑
i=1

log(1− r2i ). (5.8)

From this point of view, the multiple regression test is equivalent to the independence test based
on canonical correlation coefficients. As stated in the last section, the statistic log Λ is not stable
in the high dimensional cases. Hence our test statistic Sn or Tn can be applied in the MR test.

5.2 Testing for cointegration with CCA

Consider an n-dimensional vector process {yt} that has a first-order error correction represen-
tation

∆yt = −αβ
′
yt−1 + εt, t = 1, . . . , T, (5.9)

where α and β are full rank n × r matrices (r < n) and the n-dimensional innovation {εt} is
i.i.d. with zero mean and positive covariance matrix Ω. Select α and β so that the fact that
|In − (In −αβ

′
)z| = 0 implies that either |z| > 1 or z = 1 and that α

′
⊥β⊥ is of full rank, where

α⊥ and β⊥ are full rank n× (n− r) matrices orthogonal to α and β. Under these assumptions,
{yt} is I(1) with r cointegration relations among its elements; that is {β′

yt} is I(0). Here I(d)
denotes integrated of order d.

The goal is to test

H0 : r = 0 (α = β = 0); against H1 : r > 0; (5.10)

i.e. whether there exists cointegration relationships among the elements of the time series {yt}.
This cointegration test is equivalent to testing

H0 : ∆yt is independent with ∆yt−1; against H1 : ∆yt is dependent with ∆yt−1. (5.11)
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In order to apply canonical correlation coefficients to cointegration test (5.10), we construct
random matrices

X =
(
∆y2,∆y4, . . . ,∆y2t−2,∆y2t, . . . ,∆yT

)
, (5.12)

Y =
(
∆y1,∆y3, . . . ,∆y2t−1,∆y2t+1, . . . ,∆yT−1

)
. (5.13)

6 Simulation results

This section reports some simulated examples to show the finite sample performance of the
proposed test.

6.1 Empirical sizes and empirical powers

First we introduce the method of calculating empirical sizes and empirical powers. Let z1−α be
the 100(1 − α)% quantile of the asymptotic null distribution of the test statistic Sn. With K
replications of the data set simulated under the null hypothesis, we calculate the empirical size
as

α̂ =
{♯ of SH

n ≥ z1−α}
K

, (6.1)

where SH
n represents the values of the test statistic Sn based on the data simulated under the

null hypothesis.
The empirical power is calculated as

β̂ =
{♯ of SA

n ≥ ẑ1−α}
K

, (6.2)

where SA
n represents the values of the test statistic Sn based on the data simulated under the

alternative hypothesis.
In our simulations, we choose K = 1000 as the number of repeated simulations. The signifi-

cance level is α = 0.05.

6.2 Testing independence

Consider the data generating process

x = Σ
1/2
xx w, y = Σ

1/2
yy v, (6.3)

with

(a) Σxx = Ip1 , Σyy = Ip2 ; (b) Σxx = (σSP
kh )p1k,h=1, Σyy = Ip2 ,

(c) Σxx = (σAR
kh )p1k,h=1, Σyy = Ip2 , (d) Σxx = B

′
cov(ft)B+Σu,

where

σAR
kh =

ϕ|k−h|

1− ϕ2
, k, h = 1, 2, . . . , p1, ϕ = 0.8,
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and σSP
kh = 0 except that

σSP
kk = 1, k = 1, 2, . . . , p1; σSP

1j = σSP
j1 = θ, j = 2, 3, . . . , [p

1/3
1 ], θ = 0.2.

Here cov(ft) is an r×r identity matrix andΣu is a p1×p1 identity matrix andB = (b1,b2, . . . ,bp1),
where each bi : r × 1 is generated independently from a normal distribution with covariance
matrix being an r × r identity matrix and mean µB consisting of all 1.

The empirical sizes of the proposed statistics Sn for cases (a) and (b) are listed in Table 1.
Moreover, the empirical sizes for the re-normalized statistic MLRn are included as comparison
with Sn. Here the re-normalized statistic MLRn means the statistic

p1

∫
log(1− λ)d

(
FSxy(λ)− F c1n,c2n(λ)

)
.

The empirical sizes of Tn for cases (a)-(d) are listed in Table 2. For GDP(a), we use the original
statistic Tn; for GDP(b), the statistic in Theorem 8 is used; for GDP (c) and (d), the dividing-
sample statistic in Theorem 5 is utilized.

From the results in Table 1 and 2, the proposed statistics Sn and Tn work well under
Assumption 1 and 2 respectively.

Remark 7. A banded type matrix in (c) and a sparse matrix in (b) are both estimated by the
thresholding method in Bickel and Levina (2008). A low rank matrix plus a sparse matrix in (d)
is estimated by combining principle component analysis and thresholding method originated in
Fan, Liao and Mincheva (2013).

6.3 Factor model dependence

We consider the factor model as follows:

xt = Λ1ft + ut, yt = Λ2ft + vt, t = 1, 2, . . . , n, (6.4)

where Λ1 and Λ2 are p1× r and p2× r deterministic matrices respectively; all the components of
Λ1 are 0.2 and those of Λ2 are 1.2. ft, t = 1, 2, . . . , n are r×1 random vectors with i.i.d standard
Gaussian distributed elements and ut and vt, t = 1, 2, . . . , n are independent random vectors
whose elements are all standard Gaussian distributed.

For this model, xt and yt are not independent if r ̸= 0. The proposed test statistic Sn and
Tn can be used to detect this dependent structure. All the elements of Λ2 and Λ3 are generated
independently from standard normal distribution in simulation. Table 3 and 4 illustrate the
powers of the proposed statistics Sn and Tn respectively, as r increases from 1 to 4. For Tn,
we use its modified version in Theorem 5. Results in these tables indicate that for one triple
(p1, p2, n), the power increases as the number of factors r increases. This phenomenon makes
sense since the dependence between xt and yt is described by the r common factors contained in
the factor vector ft. Stronger dependence between xt and yt exists while more common factors
are included in the model.

Here we would like to point out that using CCA based on the sample covariance matrices
with sample mean will incorrectly conclude that xt and yt can be independent even if r > 0 but
ft = f independent of t because CCA of xt and yt is the same as that of ut and vt. This is why
(1.4) and (10.11) are used.
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6.4 Uncorrelated but dependent

The construction of (10.32) is based on the idea that the limit of FSxy(x) could not be determined
from (2.2) when x and y have correlation. Thus, a natural question is whether our statistic works
in the uncorrelated but dependent case. Below is such an example to demonstrate the power of
the test statistic in detecting uncorrelatedness.

Let xt = (X1t, X2t, . . . , Xp1t)
T , t = 1, 2, . . . , n be i.i.d normally distributed random vectors

with zero means and unit variances. Define yt = (Y1t, Y2t, . . . , Yp2t)
T , t = 1, 2, . . . , n by Yit =

(X2k
it − EX2k

it ), i = 1, 2, . . . ,min(p1, p2) and if p1 < p2, we let Yjt = εjt, j = p1 + 1, . . . , p2; t =
1, . . . , n, where εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n are i.i.d normal distributed random variables
and independent with xt and k is an positive integer.

Remark 8. For standard normal random variable Xit, the 2k-th moment is EX2k
it = 2−k (2k)!

k! .

For this model, xt and yt are uncorrelated since Cov(Xit, Yit) = EX2k+1
it − EXitEX2k

it = 0.
Simulation results in Table 7 and Table 8 provide the empirical powers of Sn and Tn by taking
k = 2 and k = 5 respectively. They show that Sn and Tn can distinguish this kind of dependent
relationship well when k = 5. For the statistic Tn, since the covariance matrix of x is an identity
matrix, we use the original statistic Tn in Theorem 3.

6.5 ARCH type dependence

The statistic works in the above example because the limit of FSxy can not be determined from
(2.2) if x and y are uncorrelated. However the limit of FSxy(x) might be the same as (2.2) when
x and y are uncorrelated. We consider such an example as follows.

Consider two random vectors xt = (X1t, X2t, . . . , Xp1t) and yt = (Y1t, Y2t, . . . , Yp2t) as follows:

Yit = Zit

√
α0 + α1X2

it, i = 1, 2, . . . ,min(p1, p2); (6.5)

if p1 < p2, Yjt = Zjt, j = p1 + 1, . . . , p2, (6.6)

where zt = (Z1t, Z2t, . . . , Zp2t) is a random vector consisting of i.i.d elements generated from
Normal (0,1) and {zt : t = 1, . . . , n} are independent across t; xt = (X1t, X2t, . . . , Xp1t) is also
a random vector with i.i.d elements generated from Normal (0,1) and {xt : t = 1, . . . , n} are
independent across t. Moreover, {zt : t = 1, . . . , n are independent of {xt : t = 1, . . . , n}.

For this model, xt and yt are dependent but uncorrelated. Simulation results indicate that
the proposed test statistic Sn can not detect the dependence between them. Nevertheless, if we
substitute the elements X2

it and Y 2
it for Xit and Yjt, respectively, in the matrix Sxy, then the

new resulting statistic Sn can capture the dependence of this type. This efficiency is due to the
correlation between the high powers of Xit and Yit.

Tables 5 and 6 list the powers of the proposed statistics Sn and Tn for testing model (6.5)
in several cases, i.e. α0 and α1 take different values. For the statistic Tn, since the covariance
matrix of x is an identity matrix, we use the original statistic Tn in Theorem 3. From the table,
we can find the phenomenon that as α1 increases, the powers also increase. This is consistent
with our intuition because larger α1 brings about larger correlation between Yit and Xit.

7 Empirical applications

As an application of the proposed independence test, we test the cross-sectional dependence of
daily stock returns of companies between two different sections from New York Stock Exchange
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(NYSE) during the period 2000.1.1−2002.1.1, including consumer service section, consumer du-
ration section, consumer nonduration section, energy section, finance section, transport section,
healthcare section, capital goods section, basic industry section and public utility section. The
data set is obtained from Wharton Research Data Services (WRDS) database.

We randomly choose p1 and p2 companies from two different sections respectively, such as
the transport and finance section. At each time t, denote the closed stock prices of these com-
panies from the two different sections by xt = (x1t, x2t, . . . , xp1t)

T and yt = (y1t, y2t, . . . , yp2t)
T

respectively. We consider daily stock returns rxt = (rx1t, r
x
2t, . . . , r

x
p1t) and ryt = (ry1t, r

y
2t, . . . , r

y
p2t

)

with rxit = log xit
xi,t−1

, i = 1, 2, . . . , p1 and ryjt = log
yjt

yj,t−1
, j = 1, 2, . . . , p2. The goal is to test the

dependence between rxt and ryt .
The proposed test Sn is applied to testing dependence of rxt and ryt . For each (p1, p2, n), we

randomly choose p1 and p2 companies from two different sections, construct the corresponding
sample matrices X = (rx1 , r

x
2 , . . . , r

x
p1) and Y = (ry1 , r

y
2 , . . . , r

y
p2), and then calculate the P-value

by applying the proposed test. Repeat this procedure 100 times and derive 100 P-values to see
whether the cross-sectional ‘dependence’ feature is popular between the tested two sections.

We test independence of daily stock returns of companies from three pairs of sections, i.e.
basic industry section and capital goods section, public utility section and capital goods section,
finance section and healthcare section. From Table 9, Table 10, and Table 11, we can see that,
as the pair of numbers of companies (p1, p2) increases, more experiments are rejected in terms
of the P-values below 0.05. It shows that cross-sectional dependence exists and is popular for
different sections in NYSE. This suggests that the assumption that cross-sectional independence
in such empirical studies may not be appropriate.
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8 Appendix A: Proof of Theorem 1

Throughout this paper, M , M1, M2, K and K1 denote positive constants which may change
from line to line, o(1) means the term converging to zero and O(n−k) means the term divided
by n−k bounded in absolute value.

Since the matrix Txy is not symmetric, it is difficult to work on it directly. Instead we
consider the n× n symmetric matrix

Bn = P̃yPtxP̃y, (8.1)

where P̃y = 1
nY

T ( 1nYYT )−Y and Ptx = 1
nX

T ( 1nXXT + tIp1)
−1X. The projection matrix P̃y

is unique when p2 > n . It is easily seen that the eigenvalues of the matrix Bn are the same as
those of the matrix Txy other than (n − p1) zero eigenvalues. It follows that the ESDs of Bn

and Txy satisfy the equality

FBn(x) =
p1
n
FTxy(x) +

n− p1
n

I[0,+∞)(x). (8.2)

Below we first consider the case when the entries of X and Y (W and V) are normal random
variables. Write

XT = XT
1 +XT

2 , (8.3)

where XT
1 = P̃yX

T and XT
2 = (I− P̃y)X

T is the corresponding residual matrix. Let

WT
1 = P̃yW

T , WT
2 = (In − P̃y)W

T .

Then
X1 = Σ

1/2
xx W1, X2 = Σ

1/2
xx W2.

Since P̃y is a projection matrix, the entries of W1 are independent of those of W2 and X1 is
independent of X2 . Note that by the definition of Moore-Penrose pseudoinverse

P̃y = P̃v = VT (VVT )−V. (8.4)

The ESD of Bn can be then written as

FBn(x) = F
1
n
XT

1 ( 1
n
XXT+tI)−1X1(x)

= F
1
n
WT

1 ( 1
n
WWT+tΣ−1

xx )
−1W1(x)

=
p1
n
F

(
1
n
W1WT

1 + 1
n
W2WT

2 +tΣ−1
xx−( 1

n
W2WT

2 +tΣ−1
xx )

)
( 1
n
W1WT

1 + 1
n
W2WT

2 +tΣ−1
xx )

−1

(x) +
n− p1

n
I[0,+∞)(x)

=
p1
n
F I−

(
1
n
W1WT

1 ( 1
n
W2WT

2 +tΣ−1
xx )

−1+I
)−1

(x) +
n− p1

n
I[0,+∞)(x). (8.5)

This, together with (8.2), yields

FTxy(x) = F I−
(

1
n
W1WT

1 ( 1
n
W2WT

2 +tΣ−1
xx )

−1+I
)−1

(x). (8.6)

If p2 ≥ n, then Rank(P̃y) = trP̃y = trP̃v = n with probability one by the definition of
Moore-Penrose pseudoinverse because VVT has (p2−n) zero eigenvalues and from Theorem 1.1
of Rudelson and Vershynin (2010) with probability one

λmin(V
TV)

n
≥

(√p2 −
√
n− 1

√
n

)2 1

n2
. (8.7)
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It follows that with probability one
P̃v = In (8.8)

so that W1 = W and W2 = 0. Hence 1
nW1W

T
1 (

1
nW2W

T
2 + tΣ−1

xx)
−1 = t−1 1

nWWTΣxx. This
is a sample covariance matrix and its LSD and CLT have been provided in (6.1.2) and Theorem
9.10 of Bai and Silverstein (2009) respectively.

If p2 < n then Rank(P̃y) = trP̃y = trP̃v = p2 with probability one by an inequality similar
to (8.7). Therefore there exists a unitary matrix U such that with probability one

U∗P̃yU = diag(1, . . . , 1, 0, . . . , 0), (8.9)

where diag(·) denotes a diagonal matrix and the number of the entries 1 on the diagonal is p2.
This implies that

W1W
T
1

d
=

p2∑
k=1

wkw
T
k , W2W

T
2

d
=

n∑
k=p2+1

wkw
T
k ,

where wk is the k-th column of W. Therefore, with qn := p2
n−p2

we then have

1

n
W1W

T
1 (

1

n
W2W

T
2 + tΣ−1

xx)
−1 d

= qnS1S
−1
2t , (8.10)

where

S1 =
1

p2

p2∑
k=1

wkw
T
k , S2t =

1

n− p2

n∑
k=p2+1

wkw
T
k + t

n

n− p2
Σ−1

xx .

Denote by µ1, µ2, . . . , µp1 the eigenvalues of S1S
−1
2t . In view of (8.6) the eigenvalues of Txy

can be written as qnµi

1+qnµi
, i = 1, 2, . . . , p1. Note that (6.1.2) of Bai and Silverstein (2009) has

provided the equation satisfied by the Stieltjes transform of the LSD of the matrix ST, where
S is a sample covariance matrix and T is a matrix which is independent of S. Moreover the
Stieltjes transform of the LSD of S2t is provided in Silverstein and Bai (1995). By taking S = S1

and T = S−1
2t , we see that (2.5) follows from (6.1.2) of Bai and Silverstein (2009).

As for the nonGaussian case, write

Ptx =
1

n
XT (

1

n
XXT + tIp1)

−1X =
1

n
WT (

1

n
WWT + tΣ−1

xx)
−1W. (8.11)

Then the proof of Theorem 1 of Yang and Pan (2012) indeed shows that replacing Gaussian
entries in W (or X) by nonGaussian entries does not affect the LSD of Bn and one may refer to
(2.5) of Yang and Pan (2012). In view of (8.4), to replace Gaussian entries in V by nonGaussian
entries, as in (2.1) of Yang and Pan (2012), one can first prove that the Levy distance

L3
(
FP

1/2
tx P̃yP

1/2
tx , FP

1/2
tx PuyP

1/2
tx

)
≤ Mu2

n
tr(

1

n
VVT+uIp2)

−2 ≤ Mu2
a.s.−→ 0, as n → ∞, then u → 0

where (P
1/2
tx )2 = Ptx and Puy = 1

nV
T ( 1nVVT + uIp2)

−1V, u > 0. Moreover, we see that

conclusion (2.5) of Yang and Pan (2012) still holds if we replace Py and Ptx there by P
1/2
tx and

Puy respectively and check on its argument carefully. Therefore (2.5) of Yang and Pan (2012)
ensures that replacing Gaussian entries in Y by nonGaussian entries does not affect the LSD of

P
1/2
tx PuyP

1/2
tx when the entries of X are nonGaussian. The proof is now complete.
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9 Appendix B

This Appendix provides some useful lemmas and proofs of Theorems 2-7 in the paper. Through-
out this Appendix, M , M1, M2, K and K1 denote positive constants which may change from
line to line, o(1) means the term converging to zero and O(n−k) means the term divided by n−k

bounded in absolute value.

9.1 Some Useful Lemmas

Lemma 1 (Burkholder (1973)). Let {Xk, 1 ≤ k ≤ n} be a complex martingale difference se-
quence with respect to the increasing σ-field {Fk}. Then, for p ≥ 2,

E|
n∑

k=1

Xk|p ≤ Kp(E(

n∑
k=1

E(|Xk|2|Fk−1))
p/2 + E

n∑
k=1

|Xk|p).

Lemma 2 (Lemma B.26 of Bai and Silverstein (2009)). For X = (X1, · · · , Xn)
T i.i.d standard-

ized entries, C n× n matrix, we have, for any p ≥ 2,

E|XTCX− trC|p ≤ Kp((E|X1|4trCCT )p/2 + E|X1|2ptr(CCT )p/2).

Lemma 3 (Duhamel formula). Let M1,M2 be n× n matrices and t ∈ R. Then we have

e(M1+M2)t = eM1t +

∫ t

0
eM1(t−s)M2e

(M1+M2)sds. (9.1)

Moveover, if (Aij(t))1≤i,j≤n is a matrix-valued function of t ∈ R that is C∞ in the sense that
each matrix element Aij(t) is C∞. Then

d

dt
eA(t) =

∫ 1

0
esA(t)A

′
(t)e(1−s)A(t)ds. (9.2)

Lemma 4. Assume that F (X) is a differentiable function of each of the elements of the matrix
X, it then holds that

∂Tr(F (X))

∂X
= f(X)T ,

where f(·) is the scalar derivative of F (·).

Lemma 5. Let U = f(X) be a matrix, then the derivative of the function g(U) : Rm×n → R1

with respect to the element Xij of X is

∂g(U)

∂Xij
= Tr[(

∂g(U)

∂U
)T

∂U

∂Xij
]. (9.3)

Lemma 6 (Stein’s equation). Let ξ = {ξℓ}pℓ=1 be independent Gaussian random variables of zero
mean, and Φ : Rp → C be a differentiable function with polynomially bounded partial derivatives
Φ

′
ℓ, ℓ = 1, . . . , p. Then we have

E{ξℓΦ(ξ)} = E{ξ2ℓ }E{Φ′
ℓ(ξ)}, ℓ = 1, . . . , p, (9.4)

and

V ar{Φ(ξ)} ≤
p∑

ℓ=1

E{ξ2ℓ }E{|Φ′
ℓ(ξ)|2}. (9.5)
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Lemma 7 (Generalized Stein’s equation of Lytova and Pastur (2009)). Let ξ be a random
variable such that E|ξ|p+2 < ∞ for a certain nonnegative integer p. Then for any function
Φ : R → C of the class Cp+1 with bounded derivative Φ(ℓ), ℓ = 1, . . . , p+ 1, we have

E{ξΦ(ξ)} =

p∑
ℓ=0

κℓ+1

ℓ!
E{Φ(ℓ)(ξ)}+ εp, (9.6)

where the remainder term εp admits the bound

|εp| ≤ Cp

∫ 1

0
E
∣∣∣ξp+2Φ(p+1)(ξv)

∣∣∣(1− v)pdv, Cp ≤
1 + (3 + 2p)p+2

(p+ 1)!
, (9.7)

and κℓ+1 is the ℓ+ 1-th cumulant.

Lemma 8 (Theorem A.37 of Bai and Silverstein (2009)). If A and B are two n × p matrices
and λk, δk, k = 1, 2, . . . , n denote their singular values. If the singular values are arranged in
descending order, then we have

ν∑
k=1

|λk − δk|2 ≤ tr[(A−B)(A−B)T ], (9.8)

where ν = min{p, n}.

9.2 Proof of Theorem 2

The strategy of the proof is to first associate sample correlation coefficients with the F matrix
when the entries of x are Gaussian distributed, whose CLT was provide by Zheng (2012). How-
ever, when the components of X are non-Gaussian distributed, the eigenvalues of the matrix Sxy

do not have a relationship with those of an F -matrix any more. To overcome this difficulty, we
employ an interpolation trick first adopted in Lytova and Pastur (2009) and extend the result
to the nonGaussian distributions. When applying such an interpolation method, an additional
key technique is to introduce a smooth cut function so that we can handle the expectation of
the trace of the inverse of the sample covariance matrix.

9.2.1 The Gaussian case

Since the classical sample canonical correlation coefficients between x and y are the same with
those between w and v, we assume that Σxx = Σyy = I in this theorem.

Assume that the entries of X are Gaussian distributed. We below demonstrate how the
eigenvalues of the matrix Sxy are connected to those of an F -matrix.

We would remind the readers that the matrix Sxy consists of the project matrix Px rather
than it perturbation matrix Ptx and Py rather than P̃y where

Px = XT (XXT )−1X, Py = YT (YYT )−1Y.

As before, since the matrix Sxy is not symmetric we instead consider the n×n symmetric matrix

An = PyPxPy. (9.9)

Then we have

FAn(x) =
p1
n
FSxy(x) +

n− p1
n

I[0,+∞)(x). (9.10)
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Note that under Assumption 1Rank(P̃y) = trP̃y = p2 with probability one because λmin(Y
′Y)/n

a.s.−→
(1−√

c2)
2. Therefore, with a little abuse of notation, as in (8.10) in the paper, we obtain

X1X
T
1

d
=

p2∑
k=1

xkx
T
k , X2X

T
2

d
=

n∑
k=p2+1

xkx
T
k , (9.11)

where X1 and X2 are similarly defined as in (8.3) in the paper with P̃y replaced by Py. As in
(8.6) in the paper we conclude that

FAn(x) = FXT
1 (XXT )−1X1(x) =

p1
n
F (X1XT

1 +X2XT
2 )−1X1XT

1 (x) +
n− p1

n
I[0,+∞)(x)

=
p1
n
F

(
I+X2XT

2 (X1XT
1 )−1

)−1

(x) +
n− p1

n
I[0,+∞)(x). (9.12)

This, together with (10.9), yields

FSxy(x) = F

(
I+X2XT

2 (X1XT
1 )−1

)−1

(x). (9.13)

Since X1 and X2 are independent the matrix 1
n−p2

X2X
T
2 (

1
p2
X1X

T
1 )

−1 is an F -matrix. The
limiting spectral distribution of the F -matrix is

Fȳ1,ȳ2(dx) = gȳ1,ȳ2(x)I[a1,a2](x)dx+ (1− 1

ȳ1
)I{ȳ1>1}δ0(dx), (9.14)

where gȳ1,ȳ2 is given in (2.15) in the paper (one may see Section 4 of Bai and Silverstein (2009)).
Denoting the eigenvalues of 1

n−p2
X2X

T
2 (

1
p2
X1X

T
1 )

−1 by λ1, . . . , λp1 , then the eigenvalues of

the matrix Sxy can be expressed as 1

1+
n−p2
p2

λ1
, . . . , 1

1+
n−p2
p2

λp1

. Therefore the statistic (2.13) in

the paper can be expressed as∫
ϕ(λ)dGp1,p2(λ) =

∫
ϕ
( 1

1 + n−p2
p2

λ

)
dp1[F

1
n−p2

X2XT
2 ( 1

p2
X1XT

1 )−1

(λ)− Fȳ1n,ȳ2n(λ)], (9.15)

where Fȳ1n,ȳ2n is obtained from Fȳ1,ȳ2 with the substitution of (ȳn1, ȳn2) for (ȳ1, ȳ2) and the
associated constants (hn, an1, an2) for (h, a1, a2), i.e.

ȳn1 =
p1

n− p2
, ȳn2 =

p1
p2

, hn =
√
ȳn1 + ȳn2 − ȳn1ȳn2, an1 =

(1− hn)
2

(1− ȳn2)2
, an2 =

(1 + hn)
2

(1− ȳn2)2
.

In view of (9.15), it suffices to provide the CLT for the F -matrix Cn = 1
n−p2

X2X
T
2 (

1
p2
X1X

T
1 )

−1.
Zheng (2012) has established the CLTs for linear spectral statistics of F -matrices, which yields
Theorem 2 for the Gaussian distribution ((2.20) in the paper holds in the Gaussian case).

9.2.2 The general case

We next consider the CLT for the general distribution by the interpolation trick. By (10.9), we
have ∫

ϕ(λ)dGp1,p2(λ) = n[

∫
ϕ(λ)d

(
F

PyPxPy
n (λ)− F yxy

n (λ)
)
], (9.16)

where F yxy
n (λ) is obtained from the limit, F yxy, of FPyPxPy with c1 and c2 replaced by p1/n

and p2/n respectively.
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We start with the truncation of the underlying random variables. Define

X̃n = (X̃ij)p1×n, X̆ = (X̆ij)p1×n (9.17)

where X̃ij = (X̆ij − EX̆ij)/σij , X̆ij = XijI|Xij |<
√
nε and σ2

ij = E|X̆ij − EX̆ij |2. Choose εn > 0

such that εn → 0, n1/2εn → ∞ and K
εn
EX4

11I(|X11|>
√
nε) → 0 as n → ∞. Denote ε = εn and we

have

P
(
Px ̸= P̆x

)
≤

p1,n∑
i,j=1

P
(
Xij ̸= X̆ij

)
≤ K

ε4
EX4

11I(|X11|>
√
nε) → 0, (9.18)

where P̆x is obtained from Px with X replaced by X̆.
Let λA

k denote the i-th smallest eigenvalue of an Hermitian matrix A. We use Ğp1,p2(x)

and G̃p1,p2(x) to denote the analogues of Gp1,p2(x) with the matrix Cn = PyPxPy replaced by

C̆n = PyP̆xPy and C̃n = PyP̃xPy with P̃x = X̃T
n (X̃nX̃

T
n )

−1X̃n, respectively. By Lemma 8,
we have, for each j=1,2,. . . ,s,∣∣∣ ∫ ϕj(x)dĞn(x)−

∫
ϕj(x)dG̃n(x)

∣∣∣ ≤ K

n∑
k=1

|λC̆n
k − λC̃n

k |

≤
√
n
( n∑

k=1

|λC̆n
k − λC̃n

k |2
)1/2

≤
√
n
(
tr(C̆n − C̃n)(C̆n − C̃n)

T
)1/2

≤
√
n
(
tr(P̆x − P̃x)(P̆x − P̃x)

T
)1/2

, (9.19)

where K is a bound on |f ′
j(z)|. Moreover, one can check that

(σ−1
11 − 1)2 = o(n−2), |EX̆11| = o(n− 3

2 ). (9.20)

By the formula
A−1 −B−1 = A−1(B−A)B−1, (9.21)

we obtain

P̆x − P̃x = Q1 +Q2 +Q3 +Q4,

where

Q1 =
1

n
XdH̆

−1X̆T
n , Q2 = − 1

n
X̃nH̃

−1Xd, Q3 = − 1

n
X̃nH̆

−1 1

n
XdX̃nH̃

−1X̆T
n ,

Q4 = − 1

n
X̃nH̆

−1 1

n
X̆nXdH̃

−1X̆T
n ,

with Xd = X̆n − X̃n, H̆
−1 = ( 1nX̆

T
n X̆n)

−1 and H̃−1 = ( 1nX̃
T
n X̃n)

−1. Note that

tr(P̆x − P̃x)(P̆x − P̃x)
T ≤ K

4∑
i,j=1

trQiQ
T
j .

We obtain from (9.20)

trQ1Q
T
1 ≤ ||H̆−1||

n

(
trXT

dXd

)
≤ K||H̆−1||

[
(1− 1/σ11)

2trH̆X̆n + σ−2
11 n|EX̆11|2

]
≤ K||H̆−1||

[
(1− 1/σ11)

2nλmax

(
H̆−1

)
+ σ−2

11 n|EX̆11|2
]
= o(n−1).
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Similarly, one may verify that trQjQ
T
j = o(n−1), j=2,3,4. It follows that∣∣∣ ∫ ϕj(x)dĞn(x)−

∫
ϕj(x)dG̃n(x)

∣∣∣ i.p.−→ 0.

In what follows, for simplicity we still use notation Xij rather than X̃ij and can assume that

|Xij | ≤
√
nε, EXij = 0, EX2

ij = 1. (9.22)

To employ the interpolation trick we first introduce some notation. Let

Nn[ϕ] = n

∫
ϕ(λ)dFAn(λ), N ◦

n [ϕ] = n

∫
ϕ(λ)d[FAn(λ)− F yxy(λ)].

Moreover we introduce the following interpolating matrices

An(s) = PyPx(s)Py, X(s) = s1/2X+ (1− s)1/2X̂,

Px(s) =
1

n
XT (s)H−1(s)X(s), H−1(s) = (H(s))−1 = (

1

n
X(s)XT (s))−1,

where X̂ = (X̂kj) is obtained from X = (Xkj) but consisting of standardized normal random
variables. Define

en(s, x) = exp
(
ixTrϕ(An(s))

)
, U(t, s) = eitAn(s), (9.23)

e◦n(s, x) = exp
(
ix[Trϕ(An(s))− n

∫
ϕ(λ)dF yxy

n (λ)]
)
.

By the continuous theorem of characteristic functions and Subsection 9.2.1 it suffices to prove
that

R̂n(x) = E
(
eixN

◦
n [ϕ]

)
− E

(
eixN̂

◦
n [ϕ]

)
→ 0, as n → ∞, (9.24)

where N̂ ◦
n [ϕ] is the analogue of N ◦

n [ϕ] with all entries of X replaced by i.i.d standardized normal
random variables.

For technical requirements, we introduce a smooth cut off function χ(x) : R → R:

χ(x) =
{ 1, |x| ≤ K1n

−2

0, |x| ≥ 2K1n
−2,

(9.25)

whose first four derivatives satisfy |χ(j)(x)| ≤ Mn2j , j = 1, 2, 3, 4.
To prove (9.24) we first claim that

R̃n(x) = E
(
eixN

◦
n [ϕ]

)
− E

(
eixN

◦
n [ϕ]χ(ℑ(mn(in

−2)))
)
→ 0, as n → ∞, (9.26)

where mn(z) is the Stieltjes transform of H = 1
nXXT . Indeed, let λ̃1, . . . , λ̃p1 be the eigenvalues

of H. Since

ℑ(mn(in
−2)) = n−3

n∑
i=1

1

λ̃2
i + n−4

, (9.27)

we conclude that

λ̃p1 >
M2

n
if |ℑ(mn(in

−2))| ≤ M1n
−2, (9.28)
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where M1 may be the same as or different from K1 given in (9.25). From Theorem 9.13 of
Bai and Silverstein (2009), under our truncation, we have, for any x > 0 and any integers k ≥ 2,

P (λ̃p1 ≤ (1−
√
c1)

2 − x) = O(n−k). (9.29)

By (9.27) and taking an appropriate x we have

P
(
|ℑ(mn(in

−2))| ≤ K1n
−2

)
≥ P

(
λ̃p1 > (1−

√
c1)

2 − x
)
= 1−O(n−k). (9.30)

This is equivalent to

P
(
χ(ℑ(mn(in

−2))) = 1
)
= 1−O(n−k). (9.31)

It follows that

|R̃n(x)| = |E
(
eixN

◦
n [ϕ]

(
1− χ(ℑ(mn(in

−2)))
))

|

≤ P
(
χ(ℑ(mn(in

−2))) ̸= 1
)
= O(n−k) → 0, as n → ∞. (9.32)

Thus (10.56) is true.
Evidently, (10.56) holds as well if X is replaced by its normal analogue, X̂. In view of (10.56),

to prove (9.24), it suffices to prove that

Rn(x) = E
(
eixN

◦
n [ϕ]χ

(
ℑ(mn(in

−2))
))

− E
(
eixN̂

◦
n [ϕ]χ

(
ℑ(m̂n(in

−2))
))

→ 0, as n → ∞, (9.33)

where m̂n(z) is the Stieltjes transform of Ĥ = 1
nX̂X̂T .

We show here for future use the moment of (λ−r
minχ(ℑ(ms

n(in
−2))) where ms

n(z) denotes
the Stieltjes transform of H(s) and λmin denotes the minimum eigenvalue of H(s). Note that
(9.28)-(9.31) still hold for H(s) (replace eigenvalues of H correspondingly by H(s)) because the
truncation steps for {Xkj} are applicable to {X̂kj}. In what follows we shall directly quote them
for H(s). By (9.28) and (10.50) we have, for any integer r > 0,

E
[χ(ℑ(ms

n(in
−2)))

λr
min

]
≤ Mnr · P

(M2

n
< λmin < (1−

√
c1)

2 − x
)

+M
(
(1−

√
c1)

2 − x
)−r

= O(1). (9.34)

We now consider (9.33). In what follows, to simplify notation denote χ(ℑ(ms
n(in

−2))) by
χns. By the inverse Fourier transform

ϕ(λ) =

∫
eitλϕ̂(t)dt, (9.35)

where ϕ̂(t) is the Fourier transform of ϕ(λ), i.e. ϕ̂(t) = 1
2π

∫
e−itλϕ(λ)dλ, we obtain

Rn(x) =

∫ 1

0

∂

∂s
E
(
e◦n(s, x)χns

)
ds

= ixe−ixn
∫
ϕ(λ)dF yxy

n (λ) ×
∫ 1

0
ds

∫
ϕ̂(θ)θdθ · E

(
TrU(θ, s)Py

∂Px(s)

∂s
Pyen(s, x)χns

)
+

∫ 1

0
E
[
e◦n(s, x)

∂

∂s

(
χns

)]
ds. (9.36)
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We next prove that the last term in (9.36) converges to zero.
To this end, we first list formulas for matrix derivatives. By the matrix derivative formula

∂H−1(s)

∂s
= −H−1(s)

∂H(s)

∂s
H−1(s), (9.37)

and the chain rule of matrix derivatives, we have

∂Px(s)

∂s
=

1

2n
XT

dsH
−1(s)X(s) +

1

2n
XT (s)H−1(s)Xds

− 1

2n2
XT (s)H−1(s)[XdsX

T (s) +X(s)XT
ds]H

−1(s)X(s), (9.38)

where Xds = ( 1√
s
X− 1√

1−s
X̂). Denote the first derivative with respect to 1√

n
Xkj(s) by

Dkj = ∂/∂(
1√
n
Xkj(s)).

Similar to (10.37) we obtain

Dkj(H
−1(s)) = −H−1(s)Wn(s, k, j)H

−1(s), Dkj(
1√
n
X(s)) = eke

T
j , (9.39)

where

Wn(s, k, j) = eke
T
j

1√
n
XT (s) +

1√
n
X(s)eje

T
k .

From Lemma 5, Lemma 4, (10.51), (10.16), (10.40) and (9.31), we have∣∣∣E(
Dkjχns

)∣∣∣ = ∣∣∣ 1
n
E
(
χ

′
nsDkjℑ

(
tr(H(s)− in−2I)−1

))∣∣∣
=

∣∣∣ 1
n
E
[
χ

′
nsℑ

(
Tr

[
(H(s)− in−2I)−2Wn(s, k, j)

])]∣∣∣
≤ Mn7P (χns ̸= 1) = O(n−k), for any k, (9.40)

where the last inequality uses the fact that χ
′
ns ̸= 0 occurs only when K1n

−2 ≤ ℑ(ms
n(n

−2)) ≤
2K1n

−2. This ensures the last term in (9.36) converges to zero.
In view of (9.36), (9.38) and (9.40) we may write Rn(x) as

Rn(x) =
ixe−ixn

∫
ϕ(λ)dF yxy

n (λ)

2

∫ 1

0
ds

∫
ϕ̂(θ)θdθ

2∑
i=1

[Q(i)
n − V (i)

n ] + o(1), (9.41)

where

Q(1)
n =

1√
ns

n,p1∑
j,k=1

E(XkjΦ
(1)
kj ), V (1)

n =
1√

n(1− s)

n,p1∑
j,k=1

E(X̂kjΦ
(1)
kj ),

with

Φ
(1)
kj = Φ

(1)
kj (Xkjs) =

(
H−1(s)

1√
n
X(s)PyU(θ, s)Py

)
kj
en(s, x)χns, Xkjs = s1/2Xkj+(1−s)1/2X̂kj ;

(9.42)
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and

Q(2)
n =

1√
ns

p1,n∑
k,j=1

E(XkjΦ
(2)
kj ), V (2)

n =
1√

n(1− s)

p1,n∑
k,j=1

E(X̂kjΦ
(2)
kj ),

with

Φ
(2)
kj = Φ

(2)
kj (Xkjs) =

(
Px(s)PyU(θ, s)Py

1√
n
XT (s)H−1(s)

)
jk
en(s, x)χns.

Now, the aim is to prove that (9.41) → 0 as n → ∞. To this end, we first further simplify Q
(i)
n

and V
(i)
n , i = 1, 2. Applying stein’s equation in Lemma 6 to the terms V

(1)
n and V

(2)
n respectively,

we can obtain

V (1)
n =

1

n

n,p1∑
j,k=1

E(DkjΦ
(1)
kj ), V (2)

n =
1

n

n,p1∑
j,k=1

E(DkjΦ
(2)
kj ). (9.43)

Similarly, by generalized stein’s equation in Lemma 7 with p = 3, we have

Q(i)
n =

3∑
ℓ=0

T
(i)
ℓε + ξ

(i)
3 , i = 1, 2; (9.44)

where

T
(i)
ℓε =

s
ℓ−1
2

ℓ!n
ℓ+1
2

n,p1∑
j,k=1

κεℓ+1,kjE(Dℓ
kjΦ

(i)
kj ), ℓ = 0, 1, 2, 3;

with κεℓ,kj being the ℓ-th cumulant of the truncated random variable Xkj and

|ξ(i)3 | ≤ K

n5/2

n,p1∑
k,j=1

∫ 1

0
E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣dv,
where Φ

(i)
kj (vXkjs) is obtained from Φ

(i)
kj (Xkjs) given in (9.42) with Xkjs replaced by vXkjs.

We next prove that E
∣∣∣Dℓ

kjΦ
(i)
kj

∣∣∣2 is bounded for ℓ = 1, 2, 3, 4, i = 1, 2. To this end, we below

develop the expansion of Dkj(s)Φ
(1)
kj (s) first. Let ek be the unit vector with the k th entry being

1 and zero otherwise. Recalling the definition of the matrix U(θ, s) in (9.23) and applying the
Duhamel formula (1.2) in the paper and (10.40) we have

Dkj(U(θ, s)) =

∫ 1

0
eitθAn(s)Dkj

(
iθAn(s)

)
ei(1−t)θAn(s)dt

= i

∫ θ

0
U(τ, s)Dkj

(
An(s)

)
U(θ − τ, s)dτ

= i

∫ θ

0
U(τ, s)PyBnsPyU(θ − τ, s)dτ, (9.45)

where

Bns = eje
T
kH

−1(s)
1√
n
X(s)− 1√

n
XT (s)H−1(s)Wn(s, k, j)H

−1(s)
1√
n
X(s)+

1√
n
XT (s)H−1(s)eke

T
j .

It follows from (9.35), (9.45) and the chain rule of calculating matrix derivatives that

Dkj(en(s, x)) = −xen(s, x)

∫
ϕ̂(θ)θTr

[
U(θ, s)PyBnsPy

]
dθ, (9.46)
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where we also use the fact that∫ θ

0
U(θ − τ, s)U(τ, s)dτ = θU(θ, s).

From (9.42) and (10.40) we have

Dkj(Φ
(1)
kj ) = −eTkH

−1(s)Wn(s, k, j)QnsU(θ, s)Pyejen(s, x)χns (9.47)

+ eTkH
−1(s)eke

T
j PyU(θ, s)Pyejen(s, x)χns + eTkQns

(
Dkj(U(θ, s))

)
Pyejen(s, x)χns

+ eTkQnsU(θ, s)Pyej

(
Dkj(en(s, x))

)
χns + eTkQnsU(θ, s)Pyejen(s, x)Dkj(χns),

where Qns = H−1(s) 1√
n
X(s)Py.

Although there are many terms in the expansion of Dkj(Φ
(1)
kj ), from (9.47), (9.45) and (9.46)

we see that each term must be products of some of the factors and their transposes below

eTkH
−1(s)ek, eTkH

−1(s)
1√
n
X(s), eTj Px(s), Py, U(θ, s), χns, ek, en(s, x), ej , Dkj(χns).

(9.48)
By the facts that |en(s, x)| ≤ 1, |χns| ≤ M , ||Px(s)|| = ||Py|| = ||U(θ, s)|| = ||ek|| = ||ej || = 1
and (9.48), we conclude from (9.47) that∣∣∣DkjΦ

(1)
kj

∣∣∣ ≤ K||λmin||−r||eTkH−1(s)
1√
n
X(s)||d|χns|+K||eTkH−1(s)

1√
n
X(s)|||Dkj(χns)|

≤ K

λ
r+d/2
min

|χns|+
K

λmin
|Dkj(χns)|, (9.49)

where r, d are some nonnegative integers independent of n, and || · || stands for the spectral norm
of a matrix or the Euclidean norm of a vector. From the argument of (9.40), (10.55) and (9.28)
we see

E
( 1

λ2
min

|Dkj(χns)|2
)
≤ K, (9.50)

In view of (9.49), (9.52) and (10.55) we conclude that E|DkjΦ
(1)
kj |

2 is bounded.

We now claim that E
(
Dℓ

kjΦ
(1)
kj

)2
, ℓ = 2, 3, 4 are bounded as well. Indeed, from (9.45) to

(9.47) we see that each higher derivative of E
(
D1

kjΦ
(1)
kj

)
must be a sum of the products of some

of the derivatives Dkj(U(θ, s)), Dkj(en(s, x)), Dkj(H
−1(s)), Dkj(

1√
n
X(s)) and Dℓ

kj(χns). From

(10.40)-(9.46) we see such derivatives must be formed by some of the factors listed in (9.48) as
well as Dℓ

kj(χns). Here we would point out that the trace involved in (9.46) is handled in the

way that trCeke
T
j D = eTj DCek. Therefore, as in (9.49), we have for ℓ = 2, 3, 4

∣∣∣Dℓ
kjΦ

(ℓ)
kj

∣∣∣ ≤ K||λmin||−r1 ||eTkH−1(s)
1√
n
X(s)||d1

ℓ∑
m=0

|Dm
kj(χns)|

≤ K

λ
r1+d1/2
min

ℓ∑
m=0

|Dm
kj(χns)|, (9.51)
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where r1, d1 are some nonnegative integers, independent of n. Again, from the argument of
(9.40), (10.55) and (9.28) one can verify that

E
( 1

λ
r1+d1/2
min

|Dℓ
kj(χns)|2

)
≤ K. (9.52)

Hence E
∣∣∣Dℓ

kjΦ
(1)
kj

∣∣∣2 ≤ K. Likewise one may verify that E
∣∣∣Dℓ

kjΦ
(2)
kj

∣∣∣2 is bounded. Summarizing

the above we have proved that

E
∣∣∣Dℓ

kjΦ
(i)
kj

∣∣∣2 ≤ K, ℓ = 1, 2, 3, 4, i = 1, 2. (9.53)

Consider ξ
(i)
3 in (9.44) now. Define the event

B =
(
λmin ≥ (1−

√
c1)

2/2
)
. (9.54)

Write

E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣ = E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣I(B) + E
∣∣∣X5

kjsΦ
(4)(vXkjs)

∣∣∣I(Bc).

From (9.86) and (10.16) we see that on the event B

|X5
kjsD

4
kjΦ

(i)
kj (vXkjs)| ≤ K

√
nε|X4

kjs|+K(
√
nε)5

4∑
m=1

|Dm
kj(χns)|.

Moreover, as in (9.40) one may verify that

E
∣∣∣(√nε)5

4∑
m=1

|Dm
kj(χns)

∣∣∣ = O(n−k).

While (10.41) and (10.50) imply

E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣I(Bc) ≤ (E|D4
kjΦ

(i)
kj (vXkjs)|2)1/2(E|Xkjs|4(p+2)P (Bc))1/4 = O(n−k).

It follows that

|ξ(i)3 | ≤ K

n5/2

n,p1∑
k,j=1

∫ 1

0
E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣dv ≤ Kε → 0. (9.55)

For ℓ = 1, 2, 3.4, let µε
ℓ,kj(µℓ,kj) and κεℓ,kj(κℓ,kj) be the ℓ-th moment and ℓ-th cumulant of the

truncated variables Xε
kj (the original variables Xkj) respectively. Then

|µε
ℓ,kj − µℓ,kj | ≤ KE|Xkj |ℓI(|Xkj | > ε

√
n) ≤ K

(
√
nε)4−ℓ

E|Xkj |4I(|Xkj | > ε
√
n). (9.56)

It is well-known that the ℓ-th cumulant κℓ can be written in terms of the moments µλ as

κℓ =
∑
λ

cλµλ, (9.57)
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where the sum is over all additive partitions λ of the set {1, . . . , ℓ}, {cλ} are known coefficients
and µλ =

∏
ℓ∈λ µℓ. We then obtain from (9.56) and (9.57),

|κεℓ,kj − κℓ,kj | ≤
K

(
√
nε)4−ℓ

E|Xkj |4I(|Xkj | > ε
√
n). (9.58)

Recalling the definition of T
(1)
ℓε in (9.2.2), from (9.58) and (10.41) we may write

T
(1)
ℓε = T

(1)
ℓ + r

(1)
ℓ , (9.59)

where the error term r
(1)
ℓ satisfies

|r(1)ℓ | ≤ s(ℓ−1)/2

ℓ!n(ℓ+1)/2

p1,n∑
k,j=1

|κεℓ+1,kj − κℓ+1,kj ||E(Dℓ
kjΦ

ε(i)
kj )| ≤ Kεℓ−4

√
n

(9.60)

and T
(1)
ℓ is the analogue of T

(1)
ℓε with κεℓ,kj replaced by κℓ,kj . Note that T

(1)
0 = T

(1)
3 = 0, T

(1)
1 =

V
(1)
n because κ1 = κ4 = 0. In view of Lemma 9 below, T

(1)
2 = o(1), and hence

Q(1)
n = V (1)

n + ξ
(1)
3 + o(1). (9.61)

With the same proof as above, we can obtain

Q(2)
n = V (2)

n + ξ
(2)
3 + o(1). (9.62)

This, together with (9.61), (9.55) and (9.41), completes the proof of this theorem.

Lemma 9. Under the assumptions of Theorem 2,

T
(i)
2 =

s
1
2

2n
3
2

n,p1∑
j,k=1

κε3,kjE
(
D2

kj(Φ
i
kj)

)
= o(1), i = 1, 2, (9.63)

as n → ∞.

By taking a further derivative of (9.47) we may obtain the expansion of D2
kj(Φ

i
kj). However

since such an expansion is rather complicated we do not list all the terms here. Note that each
term of its expansion must be a product or a convolution of some of the following factors

C1 = (Vn(s))kj , C2 = (Vn(s)
1√
n
X(s)H−1(s))kk, C3 = (Px(s)PyUPy)jj , (9.64)

C4 = (PyUPy)jj , C5 = en(s, x), C6 = (Vn(s)Px(s))kj , C7 = (H−1(s))kk, C10 = (Px(s))jj ,

C8 = (Px(s)PyUPyPx(s))jj , C9 = (
1√
n
XT (s)H−1(s))jk, C11 = χns, C12 = Dℓ

kj(χns), ℓ = 1, 2,

where Vn(s) = H−1(s) 1√
n
X(s)PyUPy and U stands for U(θ, s) or U(θ− τ, s). Moreover, each

term of the expression of D2
kj(s)Φ

(1)
kj (s) must contain C5 = en(s, x) and at least one of C11

and C12; and moreover, it contains at least one of C1, C6 and C9. For example we see that
Dkj(en(s, x)) contains C1 or C6 from (9.46) and Dkj((H

−1(s))kk) includes C9 from (10.40).
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Thus, to prove (9.63), it suffices to estimate the following term

1

n3/2

p1,n∑
k,j=1

E
(
Cri+1
i

∏
h∈D,h ̸=i

Crh
h

)
= o(1), i = 1, 6, 9, (9.65)

where all rh, h ∈ D = {1, · · · , 12} are nonnegative integers, independent of n. As in (9.40) one
may verify that (9.65) converges to zero if C12 is contained in (9.65). Below we consider only
the case when C12 is not contained in (9.65) and as a result it must contain C11.

We first prove (9.65) holds for the case when there are at least two of Ci, i = 1, 6, 9 contained
in the expectation sign of (9.65). Moreover for concreteness we consider the case when C1 and
C6 are both contained in (9.65) and all the remaining cases can be proved similarly. With
D1 = {2, · · · , 5, 7, · · · , 10} by the Schwartz inequality and arguments similar to (10.55) and
(9.49) we obtain ∣∣∣ 1

n3/2

p1,n∑
k,j=1

E
(
Cr1+1
1 Cr6+1

6 C11

∏
h∈D1

Crh
h

)∣∣∣
≤ K

n3/2
E
( p1,n∑

k,j=1

|(Vn(s))kj |2(r1+1)
p1,n∑
k,j=1

|(Vn(s)Px(s))kj |2(r6+1)I(B)
)1/2

+
Kn4+r1+r6+r2+r7

n3/2
P
(M2

n
≤ λmin ≤

(1−√
c1)

2

2

)
= O(

1√
n
), (9.66)

where we also use the fact that recalling the definition of the event B in (9.54),

p1,n∑
k,j=1

|(Vn(s))kj |2(r1+1)I(B) ≤ K

p1,n∑
k,j=1

|(Vn(s))kj |2I(B) ≤ Ktr(Vn(s))
2I(B) ≤ nK.

If there is only one of Ci, i = 1, 6, 9 contained in (9.65) but its corresponding ri being greater
than zero, then repeating the argument of (9.66) ensures that (9.65) holds. We now consider the
case when one of Ci, i = 1, 6, 9 is contained in (9.65) but its corresponding ri equals zero. For
concreteness we consider C1 contained in (9.65) and the remaining cases can be proved similarly.
Let D2 = {2, · · · , 5, 7, 8, 10}. By the Schwartz inequality∣∣∣ 1

n3/2

p1,n∑
k,j=1

E
(
C1C11

∏
h∈D2

Crh
h

)∣∣∣2
≤ K

n3
E
[∑
j=1

∣∣Cr3
3 Cr4

4 Cr8
8 Cr10

10

∣∣2∑
j=1

∣∣∣∑
k

(Vn(s))kjC
r2
2 Cr7

7

∣∣∣2I(B)
]

+
Kn8+2r1+2r2+2r7

n3
P
(M2

n
≤ λmin ≤

(1−√
c1)

2

2

)
≤ K

n2
E
[∑
j=1

∑
k1,k2

(Vn(s))k1j(V̄n(s))k2jC
r2
2k1k1

Cr7
7k1k1

C̄r2
2k2k2

C̄r7
7k2k2

I(B)
]

(9.67)

+
Kn8+2r1+2r2+2r7

n3
P
(M2

n
≤ λmin ≤

(1−√
c1)

2

2

)
= O(

1√
n
), (9.68)

where we use C2kk and C7kk, k = k1, k2, respectively, to denote C2 and C7 to emphasize their
dependence on k and the notation (̄·) denotes its corresponding complex conjugate. As for (9.67)
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we use the following fact that

(9.67) =
K

n2
E
[ ∑
k1,k2

(V̄n(s)V
T
n (s))k2k1C

r2
2k1k1

Cr7
7k1k1

C̄r2
2k2k2

C̄r7
7k2k2

I(B)
]

≤ K

n2
E
[∑

k1

|Cr2
2k1k1

Cr7
7k1k1

|2
∑
k1

∣∣∣∑
k2

(V̄n(s)V
T
n (s))k2k1C̄

r2
2k2k2

C̄r7
7k2k2

∣∣∣2I(B)
]1/2

≤ K

n3/2
E
[∑

k1

∑
k2,k3

(V̄n(s)V
T
n (s))k2k1(V

∗
n(s)Vn(s))k3k1C̄

r2
2k2k2

C̄r7
7k2k2

Cr2
2k3k3

Cr7
7k3k3

I(B)
]1/2

=
K

n3/2
E
[ ∑
k2,k3

(V̄n(s)(V
T
n (s))

2V̄n(s))k2k3C̄
r2
2k2k2

C̄r7
7k2k2

Cr2
2k3k3

Cr7
7k3k3

I(B)
]1/2

≤ K√
n
,

where V∗
n(s) stands for the complex conjugate transpose of Vn(s). Therefore (9.65) holds for

all cases and the proof of Lemma 9 is complete.

9.3 Proof of Theorem 3

9.3.1 The Gaussian case

The CLT under the case of p2 ≥ n has been discussed in the proof of Theorem 1. Consider
c′2 ∈ (0, 1) next.

We remind readers that we below use the same notations as those in Theorem 1. Recall
qn = p2

n−p2
. From (8.6) in the paper, we can see that the statistic (2.10) in the paper can be

expressed as ∫
ϕ(λ)dG(2)

p1,p2(λ) =

∫
ϕ(

qnµ

1 + qnµ
)dp1[F

S1S
−1
2t (µ)− F̃y1n,y2n(µ)], (9.69)

where F̃y1n,y2n(µ) is obtained from F̃y1,y2(µ), whose stieltjes transform is defined in (2.5) in the
paper, with the substitution of (yn1, yn2) for (y1, y2). Here yn1 =

p1
p2

and yn2 = p1
n−p2

.

From (9.69), it suffices to provide the CLT for generalized F -matrix Kn = S1S
−1
2t . When

t = 0, the CLT of the linear spectral statistics of Kn is provided in Zheng (2012). Following a
line similar to the proof of Theorem 3.1 of Zheng (2012), we next provide the CLT for the linear
spectral statistics of the matrix Kn in the case of t > 0.

Let n = (n1, n2) and y = (y1, y2) with n1 = p1 and n2 = n− p2. The Stieltjes transforms of
the ESD and LSD of the matrix S1S

−1
2t are denoted by mn(z) and my(z) respectively while those

of the ESD and LSD of the matrix 1
p2
WT

1 S
−1
2t W1 are denoted by mn(z) and my(z) respectively.

The ESD and LSD of S2t are written as Fn2t and Fy2t respectively while those of S−1
2t are written

as Hn2t(x) and Hy2t(x) respectively. The Stieltjes transforms of Fn2t and Fy2t are denoted by
mn2t(z) and my2t(z) respectively. The Stieltjes transforms of ESD and LSD of the matrix
S2 = 1

n−p2
W2W

T
2 are written as mn2(z) and my2(z) respectively while those of the ESD and

LSD of the matrix 1
n−p2

WT
2 W2 are denoted by mn2

(z) and my2(z) respectively. Moreover,
myn ,myn

are obtained from my,my respectively with y = (y1, y2) replaced by yn = (y1n, y2n).
Also Fyn2 t

,myn2 t
,myn2 t

, Fyn2
,myn2

and myn2
are obtained from Fy2t,my2t,my2t, Fy2 ,my2 and

my2 with y2 replaced by y2n.
Some of the Stieltjes transforms and ESDs above have the following relations:

mn(z) = −1− yn1
z

+ yn1mn(z), my(z) = −1− y1
z

+ y1my(z); (9.70)
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and for all x > 0,

Hn2t(x) = 1− Fn2t(
1

x
), Hy2t(x) = 1− Fy2t(

1

x
).

This, together with Theorem 4.3 of Bai and Silverstein (2009), indicates that my(z) satisfies the
following equation

z = − 1

my(z)
+

∫
y1dFy2t(x)

x+my(z)
. (9.71)

Replacing Fy2t(x) by Fyn2t
(x) we have a similar expression ( see (6.2.15) of Bai and Silverstein

(2009) as well)

z = − 1

myn

+

∫
yn1dFyn2t

(x)

x+myn

. (9.72)

Write

n1[mn(z)−myn
(z)] = n1[mn(z)−myn1 ,Hn2t(z)] + n1[m

yn1 ,Hn2t(z)−myn
(z)], (9.73)

where m{yn1 ,Hn2t}(z) is the unique root to the following equation

z = − 1

m{yn1 ,Hn2t}
+

∫
yn1dFn2t(x)

x+m{yn1 ,Hn2t}
. (9.74)

Roughly speaking, myn1 ,Hn2t(z) is the Stieltjes transform of the LSD of 1
nW

T
1 S

−1
2t W1 when W2

is given.
Step 1: Given W2, consider the conditional distribution of

n1[mn −m{yn1 ,Hn2t}(z)]. (9.75)

For simplicity, write my(z) as m(z). By Lemma 9.11 of Bai and Silverstein (2009), we can
obtain the conditional distribution of (9.75) given W2 converges to a Gaussian process M1(z)
on some contour C (see Lemma 9.11 of Bai and Silverstein (2009)) with mean function

E(M1(z)|W2) =
y1

∫
m(z)3x[x+m(z)]−3dFy2t(x)

[1− y1
∫
m(z)2(x+m(z))−2dFy2t(x)]

2
(9.76)

for z ∈ C and covariance function

Cov(M1(z1),M1(z2)|W2) = 2
( m

′
(z1)m

′
(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

)
(9.77)

for z1, z2 ∈ C.
Step 2: Consider the limit distribution of

n1[m
{yn1 ,Hn2t}(z)−myn

(z)]. (9.78)

By the definition of the Stieltjes transform, rewrite the equations of (9.72) and (9.74) as

z = − 1

myn

+ yn1myn2t
(−myn

), z = − 1

m{yn1 ,Hn2t}
+ yn1mn2t

(
−m{yn1 ,Hn2t}

)
. (9.79)
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Taking a difference of the above two identities we obtain

0 =
m{yn1 ,Hn2t} −myn

myn
m{yn1 ,Hn2t}

+ yn1[mn2t(−m{yn1 ,Hn2t})−mn2t(−myn
) +mn2t(−myn

)−myn2t
(−myn

)]

=
m{yn1 ,Hn2t} −myn

myn
m{yn1 ,Hn2t}

− yn1

∫
(m{yn1 ,Hn2t} −myn

)dFn2t(x)

(x+m{yn1 ,Hn2t})(x+myn
)
+ yn1 [mn2t(−myn

)−myn2t
(−myn

)].

From the above equality, we can obtain

n1[m
{yn1 ,Hn2t}(z)−myn

(z)]

= −yn1myn
m{yn1 ,Hn2t}

n1[mn2t(−myn
)−myn2t

(−myn
)]

1− yn1

∫ myn
m

{yn1 ,Hn2t
}
dFn2t(x)

(x+myn
)(x+m

{yn1 ,Hn2t
}
)

. (9.80)

From the fact that myn
(z) → m(z) and Theorem 3.9 of Billingsley (1999), the limiting

distribution of

p1[mn2t(−myn
)−myn2t

(−myn
)]

is the same as that of

p1[mn2t(−m)−myn2t
(−m)].

Recall the definition of g(z) before Theorem 3. By Lemma 2 in the supplementary material,
we see that n1[mn2t(−m(z)) −myn2t

(−m(z))] converges to a Gaussian process M2(·) on z ∈ C
with mean function

EM2(z) =
y2ϖ

2(−m(z))m3(−m(z)) + y22ϖ
4(−m(z))m

′
y2t(−m(z))m3(−m(z))

1− y2ϖ2(−m(z))m2(−m(z))

−
y22ϖ

3(−m(z))m
′
y2t(−m(z))m2(−m(z))

1− y2ϖ2(−m(z))m2(−m(z))

and covariance

Cov(M2(z1),M2(z2)) = − 2

(−m(z2) +m(z1))2
+

2[1 + g(z1) + g(z2) + g(z1)g(z2)]

[−m(z2) +m(z1) + s(−m(z1),−m(z2))]2
,

Since
−myn

(z)m
{yn1 ,Hn2t

}
(z)

1−yn1

∫ myn (z)m
{yn1 ,Hn2t

}
(z)dFn2t

(x)

(x+myn (z))(x+m
{yn1 ,Hn2t

}
)

converges to h(z) = −m2(z)

1−y1m2(z)
∫ dFy2t

(x)

(x+m(z))2

, we have (9.80)

converges weakly to a Gaussian process M3(·) = h(z)M2(z) with mean E(M3(z)) = h(z)EM2(z)
and covariance

Cov(M3(z1),M3(z2)) = h(z1)h(z2)Cov(M2(z1),M2(z2)).

Since the limit of

n1[mn(z)−m{yn1 ,Hn2t}(z)]

conditioning on W2 is independent of the ESD of Sn2 , the limits of

n1[mn(z)−m{yn1 ,Hn2t}(z)] and n1[m
{yn1 ,Hn2t}(z)−myn

(z)]
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are asymptotically independent. Therefore n1[mn(z) − myn
(z)] converges weakly to M1(z) +

M3(z) with mean function

E(M1(z) +M3(z)) =
y1

∫
m(z)3x[x+m(z)]−3dFy2t(x)

[1− y1
∫
m(z)2(x+m(z))−2dFy2t(x)]

2

+h(z)
y2ϖ

2(−m(z))m3(−m(z)) + y22ϖ
4(−m(z))m

′
y2t(−m(z))m3(−m(z))

1− cϖ2(−m(z))m2(−m(z))

−h(z)
y22ϖ

3(−m(z))m
′
y2t(−m(z))m2(−m(z))

1− y2ϖ2(−m(z))m2(−m(z))

(9.81)

and covariance function

Cov(M1(z1) +M3(z1),M1(z2) +M3(z2)) = 2
( m

′
(z1)m

′
(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

)
− 2h(z1)h(z2)

(−m(z2) +m(z1))2
+

h(z1)h(z2)2[1 + g(z1) + g(z2) + g(z1)g(z2)]

[−m(z2) +m(z1) + s(−m(z1),−m(z2))]2
. (9.82)

By the Cauchy integral formula, we have with probability one for all n large∫
f(x)dG(2)

p1,p2(x) = − 1

2πi

∫
f(z)mG(z)dz. (9.83)

Then (∫
f1(x)dG

(2)
p1,p2(x), . . . ,

∫
fk(x)dG

(2)
p1,p2(x)

)
converges to a Gaussian vector (Xf1 , . . . , Xfk) where

EXfi = − 1

2πi

∮
fi(z)E(M1(z) +M3(z))dz (9.84)

and

Cov(Xfi , Xfj ) = − 1

4π2

∮ ∮
fi(z1)fj(z2)Cov(M1(z1) +M3(z1),M1(z2) +M3(z2))dz1dz2.(9.85)

As for the non-Gaussian case, under the assumption that EX4
11 = 3, one can verify that the

CLT is the same as that in the Gaussian case by repeating the method in Proof of Theorem 2
in Appendix B (replacing Px there by Ptx in (8.11) in the paper). We omit the details here.

9.4 The proof of Theorem 4

Since it is difficult to get an explicit expression for
∫
ϕ(λ)dF c′1n,c

′
2n(λ) directly from (2.5) and

(2.3) in the paper, we below develop its alternative expression when ϕ(λ) = λ. In view of
Theorems 1 and 3 it is enough to consider normal random variables when deriving such an
expression below.

Consider the case when c′2 < 1. As in (8.3)-(8.5) and the equalities above (8.10) we write∫
λdFTxy(λ) =

1

p1
trTxy =

1

p1
trP̃yPtxP̃y =

1

p1
tr
1

n
W1W

T
1 A

−1(t) (9.86)
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=
1

np1

p2∑
k=1

wT
k A

−1(t)wk =
1

np1

p2∑
k=1

wT
k A

−1
k (t)wk

1 + n−1wT
k A

−1
k (t)wk

=
p2
p1

− 1

p1

p2∑
k=1

1

1 + 1
n trA

−1
k (t)

+ op(1) =
p2
p1

− p2
p1

1

1 + 1
n trA

−1(t)
+ op(1),

where A−1(t) = ( 1nW1W
T
1 +

1
nW2W

T
2 +tΣ−1

xx)
−1, A−1

k (t) = ( 1nW1kW
T
1k+

1
nW2W

T
2 +tΣ−1

xx)
−1,

W1kW
T
1k +wkw

T
k = W1W

T
1 and the proof of the last two steps is straightforward. Moreover,

denote the limit of 1
p1
trA−1(t) by mt. Then from (1.5) in the supplement material or using an

argument similar to (4.5) in Silverstein and Bai (1995) we have

mt =

∫
dH1(λ)

λ+ 1
1+c′1mt

,

where H1(λ) stands for the limit of the ESD of tΣ−1
xx . Replacing H1(λ) by F tΣ−1

xx and c′1 by c′1n
yields

mnt =

∫
dF tΣ−1

xx

λ+ a−1
n

=
1

p1
tr(tΣ−1

xx + a−1
n I)−1 = an − ant

p1
tr(a−1

n Σxx + tI)−1 (9.87)

with an = 1 + c′1nmnt. It follows that∫
λdF c′1n,c

′
2n(λ) =

p2
p1

− p2
p1

1

1 + c′1nmnt
. (9.88)

In view of (10.40) it is enough to look at mnt. Let B−1
Σ = (a−1

n Σxx + tI)−1 and B̂−1
Σ =

((1 + c′1nm̂nt)
−1Σ̂xx + tI)−1. From (3.3) and (10.37) we have

p1(1− c
′
1n)(mnt − m̂nt) = −tantrB

−1
Σ + tântrB̂

−1
Σ ,

which further implies that

p1dn(mnt − m̂nt) = −ta−1
n ântrB̂

−1
Σ

(
Σ̂xx −Σxx

)
B−1

Σ , (9.89)

where dn = 1− c′1n + c′1nt
1
p1
trB−1

Σ +
c′1ntm̂nt

(1+c′1nm̂nt)(1+c′1nmnt)
1
p1
trB−1

Σ Σ̂xxB̂
−1
Σ . It is straightforward

to verify that dn > 1− c′1n and dn converges to a nonzero number in probability when c′1 = 1.
Consider the term on the right hand of (9.89). Write

trB̂−1
Σ

(
Σxx − Σ̂xx

)
B−1

Σ =

p∑
i̸=j

(
σij − σ̂ijI(|σ̂ij | ≥ ℓ)

)
aji, (9.90)

where aij = eTj B
−1
Σ B̂−1

Σ ei. Note that |aij | ≤ ∥B̂−1
Σ ∥∥B−1

Σ ∥, bounded in probability uniformly in
i and j. Write

σ̂ij − σij =
1

n

n∑
k=1

XikXjk − σij .

Define X̃ij = XijI(|Xij | ≤ (n/ log n)1/4), X̌ij = X̃ij −EX̃ij and denote by σ̃ij , σ̌ij the analogues
of σ̂ij with all entries {Xij} of X replaced by X̃ij and X̌ij , respectively. Then one may verify
that

P
(
max
i̸=j

|σij − σ̂ij | ̸= max
i̸=j

|σij − σ̃ij |
)
≤

∑
i,j

P (|Xij | ≥ (n/ log n)1/4) = o(n−2).
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and ∣∣∣max
i̸=j

|σij − σ̃ij | −max
i ̸=j

|σij − σ̌ij |
∣∣∣ ≤ max

i̸=j
| 1
n

n∑
k=1

X̃ikX̃jk −
1

n

n∑
k=1

X̌ikX̌jk| = op(n
−2),

by the fact that EX11(|X11| ≥ (n/ log n)1/4) = o(n−4(log n)4). Thus it is enough to consider
X̌ij . By the Bernstein inequality one may obtain

P
(
max
i̸=j

∣∣∣ 1√
n

n∑
k=1

(X̌ikX̌jk − σij)
∣∣∣ ≥ C

√
log p

)
≤

P
(
max
i̸=j

∣∣∣ 1√
n

n∑
k=1

(
X̌ikX̌jk−E(X̌ikX̌jk)

)∣∣∣ ≥ C
√

log p
)
+C(log n)15/8n−11/8 = O((log n)15/8n−11/8).

(9.91)
In view of (9.91), mimicking the proof of Theorem 1 in Bickel and Levina (2008) (replacing max

i

in formulas (13)-(22) in their paper by
∑
i
), one may verify that

p∑
i̸=j

(
σij − σ̂ijI(|σ̂ij | ≥ ℓ)

)
aji = Op

(
so(p)

( log p
n

)(1−q)/2)
.

It follows that (9.90) tends to zero in probability. Hence Theorem 4 follows from Theorem 3
and Slutsky’s theorem.

Consider the case when p2 > n. From (9.86) and the paragraph containing (8.7) in the
paper, we see that∫

λdFTx,y(λ) =
1

p1
tr

1

n
WWT (

1

n
WWT+tΣ−1

xx)
−1 = 1− t

p1
tr(

1

n
Σ

1/2
xx WWTΣ

1/2
xx +tI)−1 (9.92)

i.p.−→ 1− tm(1t),

where the last step uses formula (6.1.2) in Bai and Silverstein (2009) (or one may verify it
directly) and m(1t) satisfies the equation

m(1t) =

∫
dH(λ)

λ(1− c′1 + c′1tm
(1t)) + t

. (9.93)

It follows that ∫
λdF c′1n,c

′
2n(λ) = 1− tm(1t)

n , (9.94)

where m
(1t)
n satisfies the equation

m(1t)
n =

∫
dHn(λ)

λ(1− c′1n + c′1ntm
(1t)
n ) + t

=
1

p1
tr
(
(1− c′1n + c′1ntm

(1t)
n )Σxx + tI

)−1
.

Note that

m̂(1t)
n =

1

p1
tr
(
(1− c′1n + c′1ntm̂

(1t)
n )Σ̂xx + tI

)−1
. (9.95)

As in the case of c′2 < 1, one may verify that

p1(m
(1t)
n − m̂(1t)

n )
i.p.−→ 0

so that

p1

(∫
λdF c′1n,c

′
2n(λ)− (1− tm̂(1t)

n )
)

i.p.−→ 0.
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9.5 The proof of Theorem 5

We below only prove the case when c
′
2 < 1/2 because the remaining cases are similar. For Group

1 and Modified Group 2, by part a) of Theorem 3, we have∫
λdFT

(1)
xy (λ)−

∫
λdF 2c

′
1n,2c

′
2n(λ)

d→ N (µ1, σ
2
1), (9.96)

and ∫
λdFT

(2)
xy (λ)−

∫
λdF 2c

′
1n,c

′
2n(λ)

d→ N (µ2, σ
2
2). (9.97)

In view of (3.1) we have ∫
λdF 2c

′
1n,2c

′
2n(λ) = 2

∫
λdF 2c

′
1n,c

′
2n(λ). (9.98)

It follows from the independence between T
(1)
xy and T

(2)
xy that∫

λdFT
(1)
xy (λ)− 2

∫
λdFT

(2)
xy (λ)

d→ N (µ1 − 2µ2, σ
2
1 + 4σ2

2).

9.6 The proofs of Theorems 6 and 7

We only prove Theorem 6 because the proof of Theorem 7 is similar. Set

D(i) = p1

∫
λd

(
F

R
(i)
xy

H1
(λ)− F

R
(i)
xy

H0
(λ)

)
,

where R
(1)
xy represents the matrix Sxy while R

(2)
xy represents the matrix Txy; and F

R
(i)
xy

H0
, F

R
(i)
xy

H1

stand for the ESDs of R
(i)
xy under H0 and H1, respectively. The power can be then calculated as

βn = P
(
R(i)

n > z1−α or R(i)
n < zα

∣∣∣H1

)
= P

(
D(i) +R(i)0

n > z1−α or D(i) +R(i)0
n < zα

∣∣∣H1

)
= P

(
R(i)0

n > z1−α −D(i) or R(i)0
n < zα −D(i)

∣∣∣H1

)
, (9.99)

where R
(i)0
n stands for R

(i)
n under H0. Under the condition (4.1), we have

βn → 1, as n → ∞.
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10 Supplement material: CLT for a sample covariance matrix
plus a perturbation

This supplement material is to provide the central limit theorem for linear spectral statistics,
quantities of the form

1

n

n∑
j=1

f(λj) =

∫
f(x)dFBn(x), (10.1)

where f is a function on [0,∞), λ1, . . . , λn denote the eigenvalues of random matrices Bn and

Bn =
1

N
XX∗ +Tn. (10.2)

Here X = (Xij) is n×N with independent and identically distributed (i.i.d) complex (real) stan-
dardized entries, Tn is a nonnegative Hermitian matrix, and the empirical spectral distribution
(ESD) of any square matrix A with real eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn is denoted by

FA(x) =
1

n
#{i : µi ≤ x}, (10.3)

where #{· · · } denotes the cardinality of the set {· · · }.
Silverstein (1995) discovers the limiting spectral distribution(LSD) Fc,H , the limit of FBn ,

which is given in Lemma 10 below for easy reference. The Stieltjes transform of any distribution
function G(x) is defined by

mG(z) ≡
∫

1

λ− z
dG(λ), ℑ(z) ̸= 0. (10.4)

Lemma 10. Assume that

1. For each n, Xn = (Xn
ij), {Xn

ij : i = 1, . . . , n; j = 1, . . . , N} are i.d.; for all n, i, j, {Xn
ij :

n = 1, 2, . . . ; i = 1, . . . , n; j = 1, . . . , N} are independent. Moreover, EX11 = 0 and
E|X11|2 = 1.

2. n = n(N) with n/N → c > 0 as N → ∞.

3. Tn is an n × n Hermitian nonrandom matrix for which FTn(x) converges vaguely to a
nonrandom distribution H(x),

then almost surely, FBn, the ESD of Bn, converges vaguely, as N → ∞, to a nonrandom
distribution Fc,H , whose Stieltjes transform m0(z), z ∈ C+ satisfies

m0(z) = mH

(
z − 1

1 + cm0(z)

)
, (10.5)

where mH(z) denotes the Stieltjes transform of H(x).

Remark 9. Indeed, Silverstein (1995) derives a more general equation than (10.5) for the matrix
1
nXAnX

∗ +Tn, where An is a diagonal matrix. If we take An = diag
(

n
N , n

N , . . . , n
N

)
then the

equation (10.5) for the matrix Bn = 1
nXX∗+Tn follows. A similar result covering more general

matrices An can be found in Pan (2010).
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Before stating Theorem 8, we introduce some notation. Set

Gn(x) = n[FBn(x)− Fcn,Hn(x)], (10.6)

where Hn ≡ FTn , cn = n/N and Fcn,Hn(x) can be obtained from Fc,H(x) with c and H(x)
replaced by cn and Hn(x), respectively.

Let

mr(z) =

∫
dH(x)

(x− z +ϖ(z))r
, ϖ(z) =

1

1 + cm0(z)
,

s(z1, z2) =
1

1 + cm0(z1)
− 1

1 + cm0(z2)
. (10.7)

where r is a positive integer.
The main result of this supplement material is Theorem 8.

Theorem 8. Assume that
(a) {Xij , i ≤ n, j ≤ N} are i.i.d. with EX11 = 0, E|X11|2 = 1 and E|X11|4 < ∞.
(b) Tn is n × n nonrandom Hermitian nonnegative definite with spectral norm bounded in n,

and with FTn
D→ H, a proper c.d.f.

(c) n = n(N) with n/N → c > 0 as N → ∞.
Let f1, . . . , fk be functions on R analytic on an open interval containing[

I(0,1)(c)(1−
√
c)2 + lim inf

n
λTn
min, (1 +

√
c)2 + lim sup

n
λTn
max

]
, (10.8)

where λTn
min and λTn

max denote the maximum and minimum eigenvalues of Tn respectively. Then
(i) the random vector (∫

f1(x)dGn(x), . . . ,

∫
fk(x)dGn(x)

)
(10.9)

forms a tight sequence in n.
(ii) If X11 and Tn are real and EX4

11 = 3, then (10.9) converges weakly to a Gaussian vector
(Xf1 , . . . , Xfk) with mean

EXf =
1

−2πi

∮
C
f(z)

cϖ2(z)m3(z) + c2ϖ4(z)
(
m0(z)

)′
m3(z)− c2ϖ3(z)

(
m0(z)

)′
m2(z)

1− cϖ2(z)m2(z)
dz

(10.10)

and covariance function

Cov(Xfi , Xfj ) = − 1

2π2

∮
C

∮
C
fi(z1)fj(z2)[1 +

c(m0(z1))
′

(1 + cm0(z1))2
+

c(m0(z2))
′

(1 + cm0(z2))2

+
c(m0(z1))

′

(1 + cm0(z1))2
c(m0(z2))

′

(1 + cm0(z2))2
]

1

(z2 − z1 + s(z1, z2))2
dz1dz2. (10.11)

The contours in (10.10) and (10.11) are closed and are taken in the positive direction in the
complex plane, each enclosing the support of Fc,H .
(iii) If X11 is complex with E(X2

11) = 0 and E(|X11|4) = 2, then the result above also holds,
except the mean is zero and the covariance function is 1/2 the function given in (10.11).
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Remark 10. We investigate the matrix Bn = 1
NXX∗ + Tn while Bai and Silverstein (2004)

studies the matrix of the form Sn = 1
NR

1/2
n XX∗R

1/2
n , where R

1/2
n is a Hermitian square root

of the nonnegative definite Hermitian matrix Rn. The two matrices Bn and Sn are the same
when the matrix Tn becomes a zero matrix and Rn becomes an identity matrix. In this case,
the asymptotic means and covariances in Bai and Silverstein (2004) and in Theorem 8 are the
same, which is verified in the last part of the supplement material.

10.1 Proof of Theorem 8

The proof of Theorem 8 follows a line similar to that in Bai and Silverstein (2004). Throughout
the proof K denotes a constant which may change from line to line.

10.2 Truncation, centralization and renormalization

We begin the proof by replacing the entries of Xn with truncated and centralized variables.
Since the argument for (1.8) in Bai and Silverstein (2004) can be carried directly over to the
present case, we can then select positive sequences δn such that

δn → 0, δ−4
n

∫
{|X11|≥δn

√
n}

|X11|4 → 0. (10.12)

Set B̂n = 1
N X̂nX̂

∗
n +Tn with X̂n (of size n×N) having the (i, j)th entry XijI|Xij |<δn

√
n. Then

we have

P (Bn ̸= B̂n) ≤ nNP (|X11| ≥ δn
√
n) ≤ Kδ−4

n

∫
{|X11|≥δn

√
n}

|X11|4 = o(1).

Define B̃n = 1
N X̃nX̃

∗
n+Tn with X̃n having (i, j)th entry (X̂ij −EX̂ij)/σn, where σn = E|X̂ij −

EX̂ij |2. From Bai and Silverstein (2004) we know that both lim supn λ
Ĉn
max and lim supn λ

C̃n
max

are almost surely bounded by (1 +
√
c), where Ĉn = 1

N X̂nX̂
∗
n and C̃n = 1

N X̃nX̃
∗
n. By Weyl’s

inequality and the assumption ||Tn|| ≤ M , we have that lim sup
n

λB̂n
max and lim supn λ

B̃n
max are

almost surely bounded by [(1 +
√
c) +M ]. We use Ĝn(x) and G̃n(x) to denote the analogues of

Gn(x) with the matrix Bn replaced by B̂n and B̃n respectively.

Since Tn is a nonnegative definite matrix, we can write Tn = T
1/2
n T

1/2
n =

∑n
i=1 tit

∗
i , where

ti is the ith column of T
1/2
n . We may then write

Bn = FnF
∗
n, (10.13)

where

Fn = (r1, . . . , rN , t1, . . . , tn) (10.14)

with ri =
1
NX.i, i = 1, . . . , N and X.i standing for the ith column of Xn. Define F̂n and F̃n

to be the analogues of Fn with the matrix Xn replaced by X̂n and X̃n respectively. For each
j = 1, 2, . . . , k, ∣∣∣ ∫ fj(x)dĜn(x)−

∫
fj(x)dG̃n(x)

∣∣∣ ≤ Kj

n∑
k=1

∣∣∣λB̂n
k − λB̃n

k

∣∣∣
≤ 2Kj

(
tr(F̂n − F̃n)(F̂n − F̃n)

∗
)1/2(

n(λB̂n
max + λB̃n

max)
)1/2

,
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where Kj is a bound on |f ′
j(z)| and λA

k denotes the ith smallest eigenvalue of the matrix A.
By the fact that

tr(F̂n − F̃n)(F̂n − F̃n)
∗ = N−1tr(X̂n − X̃n)(X̂n − X̃n)

∗,

and the result on page 560 of Bai and Silverstein (2004), i.e.(
N−1tr(X̂n − X̃n)(X̂n − X̃n)

∗
)1/2

= o(δnn
−1/2)(λB̂n

max)
1/2 + o(δnn

−1),

we obtain ∫
fj(x)dGn(x) =

∫
fj(x)dG̃n(x) + oP (1).

Therefore, in the sequel, we shall assume

|Xij | < δn
√
n, EXij = 0, E|Xij |2 = 1, E|Xij |4 < ∞,

and for the real case, E|X11|4 = 3 + o(1) while for the complex case, EX2
11 = o(1/n) and

E|X11|4 = 2 + o(1). For simplicity we suppress all the subscripts and superscripts on variables.

10.3 From linear spectral statistics to Stieltjes transforms

With notation Cn = 1
NXX∗, by Weyl’s inequality we have

λBn
max ≤ λCn

max + λTn
max, λBn

min ≥ λCn
min + λTn

min. (10.15)

From (1.9a) and (1.9b) of Bai and Silverstein (2004), we have

P (λBn
max ≥ η) = o(n−ℓ), P (λBn

min ≤ θ) = o(n−ℓ), (10.16)

for any η >
(
(1 +

√
c)2 + lim supn λ

Tn
max

)
, any 0 < θ <

(
I(0,1)(c)(1−

√
c)2 + lim infn λ

Tn
min

)
and

any positive ℓ.
Write

Mn(z) = n
(
mn(z)−m0

n(z)
)

where mn(z) denotes the Stieltjes transform of FBn and m0
n(z) is m

0(z) with c,H replaced by
cn,Hn respectively. By Cauchy’s integral formula

fℓ(x) =
1

2πi

∮
fℓ(z)

z − x
dz, (10.17)

we have for k ≥ 1, any complex constants a1, · · · , ak, and for all n large with probability one,

k∑
ℓ=1

aℓ

∫
fℓ(x)dGn(x) = −

k∑
ℓ=1

aℓ
2πi

∮
C
fℓ(z)Mn(z)dz, (10.18)

where the contour C is specified below. Let v0 > 0 be arbitrary. Let xr be any number greater
than the right end point of interval (10.8). Let xℓ be any negative number if the left end point
of (10.8) is zero. Otherwise, choose xℓ ∈

(
0, (1−

√
c)2 + lim infn λ

Tn
min

)
. Let

Cu = {x+ iv0 : x ∈ [xℓ, xr]}.
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Set

C+ ≡ {xℓ + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]}.

Let C− be the symmetric part of C+ about the real axis. Then set C = C+ ∪ C−.
We define now the subsets C+

n and its symmetric part C−
n of C when Mn(·) agrees with M̂n(·),

a truncated version of Mn(·) to be defined below. Select a sequence {εn} such that for some
ρ ∈ (0, 1)

εn ↓ 0, εn ≥ n−ρ.

Let

Cℓ =
{

{xℓ + iv : v ∈ [n−1εn, v0]}, xℓ > 0;
{xℓ + iv : v ∈ [0, v0]}, xℓ < 0,

and

Cr = {xr + iv : v ∈ [n−1εn, v0]}.

Set C+
n = Cℓ ∪ Cu ∪ Cr. The process M̂n(·) can now be defined. For z = x+ iv, we have

M̂n(z) =


Mn(z), if z ∈ C+

n ∪ C−
n ;

nv+εn
2εn

Mn(xr + in−1εn) +
εn−nv
2εn

Mn(xr − in−1εn),

if x = xr, v ∈ [−n−1εn, n
−1εn];

nv+εn
2εn

Mn(xl + in−1εn) +
εn−nv
2εn

Mn(xl − in−1εn),

if x = xℓ > 0, v ∈ [−n−1εn, n
−1εn].

(10.19)

With probability one, for all n large,∣∣∣ ∮
C
f(z)

(
Mn(z)− M̂n(z)

)
dz

∣∣∣
≤ Kεn

(∣∣∣max
(
(1 +

√
cn)

2 + λTn
max, λ

Bn
max

)
− xr

∣∣∣−1)
+
∣∣∣min

(
I(0,1)(c)(1−

√
c)2 + λTn

min, λ
Bn
min

)
− xℓ

∣∣∣−1
→ 0. (10.20)

In view of this and (10.18), as discussed in Bai and Silverstein (2004), it is enough to consider
the limiting distribution of

∑k
ℓ=1 aℓM̂n(zℓ).

10.4 CLT of the Stieltjes transform mn(z) of FBn

Recall the definitions of m(z, r), ϖ(z) and s(z1, z2) in the introduction.

Lemma 11. Under conditions (a)-(c) of Theorem 8, {M̂n(z)} forms a tight sequence on C.
Moreover, if assumptions in (ii) or (iii) of Theorem 8 on X11 hold, then M̂n(z) converges
weakly to a Gaussian process M(z) for z ∈ C under the assumptions in (ii),

EM(z) =
cϖ2(z)m(z, 3) + c2ϖ4(z)

(
m0(z)

)′
m(z, 3)− c2ϖ3(z)

(
m0(z)

)′
m(z, 2)

1− cϖ2(z)m(z, 2)
(10.21)
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and for z1, z2 ∈ C

Cov(M(z1),M(z2)) = − 2

(z2 − z1)2
+ 2[1 +

c(m0(z1))
′

(1 + cm0(z1))2
+

c(m0(z2))
′

(1 + cm0(z2))2

+
c(m0(z1))

′

(1 + cm0(z1))2
c(m0(z2))

′

(1 + cm0(z2))2
]

1

(z2 − z1 + s(z1, z2))2
, (10.22)

while under the assumptions in (iii) EM(z) = 0, and the covariance function similar to (10.22)
is half of the right hand side of (10.22).

We first list (2.3) of Bai and Silverstein (2004) below as Proposition 2, which holds as well
in our setting.

Proposition 2. For any nonrandom n×n matrices Ak, k = 1, . . . , p and Bℓ, ℓ = 1, . . . , q, there
exists ∣∣∣E( p∏

k=1

r∗1Akr1

q∏
ℓ=1

(r∗1Bℓr1 −N−1trBℓ)
)∣∣∣

≤ KN−(1∧q)δ(2q−4)∨0
n

p∏
k=1

||Ak||
q∏

ℓ=1

||Bℓ||, p ≥ 0, q ≥ 0. (10.23)

Proof. We now start the proof of Lemma 11. Write Mn(z) = M
(1)
n (z) +M

(2)
n (z), where

M (1)
n (z) = n

(
mn(z)− Emn(z)

)
, M (2)

n (z) = n
(
Emn(z)−m0

n(z)
)
.

By the discussion in Bai and Silverstein (2004), it suffices to prove the following four statements.

1. Finite dimension convergence of M
(1)
n (z) on Cn.

2. M
(1)
n (z) is tight on Cn where Cn = C+

n ∪ C−
n .

3. M
(2)
n (z) → EM(z), for z ∈ Cn, where M(z) is the limit of Mn(z) as n → ∞.

4. {M (2)
n (z)} for z ∈ Cn is bounded and equicontinuous.

10.4.1 Step 1: Convergence of M
(1)
n (z)

Let v0 = ℑ(z). To facilitate analysis we consider the case of v0 > 0 only. We first introduce
some notation as follows.

rj =
1√
N

X.j , D(z) = Bn − zI, Dj(z) = D(z)− rjr
∗
j , γj(z) = r∗jD

−1
j (z)rj −

1

N
EtrD−1

j (z)

εj(z) = r∗jD
−1
j (z)rj −

1

N
trD−1

j (z), δj(z) = r∗jD
−2
j (z)rj −

1

N
trD−2

j (z) =
d

dz
εj(z),

βj(z) =
1

1 + r∗jD
−1
j (z)rj

, βtr
j (z) =

1

1 +N−1trD−1
j (z)

, bn(z) =
1

1 +N−1EtrD−1
1 (z)

.

As pointed out by Bai and Silverstein (2004), the later three variables are all bounded by |z|/v0.
Let E0(·) denote expectation and Ej(·) denote conditional expectation with respect to the σ-field
generated by r1, . . . , rj .
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Write

n
(
mn(z)− Emn(z)

)
= tr

(
D−1(z)− ED−1(z)

)
=

N∑
j=1

trEjD
−1(z)− trEj−1D

−1(z)

=

N∑
j=1

trEj

(
D−1(z)−D−1

j (z)
)
− trEj−1

(
D−1(z)−D−1

j (z)
)

= −
N∑
j=1

(Ej − Ej−1)βj(z)r
∗
jD

−2
j (z)rj , (10.24)

where the last equality uses

D−1(z)−D−1
j (z) = −D−1

j (z)rjr
∗
jD

−1
j (z)βj(z). (10.25)

By the identity

βj(z) = βtr
j (z)− βj(z)β

tr
j (z)εj(z) = βtr

j (z)− (βtr
j (z))2εj(z) + (βtr

j (z))2βj(z)ε
2
j (z), (10.26)

we have

(Ej − Ej−1)βj(z)r
∗
jD

−2
j (z)rj = Ej

(
βtr
j (z)δj(z)− (βtr

j (z))2εj(z)
1

N
trD−2

j (z)
)

−(Ej − Ej−1)(β
tr
j (z))2

(
εj(z)δj(z)− βj(z)r

∗
jD

−2
j (z)rjε

2
j (z)

)
.

By Proposition 2 one can prove that (Ej − Ej−1)(β
tr
j (z))2

(
εj(z)δj(z) − βj(z)r

∗
jD

−2
j (z)rjε

2
j (z)

)
converges to zero in probability (One can refer to page 569 of Bai and Silverstein (2004) for
similar arguments).

Therefore it is sufficient to consider the sum
∑k

ℓ=1 aℓ
∑N

j=1 Yj(zℓ), where

Yj(z) = Ej

(
βtr
j (z)δj(z)− (βtr

j (z))2εj(z)
1

N
trD−2

j (z)
)
= −Ej

d

dz
βtr
j (z)εj(z). (10.27)

We next utilize Lemma 2.4 of Bai and Silverstein (2004), CLT for martingale differences. By
Proposition 2 and using the same arguments as those above (2.4) on page 570 of Bai and Silverstein
(2004), we see that condition 2 of Lemma 2.4 of Bai and Silverstein (2004) is satisfied and it is
therefore enough to find the limit in probability of

N∑
j=1

Ej−1

(
Yj(z1)Yj(z2)

)
. (10.28)

Consider the sum

N∑
j=1

Ej−1

(
Ej

(
βtr
j (z1)εj(z1)

)
Ej

(
βtr
j (z2)εj(z2)

))
. (10.29)

Since

∂2

∂z2∂z1
(10.29) = (10.28), (10.30)
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by the same arguments as those on page 571 of Bai and Silverstein (2004) we only need to show
(10.29) converges in probability and to determine its limit.

Note that the derivation above (4.3) of Bai and Silverstein (1998) is true in the present case
and hence

E| 1
N

trD−1
j (z)− 1

N
EtrD−1

j (z)|p ≤ KN−p/2. (10.31)

By the discussions above (2.7) of Bai and Silverstein (2004), we then have

N∑
j=1

Ej−1

(
Ej

(
βtr
j (z1)εj(z1)

)
Ej

(
βtr
j (z2)εj(z2)

))
− bn(z1)bn(z2)

N∑
j=1

Ej−1

(
Ej

(
εj(z1)

)
Ej

(
εj(z2)

)) i.p.→ 0.

Thus it remains to prove that

bn(z1)bn(z2)

N∑
j=1

Ej−1

(
Ej

(
εj(z1)

)
Ej

(
εj(z2)

))
(10.32)

converges in probability and to determine its limit.
In the complex case, namely EX2

11 = o(1/n) and E|X11|4 = 2 + o(1), by the identity

E(X∗
.1AX.1 − trA)(X∗

.1BX.1 − trB)

= (E|X11|4 − |EX2
11|2 − 2)

n∑
i=1

aiibii + |EX2
11|2trABT + trAB (10.33)

valid for n× n nonrandom matrices A = (aij) and B = (bij), (10.32) becomes

bn(z1)bn(z2)
1

N2

N∑
j=1

(
trEj

(
D−1

j (z1)
)
Ej

(
D−1

j (z2)
)
+ o(1)An

)
, (10.34)

where

|An| ≤ K
(
trEj

(
D−1

j (z1)
)
Ej

(
D̄−1

j (z1)
)
× trEj

(
D−1

j (z2)
)
Ej

(
D̄−1

j (z2)
))1/2

= O(N).

Thus it is sufficient to study

bn(z1)bn(z2)
1

N2

N∑
j=1

trEj

(
D−1

j (z1)
)
Ej

(
D−1

j (z2)
)
. (10.35)

In the real case, namely E|X11|4 = 3 + o(1), (10.32) should be double the limit of (10.35).
The next aim is to investigate (10.35). To this end, set Dij(z) = D(z)− rir

∗
i − rjr

∗
j ,

βij(z) =
1

1 + r∗iD
−1
ij (z)ri

, b1(z) =
1

1 +N−1EtrD−1
12 (z)

, H−1(z) =
(
zI− N − 1

N
b1(z)I−Tn

)−1
.

Write

Dj(z1) + z1I−
N − 1

N
b1(z1)I−Tn =

N∑
i̸=j

rir
∗
i −

N − 1

N
b1(z1)I.
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Multiplying by H−1(z1) on the left hand side, D−1
j (z1) on the right hand side and using

r∗iD
−1
j (z1) = βij(z1)r

∗
iD

−1
ij (z1), (10.36)

we conclude that

D−1
j (z1) = −H−1(z1) +

N∑
i ̸=j

βij(z1)H
−1(z1)rir

∗
iD

−1
ij (z1)−

N − 1

N
b1(z1)H

−1(z1)D
−1
j (z1)

= −H−1(z1) + b1(z1)A(z1) +B(z1) + C(z1), (10.37)

where

A(z1) =
∑
i̸=j

H−1(z1)(rir
∗
i −N−1I)D−1

ij (z1),

B(z1) =
∑
i̸=j

(
βij(z1)− b1(z1)

)
H−1(z1)rir

∗
iD

−1
ij (z1),

C(z1) = N−1b1(z1)H
−1(z1)

∑
i̸=j

(
D−1

ij (z1)−D−1
j (z1)

)
.

It is easy to verify for any real t,∣∣∣1− 1

z
(
1 +N−1EtrD−1

12 (z)
) − t

z

∣∣∣−1
=

∣∣∣ z
(
1 +N−1EtrD−1

12 (z)
)

(z − t)
(
1 +N−1EtrD−1

12 (z)
)
− 1

∣∣∣
≤

∣∣z(1 +N−1EtrD−1
12 (z)

)∣∣
ℑ
[
(z − t)

(
1 +N−1EtrD−1

12 (z)
)] ≤ |z|(1 + n/(Nv0))

v0
,

where the last inequality uses

ℑ
[
(z − t)

(
1 +N−1EtrD−1

12 (z)
)]

= v0 + ℑ
[
(z − t)N−1EtrD−1

12 (z)
]

= v0 + ℑ
[
(z − t)N−1

n∑
i=1

E
1

λi − z

]
= v0 + ℑ

[
N−1

n∑
i=1

E
(z − t)(λi − t− (z̄ − t))

|λi − z|2
]

= v0 +N−1
n∑

i=1

E
(λi − t)v0
|λi − z|2

≥ v0,

with the fact that

λi ≥ t, ∀i = 1, 2, . . . , n,

where λi, i = 1, 2, . . . , n are eigenvalues of D12 =
∑n

i̸=1,2 rir
T
i +Tn. It follows that∣∣∣∣∣∣H−1(z)

∣∣∣∣∣∣ = ∣∣∣∣∣∣(zI− N − 1

N
b1(z)I−Tn

)−1∣∣∣∣∣∣ ≤ 1 + n/(Nv0)

v0
. (10.38)

Moreover from (10.31) and (10.23) we have

E|γj(z)|p ≤ KN−1δ2p−4
n , p ≥ 2. (10.39)
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Therefore the discussions for (2.11)-(2.13) of Bai and Silverstein (2004) still work in our case.
That is,

E|trB(z1)M| ≤ KMKN1/2, E|trC(z1)M| ≤ KMK, (10.40)

when KM denotes the nonrandom bound of the spectral norm of M, an n×n matrix; When M
is non-random, we also have for any j,

E|trA(z1)M| ≤ K∥M∥N1/2, (10.41)

where ∥M∥ denotes the spectral norm of a matrix.
Using an identity similar to (10.25) yields

trEj

(
A(z1)

)
D−1

j (z2) = A1(z1, z2) +A2(z1, z2) +A3(z1, z2), (10.42)

where

A1(z1, z2) = −tr
∑
i<j

H−1(z1)rir
∗
iEj

(
D−1

ij (z1)
)
βij(z2)D

−1
ij (z2)rir

∗
iD

−1
ij (z2)

= −
∑
i<j

βij(z2)r
∗
iEj

(
D−1

ij (z1)
)
D−1

ij (z2)rir
∗
iD

−1
ij (z2)H

−1(z1)ri,

A2(z1, z2) = −tr
∑
i<j

H−1(z1)N
−1Ej

(
D−1

ij (z1)
)(
D−1

j (z2)−D−1
ij (z2)

)
,

A3(z1, z2) = tr
∑
i<j

H−1(z1)(rir
∗
i −N−1I)Ej

(
D−1

ij (z1)
)
D−1

ij (z2).

By arguments similar to (2.15) in Bai and Silverstein (2004), (10.38) and (10.23) we have

|A2(z1, z2)| ≤ K, E|A3(z1, z2)| ≤ KN1/2.

The arguments above (2.16) of Bai and Silverstein (2004) can be carried over to the present
setting and therefore we obtain

E
∣∣∣A1(z1, z2) +

j − 1

N2
b1(z2)tr

(
Ej

(
D−1

j (z1)
)
D−1

j (z2)
)
trD−1

j (z2)H
−1(z1)

∣∣∣ ≤ KN1/2. (10.43)

We conclude from (10.37)-(10.43) that

tr
(
Ej

(
D−1

j (z1)
)
D−1

j (z2)
)(

1 +
j − 1

N2
b1(z1)b1(z2)tr

(
D−1

j (z2)H
−1(z1)

)
= −tr

(
H−1(z1)D

−1
j (z2)

)
+A4(z1, z2), (10.44)

where

E|A4(z1, z2)| ≤ KN1/2.

Applying the expression for D−1
j (z2) in (10.37), (10.40) and (10.41), we obtain

tr
(
Ej

(
D−1

j (z1)
)
D−1

j (z2)
)
×

(
1− j − 1

N2
b1(z1)b1(z2)trH

−1(z1)H
−1(z2)

)
= tr

(
H−1(z1)H

−1(z2)
)
+A5(z1, z2), (10.45)
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where

E|A5(z1, z2)| ≤ KN1/2.

Since (b1(z)− 1
1+cnm0

n(z)
) → 0 (indeed, the next subsection proves Emn(z)−m0

n(z) = O(N−1)),

we have

1

N
tr
(
Ej

(
D−1

j (z1)
)
D−1

j (z2)
)

×
(
1− j − 1

N
cn

1(
1 + cm0

n(z1)
)(
1 + cm0

n(z2)
) ∫ dHn(t)(

z2 − 1
1+cm0

n(z2)
− t

)(
z1 − 1

1+cm0
n(z1)

− t
))

= cn

∫
dHn(t)(

z2 − 1
1+cm0

n(z2)
− t

)(
z1 − 1

1+cm0
n(z1)

− t
) +A6(z1, z2), (10.46)

where E|A6(z1, z2)| = o(1). Let

an(z1, z2) = cn
1(

1 + cm0
n(z1)

)(
1 + cm0

n(z2)
) ∫ dHn(t)(

z2 − 1
1+cm0

n(z2)
− t

)(
z1 − 1

1+cm0
n(z1)

− t
) .

We claim that

|an(z1, z2)| < 1. (10.47)

Indeed, by the Cauchy-Schwartz inequality, we have∣∣∣ cn(
1 + cnm0

n(z1)
)(
1 + cnm0

n(z2)
) ∫ dHn(t)(

z2 − 1
1+cnm0

n(z2)
− t

)(
z1 − 1

1+cnm0
n(z1)

− t
)∣∣∣

≤
(∫

cndHn(t)

|1 + cnm0
n(z1)|2|z1 − 1

1+cnm0
n(z1)

− t|2
)1/2(∫

cndHn(t)

|1 + cnm0
n(z2)|2|z2 − 1

1+cnm0
n(z2)

− t|2
)1/2

.

(10.48)

Note that m0
n(z) satisfies an equality similar to (10.5)

m0
n(z) =

∫
dHn(t)

t− z + 1
1+cnm0

n(z)

. (10.49)

Taking the imaginary part of the both sides of (10.49) leads to

ℑ
(
m0

n(z)
)
=

∫ ℑ
(
t− z + 1

1+cnm0
n(z)

)
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

= v0

∫
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

+
cnℑ(m0

n(z))

|1 + cnm0
n(z)|2

∫
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2
.

Dividing by ℑ
(
m0

n(z)
)
on both sides, we have

cn
|1 + cnm0

n(z)|2

∫
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

= 1− v0

ℑ
(
m0

n(z)
) ∫ dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

< 1.
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This, together with (10.48), yields (10.47).
It follows from (10.46) and (10.47) that (10.35) can be written as

an(z1, z2)
1

N

N∑
j=1

1

1−
(
(j − 1)/N

)
an(z1, z2)

+A7(z1, z2),

where E|A7(z1, z2)| = o(1). We then conclude that

(10.35)
i.p.→ a(z1, z2)

∫ 1

0

1

1− ta(z1, z2)
dt =

∫ a(z1,z2)

0

1

1− z
dz,

where

a(z1, z2) =
c(

1 + cm0(z1)
)(
1 + cm0(z2)

) ∫ dH(t)(
z2 − 1

1+cm0(z2)
− t

)(
z1 − 1

1+cm0(z1)
− t

)
=

c
(
m0(z2)−m0(z1)

)(
1 + cm0(z1)

)(
1 + cm0(z2)

) 1

z2 − z1 +
1

1+cm0(z1)
− 1

1+cm0(z2)

=
s(z1, z2)

z2 − z1 + s(z1, z2)
= 1− z2 − z1

z2 − z1 + s(z1, z2)
,

where the second equality uses (10.5) and s(z1, z2) =
1

1+cm0(z1)
− 1

1+cm0(z2)
. Therefore the limit

of (10.28) under the complex case is

∂2

∂z2∂z1

∫ a(z1,z2)

0

1

1− z
dz =

∂

∂z2

(∂a(z1, z2)/∂z1
1− a(z1, z2)

)
.

=
∂

∂z2

[s(z1, z2) + (z1 − z2)
c(m0(z1))′

(1+cm0(z1))2

(z2 − z1 + s(z1, z2))(z2 − z1)

]
=

∂

∂z2

[ 1

z2 − z1
− (1 +

c(m0(z1))
′

(1 + cm0(z1))2
)

1

z2 − z1 + s(z1, z2)

]
= − 1

(z2 − z1)2
+[1+

c(m0(z1))
′

(1 + cm0(z1))2
+

c(m0(z2))
′

(1 + cm0(z2))2
+

c(m0(z1))
′

(1 + cm0(z1))2
c(m0(z2))

′

(1 + cm0(z2))2
]

1

(z2 − z1 + s(z1, z2))2
.

10.4.2 Step 2: Tightness of M̂
(1)
n (z)

The tightness of {
∑k

ℓ=1 aℓM̂
(1)
n (z)} on z ∈ C can be proved in the same way as that in

Bai and Silverstein (2004).

10.4.3 Step 3: Convergence of M
(2)
n (z)

We first list some results from Sections 3 and 4 in Bai and Silverstein (2004), which hold in the
present setting as well. Consider z ∈ C+

n . As in (3.5), (3.6) and the argument below (3.6) of
Bai and Silverstein (2004) we have

E|γj |p ≤ KN−1δ2p−4
n , p ≥ 2 (10.50)
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and

E|β1(z)|p ≤ K, p ≥ 1, |bn(z)| ≤ K. (10.51)

Similar to (3.1) and (3.2) in Bai and Silverstein (2004), by (10.16), we have for any positive p

max
(
E||D−1(z)||p,E||D−1

j (z)||p,E||D−1
ij (z)||p

)
≤ K (10.52)

and via (10.23) and (10.12)

∣∣∣E(a(v) q∏
m=1

(
r∗1Bm(v)r1 −N−1trBm(v)

))∣∣∣ ≤ KN−(1∧q)δ(2q−4)∨0
n , q ≥ 0, (10.53)

where the matrices Bm(v) are independent of r1 and

max(|a(v)|, ||Bm(v)||) ≤ K
(
1 + nsI(||Bn|| ≥ ηr or λB̃

min ≤ ηℓ)
)

for some positive s, with B̃ being Bn or Bn with one or two of the rj ’s removed. Here ηr ∈(
(1 +

√
c)2 + lim supn ||Tn||, xr

)
. If xℓ > 0, then ηℓ ∈

(
xℓ, (1 −

√
c)2 + lim infn λ

Tn
min

)
; if xℓ < 0,

then ηℓ < 0. Similar to (4.1) in Bai and Silverstein (2004), one may prove as n → ∞,

sup
z∈C+

n

|Emn(z)−m0(z)| → 0. (10.54)

Let M be an n×n non-random matrix. With the same arguments as (4.7) in Bai and Silverstein
(2004) we obtain

E|trD−1
1 (z)M− EtrD−1

1 (z)M|2 ≤ K||M||2. (10.55)

We next show

sup
z∈C+

n

||
(
(Eβ1)I− zI+Tn

)−1
|| < ∞. (10.56)

Denote the supports of the distributions H and Fc,H by SH and SFc,H
respectively. We see

that ||
(
(Eβ1)I− zI+Tn

)−1
|| is bounded by 21+n/(Nv0)

v0
on Cu by (10.38) and (10.39).

Consider x = xℓ or xr now. So x ∈ Sc
Fc,H

, where Sc
Fc,H

denotes the complement of SFc,H
. We

next prove that t−x+ 1
1+cm0(x)

̸= 0 for any t ∈ SH and x ∈ I ⊂ Sc
Fc,H

where I is an open interval

by following a line similar to Theorem 4.1 of Silverstein and Choi (1995). For any x0 ∈ I, let
m0 = m0(x0) and D = {z ∈ C : ℑz > 0}. Let m = m(z) = z − 1

1+cm0(z)
∈ D (for z ∈ D). From

(10.5) we have

z(m) = m+
1

1 + cmH(m)
. (10.57)

Since m′(x0) = 1 + (m0(x0))′

(1+cm0(x0))2
> 0, m(z) has an inverse z̃(m) in a neighborhood V of x0

by the inverse function theory. By the open mapping theorem m(V ) is open and includes
(x0 − 1

1+cm0
). It follows that z̃(m) → x0 as m ∈ m(V ) → (x0 − 1

1+cm0
). However we must have

z̃(m) = z(m) on m(V ∩D) = m(V )∩D due to (10.57) and (10.5). Therefore we have z(m) → x0
as m ∈ D → (x0 − 1

1+cm0
).
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(10.57) can be further rewritten as

mH(m) =
1

c(z(m)−m)
− 1

c
.

Hence mH(m) converges to a real number when m ∈ D → (x0 − 1
1+cm0

). By Theorem 2.1

of Silverstein and Choi (1995) H ′(x0 − 1
1+cm0

) = 0. This implies H
′
= 0 on the set J ≡

{x − 1
1+cm0(x)

: x ∈ I ⊂ Sc
Fc,H

} which is open due to the monotonicity of (x − 1
1+cm0(x)

) on I.

Hence H is constant on J which implies that J ⊂ Sc
H . Therefore if t is in the support of H, we

then have t ̸= x− 1
1+cm0(x)

, i.e. t− x+ 1
1+cm0(x)

̸= 0.

Since m0(z) is continuous on C0 ≡ {x+ iv : v ∈ [0, v0]}, there exist positive constants η and
κ such that for t0 in the support of H(x)

inf
z∈C0

|t0 − z +
1

1 + cm0(z)
| > η and sup

z∈C0

|m0(z)| < κ. (10.58)

Also from (10.50), (10.51) and (10.54) we have

sup
z∈C+

n

|Eβ1 −
1

1 + cm0(z)
| → 0. (10.59)

Moreover, since FTn
D→ H(x), for all large n, there exists an eigenvalue µ of Tn such that

|µ− t0| < η/4. (10.60)

We conclude from (10.60), (10.59) and (10.58) that

inf
z∈Cℓ∪Cr

|µ− z + Eβ1| > η/2, (10.61)

which ensures (10.56).
With H1 = Eβ1(z)I− zI+Tn, write

D(z)−H1 =
N∑
j=1

rjr
∗
j − (Eβ1(z))I. (10.62)

Postmultiplying D−1(z) and premuliplying H−1
1 on the both sides, taking expectation and using

an equality similar to (10.36) we get

H−1
1 − ED−1(z) = H−1

1 E
[( N∑

j=1

rjr
∗
j − (Eβ1(z))I

)
D−1(z)

]

= H−1
1

N∑
j=1

E
(
rjβj(z)r

∗
jD

−1
j (z)

)
−H−1

1 (Eβ1(z))ED−1(z)

= NE
[
β1(z)

(
H−1

1 r1r
∗
1D

−1
1 (z)− 1

N
H−1

1 ED−1(z)
)]

. (10.63)

Taking trace on both sides, we have

n
(∫

dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
= NE

[
β1(z)

(
r∗1D

−1
1 (z)H−1

1 r1 −
1

N
trH−1

1 ED−1(z)
)]

. (10.64)
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When there is no confusion, we below drop z from β1(z), γ1(z), bn(z), etc. By (10.25), we
have

EtrH−1
1 D−1

1 (z)− EtrH−1
1 D−1(z) = E

[
β1(z)trH

−1
1 D−1

1 (z)r1r
∗
1D

−1
1 (z)

]
= bn(z)E

[
(1− β1γ1)r

∗
1D

−1
1 (z)H−1

1 D−1
1 (z)r1

]
, (10.65)

where the last equality uses β1 = bn−β1bnγ1. In view of (10.53), (10.50) and (10.56), we obtain∣∣∣Eβ1(z)γ1r∗1D−1
1 (z)H−1

1 D−1
1 (z)r1

∣∣∣ ≤ KN−1, (10.66)

which implies that ∣∣∣(10.65)−N−1bnED−1
1 (z)H−1

1 D−1
1 (z)

∣∣∣ ≤ KN−1.

Since β1 = bn − b2nγ1 + β1b
2
nγ

2
1 we may write

NE(β1r∗1D−1
1 (z)H−1

1 r1)− Eβ1EtrH−1
1 D−1

1 (z)

= −b2nNE(γ1r∗1D−1
1 (z)H−1

1 r1)

+b2n

(
NE(β1γ21r∗1D−1

1 H−1
1 r1)

(
Eβ1γ21

)
EtrH−1

1 D−1
1 (z)

)
= −b2nNE(γ1r∗1D−1

1 (z)H−1
1 r1) + b2n(z)Cov

(
β1γ

2
1 , trD

−1
1 (z)H−1

1

)
+b2n

(
E[Nβ1γ

2
1r

∗
1D

−1
1 (z)H−1

1 r1 − β1γ
2
1trD

−1
1 H−1

1 ]
)
.

One may refer to a similar expansion on page 587 of Bai and Silverstein (2004). It follows from
(10.50), (10.56) and (10.53) that∣∣∣E[Nβ1(z)γ

2
1(z)r

∗
1D

−1
1 (z)H−1

1 r1 − β1γ
2
1trD

−1
1 H−1

1 ]
∣∣∣ ≤ Kδ2n.

By (10.51), (10.50), (10.56) and (10.55) we have∣∣∣Cov
(
β1γ

2
1 , trD

−1
1 (z)H−1

1

)∣∣∣
≤ (E|β1|4)1/4(E|γ1|8)1/4

(
E
∣∣∣trD−1

1 (z)H−1
1 − EtrD−1

1 (z)H−1
1

∣∣∣2)1/2

≤ Kδ3nN
−1/4.

We conclude from (10.50), (10.51) and β1 = bn − β1bnγ1 that

Eβ1 = bn +O(N−1/2).

By the definition of γ1 we have

ENγ1r
∗
1D

−1
1 H−1

1 r1

= NE
[(

r∗1D
−1
1 r1 −N−1trD−1

1

)(
r∗1D

−1
1 H−1

1 r1 −N−1trD−1
1 H−1

1

)]
+N−1Cov

(
trD−1

1 , trD−1
1 (z)H−1

1

)
. (10.67)
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In view of (10.55), we see the second term above is O(N−1). We conclude from (10.64)-(10.67)
that

n
(∫

dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
= b2n(z)N

−1EtrD−1
1 H−1

1 D−1
1 (10.68)

−b2nNE
[(

r∗1D
−1
1 r1 −N−1trD−1

1

)(
r∗1D

−1
1 H−1

1 r1 −N−1trD−1
1 H−1

1

)]
(10.69)

+o(1). (10.70)

Using (10.33) on (10.69) and by the assumptions under the complex case, we have

n
(∫

dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
→ 0, as N → ∞,

while under the real case

n
(∫

dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
= −b2nN

−1EtrD−1
1 H−1

1 D−1
1 + o(1). (10.71)

It is sufficient to find the limit ofN−1EtrD−1
1 H−1

1 D−1
1 .Applications of (10.25),(10.51),(10.53)

and (10.56) ensure that

EtrD−1
1 H−1

1 D−1
1 − EtrD−1H−1

1 D−1
1

and

EtrD−1H−1
1 D−1

1 − EtrD−1H−1
1 D−1

are bounded. Hence it then reduces to considering the limit of

N−1EtrD−1H−1
1 D−1. (10.72)

From (10.62), similar to (10.63) we have

D−1(z) = H−1
1 −

N∑
j=1

βjH
−1
1 rjr

∗
jD

−1
j (z) +

(
Eβ1

)
H−1

1 D−1(z)

= H−1
1 +

(
Eβ1

)
A(z) +B(z) + C(z), (10.73)

where

A(z) = −
N∑
j=1

H−1
1

(
rjr

∗
j −N−1I

)
D−1

j (z), B(z) = −
N∑
j=1

(
βj − Eβ1

)
H−1

1 rjr
∗
jD

−1
j (z),

C(z) = −N−1
(
Eβ1

)
H−1

1

N∑
j=1

(
D−1

j (z)−D−1(z)
)
= −N−1

(
Eβ1

)
H−1

1

N∑
j=1

βjD
−1
j (z)rjr

∗
jD

−1
j (z).

It follows from (10.50) and (10.51) that

E|β1 − Eβ1|2 ≤ KN−1. (10.74)
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For any n× n matrix M, by (10.52), (10.53), (10.51) and (10.74) we obtain

|N−1EtrB(z)M| ≤ K
(
E|β1(z)− Eβ1(z)|2

)1/2(E∣∣r∗1r1||D−1
1 M||

∣∣2)1/2
≤ KN−1/2(E||M||4)1/4 (10.75)

and

|N−1EtrC(z)M| ≤ KN−1E|β1(z)|r∗1r1||D−1
1 (z)||2||M||

≤ KN−1(E||M||2)1/2. (10.76)

For any n× n nonrandom matrix M with a bounded spectral norm, we write

trA(z)D−1(z)M = A1(z) +A2(z) +A3(z), (10.77)

where

A1(z) = −tr

N∑
j=1

H−1
1 rjr

∗
jD

−1
j (z)

(
D−1(z)−D−1

j (z)
)
M,

A2(z) = −tr
N∑
j=1

H−1
1

(
rjr

∗
jD

−2
j (z)−N−1D−2

j (z)
)
M,

A3(z) = −tr

N∑
j=1

H−1
1 N−1D−1

j (z)
(
D−1

j (z)−D−1(z)
)
M.

Obviously EA2(z) = 0 and similar to (10.76), we obtain

|EN−1A3(z)| ≤ KN−1. (10.78)

From (10.50) and (10.51)
E|β1 − bn|2 ≤ KN−1. (10.79)

Using (10.53), (10.79) and (10.25) yields

EN−1A1(z) = E
[
β1r

∗
1D

−2
1 (z)r1r

∗
1D

−1
1 (z)MH−1

1 r1

]
= bnE

[(
N−1trD−2

1 (z)
)(

N−1trD−1
1 (z)MH−1

1

)]
+ o(1)

= bnE
[(

N−1trD−2(z)
)(

N−1trD−1(z)MH−1
1

)]
+ o(1).

By (10.55) and (10.52), we have∣∣∣Cov
(
N−1trD−2(z), N−1trD−1(z)MH−1

1

)∣∣∣
≤

(
E|N−1trD−2(z)|2

)1/2
N−1

(
E
∣∣∣trD−1(z)MH−1

1 − EtrD−1MH−1
1

∣∣∣2)1/2
≤ KN−1.

We thus have

EN−1A1(z) = bn

(
EN−1trD−2(z)

)(
EN−1trD−1(z)MH−1

1

)
+ o(1). (10.80)
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Moreover, by (10.73), (10.75) and (10.76), we have

EN−1trD−1(z)H−2
1 = N−1tr

(
H−1

1 + EB(z) + EC(z)
)
H−2

1

= cn

∫
dHn(x)(

x− z + Eβ1
)3 + o(1). (10.81)

From (10.73)-(10.81) we conclude that

N−1EtrD−1(z)H−1
1 D−1(z)

= EN−1trD−1(z)H−2
1 + b2n

(
EN−1trD−2(z)

)(
EN−1trD−1(z)H−2

1

)
+ o(1)

= cn

∫
dHn(x)(

x− z + Eβ1
)3 + b2nc

2
nE

∫
dFn(x)

(x− z)2

∫
dHn(x)(

x− z + Eβ1
)3 + o(1). (10.82)

This, together with (10.71), (10.56), (10.54) and (10.59), leads to

n
(∫

dHn(x)

x− (z − Eβ1)
− Emn(z)

)
(10.83)

= −cnb
2
n

∫
dHn(x)(

x− z + Eβ1
)3 − b4nc

2
nE

∫
dFn(x)

(x− z)2

∫
dHn(x)(

x− z + Eβ1
)3 + o(1)

= −cϖ2(z)

∫
dH(x)(

x− z +ϖ(z)
)3 −ϖ4(z)c2

∫
dFc,H(x)

(x− z)2

∫
dH(x)(

x− z +ϖ(z)
)3 + o(1),

where the last step uses

sup
z∈Cn

∣∣∣E∫
dFn(x)

(x− z)2
−

∫
Fc,H(x)

(x− z)2

∣∣∣ → 0, as n → ∞, (10.84)

which can be proved similarly to (4.1) in Bai and Silverstein (2004).
Let ϖn(z) = 1/(1 + cnm

0
n(z)). By (10.49) we then write

n
(
Emn(z)−m0

n(z)
)
= n

(
Emn(z)−

∫
dHn(x)

x− (z −ϖn(z))

)
(10.85)

= n
(
Emn(z)−

∫
dHn(x)

x− (z − Eβ1)

)
+ n

(∫
dHn(x)

x− (z − Eβ1)
−

∫
dHn(x)

x− (z −ϖn(z))

)
= n

(
Emn(z)−

∫
dHn(x)

x− (z − Eβ1)

)
+ n

(
ϖn(z)− Eβ1

)∫
dHn(x)(

x− (z −ϖn(z))
)(
x− (z − Eβ1)

) .
We next find the limit of n

(
ϖn(z)− Eβ1

)
. Recall that βtr

j (z) = 1/(1 + 1
N trD−1

j (z)) and let

βtr(z) = 1/(1 + 1
N trD−1(z)) and b(z) = 1/(1 + 1

NEtrD−1(z)). Write

n
(
ϖn(z)− Eβ1

)
= n

(
ϖn(z)− Eβtr(z)

)
+ n

(
Eβtr(z)− Eβtr

1 (z)
)
+ n(Eβtr

1 (z)− Eβ1(z)).

(10.86)

First, by the fact that

βtr(z) = b(z) + βtr(z)b(z)
(
cnEmn(z)− cnmn(z)

)
(10.87)
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we have

n
(
ϖn(z)− Eβtr(z)

)
= nE

[
ϖn(z)β

tr(z)(cnmn(z)− cnm
0
n(z))

]
= nE

[
ϖn(z)b(z)(cnmn(z)− cnm

0
n(z))

]
+nE

[
ϖn(z)b(z)β

tr(z)
(
cnmn(z)− cnm

0
n(z)

)(
Ecnmn(z)− cnmn(z)

)]
= nϖn(z)b(z)E

(
cnmn(z)− cnm

0
n(z)

)
+ o(1), (10.88)

where via (10.54), (10.55), (10.51) and (10.87)

nc2nb(z)ϖn(z)E
[
βtr(z)

(
mn(z)−m0

n(z)
)(

Emn(z)−mn(z)
)]

(10.89)

= nc2nb(z)ϖn(z)
[
E
(
βtr(z)

(
Emn(z)−m0

n(z)
)(
Emn(z)−mn(z)

))
−E

(
βtr(z)

(
Emn(z)−mn(z)

)2)]
= o(1) + nc2nb

2(z)ϖn(z)
[
E
(
Emn(z)−mn(z)

)2
− E

(
βtr(z)

(
Emn(z)−mn(z)

)3)]
= o(1),

the last step using E|mn(z)−Emn(z)|6 = O(n−3) (see the argument above (3.5) of Bai and Silverstein
(2004)).

As for the second term on the right side of (10.86), by (10.25), we obtain

n
(
Eβtr(z)− Eβtr

1 (z)
)
=

n

N
E
[
βtr(z)βtr

1 (z)tr
(
D−1

1 (z)−D−1(z)
)]

=
n

N
E
[
βtr(z)βtr

1 (z)r∗1D
−2
1 (z)r1β1(z)

]
= c2ϖ3(z)

∫
dFc,H(x)(
x− z

)2 + o(1), (10.90)

where the last step uses (10.54), (10.55), (10.51), (10.53), (10.84) and (10.79).
As for the third term on the right side of (10.86) we conclude from (10.26) and (10.53) that

n
(
Eβtr

1 (z)− Eβ1(z)
)
= −nE

(
(βtr

j (z))2βj(z)ε
2
j (z)

)
(10.91)

= −nE
(
ε21(z)

(
βtr
1 (z)

)3)
+ nE

(
ε31(z)βj(z)

(
βtr
1 (z)

)3)
= −nE

(
ε21(z)

(
βtr
1 (z)

)3)
+ o(1).

Moreover by (10.53), (10.55), (10.33) and (10.54) we have for the real case

nE
(
ε21(z)

(
βtr
1 (z)

)3)
= − Eε21(z)

(1 + cnEmn(z))3
+ o(1) = −2c2ϖ3(z)

∫
dFc,H(x)

(x− z)2
+ o(1),

while the limit is half of the above in the complex case. This implies that in the real case

n
(
Eβtr

1 (z)− Eβ1(z)
)
→ −2c2ϖ3(z)

∫
dFc,H(x)

(x− z)2
, as N → ∞, (10.92)

while the limit is half of the above in the complex case.
Summarizing the above we conclude that

n
(
ϖn(z)− Eβ1(z)

)
(10.93)

=

{
cnϖn(z)b(z)nE

(
mn(z)−m0

n(z)
)
− c2ϖ3(z)

∫ dFc,H(x)
(x−z)2

+ o(1) in the real case

cnϖn(z)b(z)nE
(
mn(z)−m0

n(z)
)
+ o(1) in the complex case.
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The proof for (10.47) also shows that

|cnϖ2
n(z)

∫
dHn(x)(

x− (z −ϖn(z))
)2 | < 1.

This, together with (10.85), (10.93), (10.56) and (10.54), yields

n
(
Emn(z)−m0

n(z)
)

=


n

(
Emn(z)−

∫ dHn(x)
x−(z−Eβ1)

)
−c2ϖ3(z)

∫ dFc,H (x)

(x−z)2

∫ dHn(x)(
x−(z−ϖn(z))

)2
1−cnϖ2

n(z)
∫ dHn(x)(

x−(z−ϖn(z))

)2 + o(1), in the real case

o(1), in the complex case

→

 cϖ2(z)m3(z)+c2ϖ4(z)
(
m0(z)

)′
m3(z)−c2ϖ3(z)

(
m0(z)

)′
m2(z)

1−cϖ2(z)m2(z)
, in the real case

0, in the complex case

where we use

mr(z) =

∫
dH(x)

(x− z +ϖ(z))r
,

(
m0(z)

)′
=

∫
dFc,H(x)

(x− z)2
.

10.4.4 Step 4: Boundness and equicontinuous of M
(2)
n (z)

Boundness and equicontinuous of M
(2)
n (z) can be similarly proved as in the last paragraph of

Section 4 in Bai and Silverstein (2004).

10.5 Verification of Remark 2

This section is to verify the asymptotic means and covariances in Theorem 1.1 of Bai and Silverstein
(2004) and in Theorem 8 are the same when Tn and Rn become zero matrix and identity matrix
respectively, as pointed out in Remark 2.

Consider (10.11) first. When Tn is a zero matrix, by (10.5) the Stieltjes transform m0(z)
satisfies the following equation

m0(z) =
1

1− z − c− cm0(z)
. (10.94)

Define Bn = 1
NX∗X and denote its limiting Stieltjes transform by m0(z). Then m0(z) and

m0(z) have the relation

m0(z) = −1− c

z
+ cm0(z). (10.95)

By (10.94) and (10.95), we have

m0(z) = − 1

zm0(z)
− 1. (10.96)
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Moreover, from (10.5)

1

m0(z)
=

1

1 + cm0(z)
− z. (10.97)

Combining (10.96) with (10.97), we get

zm0(z) = − 1

1 + cm0(z)
. (10.98)

We then conclude from (10.98) that

c
(
m0(z)

)′(
1 + cm0(z)

)2 = −
( 1

1 + cm0(z)

)′

=
(
zm0(z)

)′
. (10.99)

It follows that

1 +
c(m0(z1))

′

(1 + cm0(z1))2
+

c(m0(z2))
′

(1 + cm0(z2))2
+

c(m0(z1))
′

(1 + cm0(z1))2
c(m0(z2))

′

(1 + cm0(z2))2

= 1 +
(
z1m

0(z1)
)′
+

(
z2m

0(z2)
)′
+

(
z1m

0(z1)
)′(

z1m
0(z1)

)′
. (10.100)

On the other hand, since (10.95) has an inverse (one may also see (1.2) in Bai and Silverstein
(2004))

z = − 1

m0(z)
+

c

1 +m0(z)
, (10.101)

we have

z
(
1 +m0(z)

)
= −1 + c− 1

m0(z)
. (10.102)

From this, we have

(
zm0(z)

)′
=

(
m0(z)

)′(
m0(z)

)2 − 1. (10.103)

Thus by (10.98) and (10.102), we have

z2 − z1 + s(z1, z2) = z2
(
1 +m0(z2)

)
− z1

(
1 +m0(z1)

)
= − 1

m0(z2)
+

1

m0(z1)
=

m0(z2)−m0(z1)

m0(z1)m0(z2)
. (10.104)

We then conclude from (10.100), (10.103) and (10.104) that

[1 +
c(m0(z1))

′

(1 + cm0(z1))2
+

c(m0(z2))
′

(1 + cm0(z2))2
+

c(m0(z1))
′

(1 + cm0(z1))2
c(m0(z2))

′

(1 + cm0(z2))2
]

1

(z2 − z1 + s(z1, z2))2

=
[
1 +

(m0(z1))
′

(m0(z1))2
− 1 +

(m0(z2))
′

(m0(z2))2
− 1 +

( (m0(z1))
′

(m0(z1))2
− 1

)( (m0(z2))
′

(m0(z2))2
− 1

)](m0(z2)−m0(z1)

m0(z1)m0(z2)

)2

=
(m0(z1))

′
(m0(z2))

′

(m0(z1)−m0(z2))2
. (10.105)

62



In view of (10.105) we see that (1.7) in Bai and Silverstein (2004) and (10.11) are the same when
Tn is a zero matrix and Rn is an identity matrix.

We next consider the asymptotic mean (10.10). When Tn = 0, by (10.5), we get

mr(z) = (m0(z))r. (10.106)

Moreover we obtain from (10.96) and (10.98)

m0(z) = − 1

z(m0(z) + 1)
, ϖ(z) = −zm0(z). (10.107)

From (10.106) and (10.107), it follows that

ϖr(z)mr(z) =
(
m0(z)

)r(
1 +m0(z)

)−r
. (10.108)

This ensures that EM(z) in (10.21) can be written as

EM(z) =
c(m0(z))3(1 +m0(z))−3

(
1

ϖ(z) + cϖ(z)(m0(z))
′ − c(m0(z))

′ 1
m0(z)

)
1− c(m0(z))2(1 +m0(z))−2

. (10.109)

Comparing (10.109) with (1.6) in Bai and Silverstein (2004), it is sufficient to prove that

1

ϖ(z)
+ cϖ(z)(m0(z))

′ − c(m0(z))
′ 1

m0(z)
=

1

1− c(m0(z))2(1 +m0(z))−2
. (10.110)

In view of (10.107) we have

1

ϖ(z)
+ cϖ(z)(m0(z))

′ − c(m0(z))
′ 1

m0(z)
= − 1

zm0(z)
+ c

(
m0(z)

)′
z. (10.111)

Taking derivative with respect to z on the both sides of (10.95) we have

c
(
m0(z)

)′
z = (m0(z)

)′
z − 1− c

z
=

c
(
m0(z)

)2(
1 +m0(z)

)−1 −m0(z)

1− c
(
m0(z)

)2(
1 +m0(z)

)−2 − 1− c

z
, (10.112)

the last step using the expression (10.101) for z.
In view of (10.110), (10.111) and (10.112) it is enough to show

−1

z

( 1

m0(z)
+ 1− c

)
=

1 +m0(z)− c
(
m0(z)

)2(
1 +m0(z)

)−1

1− c
(
m0(z)

)2(
1 +m0(z)

)−2 . (10.113)

From (10.102) the left hand side of (10.113) becomes 1+m0(z). Because it is easy to check that(
1 +m0(z)

)(
1− c

(
m0(z)

)2(
1 +m0(z)

)−2
)
= 1 +m0(z)− c

(
m0(z)

)2(
1 +m0(z)

)−1
,

we get (10.113). The proof is completed.
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Table 1: Empirical sizes of the proposed test Sn and the re-normalized likelihood ratio test
MLRn at 0.05 significance level for DGP(a) and DGP(b).

(p1, p2, n) Sn DGP(a) Sn DGP(b) MLRn DGP(a) MLRn DGP(b)

(10,20,40) 0.0458 0.0461 0.0481 0.0490

(20,30,60) 0.0480 0.0488 0.0440 0.0448

(30,60,120) 0.0475 0.0480 0.0530 0.0520

(40,80,160) 0.0464 0.0466 0.0420 0.0420

(50,100,200) 0.0503 0.0504 0.0487 0.0500

(60,120,240) 0.0490 0.0490 0.0574 0.0572

(70,140,280) 0.0524 0.0520 0.0570 0.0582

(80,160,320) 0.0500 0.0500 0.0632 0.0583

(90,180,360) 0.0521 0.0511 0.0559 0.0580

(100,200,400) 0.0501 0.0503 0.0482 0.0589

(110,220,440) 0.0504 0.0500 0.0440 0.0590

(120,240,480) 0.0513 0.0511 0.0400 0.0432

(130,260,520) 0.0511 0.0511 0.0520 0.0560

(140,280,560) 0.0469 0.0474 0.0582 0.0580

(150,300,600) 0.0495 0.0500 0.0590 0.0593

(160,320,640) 0.0514 0.0517 0.0437 0.0559

(170,340,680) 0.0498 0.0500 0.0428 0.0430

(180,360,720) 0.0509 0.0510 0.0580 0.0577

(190,380,760) 0.0488 0.0485 0.0388 0.0499

(200,400,800) 0.0491 0.0491 0.0462 0.0499

(210,420,840) 0.0491 0.0500 0.0450 0.0555

(220,440,880) 0.0515 0.0510 0.0572 0.0588

(230,460,920) 0.0493 0.0498 0.0470 0.0488

(240,480,960) 0.0482 0.0479 0.0521 0.0561

(250,500,1000) 0.0452 0.0450 0.0527 0.0545
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Table 2: Empirical sizes of the proposed test Tn at 0.05 significance level for DGP(a)-DGP(d).

(p1, p2, n) Tn DGP(a) Tn DGP(b) Tn DGP(c) Tn DGP(d)

(100,50,80) 0.0569 0.0462 0.0622 0.0410

(140,70,120) 0.0573 0.0429 0.0582 0.0399

(180,90,150) 0.0577 0.0452 0.0470 0.0429

(200,100,170) 0.0552 0.0429 0.0467 0.0488

(240,120,180) 0.0581 0.0510 0.0533 0.0410

(280,140,250) 0.0571 0.0483 0.0518 0.0458

(320,160,270) 0.0521 0.0479 0.0550 0.0512

(360,180,290) 0.0529 0.0489 0.0530 0.0492

(400,190,300) 0.0542 0.0522 0.0481 0.0512

(440,220,330) 0.0557 0.0529 0.0469 0.0462

(480,240,350) 0.0531 0.0562 0.0471 0.0457

*The parameter t in the statistic Tn takes a value of 40. For GDP(a), we use the original statistic Tn in Theorem

3; for GDP(b), the statistic in Theorem 8 is used; for GDP (c) and (d), the dividing-sample statistic in Theorem

5 is utilized.

Table 3: Empirical powers of the proposed test Sn at 0.05 significance level for factor models.

(p1, p2, n) r=1 r=2 r=3 r=4

(10,20,40) 0.2690 0.6460 0.9420 0.9980

(30,60,120) 0.2930 0.8010 0.9760 0.9990

(50,100,200) 0.3110 0.7650 0.9770 1.0000

(70,140,280) 0.3240 0.7710 0.9830 0.9980

(90,180,360) 0.3450 0.7940 0.9870 1.0000

(110,220,440) 0.3330 0.7980 0.9800 0.9990

(130,260,520) 0.3460 0.7820 0.9780 0.9990

(150,300,600) 0.3510 0.7980 0.9720 0.9990

(170,340,680) 0.3250 0.7780 0.9750 1.0000

(190,380,760) 0.3480 0.7810 0.9810 1.0000

(210,420,840) 0.3210 0.7900 0.9700 1.0000

(230,460,920) 0.3300 0.7810 0.9790 1.0000

(250,500,1000) 0.3370 0.7890 0.9790 1.0000

*The powers are under the alternative hypothesis that x and y satisfy the factor model (6.4). r is the number of

factors.
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Table 4: Empirical powers of the proposed test Tn at 0.05 significance level for factor models.

(p1, p2, n) r=1 r=2 r=3 r=4

(100,50,80) 0.2460 0.5330 0.8220 0.9220

(140,70,120) 0.2750 0.6180 0.8090 0.9420

(180,90,150) 0.2990 0.5990 0.8340 0.9580

(200,100,170) 0.3120 0.6010 0.8440 0.9570

(240,120,180) 0.3540 0.6000 0.8710 0.9680

(280,140,250) 0.3220 0.5790 0.8920 0.9720

(320,160,270) 0.3630 0.5990 0.8500 0.9750

(360,180,290) 0.3240 0.6650 0.8390 0.9900

(400,200,310) 0.3790 0.6290 0.8900 0.9830

(440,220,330) 0.3740 0.6590 0.9000 0.9920

(480,240,350) 0.3690 0.6600 0.8890 0.9980

*The powers are under the alternative hypothesis that x and y satisfy the factor model (6.4). r is the number of

factors. The parameter t in the statistic Tn takes value of 40. For Tn, we use its modified dividing-sample version

in Theorem 5.

Table 5: Empirical powers of the proposed test Sn at 0.05 significance level for x and y with
ARCH(1) dependent type.

(p1, p2, n) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5)

(10,20,40) 0.3480 0.4670 0.6380 0.7650 0.8500

(30,60,120) 0.4840 0.8090 0.9820 0.9990 1.0000

(50,100,200) 0.6190 0.9730 1.0000 1.0000 1.0000

(70,140,280) 0.7020 0.9980 1.0000 1.0000 1.0000

(90,180,360) 0.7900 1.0000 1.0000 1.0000 1.0000

(110,220,440) 0.8620 1.0000 1.0000 1.0000 1.0000

(130,260,520) 0.8970 1.0000 1.0000 1.0000 1.0000

(150,300,600) 0.9440 1.0000 1.0000 1.0000 1.0000

(170,340,680) 0.9520 1.0000 1.0000 1.0000 1.0000

(190,380,760) 0.9810 1.0000 1.0000 1.0000 1.0000

(210,420,840) 0.9880 1.0000 1.0000 1.0000 1.0000

(230,460,920) 0.9950 1.0000 1.0000 1.0000 1.0000

(250,500,1000) 0.9980 1.0000 1.0000 1.0000 1.0000

*The powers are under the alternative hypothesis that Yit = Zit

√
α0 + α1X2

it, i = 1, 2, . . . , p1;Yjt = Zjt, j =

p1 + 1, . . . , p2. The pair of two numbers in this table is the value of (α0, α1).
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Table 6: Empirical powers of the proposed test Tn at 0.05 significance level for x and y with
ARCH(1) dependent type.

(p1, p2, n) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5)

(100,50,80) 0.5710 05830 0.7010 0.8220 0.9530

(140,70,120) 0.6290 0.7610 0.7990 0.8920 0.9670

(180,90,150) 0.7330 0.8420 0.9490 0.9810 1.0000

(200,100,170) 0.8020 0.8560 1.0000 1.0000 1.0000

(240,120,180) 0.8920 0.9620 1.0000 1.0000 1.0000

(280,140,250) 0.9370 0.9890 1.0000 1.0000 1.0000

(320,160,270) 0.9800 0.9970 1.0000 1.0000 1.0000

(360,180,290) 0.9870 0.9960 1.0000 1.0000 1.0000

(400,200,310) 0.9900 0.9990 1.0000 1.0000 1.0000

(440,220,330) 0.9960 1.0000 1.0000 1.0000 1.0000

(480,240,350) 0.9960 0.9990 1.0000 1.0000 1.0000

*The powers are under the alternative hypothesis that Yit = Zit

√
α0 + α1X2

it, i = 1, 2, . . . , p1;Yjt = Zjt, j =

p1 + 1, . . . , p2. The pair of two numbers in this table is the value of (α0, α1). The parameter t in the statistic Tn

takes value of 40. The original statistic Tn in Theorem 3 is used.

Table 7: Empirical powers of the proposed test Sn at 0.05 significance level for uncorrelated
but dependent case.

(p1, p2, n) ω = 4 ω = 10

(10,20,40) 0.8140 0.9690

(30,60,120) 0.8200 0.9510

(50,100,200) 0.8220 0.9600

(70,140,280) 0.8100 0.9610

(90,180,360) 0.8210 0.9640

(110,220,440) 0.8110 0.9670

(130,260,520) 0.8320 0.9740

(150,300,600) 0.8420 0.9740

(170,340,680) 0.8450 0.9760

(190,380,760) 0.8580 0.9680

(210,420,840) 0.8420 0.9670

(230,460,920) 0.8440 0.9810

(250,500,1000) 0.8620 0.9810

*The powers are under the alternative hypothesis that Yit = Xω
it − EXω

it, i = 1, 2, . . . , p1 and Yjt = εjt, j =

p1 + 1, . . . , p2; t = 1, . . . , n, where εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n are standard normal distributed and

independent with Xit and ω = 4, 10.
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Table 8: Empirical powers of the proposed test Tn at 0.05 significance level for uncorrelated
but dependent case.

(p1, p2, n) ω = 4 ω = 10

(100,50,80) 0.7010 0.8520

(140,70,120) 0.6990 0.8730

(180,90,150) 0.7210 0.8880

(200,100,170) 0.7830 0.8930

(240,120,180) 0.8320 0.9250

(280,140,250) 0.8590 0.9750

(320,160,270) 0.8990 0.9840

(360,180,290) 0.9120 0.9900

(400,200,310) 0.9420 0.9960

(440,220,330) 0.9770 1.0000

(480,240,350) 0.9890 1.0000

*The powers are under the alternative hypothesis that Yit = Xω
it − EXω

it, i = 1, 2, . . . , p1 and Yjt = εjt, j =

p1 + 1, . . . , p2; t = 1, . . . , n, where εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n are standard normal distributed and

independent with Xit and ω = 4, 10. The parameter t in the statistic Tn takes value of 40. The original statistic

Tn in Theorem 3 is used.

Table 9: P-values for (p1, p2) companies from basic industry section and capital goods section
of NYSE.

P-values (p1, p2, n) (p1, p2, n)

(10, 15, 20) (15, 20, 25)

P-value Interval No. of Exp. No. of Exp.

[0, 0.05] 56 60
[0.05, 0.1] 22 20
[0.1, 0.2] 9 12
[0.2, 0.3] 2 5
[0.3, 0.4] 10 0
[0.4, 0.5] 1 3
[0.6, 0.7] 0 0
[0.8, 0.9] 0 0
[0.9, 1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic industry section and capital

goods section, each of which has n daily stock returns during the period 1990.1.1 − 2002.1.1. The number of

repeated experiments is 100. All the closed stock prices are from WRDS database. No. of Exp. is the number of

experiments whose P-values are in the corresponding interval.
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Table 10: P-values for (p1, p2) companies from public utility section and capital goods section
of NYSE.

P-values (p1, p2, n) (p1, p2, n)

(10, 15, 20) (15, 20, 25)

P-value Interval No. of Exp. No. of Exp.

[0, 0.05] 76 84
[0.05, 0.1] 10 12
[0.1, 0.2] 4 2
[0.2, 0.3] 7 1
[0.3, 0.4] 0 1
[0.4, 0.5] 2 0
[0.6, 0.7] 1 0
[0.8, 0.9] 0 0
[0.9, 1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic industry section and capital

goods section, each of which has n daily stock returns during the period 1990.1.1 − 2002.1.1. The number of

repeated experiments is 100. All the closed stock prices are from WRDS database. No. of Exp. is the number of

experiments whose P-values are in the corresponding interval.

Table 11: P-values for (p1, p2) companies from finance section and healthcare section of NYSE.

P-values (p1, p2, n) (p1, p2, n)

(10, 15, 20) (15, 20, 25)

P-value Interval No. of Exp. No. of Exp.

[0, 0.05] 90 92
[0.05, 0.1] 4 5
[0.1, 0.2] 5 1
[0.2, 0.3] 1 2
[0.3, 0.4] 0 0
[0.4, 0.5] 0 0
[0.6, 0.7] 0 0
[0.8, 0.9] 0 0
[0.9, 1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic industry section and capital

goods section, each of which has n daily stock returns during the period 1990.1.1 − 2002.1.1. The number of

repeated experiments is 100. All the closed stock prices are from WRDS database. No. of Exp. is the number of

experiments whose P-values are in the corresponding interval.
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