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Abstract

This paper proposes a new statistic to test independence between two high
dimensional random vectors x : p; X 1 and y : ps X 1. The proposed statistic is
based on the sum of regularized sample canonical correlation coefficients of x
and y. The asymptotic distribution of the statistic under the null hypothesis is
established as a corollary of general central limit theorems (CLT) for the linear
statistics of classical and regularized sample canonical correlation coefficients
when p; and p, are both comparable to the sample size n. As applications
of the developed independence test, various types of dependent structures,
such as factor models, ARCH models and a general uncorrelated but depen-
dent case etc., are investigated by simulations. As an empirical application,
cross-sectional dependence of daily stock returns of companies between differ-
ent sections in New York Stock Exchange (NYSE) is detected by the proposed
test.

Keywords: Canonical correlation coefficients; Independence test; Empir-
ical spectral distribution; Large dimensional random matrix theory; Stieltjes
transform; Central limit theorem.

1 Introduction

A prominent feature of data collection nowadays is that the number of variables is compara-
ble with the sample size. This type of data poses great challenges because traditional multi-
variate approaches do not necessarily work, which were established for the case of the sam-
ple size n tending to infinity and the dimension p remaining fixed (See Anderson (1984)).
There have been a substantial body of research work dealing with high dimensional data,
e.g. Bai and Saranadasa (1996), Fan, Guo and Hao (2012), Huang, Horowitz and Ma (2008),
Fan and Fan (2008), Bai and Ng (2002), Birke and Dette (2005), etc.

The importance of the independence assumption for inference arises in many aspects of
multivariate analysis. For example, it is often the case in multivariate analysis that a number of
variables can be rationally classified into several mutually exclusive categories. When variables
can be grouped in such a way, a natural question is whether there is any significant relationship
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between the groups of variables. In other words, can we claim that the groups are mutually
independent so that further statistical analysis such as classification and testing hypothesis of
equality of mean vectors and covariance matrices could be conducted 7 When the dimension p
is fixed, Wilks (1935) used the likelihood ratio statistic to test independence for k sets of normal
distributed random variables and one may also refer to Chapter 12 of Anderson (1984) regarding
to this point. Relying on the asymptotic theory of sample canonical correlation coefficients, this
paper proposes a new statistic to test independence between two high dimensional random
vectors.
Specifically, the aim is to test the hypothesis

Hp : x and y are independent; against H; : x and y are dependent, (1.1)

where x = (z1,...,75,)7 and y = (y1,...,Yp,)T. Without loss of generality, suppose that
D1 < pa2.

It is well known that canonical correlation analysis (CCA) deals with the correlation structure
between two random vectors (see Chapter 12 of Anderson (1984)). Draw n independent and
identically distributed (i.i.d.) observations from these two random vectors x and y, respectively
and group them into p; x n random matrix X = (x1,--- ,X,) = (Xij)p;xn and pa X n random
matrix Y = (y1, - ,¥n) = (Yij)paxn respectively. CCA seeks the linear combinations a’x and
b’y that are most highly correlated, that is to maximize

T
v = Corr(alx,bly) = a Huyb , (1.2)
ValZay/bTs, b
where ¥, and Xy, are the population covariance matrices for x and y respectively and X,
is the population covariance matrix between x and y. After finding the maximal correlation rq
and associated vectors a; and by, CCA continues to seek a second linear combination agx and
bl'y that has the maximal correlation among all linear combinations uncorrelated with al x and

blTy. This procedure can be iterated and successive canonical correlation coefficients 71, ..., vp,
can be found.
It turns out that the population canonical correlation coefficients ~1,...,7,, can be recast

as the roots of the determinant equation

det(Sxy By Bry — 7 Bxx) = 0. (1.3)

About this point, one may refer to page 284 of Mardia (1979). The roots of the determinant
equation above go under many names, because they figure equally in discriminant analysis,
canonical correlation analysis, and invariant tests of linear hypotheses in the multivariate analysis
of variance.

Traditionally, sample covariance matrices ﬁ)xx, 2xy and ﬁ)yy are used to replace the cor-
responding population covariance matrices to solve the nonnegative roots p1, pa2,. .., pp, to the
determinant equation

det(Syy gy 31y — p*Sxx) = 0

p
where " n
. 1 B . 1
Yix = ﬁ Z<X1 - X)(Xi - X)T7 Exy - ﬁ Z(X’L - X)(yl - y>T’
i=1 i=1
. 1< B 1 I
Eyy_ﬁZ(Yi_Y)(YZ_Y)Tv =0 Xi, Y= Yi
i=1 i=1 =1



However, it is inappropriate to use these types of sample covariance matrices to replace popu-
lation covariance matrices to test (10.31) in some cases. We demonstrate such an example in
Section 6.3.

Therefore, in this paper we instead consider the nonnegative roots 71,72, ...,r,, of an alter-
native determinant equation as follows

det(Axy Ay AL — r?As) =0, (1.4)

where ) ) )
Agx = —XXT, Ayy = -YY?, Ay = —XY7.
n n n

We also call Ayx, Ayy and A,y sample covariance matrices, as in the random matrix community.
However, whichever sample covariance matrices are used they are not consistent estimators of
population covariance matrices, which is called ‘curse of dimensionality’, when the dimensions
p1 and po are both comparable to the sample size n. As a consequence it is conceivable that the
classical likelihood ratio statistic (see Wilks (1935) and Anderson (1984)) does not work well in
the high dimensional case (in fact, it is not well defined and we will discuss this point in the
later section).

Moreover, from (1.4), when p; < n, ps < n, one can see that 72,73, ... r2

. are the eigenvalues
of the matrix

Sxy = At Axy A AL (1.5)

X

Evidently ALl and A;‘; do not exist when p; > n and py > n. For this reason, we also consider
the eigenvalues of the regularized matrix

Tuy = Al Ay Ay AL (1.6)

X Xy

where A;(l = (%XXT + tIpl)*l, t is a positive constant number and I, is a p; X p; identity
matrix, and Ay, denotes the Moore-Penrose pseudoinverse matrix of Ayy. Hence Txy is well
defined even in the case of p1,p2 > n. Moreover Ty, reduces to Syy when p1, ps are both smaller
than n and t = 0.

We now look at CCA from another perspective. The original random vectors x and y can
be transformed into new random vectors £ and 1 as

(;>_><§/>:<“gl zg><§> (1.7)

such that

(o &) =)0 5)=(% 1) ws)

where P = (P1,0), P1 = diag(y1,...,7p,) and A= ExiﬂQl, B= E;,;/QQQ, with Q1 : p1 X p1
and Qs : ps X p2 being orthogonal matrices satisfying

St Sy Byy? = QiPQy.

Hence testing independence between x and y is equivalent to testing independence between &
and 1. The covariance between £ and 1 has the following simple expression

Var(f})z(%} s ) (1.9)
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In view of this, if the joint distribution of x and y is Gaussian, independence between x and y is
equivalent to asserting that the population canonical correlations all vanish: v = --- = v, = 0.
Details can be referred to Chapter 11 of Fujikoshi et. (2010). A natural criteria for this test
should be > ~2.

As pointed out, r; is not a consistent estimator of the corresponding population version ~;
in the high dimensional case. However, fortunately, the classical sample canonical correlation
coefficients 71,79, ...,7p, or its regularized analogous still contain important information so that
hypothesis testing for (10.31) is possible although the classical likelihood ratio statistic does
not work well in the high dimensional case. This is due to the fact that the limits of the
empirical spectral distribution (ESD) of rq,--- ,7,, under the null and the alternative could be
different so that we may use it to distinguish dependence from independence (one may see the
next section). Our approach essentially makes use of the integral of functions with respect to
the ESD of canonical correlation coefficients. The proposed statistic turns out a trace of the
corresponding matrices, i.e. Y o1, 2. In order to apply it to conduct tests we further propose
two modified statistics by either dividing the total samples into two groups or estimating the
population covariance matrix of x in a framework of sparsity.

In addition to proposing a statistic for testing (10.31), another contribution of this paper is to
establish the limit of the ESD of regularized sample canonical correlation coefficients and central
limit theorems (CLT) of linear functionals of the classical and regularized sample canonical
correlation coefficients r1,72,...,7p, respectively. This is of an independent interest in its own
right in addition to providing asymptotic distributions for the proposed statistics.

To derive the CLT for linear spectral statistics of classical and regularized sample canonical
correlation coefficients, the strategy is to first establish the CLT under the Gaussian case, i.e.
the entries of X are Gaussian distributed. In the Gaussian case, the CLT for linear spectral
statistics of the matrix Sy can be linked to that of an F-matrix, which has been investigated
in Zheng (2012). We then extend the CLT to general distributions by bounding the difference
between the characteristic functions of the respective linear spectral statistics of Sy, under the
Gaussian case and nonGaussian case. To bound such a difference and handle the inverse of a
random matrix we use an interpolation approach and a smooth cutoff function. The approach
of developing the CLT for linear spectral statistics of the matrix Ty, is similar to that for Sy,
except we first have to develop CLT of perturbed sample covariance matrices in the supplement
material for establishing CLT of the matrix Ty, when the entries of X are Gaussian.

Here we would point out some works on canonical correlation coefficients under the high
dimensional scenario. In the high dimensional case Wachter (1980) investigated the limit of the
ESD of the classical sample canonical correlation coefficients 71,79, ..., r,, and Johnstone (2008)
established the Tracy-Widom law of the maximum of sample correlation coefficients when Ay«
and Ay, are Wishart matrices and x, y are independent.

The remainder of the paper is organized as follows. Section 2 proposes a new test statistic
for (10.31) based on large dimensional random matrix theory and contains the main results.
Two modified statistics are further provided in Section 3. Section 4 provides the powers of
the test statistics. Two examples as statistical inference of independence test are explored in
Section 5. Simulation results for several kinds of dependent structures are provided in Section
6. An empirical analysis of cross-sectional dependence of daily stock returns of companies from
two different sections in New York Stock Exchange (NYSE) is investigated by the proposed
independence test in Section 7. The proof of Theorem 1 is given in Appendix A in Section 8.
Some useful lemmas and proofs of Theorems 2-7 are relegated to Appendix B while one theorem
about the CLT of a sample covariance matrix plus a perturbation matrix is provided in the



supplementary material.

2 Methodology and theory

Throughout this paper we make the following assumptions.

Assumption 1. p; = pi1(n) and pa = pa(n) with 22 — ¢; and 22 — ¢, c1,¢2 € (0,1), as
n — oo.
, Assumption 2. p; = pi(n) and py = pa(n) with 22 — ¢, and B ¢y, ¢ € (0,400) and
¢y € (0,400), as n — oo.

Assumption 3. X = (X;;)P2" and Y = (V;;)P*", satisfy X = TEW and Y = E;é,QV,

1,]= i,7=1
where W = (wyq, -+ ,w,) = (Ww)g’;; consists of i.i.d real random variables {W;;} with EWy, =
0and E[Wi1]2 = 15 V = (v, ,v,) = (Vz)%zl consists of i.i.d real random variables with
EViy = 0 and E|V1]? = 1; 2,1(4(2 and 2;,4,2 are Hermitian square roots of positive definite

matrices Xxx and Xy, respectively so that (2,1(4(2)2 = ¥« and (2%,2)2 = Xyy.

Assumption 4. FZxx BH , a proper cumulative distribution function.

Remark 1. By the definition of the matriz Sy, the classical canonical correlation coefficients
between x and 'y are the same as those between w and v when w and {w;} are i.i.d, and v and
{vi} are i.i.d.

We now introduce some results from random matrix theory. Denote the ESD of any n x n
matrix A with real eigenvalues p; < po < --- < u, by

FA(z) = %#{z su <z, (2.1)
where #{- -} denotes the cardinality of the set {--- }.

When the two random vectors x and y are independent and each of them consists of i.i.d
Gaussian random variables, under Assumptions 1 and 3, Wachter (1980) proved that the em-
pirical measure of the classical sample canonical correlation coefficients 71,79, --- ,7,, converges
in probability to a fixed distribution whose density is given by

\/(x — L1)(x+ L1)(Le — z)(La + x)
merx(l —x)(1 4 )

p(z) = , « € [Ly, L], (2.2)
and atoms size of max(0, (1 — ¢2)/c1) at zero and size max(0,1 — (1 — ¢2)/c1) at unity where
Ly = |\/ca — cac1 —/c1 — c1ea| and Ly = |\/ca — cacy ++/c1 — cica|. Here the empirical measure
of r1,79,- -+ ,7p, is defined as in (10.54) with p; replaced by r;.

Yang and Pan (2012) proved that (2.2) also holds for classical sample canonical correlation
coefficients when the entries of x and y are not necessarily Gaussian distributed. For easy
reference, we state the result in the following proposition.

Proposition 1. In addition to Assumptions 1 and 3, suppose that {X;;,1 <i <p;,1 <j<n}
and {Y;;,1 < i < p2,1 < j < n} are independent. Then the empirical measure of ri,ra,... Ty,
converges almost surely to a fived distribution function whose density is given by (2.2).



Under Assumptions 2-4, instead of FS= | we analyze the ESD, FT=v | of the regularized ran-
dom matrix Txy given in (10.11). To this end, define the Stieltjes transform of any distribution
function G(z) by

1
m(;:/ dG(z), z€ CT = {2 € C,3z > 0},
T —z
where 3z denotes the imaginary part of the complex number z.

It turns out that the limit of the empirical spectral distribution (LSD) of Txy is connected
to the LSD of Sls;tl defined below. Let

n ’ ’

P2
1 1 n c c
T T -1 1 1
S =— E WpWi, So = — g WEWj, —l—tn_ i, Y1=—, y2:71 -
P2 b2 k—p -1 p2 Cy Cqy

In the definition of So¢ we require n > py. The LSD of So; and its Stieltjes transform are denoted
by Fy,¢ and my,:(z) respectively. Under Assumptions 2-4, from Silverstein and Bai (1995) and
Pan (2010), my,:(z) is the unique solution in C* to

My,t(2) = mp, (Z - 1+y21my2t(2))’ (2.3)

where mp, (z) denotes the Stieltjes transform of the LSD of the matrix ;- S (one may

also see (1.4) in the supplement material). Let n = (nj,n2) and y = (y1,y2) with n; =
p1 and ny = n — pa. The Stieltjes transforms of the ESD and LSD of the matrix Sls;tl
are denoted by my(z) and my(z) respectively while those of the ESD and LSD of the matrix
p% P2 wl'S;'wy, are denoted by my,(z) and my (z) respectively. Observe that the spectral of
Sq S;tl and p% 22:1 W%Silwk are the same except zero eigenvalues and this leads to

my () =~ iy (2) (2.4

We are now in a position to state the LSD of Ty .

Theorem 1. In addition to Assumptions 2-4, suppose that {X;;,1 < i < p1,1 < j < n} and
{Yi;,1 <i <py,1 <j<n} are independent.
a) If ¢y € (0,1), then the ESD, FTxv(\), converges almost surely to a fized distribution

1
my(z) is the unique solution in CT to

- 0F,0(1/2)
my(2) = /Aﬂ—m—wwwd%%' (25)

F(ﬁ) with q = ch’Q where F()\) is a nonrandom distribution and its Stieltjes transform

b) If ¢y € [1,00), then FT=(\), converges almost surely to a fived distribution é(ﬁ —t)

where é()\) is a nonrandom distribution and its Stieltjes transform satisfies the equation
dH (N)

ma(z) = / ML= —dizma(z) — 2

Remark 2. Indeed, taking t = 0 in (2.5) recovers Wachter (1980)’s result (one may refer to
the result of F matriz in Bai and Silverstein (2009)).

(2.6)



Let us now introduce the test statistic. Under Assumption 1 and Assumption 3, behind our
test statistic is the observation that the limit of F'Sxv(x) can be obtained from (2.2) when x and
y are independent, while the limit of F'Sxv () could be different from (2.2) when x and y have
correlation. For example, if y = ¥1w and x = Ysw with p; = ps and both ¥ and X5 being
invertible, then

Sxy =1,

which implies that the limit of FSx¥(z) is a degenerate distribution. This suggests that we may
make use of F'Sxv () to construct a test statistic. Thus we consider the following statistic

/ o(2)dFS (z) = pll 3 6(r2). (2.7)
=1

A perplexing problem is how to choose an appropriate function ¢(x). For simplicity we choose
¢(x) = = in this work. That is, our statistic is

1 &
Sp, —/xdFS"y r)=—Y 72 2.8
@)= 2:8)

Indeed, extensive simulations based on Theorems 2 and 3 below have been conducted to help
select an appropriate function ¢(z). We find that other functions such as ¢(z) = z? does not
have an advantage over ¢(z) = z.

In the classical CCA, the maximum likelihood ratio test statistic for (10.31) with fixed

dimensions is
p1

MLR, =) log(1—1}) (2.9)
i=1
(see Wilks (1935) and Aderson (1984)). That is, ¢(x) in (10.29) takes log(1 — x). Note that the
density p(z) has atom size of max(0,1 — (1 — c2)/c1) at unity by (2.2). Thus the normalized
statistic M LR, is not well defined when ¢; + ¢ > 1 ( because [log(l — 2?)p(z)dz is not
meaningful). In addition, even when ¢; + ¢y < 1, the right end point of p(z), L, can be equal to
one so that some sample correlation coefficients r; are close to one. For example Lo = 1 when
c1 = c2 = 1/2. This in turns causes a big value of the corresponding log(1 — r?). Therefore,
M LR, is not stable and this phenomenon is also confirmed by our simulations.
Under Assumptions 2-4, we substitute Ty for Sy, and use the statistic

T, = / xdF T (1). (2.10)

We next establish the CLT's of the statistics (10.29) and (2.10). To this end, write

Gipy(N) = pr(FS (X)) = Famezn(y)), (2.11)
and
Gy (V) = pr(FT (A) = Fénan(3)), (2.12)

where F¢n:¢n()\) and Féintan (M) are obtained from F*°2()\) and Fee (A) with ¢1, ¢2, €], ¢

/ / .
and H replaced by c1, = B cop = 22, ¢}, = B ¢, = 22 and F¥xx respectively; F°1¢2()\) and



Feve2(X) are the limiting spectral distributions of the matrices Sy, and Ty, respectively. The

density of Fcl’c2()\) can be obtained from p(z) in (2.2) while the density of FC;’C;(A) can be
recovered from (2.5). We re-normalize (10.29) and (2.10) as

/ d(N)dGY ( / P N)dFS (\) — / P(N)dFme2n())), (2.13)

and
oG, =i [ 6NdFT (3) [ GNP ). (2.14)
Also, let
_ ¢ o« S (1-h)?
= 07 9 = Oalvh:\/—_7 = 77 -2
niE=TT o (0, +00), 72 o (0,1) U1+ Y2 — Y1y2, a1 L
(1+h)? 1 -9
—_— A= ——"TF"—— - AN — A . 2.15
“2= T Ii1,52(N) QM(%JF%)\)\/(@ JA—a1), a1 <A <ag (2.15)
Theorem 2. Let ¢1,--- ,¢s be functions analytic in an open region in the complex plane con-

taining the interval (a1, az]. In addition to Assumptions 1 and 3, suppose that
EX} =3. (2.16)

Then, as n — oo, the random vector

([ 66 0. [ aNG1D,, (0) 2.17)

converges weakly to a Gaussian vector (Xg,, ..., Xe,) with mean

1 1+ h? 4 2hR(€) 1 1
EX‘i’i_liflemf%:lf’( 0= )[f—’r’*l—’—f—kr*l §+y2]d§, (2.18)

and covariance function

1+h2+2h9; &) )f (1+h2+2h9§(£2))
cov(Xg., X hmj{ 7{ 1=02) ’ 1=02) d€1d&s, 2.19
( o ¢] rll 47‘(‘ £1| 1 §2| 1 (é.l - 7“52) 51 52 ( )

where fi(\) = d)z( = 62))\) R denotes the real part of a complex number; and r | 1 means that

r approaches to 1 from above.

Remark 3. When ¢(x) = x, the mean of the limit distribution in Theorem 2 is 0 and the

2,2,2

variance 1is (zhf;yf . These are calculated in Example 4.2 of Zheng (2012). Moreover, the

assumption (10.38) can be replaced by EY{} = 3 since X and Y have an equal status in the
Matriz Sxy .




Before stating the CLT of the linear spectral statistics for the matrix Ty, we make some
notation. Let r be a positive integer and introduce

_ dH(x) w(z) = S 2) = y2(my2t(_my(z))>/
my(2) = / (x — 2z +w(2)’ (2) = L+ yamy,i(2)’ 9(z) = (1 + yamyyt(—my (2)))?
(0, 22) = 1 B 1 h(z) = —mi(z)

T Fyamyi(z1) 1+ yamigg(z2)” 1 yim3 (2) [ %7

where (my,¢(z))" stands for the derivative with respect to z.

Theorem 3. Let ¢1,--- , ¢s be functions analytic in an open region in the complex plane contain-
ing the support of the LSD F(\) whose stieltjes transform is (2.5). In addition to Assumptions
2-4, suppose that

EX{ =3. (2.20)

a) Ifcy €(0,1), then the random vector

([ 516 0. [ N6, () 2:21)
converges weakly to a Gaussian vector (Xg,, ..., Xe,) with mean

ylfm 2Pzfz + my (2)] 3dFy,i(2)
EXo; = m]fﬁb 1+qz 1—y1fm (Pt my () PP @)
Yo (—my (2))ma(—my (2)) + Y3 (—my (2))m t< L (2))ma(—my (2))
1= gow?(—my (z))ma(—my (2))
Y33 (—mmy (2))miyy (—mmy (2))ma(—my (2))
e e ) >dz (2.22)

+h(z)

—h(2)

and covariance

qz1 qz2 my, (21)my (22) 1
Cov(Xoi Xo,) = 7{ 7{ g LU o oy ey oy Bl pepeen
h(z1)h(z2) h(z1)h(22)[1 + g(21) + g(22) + g(21)g(22)]

TN e E 1yl e R e e e e ) A e
Here q is defined in Theorem 1. The contours in (2.22) and (2.23)(two in (2.23), which may be
assumed to be nonoverlapping) are closed and are taken in the positive direction in the complex
plain, each enclosing the support of IF()\)

b) Ifcy € [1,+00) (p2 >n), (10.69) converges weakly to a Gaussian vector (Xg,, ..., Xy.)
with mean

BXy = - ¢ oi( t7z )( ¢ J(1L+As()°) *s(2)° A2 dH ()

2mi Jo \1 4+t 1z 1_le 2)2)2 1+)\s(z))—2dH()\))2

dz (2.24)

and

t=1z t=1z, s/(zl)s/(zg)
Cov(Xy,, Xy,) = i i = dzidzs, (2.25
VKo o) 22 7{?1 Ca ” 1 +t—1z1>¢ <1 —|—t—122) (s(z1) — s(z )2 A (220



where s(z) is Stieltjes transform of the LSD of the matriz %WTZXXW. The contours in (2.24)
and (2.25)(two in (2.25), which may be assumed to be nonoverlapping) are closed and are taken
in the positive direction in the complex plain, each enclosing the support of G(\).

Here we would like to point out that the idea of testing independence between two random
vectors x and y by CCA is based on the fact that the uncorrelatedness between x and y is
equivalent to independence between them when the random vector of size (p; + p2) consisting of
the components of x and y is a Gaussian random vector. See Wilks (1935) and Anderson (1984).
For nonGaussian random vectors x and y, uncorrelatedness is not equivalent to independence.
CCA may fail in this case. Yet, since Theorems 2 and 3 hold for nonGaussian random vectors x
and y CCA can be still utilized to capture dependent but uncorrelated x and y such as ARCH
type of dependence by considering the high power of their entries. See Section 6.5 for the further
discussion.

Following Lytova and Pastur (2009) condition (10.38) can be removed. However it will sig-
nificantly increase the length of this work and we will not pursue it here.

3 Test statistics

Note that the regularized statistic [ Ang),pz (M) in (2.14) (when ¢(\) = A) involves the unknown

covariance matrix Yy through F¢n-n()). In order to apply it to conduct tests, one needs to
estimate the unknown parameter. It is well known that estimating the population covariance
matrix 3y is very challenging unless it is sparse. El Karoui (2008) and Bai et al. (2010) pro-
posed some approaches to estimate the limit of the ESD of 34x or its moments. However the
convergence rate is not fast enough to offset the order of p;. Indeed, Theorem 1 of Bai et al.
(2010) implies that the best possible convergence rate is Op(2). In view of this, we provide two
methods to deal with the problem. One is to estimate [ AdF €1nC2n (\) in a framework of sparsity
while the other one is to eliminate this unknown parameter by dividing the samples into two

groups.

3.1 Plug-in estimator under sparsity

When ¢, < 1, it turns out that

/ / 1
//\dFCw%n(A) _ P2 12,7, (3.1)
p1 prl+c,mpe

where m,,; is a solution to the equation

ant
1
with a, = 1+ ¢},,mu: (see the proof of Theorem 8). An estimator of m,, is then proposed as
My which is a solution to the equation

nt P —
it = n — tr(a;  Siex + 1) 7, (3.3)
p1

with a, = 1+ ¢, 7. Here we use a thresholding estimator ﬁ)xx to estimate Yy, slightly
different from that proposed by Bickel and Levina (2008). Specifically speaking, suppose that

10



the underlying random variables {X;;} are mean zero and variable one. Then define 3x t0 be
a matrix whose diagonal entries are all one and the off diagonal entries are ;;1(|6;;| > £) with

=M longl and M being some appropriate constant (M will be selected by cross-validation).

Here 6;; denotes the entry at the (4, j)th position of sample covariance matrix %XXT. Therefore
the resulting test statistic is

o / MFT () - (2 -2 ). (3.4)

4! p1 1+ Cllnmnt

When ps > n, it turns out that
/ AdFncan(N) = 1 — tm{1?), (3.5)

where mgt) satisfies the equation

1t)

1 —1
i = Lir (1= ey + chtmli0) D +11) (36)
P

We then propose the resulting test statistic

pl( / AEFT= ()) — (1 —tm,g”))) (3.7)

(1t)

where m,, ’ satisfies the equation

1 R —1
10 = -t (1= i+ o trl1?) S +4T) (33)

Theorem 4. In addition to Assumptions in Theorem 3, suppose that EXZ-QJ- =1, sup E|Xij|17 <
i,

oo for all i and j and that

lo (1-q)/2
solp) (222 -0, (3.9)
where Y |0i;|? = so(p1) with 0 < ¢ < 1.
i#]
a) If ¢ < 1, then p1<f)\dFTxy()\) -2 - %ﬁmt)) converges weakly to a normal
In %1

distribution with the mean and variance given in (2.22) and (2.23) with ¢(\) = A.
b) If ¢y > 1, then p; < JAdFT= () — (1 - tm%”))) converges weakly to a normal distribution

with the mean and variance given in Part (b) of Theorem 3 with ¢p(\) = .

We demonstrate an example of sparse covariance matrix in the simulation parts, satisfying
the sparse condition (3.9).

3.2 Strategy of dividing samples

If (3.9) is not satisfied, we then propose a strategy of dividing the total samples into two groups.
Specifically speaking, we divide the n samples of (x,y) into two groups respectively, i.e.

Group 1: XW = (x1,%2,...,X[n/2), Y = (y1,¥2.- -+, ¥ins2) (3.10)
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and

Group 2: X®) = (X 9141, Xpnjajr2: - Xn)y YO = (Y141, Yinjas0s- -, ¥n)s  (3.11)

where [n/2] is the largest integer not greater than n/2. When n is odd, we discard the last

sample. However, if the above strategy of dividing samples into two groups is directly used,

then the asymptotic means of the resulting statistic (the difference between the statistics in

(2.14) obtained from two subsamples) are always zero in both null hypothesis and alternative

hypothesis due to similarity of two groups so that the power of the test statistic is very low. This

is also confirmed by simulations. Therefore we further propose its modified version as follows.
For Y in Group 2, we extract a sub-data ?(2), i.e.

Y® = (141, Vinjaros -« -+ V),
where y; consists of the first [p2/2] components of y;, for all j = [n/2] +1,[n/2]+2,...,n. We
use Y to form a new group

MOdeZGd Group 2: X(Q) = (X[n/Q]—f—la X[n/2]+27 cee axn)’ ?(2) = (y[n/2]+17 y[n/?]—f—% cee 7§n)

For Group 1, it follows from Theorem 3 that
( ) ’ !/
/ Adpy (FTxl-‘/(A) - F201w2€2n()\)) 4 7, (3.12)

where T,(cl_g is obtained from Ty, with X and Y replaced by X® and YO respectively and Z;
is a normal random variable with mean and variance given in Theorem 3 with ¢} and ¢, replaced
by 2¢} and 2}, respectively and ¢(\) = A. Similarly, with Modified Group 2, by Theorem 3

/ Adp: (FT@(A) - FQCIWC;"()\)) 4 7, (3.13)

where T@ is Txy with X and Y replaced by X® and Y respectively and Zs is a normal

random variable with the mean and variance given in Theorem 3 with ¢(\) = X and ¢ replaced
by 2¢}.

We next investigate the relation between [ AdF?¢n2¢2n()\) and [ AdF?¢1n2n()), and then
calculate some difference between the two statistics in (3.12) and (3.13) in order to eliminate
the unknown parameters [ AdF2¢in2¢2n()\) and [ AdF?¢1nC2n ().

When ¢, < 1/2 we have

/ M2y P2 P2 1 (3.14)
p1 P11+ 2¢,mp

where m,,; is obtained from m,,; satisfying (3.2) with clln replaced by 20/1n. On the other hand

;o 2 2 1
/AdFQCwCzn(A) _p2/2 pe/ S (3.15)
p1 p1 1+ 2ClnTnmﬁ
It follows that
/ AdF21n:2n () = 2 / AdF%1n2n (). (3.16)
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When [p2/2] > [n/2], we have
/ ALF21n20n (\) = / ALF%iman () = 1 — (0. (3.17)

where m%t) is mgt) satisfying (3.6) with clln replaced by 26/171.

The last case is [p2/2] < [n/2] and ¢, > 1/2. For this case, if we still consider Group 1 and
Modified Group 2, then

/ ADF2n 20 (\) = 1 — tml10), / AdF im0 (\) = P2/ [p2/2] 1 —
P1 p1 14+ QClnmnt

From the above formulas it is difficult to figure out the relation between [ /\dFQClln’QC;n(/\) and

J AdF 2¢1n:%n ()\) depending on the unknown parameter .. To overcome this difficulty, we
also apply a ‘sub-data’ trick to Group 1. Specifically speaking, consider a modified Group 1 as
follows.

Modified Group 1: X = (x1,%2,-., Xj2), Y = (31,52, Fnja)).

where yj consists of the last [p2/2] components of yg, i.e. the i-th component of yj is the
([p2/2] + i)-th component of yy, for all i =1,2,...,[p2/2] and k = 1,2,...,[n/2]. For Modified
Group 1, by Theorem 3, we have

/ Adp: (FTQJ(A) - FZClln’C;n()\)) 4 7, (3.18)

where TS}; is Txy with X and Y replaced by XD and YO respectively; and Z3 is a normal
random variable with the mean and variance given in Theorem 3 with ¢(\) = A and cll replaced
by 2¢;. Since the unknown parameters in (3.13) and (3.18) are the same the difference between
(3.13) and (3.18) can be taken as the modified statistic.

The asymptotic distributions of the three resulting statistics are given in Theorem 5.

Theorem 5. Suppose that Assumptions in Theorem 8 hold.

a) If ¢y < 1/2, the statistic f)\dFT%?()\) - Zf)\dFTgy) (\) converges weakly to a normal
distribution with the mean (u1 — 2u2) and variance (02 + 403), where p1 and o3 are given in
(2.22) and (2.23) respectively with cll,clg replaced by 26/1,26/2 respectively and ¢(\) = \; pe and
0% are given in (2.22) and (2.23) respectively with ¢, replaced by 2¢; and ¢(\) = \.

b) If ¢y > 1, the statistic f)\dFTQy)()\) — f)\dFTfy) (X) converges weakly to a normal distri-

bution with the mean zero and variance 20%, where a% is given in (2.25) with cll replaced by 26,1

and ¢(N) = A.

¢) If 1/2 < ¢y < 1, the statistic f)\dFTg‘lb2 (A — f)\dFTgy) (A\) converges weakly to a normal
distribution with mean zero and variance 203, where o3 is given in (2.23) with ¢, replaced by
2¢; and p(\) = \.

Remark 4. Unlike using Group 2 of (3.11) although the asymptotic means of the statistics in
the cases (b) and (c¢) are zero under the null hypothesis, they are not necessarily equal to zero
under the alternative hypothesis so that the power of the resulting test statistic becomes much
better.
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Remark 5. The asymptotic means and variances of the resulting statistics involve Xxx. Estima-
tors of the high dimensional covariance matriz Xxx have been developed in many literature, e.g.
Bickel and Levina (2008) and Fan, Liao and Mincheva (2013), etc. We apply their approaches
to estimate Xxx in the section of simulations. Such replacements do not affect the asymptotic
distribution by Slutsky’s theorem.

4 The power under local alternatives

This section is to evaluate the power of S, or 7;, under a kind of local alternatives. Consider
the alternative hypothesis
H; : x and y are dependent,

satisfying condition (4.1) below. Draw n samples from such alternatives x and y to form the
respective analogues of (1.5) and (10.11) and denote them by S and T respectively. Suppose
that the underlying random variables involved in Syy, Txy and S, T are in the same probability
space (2, P).

Recall the definitions of Gz(,il{m,i =1,2in (10.65) and (10.66) and let R = f)\ngl),pz.

Theorem 6. In addition to assumptions in Theorem 2 or Theorem 8 suppose that for any
M >0

P(‘tr(S - sxy)) > M) S, P(‘tr(T - Txy)‘ > M) S, (4.1)
Then
Jim P(R) > 2D or RY < Z0[Hy) = 1, (4.2)

where z@a and zg) are, respectively, (1 — «) and « quantiles of the asymptotic distribution of
the statistic Rg) under the null hypothesis.

Remark 6. For ezample one may take S = (XLXT)IXLY?(YLY?)'YLX" and Syxy =
(XX IXP,XT with L being a random matriz and Py = YL(YYT)7YY. Particularly, if
L =1+ee’ withe=2?(1,1,---,1) and 2? having finite moment, then under assumptions in
Theorem 2 or Theorem 8 it can be proved that

tr (S - Sxy) = Op(n)

satisfying (4.1).

Next, we evaluate the powers of the modified statistics with the dividing-sample method.
Draw n samples from alternatives x and y to form the respective analogues of T§Z§, 1 =1,2,
T,%Z and denote them by T® ;=12 TW respectively. Let

I = / AFTY (\) =2 / AET (),
J2) = /,\dFT(”(/\) —/)\dFT<2>()\),

J® = / AFTY () - / AFT? ().
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Theorem 7. In addition to assumptions in Theorem 3, suppose that for any M > 0,

P(}tr(T@))—Qtr(T(?)) (tr(T8) — 26r(TR))) |>M>—>1 if cy<1/2;  (4.3)

P(}tr(T(U) — tr(T®) — (tr(T)) — tr(TE))| > ) 1, if > 1 (4.4)
P(}tr(Tﬂ)) — tr(T@) — (tr(TY) — tr(TZ))| > ) 1, if 1/2<c, <1 (45)
Then
lim P(J{ > A or WD < ZOH) =1 i=1,2,3,
where zy_)a and z((f) are, respectively, (1 — «) and a quantiles of the asymptotic distribution of

the statistic J,(li) under the null hypothesis, i=1,2,5.

5 Applications of CCA

This section explores some applications of the proposed test. We consider two examples from
multivariate analysis and time series analysis respectively.

5.1 Multivariate regression test with CCA

Consider the multivariate regression(MR) model as follows:

Y =XB+E, (5.1)
where
Y = [Y1,Y27 oo 7YP1]n><p17 X = [1n,X1,X2, e 7Xp2]7’LXp27
B = [16151627 oo aBpJpQXpU E= [elae27 v 7ep1]n><p17
and each of the vectors y;, x;, e;, for j =1,2,...,p1 is n x 1 vectors and {3, i =1,2,...,p1}

are po X 1 vectors.
Let Axy = %XTY and Ayx = %XTX. We have the least square estimate of B

B=A.A,,. (5.2)

The most common hypothesis testing is to test whether there exists linear relationship between
the two sets of variables (response variables and predictor variables) or the overall regression
test

Hp : B = 0. (5.3)

To test Hy : B = 0, Wilks’” A criterion is
S

det(E)
= TE L H - £[1(1+A) (5.4)
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where
E=Y"(I-XX"X)"'X")Y (5.5)
and
H = BT(X”X)B; (5.6)

and {\; : ¢ = 1,...,s} are the roots of det(H — AE) = 0, s = min(k,p). An alternative
form for A is to employ sample covariance matrices. That is, H = Ayx A 1Ay, and E = Ay, —

AyxAZL Ay, s0 that det(H—\E) = 0 becomes det(AyxA;;Axy—A(Ayy—AyxA;;Axy)) = 0.
From Theorem 2.6.8 of N.H.Timm (2001) we have det(H — 6(H + E)) = det (AyxA;,ley -
9Ayy) = 0 so that

S S
_ det(Ayy — Ayx AlALy)
A=TJa+x) ' =]Ja-6)= YY_ XTI (5.7)
i=1 i=1 det(Ayy)
Evidently, the quantities riz = 0;,i = 1,...,s are sample canonical correlation coeflicients.
Therefore the test statistic (10.10) can be rewritten as
S
log A = Zlog(l —7?). (5.8)

i=1

From this point of view, the multiple regression test is equivalent to the independence test based
on canonical correlation coefficients. As stated in the last section, the statistic log A is not stable
in the high dimensional cases. Hence our test statistic 5, or T, can be applied in the MR test.

5.2 Testing for cointegration with CCA

Consider an n-dimensional vector process {y;} that has a first-order error correction represen-
tation

Ay = —0413/}%—1 +e, t=1,...,T, (5'9)

where o and 3 are full rank n x r matrices (r < n) and the n-dimensional innovation {e;} is
i.i.d. with zero mean and positive covariance matrix 2. Select a and 3 so that the fact that
L, — (I, — aB')z| = 0 implies that either |2| > 1 or z = 1 and that o', 8, is of full rank, where
o and 3, are full rank n x (n —r) matrices orthogonal to a and 3. Under these assumptions,
{y:} is I(1) with 7 cointegration relations among its elements; that is {3'y;} is 1(0). Here I(d)
denotes integrated of order d.

The goal is to test

Hy:7=0 (=B =0); against Hy : r > 0; (5.10)

i.e. whether there exists cointegration relationships among the elements of the time series {y;}.
This cointegration test is equivalent to testing

Hp : Ay is independent with Ayy—1; against Hy : Ayy is dependent with Ay;—1. (5.11)
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In order to apply canonical correlation coefficients to cointegration test (5.10), we construct
random matrices

X = (AYQ7Ay47"'7Ay2t—25Ay2t)°"7AyT)7 (512)
Y = (AYM Ay?)a ceey Ay?t—la AYQH-I, e 7AyT—l)- (513)

6 Simulation results

This section reports some simulated examples to show the finite sample performance of the
proposed test.

6.1 Empirical sizes and empirical powers

First we introduce the method of calculating empirical sizes and empirical powers. Let z1_, be
the 100(1 — «)% quantile of the asymptotic null distribution of the test statistic S,,. With K
replications of the data set simulated under the null hypothesis, we calculate the empirical size

as
{#of SF' > z1-a}
K ;
where SH represents the values of the test statistic S,, based on the data simulated under the
null hypothesis.
The empirical power is calculated as

no_ {ﬁ Of S;? > 21704}
p= 0l S 2 ia),

& =

(6.1)

(6.2)

where S represents the values of the test statistic S, based on the data simulated under the
alternative hypothesis.

In our simulations, we choose K = 1000 as the number of repeated simulations. The signifi-
cance level is a = 0.05.

6.2 Testing independence

Consider the data generating process

X = E,I(QW, y= E%,QV, (6.3)
with
(@) Zx =1Ip, Tyy =1Ip,; (0) Zx = (Ulff)i,lh:p Yyy = Ip,,
(¢) Tux = (Uﬁiﬁ)iihzlv yy = Ipy, (d) Zx = B/cov(ft)B + X,
where

k—h
AR ¢| |

T =g Rh=12p, 0=08,

17



and U,ff = 0 except that
ofl =1, k=1,2...,p; off =0’ =0, j=2.3,....[p)"], =02

Here cov(f;) is an 7 xr identity matrix and X is a py xp; identity matrix and B = (by, ba, ..., by, ),
where each b; : r x 1 is generated independently from a normal distribution with covariance
matrix being an 7 x r identity matrix and mean pp consisting of all 1.

The empirical sizes of the proposed statistics S, for cases (a) and (b) are listed in Table 1.
Moreover, the empirical sizes for the re-normalized statistic M LR,, are included as comparison
with S,,. Here the re-normalized statistic M LR,, means the statistic

2 / log(1 — A)d(FS¥(\) — Feimean())).

The empirical sizes of T}, for cases (a)-(d) are listed in Table 2. For GDP(a), we use the original
statistic T,,; for GDP(b), the statistic in Theorem 8 is used; for GDP (c) and (d), the dividing-
sample statistic in Theorem 5 is utilized.

From the results in Table 1 and 2, the proposed statistics S, and T, work well under
Assumption 1 and 2 respectively.

Remark 7. A banded type matriz in (c) and a sparse matriz in (b) are both estimated by the
thresholding method in Bickel and Levina (2008). A low rank matriz plus a sparse matriz in (d)
18 estimated by combining principle component analysis and thresholding method originated in
Fan, Liao and Mincheva (2013).

6.3 Factor model dependence

We consider the factor model as follows:
xt:Alft—l—ut, yt:Agft—i—vt,t:l,Q,...,n, (64)

where A; and Ay are p; X r and py X r deterministic matrices respectively; all the components of
A1 are 0.2 and those of Ay are 1.2. f;,t =1,2,...,n are r X 1 random vectors with i.i.d standard
Gaussian distributed elements and u; and v, ¢t = 1,2,...,n are independent random vectors
whose elements are all standard Gaussian distributed.

For this model, x; and y; are not independent if r # 0. The proposed test statistic 5,, and
T, can be used to detect this dependent structure. All the elements of Ay and Ag are generated
independently from standard normal distribution in simulation. Table 3 and 4 illustrate the
powers of the proposed statistics S, and T, respectively, as r increases from 1 to 4. For T,
we use its modified version in Theorem 5. Results in these tables indicate that for one triple
(p1,p2,n), the power increases as the number of factors r increases. This phenomenon makes
sense since the dependence between x; and y; is described by the r common factors contained in
the factor vector f;. Stronger dependence between x; and y; exists while more common factors
are included in the model.

Here we would like to point out that using CCA based on the sample covariance matrices
with sample mean will incorrectly conclude that x; and y; can be independent even if r > 0 but
f; = f independent of ¢ because CCA of x; and y; is the same as that of u; and v;. This is why
(1.4) and (10.11) are used.
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6.4 Uncorrelated but dependent

The construction of (10.32) is based on the idea that the limit of F5x¥(z) could not be determined
from (2.2) when x and y have correlation. Thus, a natural question is whether our statistic works
in the uncorrelated but dependent case. Below is such an example to demonstrate the power of
the test statistic in detecting uncorrelatedness.

Let x; = (X1t Xoty -+, Xpyt) 1ot = 1,2,...,n be i.i.d normally distributed random vectors

with zero means and unit variances. Define y; = (Yit, Yor, ..., Ypor)l, t = 1,2,... ,n by Yy =
(X2 — EX2F),i=1,2,...,min(p1,pe) and if p1 < p2, we let Yj; = 1,5 = p1 + 1,...,pa;t =
1,...,n, where €j;,7 =p1 +1,...,p2;t = 1,...,n are i.i.d normal distributed random variables

and independent with x; and k is an positive integer.

Remark 8. For standard normal random variable X;;:, the 2k-th moment is EXZ%]“ = 2_1“%.

For this model, x; and y; are uncorrelated since Cov(X;;, Yi) = EXft"“Jrl — EXitEXftk =0.
Simulation results in Table 7 and Table 8 provide the empirical powers of S,, and T,, by taking
k =2 and k = 5 respectively. They show that S,, and T}, can distinguish this kind of dependent
relationship well when k£ = 5. For the statistic 7},, since the covariance matrix of x is an identity
matrix, we use the original statistic 7}, in Theorem 3.

6.5 ARCH type dependence

The statistic works in the above example because the limit of FS= can not be determined from
(2.2) if x and y are uncorrelated. However the limit of FS%v(z) might be the same as (2.2) when
x and y are uncorrelated. We consider such an example as follows.

Consider two random vectors x; = (X1¢, Xor, ..., Xp,¢) and y; = (Yig, Yo, . . ., Ypot) as follows:

)/;t:Zit \/a()—’_alXZ’Qtai: 1727"‘7min(p17p2); (65)

if pi<p2, Yjp=2Zj,j=p1+1,...,p2, (6.6)

where z; = (Z14, Zat, . .., Zpyt) is a random vector consisting of i.i.d elements generated from

Normal (0,1) and {z; : t = 1,...,n} are independent across t; x; = (X1¢, Xot, ..., Xp,¢) is also

a random vector with i.i.d elements generated from Normal (0,1) and {x; : t = 1,...,n} are
independent across t. Moreover, {z; : t = 1,...,n are independent of {x;:t =1,...,n}.

For this model, x; and y; are dependent but uncorrelated. Simulation results indicate that
the proposed test statistic S, can not detect the dependence between them. Nevertheless, if we
substitute the elements Xizt and Yﬁ for X;; and Y}, respectively, in the matrix Sy, then the
new resulting statistic S, can capture the dependence of this type. This efficiency is due to the
correlation between the high powers of X;; and Y.

Tables 5 and 6 list the powers of the proposed statistics S,, and T}, for testing model (6.5)
in several cases, i.e. ag and o take different values. For the statistic T;,, since the covariance
matrix of x is an identity matrix, we use the original statistic T}, in Theorem 3. From the table,
we can find the phenomenon that as «; increases, the powers also increase. This is consistent
with our intuition because larger a; brings about larger correlation between Y;; and Xj;.

7 Empirical applications

As an application of the proposed independence test, we test the cross-sectional dependence of
daily stock returns of companies between two different sections from New York Stock Exchange
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(NYSE) during the period 2000.1.1 —2002.1.1, including consumer service section, consumer du-
ration section, consumer nonduration section, energy section, finance section, transport section,
healthcare section, capital goods section, basic industry section and public utility section. The
data set is obtained from Wharton Research Data Services (WRDS) database.

We randomly choose p; and ps companies from two different sections respectively, such as
the transport and finance section. At each time ¢, denote the closed stock prices of these com-

panies from the two different sections by x; = (x4, oy, . . ., J:mt)T and y; = (y1e, Y2ty - - - yp2t)T

respectively. We consider daily stock returns r¥ = (ﬁ‘t, e o) and vy = (1Y, 1,y )

with r% = logz?tiil, i=1,2,...,p1 and r?’t = logy_yztl, j=1,2,...,pa. The goal is to test the
1,1 — J:t—

dependence between r¥ and ry .

The proposed test S, is applied to testing dependence of r¥ and ry. For each (p1,p2,n), we
randomly choose p; and ps companies from two different sections, construct the corresponding
sample matrices X = (rf,r¥,...,ry ) and Y = (r},r},...,r},), and then calculate the P-value
by applying the proposed test. Repeat this procedure 100 times and derive 100 P-values to see
whether the cross-sectional ‘dependence’ feature is popular between the tested two sections.

We test independence of daily stock returns of companies from three pairs of sections, i.e.
basic industry section and capital goods section, public utility section and capital goods section,
finance section and healthcare section. From Table 9, Table 10, and Table 11, we can see that,
as the pair of numbers of companies (p1,p2) increases, more experiments are rejected in terms
of the P-values below 0.05. It shows that cross-sectional dependence exists and is popular for
different sections in NYSE. This suggests that the assumption that cross-sectional independence
in such empirical studies may not be appropriate.
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8 Appendix A: Proof of Theorem 1

Throughout this paper, M, M;, Ms, K and K; denote positive constants which may change
from line to line, o(1) means the term converging to zero and O(n~%) means the term divided
by n~* bounded in absolute value.

Since the matrix Txy is not symmetric, it is difficult to work on it directly. Instead we
consider the n X n symmetric matrix

B, = P,P,Py, (8.1)

where Py = LYT(LYYT)"Y and Py = 1XT(1XXT” + #1,,)~'X. The projection matrix Py
is unique when ps > n . It is easily seen that the eigenvalues of the matrix B,, are the same as
those of the matrix Ty, other than (n — p1) zero eigenvalues. It follows that the ESDs of B,,
and Ty, satisfy the equality

FPr(a) = BLp T (@) + T2

2 T +o0)(2): (8.2)

Below we first consider the case when the entries of X and Y (W and V) are normal random
variables. Write
XT =x¥ 4+ x7T, (8.3)

where X7 = 15yXT and X¥' = (I - lsy)XT is the corresponding residual matrix. Let

w! =P,W', Wl =(1, P, W'
Then
X = 2)14(2“71, Xy = 2:1<4<2W2-

Since f’y is a projection matrix, the entries of W are independent of those of Wy and X; is
independent of X5 . Note that by the definition of Moore-Penrose pseudoinverse

P, =P, =VI(VvVl)~V. (8.4)
The ESD of B,, can be then written as

FBr(z) = FrX{ (G XXTHD) 71Xy (z)

IWT(EWWT +1350) "1 W, (z)

_ %F(%WlVV?—F%WszT—&-tZ;,i—(%W2W2T+t2;,1))(%W1W1T+%W2W2T+t2];,l)_l(x) L nom T 400y ()
P I (AW, WT (A WoWT+tmd)—141) n—pi
= ;F (n 1Wi (W W3+t ) +) (1;)—{— - I[O,—i—oo)(m)' (85)
This, together with (8.2), yields
-1
FTxy(x) — FI—(%Wle(%W2W2T+tE;i)71+I) (2). (8.6)

If po > n, then Rank(f’y) = trf’y = trPy = n with probability one by the definition of
Moore-Penrose pseudoinverse because VV7 has (ps —n) zero eigenvalues and from Theorem 1.1
of Rudelson and Vershynin (2010) with probability one

Auin(VIV) <\/17—f¢m)21

(8.7)

n n?’
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It follows that with probability one
P, =1, (8.8)
so that Wi = W and Wy = 0. Hence W W{ (AW, W1 + 2 1)~1 = -1 1WWTx,,. This
is a sample covariance matrix and its LSD and CLT have been provided in (6.1.2) and Theorem
9.10 of Bai and Silverstein (2009) respectively.
If po < n then Rank(f’y) = t'rf’y = trPy = py with probability one by an inequality similar
0 (8.7). Therefore there exists a unitary matrix U such that with probability one

U*P,U = diag(1,...,1,0,...,0), (8.9)

where diag(-) denotes a diagonal matrix and the number of the entries 1 on the diagonal is po.
This implies that

p2 n
T d T T d T
WiWT £) wewl, WoW3 = ) wew],

k=1 k=pa+1
where wy, is the k-th column of W. Therefore, with g, := n]_)—; we then have
1 1
Wi W (W W] 180! £ 425185, (8.10)

where

21.

Z Wkwk +t

n —
P2 k=p2+1

1 p2
= p—z Zwkwg, Sor =
k=1
Denote by g1, po, .- . »le the eigenvalues of Sls;f . In view of (8.6) the eigenvalues of Ty,
can be written as 11’;‘:; = 1,2,...,p1. Note that (6.1.2) of Bai and Silverstein (2009) has
provided the equation satisfied by the Stieltjes transform of the LSD of the matrix ST, where
S is a sample covariance matrix and T is a matrix which is independent of S. Moreover the
Stieltjes transform of the LSD of Sy, is provided in Silverstein and Bai (1995). By taking S = S;
and T = S5;!, we see that (2.5) follows from (6.1.2) of Bai and Silverstein (2009).
As for the nonGaussian case, write

1op 1 1 1
Py = —XT(=XXT +41,)"'X = ~-WI(=WWT 1t )~'w. (8.11)
n n n n

Then the proof of Theorem 1 of Yang and Pan (2012) indeed shows that replacing Gaussian
entries in W (or X) by nonGaussian entries does not affect the LSD of B,, and one may refer to
(2.5) of Yang and Pan (2012). In view of (8.4), to replace Gaussian entries in V by nonGaussian
entries, as in (2.1) of Yang and Pan (2012), one can first prove that the Levy distance

/ / / / Mu? 1
L3 (FP1 LPyP FP1 “PuyPra 2) < “ tr(=VVTul,,) 2 < Mu? ©% 0, asn — oo, thenu — 0
n n

where (P1/2)2 = Py and Py = 2VI(IVVT +41,)7'V, u > 0. Moreover, we see that

conclusion (2.5) of Yang and Pan (2012) still holds if we replace Py and P there by P, /2 and
Py respectively and check on its argument carefully. Therefore (2 5) of Yang and Pan (2012)
ensures that replacing Gaussian entries in 'Y by nonGaussian entries does not affect the LSD of
PifPuyPif when the entries of X are nonGaussian. The proof is now complete.
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9 Appendix B

This Appendix provides some useful lemmas and proofs of Theorems 2-7 in the paper. Through-
out this Appendix, M, My, My, K and K; denote positive constants which may change from
line to line, o(1) means the term converging to zero and O(n~*) means the term divided by n=*
bounded in absolute value.

9.1 Some Useful Lemmas

Lemma 1 (Burkholder (1973)). Let {Xy,1 < k < n} be a complex martingale difference se-
quence with respect to the increasing o-field {Fy}. Then, for p > 2,

E|Y Xl < Kp(BQY E(IXuPIFe-0))? + E Y 1X0lP).
k=1 k=1 k=1

Lemma 2 (Lemma B.26 of Bai and Silverstein (2009)). For X = (X1,---, X,)T i.i.d standard-
ized entries, C n x n matriz, we have, for any p > 2,

EIXTCX — trCPP < K,((E| X, [*rCCT)P/2 + E|X,|?tr(CCT)P/?).

Lemma 3 (Duhamel formula). Let M1, My be n x n matrices and t € R. Then we have
t
e(M1+M2)t — eMlt +/ eMl(tfs)MQe(M1+M2)SdS' (91)
0

Moveover, if (Ai;j(t))i<ij<n i a matriz-valued function of t € R that is C*° in the sense that
each matriz element A;;(t) is C*°. Then

1
%6A(t) :/ AOA (1)e1-9A0 g, (9.2)
0

Lemma 4. Assume that F(X) is a differentiable function of each of the elements of the matrix
X, it then holds that
oTr(F (X))
0X
where f(-) is the scalar derivative of F(-).

= f(X)",

Lemma 5. Let U = f(X) be a matriz, then the derivative of the function g(U) : R™*" — R}
with respect to the element X;; of X is
99(U)
8Xij

oU ’ 0X,;"

=Tr[( (9.3)
Lemma 6 (Stein’s equation). Let & = {&})_, be independent Gaussian random variables of zero
mean, and ® : RP — C be a differentiable function with polynomially bounded partial derivatives
@IZ,E =1,...,p. Then we have

E{&®(€)} = B{EIE{D)()}, £=1,...,p, (9.4)

and ,
Var{®(&)} < Y B{E}E{|Dy(6)*). (9.5)

=1
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Lemma 7 (Generalized Stein’s equation of Lytova and Pastur (2009)). Let & be a random
variable such that E|£|PT2 < oo for a certain nonnegative integer p. Then for any function
® : R — C of the class CPT! with bounded derivative ®9 ¢ =1,...,p+ 1, we have

B{ED(©)} = Y~ B{a()} + <. (9.6)
=0

where the remainder term €, admits the bound

14 (34 2p)rt?
(p+1)!

1
lenl < Gy /0 Bl 20 (gv)|(1 - v)dv, C, < : (9.7)

and Kgy1 @S the £+ 1-th cumulant.

Lemma 8 (Theorem A.37 of Bai and Silverstein (2009)). If A and B are two n X p matrices
and A\, 6k, k = 1,2,...,n denote their singular values. If the singular values are arranged in
descending order, then we have

> = af* <trl(A - B)(A-B)T], (9.8)
k=1

where v = min{p, n}.

9.2 Proof of Theorem 2

The strategy of the proof is to first associate sample correlation coefficients with the F matrix
when the entries of x are Gaussian distributed, whose CLT was provide by Zheng (2012). How-
ever, when the components of X are non-Gaussian distributed, the eigenvalues of the matrix Sy,
do not have a relationship with those of an F-matrix any more. To overcome this difficulty, we
employ an interpolation trick first adopted in Lytova and Pastur (2009) and extend the result
to the nonGaussian distributions. When applying such an interpolation method, an additional
key technique is to introduce a smooth cut function so that we can handle the expectation of
the trace of the inverse of the sample covariance matrix.

9.2.1 The Gaussian case

Since the classical sample canonical correlation coefficients between x and y are the same with
those between w and v, we assume that ¥,y = 3y, = I in this theorem.

Assume that the entries of X are Gaussian distributed. We below demonstrate how the
eigenvalues of the matrix Sy, are connected to those of an F-matrix.

We would remind the readers that the matrix Sy, consists of the project matrix Py rather
than it perturbation matrix Py, and Py rather than 15y where

P, = X' (XX")"'X, Py, = Y (YY) Y.
As before, since the matrix Sy, is not symmetric we instead consider the n X n symmetric matrix
A, =P,P,P,. (9.9)

Then we have
n—m

P
FA»(z) = ﬁFSXY (z) + Ij0,100) (). (9.10)
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Note that under Assumption 1 Rank(Py) = trPy = py with probability one because Amin (YY) /n 2%
(1— \/CE)Q Therefore, with a little abuse of notation, as in (8.10) in the paper, we obtain

p2 n
X1XT i Zxkxg, ngg i Z kag, (9.11)
k=1 k=pa2+1

where X; and Xjy are similarly defined as in (8.3) in the paper with f’y replaced by Py. As in
(8.6) in the paper we conclude that

FA(2) = PXTOXXT) 71X () %F(xlxﬁxzxg)*lxlx{ () + 2 ;pl T o0y ()
—1 _
- o pEXaXEaxn ) ) 1 Ll 0 (2). (9.12)

This, together with (10.9), yields
-1
FSw () = pIRXTOGXD) (9.13)

Since X and X5 are independent the matrix n%mXQXg(p%Xlxr{)_l is an F-matrix. The
limiting spectral distribution of the F-matrix is

1
F?Jl,gz (dx) = 951,92 (x)l[m,ag](x)dx + (1 - a)l{gl>1}50(dfx>7 (9'14)
where gy, 5, is given in (2.15) in the paper (one may see Section 4 of Bai and Silverstein (2009)).

Denoting the eigenvalues of }pg Xng’(p%XlX{)_l by A1,...,Ap,, then the eigenvalues of

n

. 1 1 . . .
the matrix Sy, can be expressed as 1+";2”2 YRR 1+”;2’72 o Therefore the statistic (2.13) in

the paper can be expressed as
1 1l x XT(Lx,XT)-1
[ 604G = [ 0 VPR ERXOT 0 () (915)
p2

where Fy, 5, is obtained from Fy, 5, with the substitution of (¥n1,0n2) for (g1,%2) and the
associated constants (hy, an1,an2) for (h,ai,as), i.e.

) . - 1—h,)? 1+ hy)?
Ynl = o y Yn2 = &, hyy = VU1 + Un2 — Yn1¥n2, Gn1 = (7—7027 On2 = (7—n)2
n—po P2 (1 —yn2) (1 _yn2)
In view of (9.15), it suffices to provide the CLT for the F-matrix C,, = njm X2X§(,%2X1X?)’1-

Zheng (2012) has established the CLT's for linear spectral statistics of F-matrices, which yields
Theorem 2 for the Gaussian distribution ((2.20) in the paper holds in the Gaussian case).

9.2.2 The general case

We next consider the CLT for the general distribution by the interpolation trick. By (10.9), we
have

/ H(\)AGyy (V) = 11 / HOVA(FEYF=FY (3) = Fr()], (9.16)

where F7"Y()) is obtained from the limit, F¥*¥, of FPyPxPy with ¢; and ¢y replaced by pi/n
and py/n respectively.
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We start with the truncation of the underlying random variables. Define
X = (Xij)prxns X = (Xij)pysn (9.17)

where Xij = (X EX”)/O'Z], ij = X”I‘X |<y/me and 0 = E|X” - E)Z'Z-j|2. Choose €, > 0
such that ¢, — 0, n'/?¢, — oo and gnEX11](|X11\>\/ﬁs) — 0 as n — 0o. Denote € = ¢, and we
have
N p1,mn . K
P(Pe#P,) < 3 P(Xy # Xy) € SEXAIx, vy = O, (9.18)
ij=1
where P, is obtained from Py with X replaced by X.

Let /\A denote the i-th smallest eigenvalue of an Hermitian matrix A. We use émm (x)
and G’p1 pQ( ) to denote the analogues of Gp, p,(x) with the matrix C,, = PyPxPy replaced by
C, = P, P, P, and Cn =Py P P, with Px = XT(X XT) lin, respectively. By Lemma 8,
we have, for eachJ 1,2,... s,

/¢j YdG( /¢J )dGh( <KZ|AC" )\C”\

< V(e -ag )" < via(in(C, - Bu@—Er)
k=1
< V(i@ - B@. - 7)Y (9.19)

where K is a bound on | fj/(z)| Moreover, one can check that

(ot — 12 =0(n"?),  [EXu|=o(n"2). (9.20)
By the formula
A'-Bl=AB-AB (9.21)
we obtain
P,—P,=Qi+Q+ Qs+ Qu,
where
Q =-XHX Q=-—-XH'X; Q=--XH'-X;X,H XTI
1o o 1. .
Q4= _*XnHilfandI'I*ng,
n n

with Xy =X, — X,,, H ' = (1X”X,)"" and H! = (1X7X,,)~. Note that

tr(Py — P,)(P, — P,)T < K Z trQ:Q!.
ij=1

We obtain from (9.2

0)
trQuQf < B (60X TX, ) < K| [(1 = 1/on)20HX, + o7 20| EX0y 2

< K|[HY| [(1 — 1/011)*nAmax (H™Y) + o572n| EX11)?| = o(n™1).
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Similarly, one may verify that terQf =o(n71Y), j=2,3,4. It follows that

‘/@ )dCin( /¢J )dG(

In what follows, for simplicity we still use notation Xj;; rather than )?ij and can assume that
| Xij| < Vne, EX;j =0, EX}; =1. (9.22)

To employ the interpolation trick we first introduce some notation. Let

= n/¢ YAEA"(N), N2[¢] = n/¢ YA[FA™(X) — FY¥ ().
Moreover we introduce the following interpolating matrices
An(5) = PyPy()Py, X(s) = 52X + (1 - )X,
1

Pa(s) =  XT(H (5)X(s),  HH(s) = (H(5) ™ = (X ()X ()7,

where X = (Xk]) is obtained from X = (X};) but consisting of standardized normal random
variables. Define

en(s,x) = ea;p(ixTrgb(A (s))), U(t,s) = e'tAn(s), (9.23)
e (s,x) = exp(zaf[Tmﬁ( —n/qﬁ dFyxy()\)])

By the continuous theorem of characteristic functions and Subsection 9.2.1 it suffices to prove
that ‘ o
R, (z) = E(emNg[‘ﬂ) - E(emNg[¢1> — 0, asn — oo, (9.24)

where N°[¢] is the analogue of N[¢] with all entries of X replaced by i.i.d standardized normal
random variables.
For technical requirements, we introduce a smooth cut off function x(z) : R — R:

(1, |z < Kin?
x(@) = { 0, |z|>2Kn2 (9.25)
whose first four derivatives satisfy |y (z)] < Mn%,j =1,2,3,4.
To prove (9.24) we first claim that
Rn(z) = E(emNgW]) - E<emNg[¢]X(S(mn(in_2)))) — 0, as n — oo, (9.26)

where my,(2) is the Stieltjes transform of H = %XXT. Indeed, let Mg, ... ,5\1,1 be the eigenvalues
of H. Since

n=3
S(my, (in~ g 9.27
S )\2 +n- ( )
we conclude that
Apy > L‘nb it |S(mn(in~2))| < Min~2, (9.28)
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where M; may be the same as or different from K; given in (9.25). From Theorem 9.13 of
Bai and Silverstein (2009), under our truncation, we have, for any x > 0 and any integers k > 2,

Py, < (1= yaD)? —2) = O(n™). (9.29)
y (9.27) and taking an appropriate x we have
P(IS(ma(in™2) < Kin2) > P(A\p, > (1 —ye)? —2) =1 - 0(n"). (9.30)

This is equivalent to

P(x(S(mn(in"?)) =1) =1-0(n"). (9.31)
It follows that
Ra(@)] = |B(e=NE(1 = x(S(ma(in™2)) )]
< P(X(%(mn(m_z))) # 1) =0(n %) =0, as n — . (9.32)

Thus (10.56) is true.
Evidently, (10.56) holds as well if X is replaced by its normal analogue, X. In view of (10.56),
to prove (9.24), it suffices to prove that

R, (x) = E(eixN3[¢]x(%(mn(in_2)))) - E(eimNS[‘ﬂx(%(mn(in_Q)))) — 0, asn — 00,(9.33)

where 77, (2) is the Stieltjes transform of H = %XXT

We show here for future use the moment of (A} x(S(m3(in~2))) where mS(z) denotes
the Stieltjes transform of H(s) and Api, denotes the minimum eigenvalue of H(s). Note that
(9.28)-(9.31) still hold for H(s) (replace eigenvalues of H correspondingly by H(s)) because the
truncation steps for {Xj;} are applicable to {X};}. In what follows we shall directly quote them
for H(s). By (9.28) and (10.50) we have, for any integer r > 0,

X(S(m3,(in?)))
)\7‘

min

E

} < Mn’"-P(%<)\min<(1—\/a)2—w)

+M((1—/e1)? —z) " =0(1). (9.34)

We now consider (9.33). In what follows, to simplify notation denote x((ms$ (in~2))) by
Xns- By the inverse Fourier transform

P(\) = / e (t)dt, (9.35)

where ¢(t) is the Fourier transform of ¢(\), i.e. ¢(t) = = [ e " @(N)dA, we obtain

Ry, (z) = /01 aasE(efL(s,a:)XnS)ds

— jxe 7wcnf¢(>\)dFyzy(/\ / dS/ 9d(9 E TTU(9 S)P 8]?8)((S)Pyen(57$)an)
S

+/01E[e (s, x)g (an>]d (9.36)
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We next prove that the last term in (9.36) converges to zero.
To this end, we first list formulas for matrix derivatives. By the matrix derivative formula
OH(s)
0s

OH(s)

ds ~H(s)

H(s), (9.37)

and the chain rule of matrix derivatives, we have

OP(s) | L o7 -1
= — —X"(s)H Xds
as 2nXdSH (S)X(S) + 2n (S) (S) d.
1 _ _
— 5,z X0 (S HH(3)[Xas X (5) + X (s) X g JH ™ (5)X (), (9.38)
where X 45 = (%X — 11—5X)‘ Denote the first derivative with respect to ﬁij(s) by
1
Dy = 0/0(—=Xi(5)
Similar to (10.37) we obtain
Ny — 1
Di(H(s)) = —H () Wa(s. ko JH (), Dig( X (s) = enej,  (9:39)
where
W (s, k,j) = ere; —XT( )+ LX(s)eeT
k \/> \/ﬁ 1%k -
From Lemma 5, Lemma 4, (10.51), (10.16), (10.40) and (9.31), we have
1 / . 9o
‘E(ijxns) = ‘EE<anij%(t7“(H(3) —in 2I) 1))‘
1 /
— _ Cx 27\ 2 .
= ‘nE[an\s<Tr[(H(s) in~“I) Wn(s,k,])D”
< Mn"P(xns #1) =O0(n™"), for any k, (9.40)

where the last inequality uses the fact that x.,, # 0 occurs only when Kin =2 < S(mf(n~2)) <
2K1n~2. This ensures the last term in (9.36) converges to zero.
In view of (9.36), (9.38) and (9.40) we may write R, (z) as

Ry (z) = fre O / ds / (0 HdHZ VO 4o(1),  (9.41)

where

1 n,p1 n,p1
3 E(xyey), v =

QW ZEX;W v
" \/7],]61 v jk‘l ]

with
) = @) (Xpj0) = (H ()= X()PyU(0, 5)Py) . en(5,0)xnss  Xijo = 5"/ 2Xpj+(1—5) /2 X5

(9.42)

1
NG
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and
p1,n p1,m

QY = r 3 E(Xyel), v = ¢— 3 E(Xy0)),

k,j=1 k,j=1

with
2 2
02 = oY (Xy5) = (Px(s)Py U0, 5)Py Txﬂ SYH(5)) en(5,2) Xns:
Now, the aim is to prove that (9.41) — 0 as n — oo. To this end, we first further simplify QY
and Vn(l) ,i =1,2. Applying stein’s equation in Lemma 6 to the terms Vn(l) and Vn(2) respectively,
we can obtain

1 n,p1 . 1 n,p1 )
v == 53" B(Dyel), v == 3T B(Dy;e? 9.43
n n j%z:l ( kj ) n n j%z:l ( kj ) ( )

Similarly, by generalized stein’s equation in Lemma 7 with p = 3, we have

3

QU =5N"1"+¢), i=12% (9.44)
=0
where
12—71 n,p1
i S e
TZ(E) = £+1 Z F':€+1,k]E(D£]q)( )) l= 07 17 27 3
On2 S=

with K, ) being the /-th cumulant of the truncated random variable Xj; and

n,p1

where <I>,(;]) (vXkjs) is obtained from <I>,(;]) (Xkjs) given in (9.42) with X s replaced by v.Xjjs.

12
We next prove that E‘Dijq),(g is bounded for £ =1,2,3,4, i = 1,2. To this end, we below

develop the expansion of ij(s)ég.)(s) first. Let e be the unit vector with the k& th entry being
1 and zero otherwise. Recalling the definition of the matrix U(#, s) in (9.23) and applying the
Duhamel formula (1.2) in the paper and (10.40) we have

1
Dy(U(b,5)) = /0eitGAn(s)ij(ieAn(s))ei(lt)&An(s)dt

= z'/oe U(r, 5)Dy; (An(s))U(G —1,8)dT

= i/e U(r,s)PyB, Py U0 — 7, s)dr, (9.45)
0
where
B, — e;jel H (s )\}ﬁX(s)—\/lﬁXT(s)H_l(s)Wn(s,k:, j)H-l(s)\}EX(s)+\}ﬁXT(s)H—1(s)eke]T.

It follows from (9.35), (9.45) and the chain rule of calculating matrix derivatives that

Dij(en(s, ) = —zen(s, ) / $(0)0Tr [U(Q,s)PansPy do, (9.46)
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where we also use the fact that
0
/ U@ —7,5)U(r,s)dr = 0U(0, s).
0
From (9.42) and (10.40) we have
Dij(®)))) = —elH(s)W,(s,k, /)QusU(0, 5)Pyejen(s, 2)xns (9.47)
+ e H_l(s)eke?PyU(G, s)Pyejen(s, ) Xns + € Qus (ij(U(H, s)))Pyejen(s, T)Xns
+ el QuoU(0, 5)Pye; (Dslen(s,2)) ) xns + &f QusU(0, 5)Pyejen(s, ) D (xns).

where Qs = H_l(s)ﬁX(s)Py.

Although there are many terms in the expansion of ij(q)(])) from (9.47), (9.45) and (9.46)
we see that each term must be products of some of the factors and their transposes below

eZH_l( ek, ekH ( ) —=X(s), eTPx(s), Py, U(6,5), Xns: €k en(s,2), €5, Dij(Xns)-

(9.48)
By the facts that |en (s, 2)] <1, [xns| < M, |[Px(s)|| = [Pyl = [[U(0, s)[| = [lex|| = llej|| =1
and (9.48), we conclude from (9.47) that

_ _ 1 _ 1
D10 | < K11l e ! (8) Xl + K0 B () =X ()] Dy ()
K
< 7"+d/2 ’an‘ + Aimin |Dk] (an)‘ (949)
where 7, d are some nonnegative integers independent of n, and || - || stands for the spectral norm

of a matrix or the Euclidean norm of a vector. From the argument of (9.40), (10.55) and (9.28)
we see

B( 551Dk (o)) < K. (9.50)

min

In view of (9.49), (9.52) and (10.55) we conclude that E]iji);;j)\Q is bounded.

We now claim that E (D], @(1))2 ¢ = 2,3,4 are bounded as well. Indeed, from (9.45) to
(9.47) we see that each higher derivative of E (ij ! »)) must be a sum of the products of some
of the derivatives Dy;(U(6,s)), Dy;(en(s, ), Dg;(H™1(s)), ij(ﬁX(s)) and Dﬁj(xns). From
(10.40)-(9.46) we see such derivatives must be formed by some of the factors listed in (9.48) as

well as Dﬁj (xns). Here we would point out that the trace involved in (9.46) is handled in the
way that trCekefD = e;FDCek. Therefore, as in (9.49), we have for £ = 2,3, 4

DL2| < Kl el ) Hdllem Yons)|
)\T‘1+d1/2 Z |Dk] an (951)
min
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where 71,d; are some nonnegative integers, independent of n. Again, from the argument of
(9.40), (10.55) and (9.28) one can verify that

1
E()w|D£j(an)|2) < K. (9.52)
min
2
Hence E ‘D k?‘ < K. Likewise one may verify that £ ‘Dﬁ ,(é)‘ is bounded. Summarizing

the above we have proved that

E‘D q>“ <K, (=1,2,34, i=12 (9.53)

Consider §§i) in (9.44) now. Define the event
B = (Awin > (1= va)?/2). (9.54)
Write

E X;?jsDﬁfb(l) (VX kjs) I(B) + E‘ngs(p@) (vXkjs)|1(BC).

= B[}, D04 (0Xi)

From (9.86) and (10.16) we see that on the event B

‘Xli)jsDé‘]@]({}])(vijs)‘ < K\F€|Xk]s‘ + K \FE Z |ij an)‘

m=1
Moreover, as in (9.40) one may verify that

4

B|(vn2) 3 1D} (xns)

m=1

=0(n").

While (10.41) and (10.50) imply

E| XDl (vXijo) I(BC) < (BIDE @) (0X56) )2 (B| Xy P P(B) M = O(n).

It follows that

n,p1
€] < 5/2 > / E‘X,WSD,W(I)() vXpjs)|dv < Ke — 0. (9.55)
k,j=1

For £ =1,2,3.4, let pg ., (fee ;) and Iizkj(lig’kj) be the /-th moment and /-th cumulant of the
truncated variables Xj. (the original variables Xy;) respectively. Then

K

|15 15 — Beks| < KE| X3 | T(| Xgj] > ev/n) < WEWM’HGXM > ey/n). (9.56)
It is well-known that the ¢-th cumulant x, can be written in terms of the moments u) as
Ry = ZC}JJ)H (957)
A
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where the sum is over all additive partitions A of the set {1,...,¢}, {c\} are known coefficients
and gy = [[pey te- We then obtain from (9.56) and (9.57),

|’€Z,kj — Iig,kj| < WE|ij’4I(|ij| > 5\/’71) (9.58)

Recalling the definition of Tg(é_l) in (9.2.2), from (9.58) and (10.41) we may write

12 =1+, (9.59)
where the error term rél) satisfies
(e-1)/2 P17 Kel—4
S € 7
Iry 7| < In@n/2 Z ‘Hz—i-l,k] Fe+1 kJHE(D ® ())| =" /n (9.60)
) k,j=1

and Tg(l) is the analogue of Te(a) with "‘% kj replaced by kg ;. Note that T(l) ( ) = 0, T( ) =
(1)

n~ because k1 = k4 = 0. In view of Lemma 9 below, T2( ) = o(1), and hence

QY =V + ¢! +o(1). (9-61)

With the same proof as above, we can obtain

QY =V + ) +o(1). (9.62)
This, together with (9.61), (9.55) and (9.41), completes the proof of this theorem.

Lemma 9. Under the assumptions of Theorem 2,

1 n,p1

2% D Ky <Dk1 )) =o(1), i=1,2, (9.63)

7,k=1

as n — o0.

By taking a further derivative of (9.47) we may obtain the expansion of D? ].(CID}lC ;). However
since such an expansion is rather complicated we do not list all the terms here. Note that each
term of its expansion must be a product or a convolution of some of the following factors

C1 = (Va(9)kj, C2 = (Va(s)—=X(s)H ' (s))r, C3 = (Px(s)PyUPy)j;, (9.64)

Cy = (PyUPy)j;, Cs =en(s,z), C6 = (Va(s)Px(s))kj» Cr = (H'(5))re, Cro = (Px(5))j,

1 T -1 Y
%X (S)H (5))jka C11 = Xns, Cr12 = ij(an),E =1,2,

ﬁX(s)PyUPy and U stands for U(6, s) or U(6 — 1, s). Moreover, each
(1)

term of the expression of D,%j(s)@kj (s) must contain C5 = ey(s,z) and at least one of Ci;
and Ci2; and moreover, it contains at least one of Ci,Cs and Cy. For example we see that
Dyj(en(s,x)) contains Cy or Cg from (9.46) and Dy;((H™1(s))gx) includes Cy from (10.40).

Cs = (Px(5)PyUPyPx(s));5, Co = (

where V,,(s) = H™1(s)
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Thus, to prove (9.63), it suffices to estimate the following term

pi,n

7,+1 — y —
n3/2 Z E(C’” I1 C,Qh) —o(1), i =1,6,9, (9.65)
kj=1 heD,h#i
where all r,,h € D = {1,---,12} are nonnegative integers, independent of n. As in (9.40) one

may verify that (9.65) converges to zero if Ci is contained in (9.65). Below we consider only
the case when Cj2 is not contained in (9.65) and as a result it must contain C.

We first prove (9.65) holds for the case when there are at least two of C;,7 = 1,6, 9 contained
in the expectation sign of (9.65). Moreover for concreteness we consider the case when C; and
Cs are both contained in (9.65) and all the remaining cases can be proved similarly. With

={2,---,5,7,---,10} by the Schwartz inequality and arguments similar to (10.55) and
(9.49) we obtain

]' = T T T
‘W Z E<011+1066+ICH H Chh>‘
k,j=1 heD,
pi,n pi,n 1/2
= n3/2E< D (V)Y Z [(Voa(s) P ()i 20D 1(B)

k,j=1 k,j=1

Knitritretratry M, (1 _ \/@)2 1
P S s ——75) =0(), (9:66)

where we also use the fact that recalling the definition of the event B in (9.54),

p1,n p1,n

DIV PVIB) < K Y (Vi) [PI(B) < Ktr(Va(s))*1(B) < nK.
kj=1 kj=1

If there is only one of C;,i = 1,6, 9 contained in (9.65) but its corresponding r; being greater
than zero, then repeating the argument of (9.66) ensures that (9.65) holds. We now consider the
case when one of C;,i = 1,6,9 is contained in (9.65) but its corresponding 7; equals zero. For
concreteness we consider C contained in (9.65) and the remaining cases can be proved similarly.
Let Dy ={2,---,5,7,8,10}. By the Schwartz inequality

p1,n

8 eeea T )
Pt
< ?ﬁE[;\c’"scmc’%C“ﬂ Z‘Z DCror| 1B )
< ﬁE[;;’;<Vn<s>>k1j<Vn<s>>k2jc;z1kl0$zlk10;i2k2é$z2k21<3>} (9.67)
+Kn8127;;1—72r22+2r7p(]\i2 < u_fl)z) _ O(\/lﬁ), (9.65)

where we use Corp, and Crir, k = k1, ko, respectively, to denote Co and C7 to emphasize their
dependence on k and the notation (+) denotes its corresponding complex conjugate. As for (9.67)
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we use the following fact that

K X / T T I8 T
(967) - n |: Z (V ( )V ( ))kalCQ}ilklc'”Z:lleQi:QkQC'ﬂszg (B):|
k1,k2
. . , 2 1/2
[Z 1C5 0 Ot P2 | DoV Dkots O34, Cots | 1(B)]
k1 ko
* ~T T T I8 1/2
TL3/2 {Z Z )kal (V (S)Vn<s>)k3k1 CQ]QQ’Q C717€2k20212€3k30717€3k3[(3)}
k1 k2,ks3

7K \ \/ ~T ~T T T 1/2 K
- n3/2E[ D (V"(S)(Vg(s))zv’l(S))k2k30213:2@07122@0213;3@071131@3](3)} < NG
k2,ks3

where V7 (s) stands for the complex conjugate transpose of V,,(s). Therefore (9.65) holds for
all cases and the proof of Lemma 9 is complete.

9.3 Proof of Theorem 3

9.3.1 The Gaussian case

The CLT under the case of po > n has been discussed in the proof of Theorem 1. Consider
L, € (0,1) next.
We remind readers that we below use the same notations as those in Theorem 1. Recall

gn = 2. From (8.6) in the paper, we can see that the statistic (2.10) in the paper can be
expressed as
(NG (=) dpr [FS152 () = By, () (9.69)
P1,P2 1+ At pl H Yin,Y2n ), .

where F), ,,. (1) is obtained from F}, ,,(11), whose stieltjes transform is defined in (2.5) in the
paper, with the substitution of (yn1,yn2) for (y1,y2). Here y,1 = % and yy,, = ng—i@.

From (9.69), it suffices to provide the CLT for generalized F-matrix K, = Slsil. When
t = 0, the CLT of the linear spectral statistics of K,, is provided in Zheng (2012). Following a
line similar to the proof of Theorem 3.1 of Zheng (2012), we next provide the CLT for the linear
spectral statistics of the matrix K,, in the case of £ > 0.

Let n = (n1,n2) and y = (y1,y2) with n; = p; and ng = n — py. The Stieltjes transforms of
the ESD and LSD of the matrix S;S;," are denoted by mn(z) and my (z) respectively while those
of the ESD and LSD of the matrix p%WfS;Wl are denoted by m,,(2) and my,(z) respectively.

The ESD and LSD of Sg; are written as Fj,,; and F,,; respectively while those of SQ_tl are written
as Hy,i(x) and Hy,¢(x) respectively. The Stieltjes transforms of F),,; and Fy,; are denoted by
Mgt (2 ) and my,¢(2) respectively. The Stieltjes transforms of ESD and LSD of the matrix
Sy = — pz WoW1 are ertten as Mp,(2) and my,(z) respectively while those of the ESD and
LSD of the matrix

— p WI'W, are denoted by m,, () and m,, (2) respectively. Moreover,

My, M., are obtained from my,m, respectively Wlth y = (y1,y2) replaced by yn = (Y1in, Y2n)-
Also Fyth,mywt,myth,Fynwmyn2 and m,, = are obtained from Fy,¢, my,t, my,., Fyy, my, and
m,, with y, replaced by ya;,.
Some of the Stieltjes transforms and ESDs above have the following relations:
1- 1 1-— 1
my(2) = — Zy" +ynimn(2), my(z) = — Zy (2); (9.70)



and for all z > 0,

1 1
ant(x) =1- Fmt(;% HyQt(x) =1- Fyﬂ(;)'

This, together with Theorem 4.3 of Bai and Silverstein (2009), indicates that my (z) satisfies the
following equation

1 y1dFy,¢(x)
Z=—— +/w+my(z)' (9.71)

Replacing Fy,¢(x) by Fy, () we have a similar expression ( see (6.2.15) of Bai and Silverstein
(2009) as well)

1 Yn, dFy,, (@)
z = —myn —|—/ rtmy, (9.72)
Write
mimy, (2) = my, (2)] = n1my (2) =m0t (2)] + ng [m0 et () — my, (2)], (9.73)

where m{y”I’H”Zt}(z) is the unique root to the following equation

1 ynldF”Qt(x)
== . 9.74
§ m{ynl ’H”2t} + / x + m{ynl 7Hn2t} ( )

Roughly speaking, m¥»1-Hn2t(2) is the Stieltjes transform of the LSD of %W{S;Wl when Wy
is given.
Step 1: Given Wy, consider the conditional distribution of

ny[my, — mn e (2)]. (9.75)

For simplicity, write my(2) as m(z). By Lemma 9.11 of Bai and Silverstein (2009), we can
obtain the conditional distribution of (9.75) given Wy converges to a Gaussian process M;(z)
on some contour C (see Lemma 9.11 of Bai and Silverstein (2009)) with mean function

y1 [ m(z)’zla + m(2)]*dFy,(x)

E(M(2)|W3) = 9.76
W) = 1 TR + m(2) 2 @) (6:76)

for z € C and covariance function

m' (21)m’ (22) 1
Cov(Mi(z1), M1(2z2)|W3) =2 — 9.77
(b1 (e2). Ma(e2) W) =2 o o — o) 077
for z1,20 € C.
Step 2: Consider the limit distribution of

na[mm () —my (2)]. (9.78)

By the definition of the Stieltjes transform, rewrite the equations of (9.72) and (9.74) as

1 + ( ) 1
Z=—— m —m = ——FF57
myn Yn, Ynot Ly /o m{ynl ,Hn2t}

+ Yny mnzt( - m{y”1 ’H"Zt}) . (9'79)

36



Taking a difference of the above two identities we obtain

{ynl 7Hn2t} my

O = - m{yannEt} + Yn1l [mngt(_m{yn17Hn2t}) — mngt(_myn) + ant(_m}’n) — myth(—m )]
—Yn

st / (s Fear) — )y (a)
Yny

*Yn . . . .
mynm{y"VH"Qt} (JE + m{yn17Hn2t})(x + myn) + Yn, [mnzt( myn) mynzt( Myn)]

From the above equality, we can obtain

nm et (2) —my, ()]

Hth} ni [mnzt(_ yn) — My (_fyn)]
m,, 7{?!711 Hnottgp, () ’
—Ym f )(x+m{yn1 HZQt})

= —ymmynm{y"l’

(9.80)

From the fact that m,, (2) — m(z) and Theorem 3.9 of Billingsley (1999), the limiting
distribution of

pi[mnye(=my, ) —my, ,(=m,, )]

is the same as that of

p1[Mnye(—m) —my,,, (—m)].

Recall the definition of g(z) before Theorem 3. By Lemma 2 in the supplementary material,
we see that ni[mp,:(—m(z)) — my, ,(—m(z))] converges to a Gaussian process Ms(-) on z € C
with mean function

e (m(e))ms(—m(2)) + vt (—m(=)m o~ m(z))ms(—m(z)
EMz(2) = T— poe?(—m(2))ma(—m(2))
B (- ()l (—m(z)ma(~m(2)

1 — yow?(—m(z))ma(—m(z))

and covariance

2 N 2[1+ g(=1) + g(22) + g(21)g(22)]

CovlMala): Malz2)) =~ TG * Come) + mlen) + s(-m(en), —m(z2) 2

—my, ()m et )

Since Y
lfyn —yn
o (w+my, (2))(e+mt¥n1 Hnath)

converges weakly to a Gaussian process Ms(-) = h(z)Ma(z) with mean E(M3(z)) = h(z)EMa(z)

and covariance

—mi(:)

converges to h(z) =
(=m0 Tnott yap, (@) (2) 1—y1m?(

we have (9.80)

Fyot(@)
20 (I+M(Z>>2

COU(M3(21), Mg(ZQ)) = h(zl)h(ZQ)CO’U(Mg(Zl), MQ(ZQ)).

Since the limit of
n1[my (2) — mtnofinat (2)]
conditioning on Wy is independent of the ESD of S;,,, the limits of

n[my (2) = mte et (2)) and ngfme e (z2) - my (2)]

37



are asymptotically independent. Therefore ni[m,(z) — m,, (2)] converges weakly to Mi(z) +
M3(z) with mean function
y1 [ m(z)’ [z + m(2)] *dFy,(
(1= w1 [ m(2)*(z + m(z))"2dFy,(x))?
m(

~—

E(Mi(z) + M3(2)) =

/

yow? (—m(2))ms(—m(2)) + 3@’ (—m(z))my,, (—m(z))ms(—m(z))

e T e (-m(z))ma(-m(2))
o) B )y () (m()
1 = yow?(—m(z))ma(—m(z))
(9.81)
and covariance function
m’ (z1)m (z») 1
CouMy() + My(ea) Mr(z2) + M) =2 i 725 o~ o)
_ 2h(z1)h(=) h(z1)h(22)2[1 + g(z1) + g(22) + g(21)g(22)] (9.82)
(—m(z2) + m(21))*  [-m(z2) + m(z1) + s(—m(21), —m(22))]* '
By the Cauchy integral formula, we have with probability one for all n large
/ f@)dGR,, (2) = —o— / f2)ma(z (9.83)
Then
/ file dGm,pz / fu( dGz(v?,pz )>
converges to a Gaussian vector (Xy,,..., Xy, ) where
BX;, =5 § HEEOR() + Ma(2)dz (9.84)
and

Cov(Xy,, Xy,) = —417[_2fffi(Zl)fj(ZQ)COU(Ml(Zl) + M3(z1), M1(22) + M3(22))dz1dz2.(9.85)

As for the non-Gaussian case, under the assumption that X fl = 3, one can verify that the
CLT is the same as that in the Gaussian case by repeating the method in Proof of Theorem 2
in Appendix B (replacing Py there by P in (8.11) in the paper). We omit the details here.

9.4 The proof of Theorem 4

Since it is difficult to get an explicit expression for [ ¢(\)dFnn()) directly from (2.5) and
(2.3) in the paper, we below develop its alternative expression when ¢(A) = A. In view of
Theorems 1 and 3 it is enough to consider normal random variables when deriving such an
expression below.

Consider the case when ¢}, < 1. As in (8.3)-(8.5) and the equalities above (8.10) we write

1 1, - - 1.1
/ AFT (\) = —trTyy = —trPyPuPy = —tr—~W; W1 A1 (¢t) (9.86)
b1 P pr n
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np1

= L i WTAfl(t) — Z l(t)
np1i— F 1+n- 1w;{A Lt)ywy,

p2
_p2_ 1 1 P2 P2 1
ey 4= 1,0,
p1 ; 1+ Ler AN (2) v(1) pr prl+itrA-l(t) »(1)
where A7L(t) = (AW, WT +1Wo, W2 D)~ AN () = GW WL+ 1 W, W3 h)—L
WlkWﬂ, + wkwg = W; W7 and the proof of the last two steps is stralghtforward Moreover,
denote the limit of %trAfl(t) by my. Then from (1.5) in the supplement material or using an
argument similar to (4.5) in Silverstein and Bai (1995) we have
dH 1(>\)

my = )

)\+ 1+c me

where Hi(\) stands for the limit of the ESD of tX L. Replacing Hi()) by F'Z and ¢, by ¢,
yields

dFtExx 1 t
Mpt = / — = —tr(tE o' D) =a, - ait’r( A F D) ! (9.87)
A+ an P1 D1
with a, = 1+ ¢},,mn. It follows that
/ / 1
/ AdF%ncn () = 22 ]2,7. (9.88)
p1 p1l+c,ma

In view of (10.40) it is enough to look at my;. Let Bg' = (a;;'Syx + tI)~! and By! =
(1 + ¢y 1ine) " Bx + tI)~1. From (3.3) and (10.37) we have

p1(1— clln)(mnt — M) = —tantngl + tdntrB;,

which further implies that

Prdn (Mt — nt) = —ta, tantrBy! (ﬁ)xx — EXX)B;, (9.89)
where d,, =1 — ¢, + C’lntpiltngl T 1 nit;?(?llfcl o pll trBy, I3, B . It is straightforward

to verify that d,, > 1 — ¢},, and d,, converges to a nonzero number in probability when ¢} = 1.
Consider the term on the right hand of (9.89). Write

p
B3 (Bex — T ) B! = Y (03— 6351 (1635] = 0) ) azi (9.90)
i#

where a;; = e]TB;Bg:lei. Note that |a;;| < HB;H |Bs'||, bounded in probability uniformly in
1 and j. Write

. 1N

Gij = 0ij = ZXikX

Define X;; = X;;1(|Xy;] < (n/logn)'/*), Xi; = XU EXZ] and denote by &;;,7;; the analogues
of ¢;; with all entries {X;;} of X replaced by X;; and XZ], respectively. Then one may verify
that
P((max oy — 6yl # max oy — 6yl) < 3 P(Xy| > (n/105m)!/%) = o(n ™).
0.
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and

max loi; — G| — max loij — Fij]

SRR
Sr?%x\ﬁz)(m k—*Zsz: jkl = op(n™?),
k=1

by the fact that EX,1(|X11]| > (n/logn)'/*) = o(n~*(logn)*). Thus it is enough to consider
X;;. By the Bernstein inequality one may obtain

(max’fz X —O'Z'j)‘ZC\/@)S

i#j

(max ’ NCF Z kX ih Xk )’ > C\/@) +C(log n)'5/8n~1/8 = O((logn)'*/8n11/%).

i#j
(9.91)
In view of (9.91), mimicking the proof of Theorem 1 in Bickel and Levina (2008) (replacing max
(2

in formulas (13)-(22) in their paper by "), one may verify that

Ld 1—q)/2
> (Uij — 6ij1(|64] = 5))%’ = Op(so(p)<logp>( v )
i#5 "
It follows that (9.90) tends to zero in probability. Hence Theorem 4 follows from Theorem 3
and Slutsky’s theorem.
Consider the case when ps > n. From (9.86) and the paragraph containing (8.7) in the
paper, we see that

/ AFTew()\) =

1.1 1 t
Lo lwwr Aww? syt — - L sl PwwTs 2 1)t (9.92)
b1 n n D1 n

Py ) g i0)
where the last step uses formula (6.1.2) in Bai and Silverstein (2009) (or one may verify it
directly) and m(') satisfies the equation

dH()\)
(1t) — . 9.93
" / A1 =)+ tm(D) +¢ (9.93)

It follows that
/ AdFCn%n()) = 1 — tm1V) (9.94)

(1t)

where m,, ’ satisfies the equation

1
mgt) _ / dH, ()\) ) itr((l cln + Clntm( ))Exx + tI)
A(l - cln + Clntm ) p1

Note that

1 . -1
1t = p—ltr((l cln+clntm(1t))2xx+t1) . (9.95)

As in the case of ¢, < 1, one may verify that
(20— 1) 250

so that |
pa(( [ Adpeect () - (1= ilt)) 5o,
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9.5 The proof of Theorem 5

We below only prove the case when 0/2 < 1/2 because the remaining cases are similar. For Group
1 and Modified Group 2, by part a) of Theorem 3, we have

/ ALFTS ()) — / AdF2n2m (\) % A (1q, 02), (9.96)
and
/ AFTS (\) — / AdF21nen (X) % N (1, 02). (9.97)
In view of (3.1) we have
/ ADF21n:2n () = 2 / AdF%1nan (1), (9.98)
It follows from the independence between T%z and Tg} that

/ ADFT* (\) — 2 / MFTS () 5 N (g — 219, 0% + 402).

9.6 The proofs of Theorems 6 and 7

We only prove Theorem 6 because the proof of Theorem 7 is similar. Set
4 NG R
DO = p, / Ad(FHl"y(/\) _ FHO"y()\)),
(2) Ry Ry

where R%} represents the matrix Sy, while Rxy represents the matrix Tyy; and FHOxy » P,

stand for the ESDs of R,(fg, under Hy and Hj, respectively. The power can be then calculated as

)

= P<D(i) + Rff)o > 21_q or DO + RS)O < Za

Bn = P(Rg) > Z1_q OT Rﬁf) < Za

)

- P(Rﬁ?o > 21—q — DO o R0 <, — D@ Hl), (9.99)

where Rg )% stands for R,(f ) under Hp. Under the condition (4.1), we have

Bn— 1, as n — oo.
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10 Supplement material: CLT for a sample covariance matrix
plus a perturbation

This supplement material is to provide the central limit theorem for linear spectral statistics,
quantities of the form

230 = [ f@)F ), (10.1)
j=1

where f is a function on [0,00), A1,..., A, denote the eigenvalues of random matrices B,, and
1
B, = NXX* + T,. (10.2)

Here X = (Xj;) is n x N with independent and identically distributed (i.i.d) complex (real) stan-
dardized entries, T, is a nonnegative Hermitian matrix, and the empirical spectral distribution
(ESD) of any square matrix A with real eigenvalues p; < pg < -+ < pu, is denoted by

FA(z) = %#{i s < a}, (10.3)

where #{- -} denotes the cardinality of the set {--- }.

Silverstein (1995) discovers the limiting spectral distribution(LSD) F. g, the limit of FBn
which is given in Lemma 10 below for easy reference. The Stieltjes transform of any distribution
function G(z) is defined by

mg(z)E/)\isz(/\), S(2) # 0. (10.4)

Lemma 10. Assume that
1. For each n, X, = (X}), {XZ; ci=1,...,n;j=1,...,N} are i.d.; for all n,i,7, {XZ :

n=12...;t =1,....n;5 = 1,...,N} are independent. Moreover, EX1; = 0 and
E|X112 =1.

2. n=n(N) withn/N — ¢ >0 as N = .

3. T, is an n x n Hermitian nonrandom matriz for which FT"(x) converges vaguely to a
nonrandom distribution H(x),

then almost surely, FB» the ESD of B,, converges vaguely, as N — oo, to a nonrandom
distribution F. g, whose Stieltjes transform m®(z),z € CT satisfies

1

— Cmo(z)) (10.5)

m®(z) = mpy (z -

where mp(z) denotes the Stieltjes transform of H(x).

Remark 9. Indeed, Silverstein (1995) derives a more general equation than (10.5) for the matrix
%XAnX* + T, where A, is a diagonal matriz. If we take A, = diag(%, Nreoes %) then the

equation (10.5) for the matriz B,, = %XX* + T, follows. A similar result covering more general
matrices A, can be found in Pan (2010).
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Before stating Theorem 8, we introduce some notation. Set
Gu(a) = n[FP"(2) = Fe, m, ()], (10.6)

where H,, = FT", ¢, = n/N and F,, g,(z) can be obtained from F.g(z) with ¢ and H(x)
replaced by ¢, and H,(x), respectively.

Let
B dH (z) (s = 1
e (2) _/(x—z—i-w(z))’"’ (2) z)’

1 1
1+emd(z1)  1+4emd(z)

s(z1, 22) = (10.7)
where 7 is a positive integer.
The main result of this supplement material is Theorem 8.

Theorem 8. Assume that

(a) {Xijyi <n,j <N} are ii.d. with EX1; =0, E|X112 =1 and E|X11|* < oc.

(b) Ty, is n x n nonrandom Hermitian nonnegative definite with spectral norm bounded in n,
and with FT» 2 H, a proper c.d.f.

(¢) n =n(N) withn/N — ¢ >0 as N = co.

Let f1,..., fr be functions on R analytic on an open interval containing
[I(Oyl)(c)(l — Vo) + hm inf AT» (14 1/c)% + lim sup )\mam} (10.8)

where )\m’;n and \Xn  denote the mazimum and minimum eigenvalues of T,, respectively. Then

(i) the random vector

/f1 )dG( /fk )G ( (10.9)

forms a tight sequence in n.

(i3) If X11 and T, are real and EX{, = 3, then (10.9) converges weakly to a Gaussian vector
(Xtp1,..., X5,) with mean

1 j{f( )cw2(z)m3( 2) + Pwi(z )(mo(z))/mg(z) — cZwS(z)(mo(z))lmg(z)
z

EXy =
P Zomi 1 — cw?(2)ma(2)

dz

(10.10)

and covariance function

_ c(m®(z1)) c(m®(22))’
Cov(Xy, Xy,) = 9.2 fj{fz 21) fi(22)] (1 +cm0(lzl))2 ™ (1 + em(z3))2

c(m®(22))’ ] 1
(1 —|— cmo(zl)) (14 emO9(22))?" (22 — 21 + s(21, 22))?

dzleQ. (10.11)

The contours in (10.10) and (10.11) are closed and are taken in the positive direction in the
complex plane, each enclosing the support of F¢ p.

(i4i) If X11 is complex with E(X?) = 0 and E(|X11|*) = 2, then the result above also holds,
except the mean is zero and the covariance function is 1/2 the function given in (10.11).
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Remark 10. We investigate the matriz B, = +XX* 4+ T,, while Bai and Silverstein (2004)

studies the matriz of the form S, = %Ri/QXX*R,l/Q, where R}/2 is a Hermitian square root
of the nonnegative definite Hermitian matriz R,,. The two matrices B,, and S,, are the same
when the matriz T,, becomes a zero matriz and R,, becomes an identity matriz. In this case,
the asymptotic means and covariances in Bai and Silverstein (2004) and in Theorem 8 are the
same, which is verified in the last part of the supplement material.

10.1 Proof of Theorem 8

The proof of Theorem 8 follows a line similar to that in Bai and Silverstein (2004). Throughout
the proof K denotes a constant which may change from line to line.

10.2 Truncation, centralization and renormalization

We begin the proof by replacing the entries of X,, with truncated and centralized variables.
Since the argument for (1.8) in Bai and Silverstein (2004) can be carried directly over to the
present case, we can then select positive sequences 9, such that

6n =0, 6,4 | X1 * = 0. (10.12)
{|X11[26nv/n}
Set B, = NX X* + T, with X,, (of size n x N) having the (4, j)th entry Xijl|x,;|<s,m- Then
we have
P(B, # B,) < nNP(|X11| > 6,v/n) < K5;* | X11[* = o(1).
{IX11[=6nv/n}

Define ]§n = %iniz + T,, with Xn having (7, j)th entry (XU — EXZ‘]‘)/UTL, where o,, = E\X”
IEXMP. From Bai and Silverstein (2004) we know that both lim sup, )\,wax and limsup,, )\,C,:wx

are almost surely bounded by (1 + /c¢), where C, = iX X* and Cn = ]{,an(;"l By Weyl’s

inequality and the assumption ||T,|| < M, we have that lim sup)\ and limsup,, ABn are

max max

almost surely bounded by [(1++/c) + M]. We use Gn(z) and Gn( ) to denote the analogues of
Gy (x) with the matrix B, replaced by B,, and B,, respectively.

. . . . . . 1/2m1/2
Since T,, is a nonnegative definite matrix, we can write T,, = Tn/ Tn/ = Z?:l t;t;, where

t; is the ith column of T}/ 2, We may then write
B, =F,F;, (10.13)
where
F,=(r1,...,rn,t1,...,tp) (10.14)

with r; = %X_i, i =1,...,N and X; standing for the ith column of X,,. Define f‘n and ﬁn

to be the analogues of F,, with the matrix X,, replaced by Xn and )Afn respectively. For each
i=1,2,...k,

/ Fi(@)dGn( / Fi(@)dCi Z’/\B” AB-

< 2K, (tr(Fy — F) (B, — o)’ )1/ 2( (ABn 4 ABa ))1/2,

max max
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where K is a bound on | f],(z)| and A2 denotes the ith smallest eigenvalue of the matrix A.
By the fact that

tr(F, — Fp)(Fp —Fo) = N (X — X0) (X — X)),

and the result on page 560 of Bai and Silverstein (2004), i.e
—1,.( N < 1/2 1/2y/\B 2 1
(Nt r (X = X)X = X0)*) = 0(0un ™) (N2g) V2 + 00 ™),
we obtain
[ @)iCnl@) = [ f()dGo(o) + on(0).
Therefore, in the sequel, we shall assume
‘Xz'j| < 5n\/ﬁ, EXZ‘]‘ =0, E|X¢j‘2 =1, E|X¢j‘4 < 00,

and for the real case, E|X11|* = 3 + o(1) while for the complex case, EX? = o(1/n) and
E|X11]* =24 o(1). For simplicity we suppress all the subscripts and superscripts on variables.

10.3 From linear spectral statistics to Stieltjes transforms

With notation C,, = %XX*, by Weyl’s inequality we have

N < Xvie  Mar - Nin = A + A (10.15)
From (1.9a) and (1.9b) of Bai and Silverstein (2004), we have
P(ABr. >n) =o(n™"), PApr, <0)=o(n"), (10.16)

for any n > ((1 +/¢)? + lim sup,, /\E{&x), any 0 < 0 < (I(()’l)(c)(l —V/¢)? + liminf,, )\W’I;’;n) and
any positive £.
Write
My (2) = n(mn(z) — my(2))

n

where m,,(z) denotes the Stieltjes transform of FB» and m?(2) is m°(z) with ¢, H replaced by
cn, Hy, respectively. By Cauchy’s integral formula

o) = % fﬁidz, (10.17)
we have for k > 1, any complex constants aq,--- ,ag, and for all n large with probability one,
k
S [ @i o) = > o 4 (2 (10.15)

where the contour C is specified below. Let vg > 0 be arbitrary. Let x, be any number greater
than the right end point of interval (10.8). Let z; be any negative number if the left end point
of (10.8) is zero. Otherwise, choose ;¢ € (0, (1 — v/¢)? + liminf, AIn ). Let

min

Cy ={x+ivg: x € x4, 2]}
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Set
Ct={zy+iv:ve|0,v]}UCyU{z, +iv:ve[0,uv]}

Let C~ be the symmetric part of C* about the real axis. Then set C =C*TUC™.
We define now the subsets C; and its symmetric part C;, of C when M,,(-) agrees with M,,(-),
a truncated version of M,(-) to be defined below. Select a sequence {g,} such that for some

p€(0,1)
end 0, en>n"".
Let

c, {zg+iv:v € [n"ten,v0]}, a0 > 0;
C7 {me+iv v e 0, v}, xp < 0,

and
Cr = {x, +iv:v € [n ten,vo]}-
Set C = C,UC, UC,. The process M, (-) can now be defined. For z = x + iv, we have

M,(z), if zeCruC,;

%Mn(w +in~le,) + %Mn(w —in~ley,),

M, (z) = if v =20 € [-n"te,,n ey (10.19)
Lgf" My (z; +in"te,) + faw M, (z; —in~le,),

if v =mxp>0,v€ [-n"te,,n e,

With probability one, for all n large,
‘ if(z) (My(2) — Mn(z))dz‘
-1
< )

+‘ min (1(071)(@(1 —Ve)2 4+ AEn 7B ) — xg’_l — 0. (10.20)

man’ 'min

max ((1+ v/n)? + Apig, Apng) — T

In view of this and (10.18), as discussed in Bai and Silverstein (2004), it is enough to consider
the limiting distribution of S35 ay M, (z).

10.4 CLT of the Stieltjes transform m,(z) of FB»

Recall the definitions of m(z,r),@w(z) and s(z1, z2) in the introduction.

Lemma 11. Under conditions (a)-(c) of Theorem 8, {M,(z)} forms a tight sequence on C.
Moreover, if assumptions in (ii) or (iii) of Theorem 8 on X171 hold, then My(z) converges
weakly to a Gaussian process M (z) for z € C under the assumptions in (ii),

cw?(2)m(z,3) + cw(2) (mo(z))/m(z, 3) — 02w3(z)(m0(z))/m(2, 2)

EM(z) = o (e ) (10.21)
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and for z1,z9 € C

2 e(mO(z1)) c(m9(z))
Cov(M (1), M(z2)) = —(22_Z1>2+2u+(H(C,,EOZZW (H(cm(o?ij))z
c(m®(z1))  e(mP(z2)) 1

(1+ cm®(z1))2 (1 + em9(22))2' (22 — 21 + (21, 22))2 (10.22)

while under the assumptions in (iii) EM(z) = 0, and the covariance function similar to (10.22)

is half of the right hand side of (10.22).

We first list (2.3) of Bai and Silverstein (2004) below as Proposition 2, which holds as well
in our setting.

Proposition 2. For any nonrandom n X n matrices A, k=1,...,p and By, =1,...,q, there
exists

P q
}E( H riAgrg H(r’{Bgrl - N_ltng)> ‘
k=1 =1

p q
< KN-Wag@e VO TT AT IIBell, p>0, ¢>0. (10.23)
k=1 =1

Proof. We now start the proof of Lemma 11. Write M, (z) = M,(ll)(z) + Mq(f)(z), where

MV (z) = n(mn(z) - Emn(z)>, M®P(z) = n(Emn(z) — m%(z))

n
By the discussion in Bai and Silverstein (2004), it suffices to prove the following four statements.
1. Finite dimension convergence of M,gl)(z) on Cy,.
2. M,(ll)(z) is tight on C,, where C,, = C;F UC,, .
3. M (z) - EM(z), for z € C,,, where M (z) is the limit of M, (z) as n — oo.

4. {M7(L2)(z)} for z € C,, is bounded and equicontinuous.

10.4.1 Step 1: Convergence of M,(Ll)(z)

Let vop = 3(z). To facilitate analysis we consider the case of vg > 0 only. We first introduce
some notation as follows.

_ b
- VN

* *Ty — 1 —
rj X j, D(z) = B, — 21, Dj(2) = D(2) — r;r, 7;(2) = r}D; ' (2)r; — ~ ZtrD; H(2)

1 d
gj(z) = erj_l(z)rj - %trDj_l(z), 9i(2) = r;ij_Q(z)rj — NtrDj_Z(z) = @gj(z),
8() g = 1 bul2) :

LD () 14+ N-trD;(2) 1+ N-IEtrDy'(z)

As pointed out by Bai and Silverstein (2004), the later three variables are all bounded by |z|/vo.
Let Eo(-) denote expectation and [E;(-) denote conditional expectation with respect to the o-field
generated by ri,...,r;.
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Write

n(mn(z) — Emn(z)> = tr (Dfl(z) - EDfl(z)) = itr]Ele(z) —trE;_1D!(2)
j=1

- S uE, (D*l(z) D]—l(z)) — trE; 1(D L(z) — D;l(z))
j=1
N
- — Z(E] —Ej1)8;(2)r;D; % (2)r;, (10.24)
j=1
where the last equality uses
D 1(2) - D;l(z) = —D;l( Jr;r;D; Lz )Bi(2). (10.25)

By the identity

Bj(2) = By (2) = Bj(2)B5 (2)e5(2) = B (2) — (8] (2))%€;(2) + (B} ())?Bj(2)ej (=), (10.26)

we have
(B B )2 = B(7(2005(2) - (87 (2)) () 10rD;(2))
(B — By 1) (87 (2))% (5(2)05(2) = B3 (2)r; D} % (2)r;3(2) ).

By Proposition 2 one can prove that (E; — Ej_l)(ﬁjr(z)) (5]( )0;(2) — Bj(2)r; 2(z)rj€§(z))
converges to zero in probability (One can refer to page 569 of Bai and Sllverstem (2004) for

similar arguments).
Therefore it is sufficient to consider the sum 2521 ay Zjvzl Yj(z), where

Yi(2) = B (B (2)55(2) — (87 (2))e5(:) D5 (2)) = E; di "(2)ej(2). (10.27)

We next utilize Lemma 2.4 of Bai and Silverstein (2004), CLT for martingale differences. By
Proposition 2 and using the same arguments as those above (2.4) on page 570 of Bai and Silverstein

(2004), we see that condition 2 of Lemma 2.4 of Bai and Silverstein (2004) is satisfied and it is
therefore enough to find the limit in probability of

ZEJ 1( V(= z)) (10.28)

Consider the sum

N
> B (B (B (21)2 (1)) B (B (22)25(22) ) (10.29)
j=1
Since
82
e (10.29) = (10.28), (10.30)
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by the same arguments as those on page 571 of Bai and Silverstein (2004) we only need to show
(10.29) converges in probability and to determine its limit.

Note that the derivation above (4.3) of Bai and Silverstein (1998) is true in the present case
and hence

1 1
E|NtrDj_1(z) - NEtrDj_l(z)V’ < KNP, (10.31)

By the discussions above (2.7) of Bai and Silverstein (2004), we then have

ZE] 1< % ZI)EJ(zl))EJ(6§T(22)€j(z2))> i_V:E ( (55 21))Ej(6j(22))>i'—>p0.

Thus it remains to prove that

Mz

E ( &?] 21))Ej(€j(22))) (10.32)

J=1

converges in probability and to determine its limit.
In the complex case, namely EX? = o(1/n) and E|X11|* = 2 + o(1), by the identity

E(X*AX ;- trA)(XBX  — trB)

= (EBIXul* - [EX}* —2)) aibi + |[EXT[*trABT + trAB (10.33)
=1

valid for n x n nonrandom matrices A = (a;;) and B = (b;;), (10.32) becomes

N
b Z (m«n—z (21))E; (D} ' (22)) + 0(1)An), (10.34)

where

Aa] < K (1, (D] (21) B, (D (21)) x 1E; (D5 (22)); (D (=) ) = o).

Thus it is sufficient to study

N

bn(zl)bn(ZQ)% St (D5 (20)) B (D (22)). (10.35)

=1

In the real case, namely E|X11|* =3 + o(1), (10.32) should be double the limit of (10.35).
The next aim is to investigate (10.35). To this end, set D;;(2) = D(2) — r;r] —r;r7,

1 1 _ N -1 1

i(2) = , bi(z) = ,H Y(2) = (21— bi(2)I-T,) .
Big (=) 1+r;"Di_j1(z)ri 1(2) 1+N—1EtrD1_21(z) (2) ( 1(2) )
Write

N

N -1 N -1
Dj(zl)—i—le— bl(zl)I—Tn = ZI‘Z'I';k — bl(zl)I
i#j
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Multiplying by H=!(z1) on the left hand side, Dj_l(zl) on the right hand side and using

r;D; ' (21) = Bij(z0)ri D (1), (10.36)
we conclude that
-1 * N -1 -1 -1
D '(z1) = —H (1) + Zﬁm (20)H ! (z1)rir; Dy (21) — b1z H T (21)D) (1)
i#j
= —H (z)) +b1(21)A(21) + B(z1) + C(21), (10.37)
where
=> H '(z21)(rir} = N')D;; (21),
i#]
B(z1) = (Bij(21) = bi(z1))H ™ (z)rar; D (20),
i#]
C’(zl) = N_lbl(zl)H_l(zl) Z (D;l(zl) — D;l(zl))
i#]
It is easy to verify for any real ¢,
)1 1 t )*1 _ ‘ z(14+ N7'EtrDy5 (2)) ‘
2(1+ N-IEtrD,(2)) 21 l(z—t)(1+ N1EtrD; () — 1
2(1+ N"'"EtrDiy ()] _ [2](1 +1/(Nw))
R} [(z —t)(1+ N—lEtrDl_Ql(z))] a Yo ’
where the last inequality uses
3 [(z 11+ N—lEtrD;;(z))} — v+ S [(z - t)N—lEtrD;;(z)}
_ -l -1 —t—(2-1))
= w3z ON ZEA—Z}_ S| ZE ])\—z\Z ]
= v+ N~ 121[*]715) > g
— |\i — 2|2 ’
with the fact that
A >t Vi=1,2,...,n,
where \;,i = 1,2,...,n are eigenvalues of Do = 2?7&172 r;r! + T,. It follows that
_ N -1 -1 1+n/(Nvg)
1
— _ — < . .
HH (z)H ‘ (ZI ()1 Tn> H < (10.38)
Moreover from (10.31) and (10.23) we have
Ely(s)P < KN"16%4, p>2. (10.39)
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Therefore the discussions for (2.11)-(2.13) of Bai and Silverstein (2004) still work in our case.
That is,

E[trB(z1)M| < KpENY?, EltrC(z1)M| < Ky K, (10.40)

when Kpg denotes the nonrandom bound of the spectral norm of M, an n x n matrix; When M
is non-random, we also have for any j,

E|trA(z)M]| < K| M||N'/2, (10.41)

where ||M]|| denotes the spectral norm of a matrix.
Using an identity similar to (10.25) yields

tTEj (A(Z1))Dj_1(22) = Al(zl, 22) + AQ(Zl, 22) =+ Ag(zl, 22), (10.42)

where

Ay(z1,29) = —tr Y H 1 (21)rirE; (D31 (21)) Bij (22) Dy (z2)rir; Dy (22)

1<J
= =) Bij(z2)riE; (D (1)) Dy (z2)rir; D (22)H ™ (201,
1<J
As(z1,29) = —tr Z H™ (Di_jl(zl)) (Dj_l(ZQ) — Di_jl(ZQ)),
1<j
3(z1, 22) —trZH )(rir] —NﬁlI)Ej(D;jl(zl))Di_jl(zg).
1<J

By arguments similar to (2.15) in Bai and Silverstein (2004), (10.38) and (10.23) we have
|Az(21,20)| < K, E|Az(21,220)] < KN'Y2.

The arguments above (2.16) of Bai and Silverstein (2004) can be carried over to the present
setting and therefore we obtain

E}Al(zl, ZQ) + %

We conclude from (10.37)-(10.43) that

bl(zQ)tr(Ej (D;l(zl))D;l(z2)>trD;1(zQ)H—1(zl)‘ < KN'Y2. (10.43)

tr (B (D5 (20)) D} (22)) (1 + jN;lel(zl)bl(zQ)tr (D5 (B (20))
- (H*l(zl)Dj—l(zZ)) + Ay(z1, 22), (10.44)
where
E|A4(z1, 22)] < KNY/2,

Applying the expression for Dj_l(zg) in (10.37), (10.40) and (10.41), we obtain

tr (B4 (D5 (21)) D} (22)) % (1 jN;lel(zl)bl(z2)trH—1(zl)H—1(zQ>)

= tr (H_l(zl)H_l(z2)> + As (21, 22), (10.45)
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where
E|As(z1, 20)| < KN'/2,

Since (by(z) — ~—~y—) — 0 (indeed, the next subsection proves Em,(z) —m0(z) = O(N™1)),

14+cnmQ(z)
we have

%tr (B (D} (:1)D; ' (=2))

J—1 1 dH,(t)
X (1 - Cn / - - )
N (T emf(z0)) (L emf(=2)) /(22 = mraey — 8 (31— Trange 1)
+emf (22) +emf (21)
= cn/ 1 9Palt) 1 + As(21, 22), (10.46)
(22 = Tramiy — O (51 — Tramey — t)

where E|Ag(z1,22)| = o(1). Let

( ) 1 / dH,(t)
an(z1,22) = cy :
1,22 (1+em(21)) (1 +em(22)) J (22— 71+le%(z2) —t) (21— = 1n - — 1)
We claim that
lan (21, 22)] < 1. (10.47)

Indeed, by the Cauchy-Schwartz inequality, we have

’ Cn / dH,(t) ‘
1 1
14+ ¢,md (2:1)) (1 + ¢ym? (ZQ)) (22 ~ T t) (21 ~ T t)
cndHyp(t) 1/2 / cndHp(t) )1/2
11+ enmi (21)?|21 — - mO(z —tP 11+ cyml (22)]? ]zz—m—tp '
(10.48)
Note that m)(z) satisfies an equality similar to (10.5)
dHp(t
ml(z) = / ( )1 : (10.49)
t—z+ 1+cnm0 (2)

Taking the imaginary part of the both sides of (10.49) leads to

O(Z)):/d( : z+m)dﬂn(t)

S(m,,
-z 1+cp mo(z) ’2
~uf )] '
|t 1+c mo(z)‘ ‘1+Cnm0 |2 |t—Z+ 1+cn mo( )|2

Dividing by &(m$(z)) on both sides, we have

= 1.
o R v/ <
\1—|—cnm \ |t 1+c mO Z)!2 ’t 1+c mo(z)‘
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This, together with (10.48), yields (10.47).
It follows from (10.46) and (10.47) that (10.35) can be written as

N
1
2 TG =D Mo AT

Z\H

Zl) Z?
J=1

where E|A7(z1, 22)| = o(1). We then conclude that

ip 1 1 p (21,22) p
10.35) = a(z1, 2 ——dt = 2,
( ) (=1 2)/0 1 —ta(z, 22) /0 1—=2

where
( ) c / dH (t)
a(z1,z2) =

(1 +emO(z1)) (1 + cmo( 2)) ) (2 = oy — B (51 — ey — 1)

C e(m0(z) — m()) 1
(1 + Cmo(zl)) (1 + Cmo( 2)) Z2— 21+ 1+cml,0(z1) B 1+C1’7‘10(Z2)

8(21722) _1_ 22 — 21

2o — 21 + 8(z1, 22) zo — 21 + s(z1, Zz)’

where the second equality uses (10.5) and s(21, 22) = 1 +m}0 G 1 Jmio ek Therefore the limit
of (10.28) under the complex case is

0? a(z1,22) 1 0 (0a(z1,22)/021
/ de = (L2,

029021 11—~ 0zo \ 1 —a(z1,29)
9 [3(21,?:2) + (21 — ZQ)M%}
029 (22 — 21 + s(z1,22)) (22 — 21)
o7 1 c(m®(z1)) 1
R L:g -2 (1+ (14 cmO(21))2" 29 —zl—f—s(zl,zz)}
1 c(m®(21)) c(m®(22))’ c(m®(21))  e(m(z2)) 1
(29 — 21)2 (14+cm9(z1))2 (1 4+cm9(22))2 (14 em9(21))% (1 4+ cmO(22))2" (22 — 21 + s(21,22))%

10.4.2 Step 2: Tightness of ]\;[T(Ll)(z)
The tightness of {Zéf:l agM;Ll)(z)} on z € C can be proved in the same way as that in
Bai and Silverstein (2004).

10.4.3 Step 3: Convergence of Mf)(z)

We first list some results from Sections 3 and 4 in Bai and Silverstein (2004), which hold in the
present setting as well. Consider z € C,;7. As in (3.5), (3.6) and the argument below (3.6) of
Bai and Silverstein (2004) we have

Ely;[P < KN7'6274 p>2 (10.50)
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and
() <K, p>1, [ba(e) < K. (10.51)
Similar to (3.1) and (3.2) in Bai and Silverstein (2004), by (10.16), we have for any positive p
max (E[[D~(2)| . BI|D; ()17, Bl [D; ()|") < K (10,52

and via (10.23) and (10.12)
q
)E(a(u) I] (=iBu(v)r: N‘lter(v)))‘ < KN~(M)g2=9v0 > (10.53)
m=1

where the matrices B,,,(v) are independent of r; and
max(|a(v)], B (v)|]) < K (1+n°I(|[Byl] > nr or Ay, <))

for some positive s, with B being B,, or B,, with one or two of the r;’s removed. Here 7, €
(14 /¢)* + limsup,, || Ty||, z,). If ¢ > 0, then 1y € (z¢, (1 — /¢)* + liminf, )\mm); if z, <0,

then 7y < 0. Similar to (4.1) in Bai and Silverstein (2004), one may prove as n — oo,

sup [Emy,(2) —m°(z)| — 0. (10.54)

2€CF

Let M be an n x n non-random matrix. With the same arguments as (4.7) in Bai and Silverstein
(2004) we obtain

E[trD ()M — EtrD;H(2)M[* < K||M]|%. (10.55)
We next show
-1
sup || (BB -1+ T,) || < oc. (10.56)
zeCt

Denote the supports of the distributions H and Fi g by Sp and Sf, ;, respectively. We see

that || ((Eﬁl)l — 21+ Tn) || is bounded by 2%(0]\”0) on C, by (10.38) and (10.39).
Consider x = xy or x, now. So x € SC , where SC denotes the complement of Sp, ,,. We

next prove that t —x+ @ # 0 for any t € Sy and z e I C 5% ,, where I is an open interval

1+mn0
by following a line similar to Theorem 4.1 of Silverstein and Ch01 (1995). For any x¢ € I, let
mg =m%(zg) and D = {z € C: 3z > 0}. Let m = m(z) = z — D (for z € D). From

(10.5) we have

1+cm0 (2) €

1
z(m) =m+ T 5 emp(m)’ (10.57)
Since m/(xg) = 1 + Mioxgg;)g > 0, m(z) has an inverse Z(m) in a neighborhood V of xg
by the inverse function theory. By the open mapping theorem m(V) is open and includes
(zo — ﬁ) It follows that Z(m) — z¢ as m € m(V) — (xo — ﬁ) However we must have
Z(m) = z(m) on m(VND) =m(V)ND due to (10.57) and (10.5). Therefore we have z(m) — x¢
asmED%(xo—ﬁ).

o4



(10.57) can be further rewritten as

Hence my(m) converges to a real number when m € D — (zg —
of Silverstein and Choi (1995) H'(xo — ﬁ)
{z — 1+Cm0 @ relcSg ..} which is open due to the monotonicity of (z

ﬁ) By Theorem 2.1

= 0. This implies H = 0 on the set J =
1

— m) on I.

Hence H is constant on J which implies that J C 5. Therefore if ¢ is in the support of H, we

then have t # = — H#O() ile. t—x+ 1+cm0 ;AO

Since m?(z) is continuous on C° = {z + v : v € [0,vg]}, there exist positive constants 1 and
k such that for ¢y in the support of H(x)

1
f|t —_ d 0 . 10.
Zlen |to — +1+Cm0(z)|>77 an ngg)hn (2)| <k (10.58)

Also from (10.50), (10.51) and (10.54) we have

1
sup |Efy —

—| = 0. 10.59
et 1+ cmo(z)| ( )

Moreover, since F'T» B H (z), for all large n, there exists an eigenvalue p of T,, such that

| — to] < n/4. (10.60)

We conclude from (10.60), (10.59) and (10.58) that
inf — E 2 10.61
onf =zt Ef|>0/2, (10.61)

which ensures (10.56).
With Hy = ES(2)I — 21+ T,,, write

N

D(z) - Hy = > r;r} — (EBi(2))L (10.62)

=1

Postmultiplying D~!(z) and premuliplying H1_1 on the both sides, taking expectation and using
an equality similar to (10.36) we get

H;! - ED"(2) 11@[(21«] v}~ (BA(2))I)D7(2)]

N
= H'YOE(r,8(:)r;D; (=) - Hy'(Efi (=) ED 7 (2)
7j=1
— NE [ﬁl(z) (H;lrlr;Dl—l(z) - %HflED_l(z))] (10.63)

Taking trace on both sides, we have

dH,(x)
”</ T GEAw) )

= NE[5i(2) (siD7 () - %trHl_lED’l(z)ﬂ. (10.64)
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When there is no confusion, we below drop z from [1(z),v1(2),b,(2), etc. By (10.25), we
have

EtrH; "Dy (2) — B H D7) (2) = B8 (2)trH "D ()r10iDT ! (2)|
- bn(z)]E[(l - ﬂyyl)f{Dfl(z)Hl_lDl_l(z)rl], (10.65)
where the last equality uses 81 = b, — f1b,y1. In view of (10.53), (10.50) and (10.56), we obtain
‘Eﬁl nriD] 1(z)H;1D;1(z)r1’ < KN7Y, (10.66)
which implies that
‘(10.65) - N—lbnEDfl(z)Hlefl(z)‘ < KNL
Since 81 = b, — b2y + B1b27? we may write

NE(BriDH(2)H 'ry) — BB EtrH' D (2)
= —b,NE(mriD;'(2)H; 'r1)

% (NE(B17{riDy Hy 1) (B8193) EtrHy ' DY (2))
= —BENE(nriD;(2)Hy 'ry) + b2 (2)Cov <B1fy%, trDl_l(z)Hl_1>

+52 (EINB1+3iDT (=)H1 'ry — BioftrDIHT ).

One may refer to a similar expansion on page 587 of Bai and Silverstein (2004). It follows from
(10.50), (10.56) and (10.53) that

(BN (2123 (:)riD; () Hy 'y — BioerDy HL Y| < K62,
By (10.51), (10.50), (10.56) and (10.55) we have
’Cov (ﬁw%, trDl_l(z)Hl_l) ‘

2\ 1/2
(B[4 (%) (E|rDT ! (:)HT ! ~ ErDT () H| )
< K&NVA

IN

We conclude from (10.50), (10.51) and B1 = by, — B1b,y1 that
EB; = b, + O(N~Y?).
By the definition of «; we have
EN~eiD7 H 'y
— NE|(riD'r - N7'rDTY) (riDIH iy - N7 DT )|

+N"Cov (terl,trD;I(z)Hf). (10.67)
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In view of (10.55), we see the second term above is O(N~!). We conclude from (10.64)-(10.67)
that

n(/x (‘iH”gﬁ) & —Emn(z)> = b2 ()N~ EtrD; 'H] 'D7 ! (10.68)
- - 1
~b2NE Kr’{D;lrl - N*ltrDl—l) (r’{ CH - N*lterlHl—l)] (10.69)
+o(1). (10.70)

Using (10.33) on (10.69) and by the assumptions under the complex case, we have

n(/ o (Cihﬁll(gﬁ)l(z)) —Emn(z)) — 0, as N — oo,

while under the real case

dHn () CEm(2)) = BN EaDHOID 40
n(/x—(z—IEﬁl(z)) Em,( )) BEN"'Et D H; D + o(1). (10.71)

It is sufficient to find the limit of N~'EtrD; "H; "D *. Applications of (10.25),(10.51),(10.53)
and (10.56) ensure that

EtrD;'H'D;' —EtrD'H;'D;!
and
EtrD'H;'D;' ~EtrD'H;'D!
are bounded. Hence it then reduces to considering the limit of
N7 'EtrD'H'D!. (10.72)
From (10.62), similar to (10.63) we have

N
D '(z) = Hy'-) BH;'ryrD;'(2) + (Ep)H'D'(2)

= H'+ (EB1)A(2) + B(2) + C(2), (10.73)
where

N N
A(z):—ZHl_l(rj s NC 1I)D Z( E61> D (),

=1 =1

’ N ’ N
Clz) = -N "' Es)H Y (Dj_l(z) - D’1(2)> — -NYEB)H' Y 8D; (2)ryriD; ().

j=1 j=1

It follows from (10.50) and (10.51) that

E|f —EBi> < KN™L (10.74)
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For any n x n matrix M, by (10.52), (10.53), (10.51) and (10.74) we obtain

INT'EtrB(2)M| <
< KNTVR(E|MHV

and

INT!EtrC(2)M] KNT'E|By(2)[riry| DT (2)|*/M]]

<
< KNTUE[MIP)Y

K (E|1(2) — EBi(2)[2) "/ (E[rir Dy M]||)

1/2

For any n x n nonrandom matrix M with a bounded spectral norm, we write

trA(2)D7H2)M = A1 (2) + As(2) + A3(2),

where

N
Ai(z) = —tr S Hy'rriD;Y(2) (D’l(z) - Dj_l(z)>M,
j=1

N
A(z) = —tr > H! (rjr;Df(z) - N—1D;2(z))1v1,
j=1

N
As(z) = —tr Y H;'N7'D7(z) (Dfl(z) - D—l(z))M.

J
Jj=1

Obviously EAs(z) = 0 and similar to (10.76), we obtain
[EN1A3(z)| < KNL.

From (10.50) and (10.51)
E|8; — by|? < KN7L.

Using (10.53), (10.79) and (10.25) yields

EN'A(:) = E[firiDy2(=)ririDy (:)MH; 1|

- bnE[(N_ltrD_2(2)> (N_ltrD_l(z)MHfl)} +o(1).

By (10.55) and (10.52), we have
‘C’ov (N_ltrD_2(z), N_ltrD_l(z)MHf1> ‘

1/2

< <E|N‘1trD_2(z)|2)

We thus have

EN"1A;(2) = by, (EN_ltrD_Q(z)) (EN_ltrD_l(z)MHf1> +o(1).
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boE[(N~1trD 2(2) ) (N 1Dy () MH; ) | +0(1)

(10.75)

(10.76)

(10.77)

(10.78)

(10.79)

2\ 1/2
N1 (E‘trD—l(z)Mﬂfl - EtrD_lMHl’l‘ ) < KN

(10.80)



Moreover, by (10.73), (10.75) and (10.76), we have

EN~'trD~!(2)H 2 = N~tr (H;l FEB(2) + EC(z))H;2

_ o [ dHn@)
_ n/(ﬂc—Z+Eﬁ1)3+ (1). (10.81)

From (10.73)-(10.81) we conclude that
N7'EtrD ' (2)H'D 7 (2)
= EN'D ()H % + 82 (EN 1D (2) ) (EN 1D (2)H  2) + o(1)

_ o [ (@) oy [ dE() @)
— n/(x_z+Eﬁ1)3 + b HE/(IZ)Q/(x_Z+Eﬁl)3+ (1). (10.82)

This, together with (10.71), (10.56), (10.54) and (10.59), leads to

n</% —Emn(z)> (10.83)

e dH,(x) e dF,(x) dH,(x) o
B nbn/(x—Z+E51)3 bn nE/(«T—Z)Q/(x—z+EI81)3+ (1)

— —cw2 p dH($) _w4 5 62 ch,H(CC) dH(x) .
= ()/(m—z+w(z))3 (2) /(x_Z)Q/($—Z+w(z))3+ (1),

where the last step uses

dF, F.
sup IE/ (x)2 —/ i ’ — 0, as n — oo, (10.84)
2y, (x — 2) (x — 2)?

which can be proved similarly to (4.1) in Bai and Silverstein (2004).
Let @, (z) = 1/(1 4+ ¢,m2(2)). By (10.49) we then write

n(Emy,(z) —md(2)) = n(Em,(z) — — de(x) (10.85)

dH, () dH, () dH, (z)
- n<Emn(z)_/m—(z—Eﬁ1)> +n</x—(z—Eﬁ1) _/x—(z—wn(z)))
dH, (z
_ n(Emn(z>—/$_<Z_<I;ﬁl))+n(wn<z)—m)/(x — )((> e

We next find the limit of n(wn(z) — E&). Recall that 55"(2) = 1/(1 + %trDj_l(z)) and let
B (z) =1/(1+ #trD71(2)) and b(z) = 1/(1 + + EtrD~1(2)). Write

n(wn(z) — IE,81> - n(wn(z) — EB“"(z)) + n(m"(z) — E,Bi’"(z)) F(EBY (2) — EBi(2)).
(10.86)

First, by the fact that
B (2) = b(2) + B (2)b(2) (cnEmin(2) — camn(2)) (10.87)
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we have
n(@n(z) ~E8"(2)) = nE|@n(2)8" () (enma(z) — exm(2)
nk {wn(z)b(z)(cnmn(z) — cnmﬂ(z))]

+nE {wn(z)b(z)ﬁtr(z) (Cnmn(z) cam (2 )) (Ecnmn(z) — cnmn(z)>]
= nwn(2)b(2)E(cnmn(2) — cpm, 0 (2 )) +o(1), (10.88)

where via (10.54), (10.55), (10.51) and (10.87)
ne2b(2) (| B7 (=) (ma(2) = m3(2) ) (Ema(2) = ma(2) )| (10.89)
ne2b(2)en () [B (B (2) (Bma(2) = mS(2)) (Bmn(2) — ma(2)) )
—E(B"(2) (Ema(2) = ma(2))”) |
= (1) + () (2) [E(Bma(z) — ma(2)) — B(B(2) (Ema(2) — ma(2))*)] = o(0),

the last step using E|m,,(2)—Em,,(2)|° = O(n~3) (see the argument above (3.5) of Bai and Silverstein
(2004)).
As for the second term on the right side of (10.86), by (10.25), we obtain

n(EB"(2) —EBY(2)) = E|67(2)8) (2)tr (DT'(2) - D74(2))

- %E{5”(z)ﬁ?(z)rTDIQ(z)rlﬁl(Z)} :CQW3(2)/C€56—H'£)Q)

where the last step uses (10.54), (10.55), (10.51), (10.53), (10.84) and (10.79).
As for the third term on the right side of (10.86) we conclude from (10.26) and (10.53) that

n(EBY () — BAi(2)) = —nE((8) (2))28;(2)e3(2)) (10.91)
= —nB((2) (81 ())") + nE(1(2)8,(2) (81 (2))”) = —nE(}(2) (81 (2))") + o(1).
Moreover by (10.53), (10.55),

+o(1),  (10.90)

(10.33) and (10.54) we have for the real case

2 tr 3 _ _ Eci(2) _ _9.2_3 dFe,h(x)
B (B ())°) =~y + o) = 2= [ T o),
while the limit is half of the above in the complex case. This implies that in the real case
dF,
n(Eﬁfr(z) - Eﬂl(z)> — —2c2w3(z)/ @ —HZE;UQ)’ as N — oo, (10.92)

while the limit is half of the above in the complex case.
Summarizing the above we conclude that

n(wn(z) - Eﬁl(z)> (10.93)
_ {cnwn(z)b(z)nE(mn(z) —md(z)) — P (2) [ d{;igf) +o(1) in the real case
cn@n(2)b(2)nE (my(2) — md(2)) + o(1) in the complex case.
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The proof for (10.47) also shows that

cnw’(z dHn(z) 1.
eoie) |

This, together with (10.85), (10.93), (10.56) and (10.54), yields

n (Emn(z) — m%(z))

dHp (x e, () et
n(]Emn(Z)—f x_g_%gl)>—c2w3(z)f (m—iﬂ f( ( - <()))>

i (2) +o0(1), in the real case

(zf(szn(z)))2
o(1), in the complex case

= = AON

cw?(2)ms(2)+c2wi(z) (mo(z)) mg(2)—c?w3(2) (mo(z)) ma(z)
— 1—cw?(z)ma(z) )
0, in the complex case

in the real case

where we use

o= [ o=y O =[G

r—z+w(z)"’

10.4.4 Step 4: Boundness and equicontinuous of Mg)(z)
Boundness and equicontinuous of M,(lz)(z) can be similarly proved as in the last paragraph of

Section 4 in Bai and Silverstein (2004).
O

10.5 Verification of Remark 2

This section is to verify the asymptotic means and covariances in Theorem 1.1 of Bai and Silverstein
(2004) and in Theorem 8 are the same when T,, and R,, become zero matrix and identity matrix
respectively, as pointed out in Remark 2.

Consider (10.11) first. When T,, is a zero matrix, by (10.5) the Stieltjes transform m°(z)
satisfies the following equation

m(z) = ———— Cl_ et (10.94)

Define B,, = +X*X and denote its limiting Stieltjes transform by m%(z). Then m°(z) and
mP(2) have the relation

1—
m(z) = ——C 4+ emP(2). (10.95)
z
By (10.94) and (10.95), we have

— 1. (10.96)



Moreover, from (10.5)

1 1

D = T (10.97)
Combining (10.96) with (10.97), we get
1
2mP(2) = T e (10.98)
We then conclude from (10.98) that
c(mo(z))l L 1 " 07
e~ Tremy) = () (10:99)
It follows that
| cmi (=) c(m®(z2))’ co(m®(z1))"  c(m®(2))'
(14 emO(z1))?2  (14+emO(22))2 (14 em9(21))% (14 emO(22))?
= 14 (zlmo(zl))/ + (22m0(22))’ + (zlmo(zl))l(zlmo(zl))/. (10.100)

On the other hand, since (10.95) has an inverse (one may also see (1.2) in Bai and Silverstein
(2004))

C

R PR = (10.101)
we have
2(14+m’(z) = —1+c— ) (10.102)
From this, we have
() = ) 10.103
(@) = 5 (10.103)
Thus by (10.98) and (10.102), we have
2 — 21+ 8(21,22) = (1 + m%(22)) — 21 (1 + m°(21))
1 r mP(z2) —m(21)
= 0 () + m0(z) - () m0(ze) (10.104)

We then conclude from (10.100), (10.103) and (10.104) that

2 ) T G ) T L ) A L ) 1
(1+emP(21))2  (1+emP(22))2 (14 emO(z1))% (1 + emO(22))?" (22 — 21 + s(21, 22))
@) () @)y @0z) ] (m(z) — mO(21)
= [t v~ e~ Gaocr Y G ~ D) CasGeimdta) )

0

(m(21)) ( )

_ m®(z2))
(mO(21) — mO(29))%

1+

2

(10.105)
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In view of (10.105) we see that (1.7) in Bai and Silverstein (2004) and (10.11) are the same when
T, is a zero matrix and R, is an identity matrix.
We next consider the asymptotic mean (10.10). When T,, = 0, by (10.5), we get

me(z) = (m%(2))". (10.106)
Moreover we obtain from (10.96) and (10.98)
1

ml(z) = ——————, w(z) = —2m°(2). .
)=~y ) = ) (10.107)
From (10.106) and (10.107), it follows that
@ (z)m,(z) = (m°(2))" (1 + mP(z)) . (10.108)

This ensures that EM(z) in (10.21) can be written as

e(mO(2)X(1+ m(2)) "3 (g + e (2)(m(2)) = e(m®(2)) )
1= c(m0(:)2(1 + m"())

EM (z) = (10.109)

Comparing (10.109) with (1.6) in Bai and Silverstein (2004), it is sufficient to prove that

! 0(2)) — e(m®(2)) ! = L
+ cw(2)(m°(2)) — c(m’(z)) 0 = T P T ) (10.110)

w(z)
In view of (10.107) we have

4 ew(2)(MO(2)) = e(mP(2)) L _ 1 e(m®(2)) 2
=) (2)(m°(2)) —c(m”(2)) () Zmo(z)+( (2)) 2. (10.111)

Taking derivative with respect to z on the both sides of (10.95) we have

, , —e e(m®(2)?(1+mO(2)) " =m0z —c

the last step using the expression (10.101) for .
In view of (10.110), (10.111) and (10.112) it is enough to show

1/ 1 L 14m0(2) — e(m(2))* (1 m())
= m ) T L mePa )

From (10.102) the left hand side of (10.113) becomes 1+ m°(z). Because it is easy to check that

(10.113)

(1 + m0(2)> (1 - c(mo(z))Q(l + mo(z))_2> =14+ m%(z) — c(mo(z))2(1 + mo(z))_l,

we get (10.113). The proof is completed.
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Table 1: Empirical sizes of the proposed test S,, and the re-normalized likelihood ratio test

MULR,, at 0.05 significance level for DGP(a) and DGP(b).

(p1,p2,n) | S, DGP(a) S, DGP(b) | MLR, DGP(a) MLR, DGP(b)
(10,20,40) 0.0458 0.0461 0.0481 0.0490
(20,30,60) 0.0430 0.04883 0.0440 0.0448
(30,60,120) 0.0475 0.0430 0.0530 0.0520
(40,80,160) 0.0464 0.0466 0.0420 0.0420
(50,100,200) 0.0503 0.0504 0.0487 0.0500
(60,120,240) 0.0490 0.0490 0.0574 0.0572
(70,140,280) 0.0524 0.0520 0.0570 0.0582
(80,160,320) 0.0500 0.0500 0.0632 0.0583
(90,180,360) 0.0521 0.0511 0.0559 0.0530
(100,200,400) |  0.0501 0.0503 0.0482 0.0589
(110,220,440) |  0.0504 0.0500 0.0440 0.0590
(120,240,480) | 0.0513 0.0511 0.0400 0.0432
(130,260,520) |  0.0511 0.0511 0.0520 0.0560
(140,280,560) |  0.0469 0.0474 0.0582 0.0580
(150,300,600) |  0.0495 0.0500 0.0590 0.0593
(160,320,640) |  0.0514 0.0517 0.0437 0.0559
(170,340,680) |  0.0498 0.0500 0.0428 0.0430
(180,360,720) |  0.0509 0.0510 0.0580 0.0577
(190,380,760) |  0.04883 0.0485 0.0383 0.0499
(200,400,800) |  0.0491 0.0491 0.0462 0.0499
(210,420,840) |  0.0491 0.0500 0.0450 0.0555
(220,440,880) |  0.0515 0.0510 0.0572 0.0588
(230,460,920) |  0.0493 0.04983 0.0470 0.04383
(240,480,960) |  0.0482 0.0479 0.0521 0.0561
(250,500,1000) | 0.0452 0.0450 0.0527 0.0545
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Table 2: Empirical sizes of the proposed test T, at 0.05 significance level for DGP(a)-DGP(d).

(p1,p2.n) | I, DGP(a) T, DGP(b) 1T, DGP(c) 17, DGP(d)
(100,50,30) 0.0569 0.0462 0.0622 0.0410
(140,70,120) | 0.0573 0.0429 0.0582 0.0399
(180,90,150) |  0.0577 0.0452 0.0470 0.0429

(200,100,170) | 0.0552 0.0429 0.0467 0.04383
(240,120,180) |  0.0581 0.0510 0.0533 0.0410
(280,140,250) | 0.0571 0.0483 0.0518 0.0458
(320,160,270) | 0.0521 0.0479 0.0550 0.0512
(360,180,290) | 0.0529 0.0489 0.0530 0.0492
(400,190,300) | 0.0542 0.0522 0.0481 0.0512
(440,220,330) | 0.0557 0.0529 0.0469 0.0462
(480,240,350) | 0.0531 0.0562 0.0471 0.0457

*The parameter ¢ in the statistic T3, takes a value of 40. For GDP(a), we use the original statistic T, in Theorem
3; for GDP(b), the statistic in Theorem 8 is used; for GDP (c) and (d), the dividing-sample statistic in Theorem

5 is utilized.

Table 3: Empirical powers of the proposed test ), at 0.05 significance level for factor models.

(p1,p2,m) r=1 r=2 r=3 r=4

(10,20,40) 0.2690 0.6460 0.9420 0.9980

(30,60,120) 0.2930 0.8010 0.9760 0.9990
(50,100,200) | 0.3110 0.7650 0.9770 1.0000
(70,140,280) | 0.3240 0.7710 0.9830 0.9980
(90,180,360) | 0.3450 0.7940 0.9870 1.0000
(110,220,440) | 0.3330 0.7980 0.9800 0.9990
(130,260,520) | 0.3460 0.7820 0.9780 0.9990
(150,300,600) | 0.3510 0.7980 0.9720 0.9990
(170,340,680) | 0.3250 0.7780 0.9750 1.0000
( )
( )
( )

190,380,760) | 0.3480 0.7810 0.9810 1.0000
210,420,840) | 0.3210 0.7900 0.9700 1.0000
230,460,920) | 0.3300 0.7810 0.9790 1.0000
(250,500,1000) | 0.3370 0.7890 0.9790 1.0000

*The powers are under the alternative hypothesis that x and y satisfy the factor model (6.4). r is the number of

factors.
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Table 4: Empirical powers of the proposed test T, at 0.05 significance level for factor models.

(p1,p2,m) r=1 r=2 r=3 r=4
(100,50,80) 0.2460 0.5330 0.8220 0.9220
(140,70,120) | 0.2750 0.6180 0.8090 0.9420
(180,90,150) | 0.2990 0.5990 0.8340 0.9580
(200,100,170) | 0.3120 0.6010 0.8440 0.9570
(240,120,180) | 0.3540 0.6000 0.8710 0.9680
(280,140,250) | 0.3220 0.5790 0.8920 0.9720
(320,160,270) | 0.3630 0.5990 0.8500 0.9750
(360,180,290) | 0.3240 0.6650 0.8390 0.9900
( )
( )
( )

400,200,310) | 0.3790 0.6290 0.8900 0.9830
440,220,330) | 0.3740 0.6590 0.9000 0.9920
480,240,350) | 0.3690 0.6600 0.8890 0.9980

*The powers are under the alternative hypothesis that x and y satisfy the factor model (6.4). r is the number of
factors. The parameter t in the statistic T,, takes value of 40. For T;,, we use its modified dividing-sample version

in Theorem 5.

Table 5: Empirical powers of the proposed test S,, at 0.05 significance level for x and y with
ARCH(1) dependent type.

(p1,p2,m) | (0.9,0.1) | (0.8,0.2) | (0.7,0.3) | (0.6,0.4) | (0.5,0.5)
(10,20,40) 0.3430 | 0.4670 | 0.6380 | 0.7650 | 0.8500
(30,60,120) | 0.4840 | 0.8090 | 0.9820 | 0.9990 | 1.0000
(50,100,200) | 0.6190 | 0.9730 | 1.0000 | 1.0000 | 1.0000
(70,140,280) | 0.7020 | 0.9980 | 1.0000 | 1.0000 | 1.0000
(90,180,360) | 0.7900 | 1.0000 | 1.0000 | 1.0000 | 1.0000
(110,220,440) | 0.8620 | 1.0000 | 1.0000 | 1.0000 | 1.0000
(130,260,520) | 0.8970 | 1.0000 | 1.0000 | 1.0000 | 1.0000
(150,300,600) | 0.9440 | 1.0000 | 1.0000 | 1.0000 | 1.0000
(170,340,680) | 0.9520 | 1.0000 | 1.0000 | 1.0000 | 1.0000
(190,380,760) | 0.9810 | 1.0000 | 1.0000 | 1.0000 | 1.0000
( )
)

210,420,840 0.9880 1.0000 1.0000 1.0000 1.0000
(230,460,920 0.9950 1.0000 1.0000 1.0000 1.0000
(250,500,1000) | 0.9980 1.0000 1.0000 1.0000 1.0000

*The powers are under the alternative hypothesis that Yi; = Zisn/ao + a1 X2,i = 1,2,...,p1;Y;e = Zjr,j =
p1+1,...,p2. The pair of two numbers in this table is the value of (o, a1).
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Table 6: Empirical powers of the proposed test T, at 0.05 significance level for x and y with
ARCH(1) dependent type.

*The powers are under the alternative hypothesis that Y;; =
P1 + 1, o

(p1,p2,n) | (0.9,0.1) [ (0.8,0.2) | (0.7,0.3) | (0.6,0.4) | (0.5,0.5)
(100,50,80) | 0.5710 | 05830 | 0.7010 | 0.8220 | 0.9530
(140,70,120) | 0.6290 | 0.7610 | 0.7990 | 0.8920 | 0.9670
(180,90,150) | 0.7330 | 0.8420 | 0.9490 | 0.9810 | 1.0000

(200,100,170) | 0.8020 | 0.8560 | 1.0000 | 1.0000 | 1.0000
(240,120,180) | 0.8920 | 0.9620 | 1.0000 | 1.0000 | 1.0000
(280,140,250) | 0.9370 | 0.9890 | 1.0000 | 1.0000 | 1.0000
(320,160,270) | 0.9800 | 0.9970 | 1.0000 | 1.0000 | 1.0000
(360,180,290) | 0.9870 | 0.9960 | 1.0000 | 1.0000 | 1.0000
(400,200,310) | 0.9900 | 0.9990 | 1.0000 | 1.0000 | 1.0000
(440,220,330) | 0.9960 | 1.0000 | 1.0000 | 1.0000 | 1.0000
(480,240,350) | 0.9960 | 0.9990 | 1.0000 | 1.0000 | 1.0000

takes value of 40. The original statistic 7, in Theorem 3 is used.

v/ oo +an X2, = 1,2,...

,p2. The pair of two numbers in this table is the value of (a0, @1). The parameter ¢ in the statistic T},

01 Y5 = Zje, j =

Table 7: Empirical powers of the proposed test S, at 0.05 significance level for uncorrelated
but dependent case.

(p1,p2,m) w=4|w=10
(10,20,40) | 0.8140 | 0.9690
(30,60,120) 0.8200 | 0.9510
(50,100,200) | 0.8220 | 0.9600
(70,140,280) | 0.8100 | 0.9610
(90,180,360) | 0.8210 | 0.9640
(110,220,440) | 0.8110 | 0.9670
(130,260,520) | 0.8320 | 0.9740
(150,300,600) | 0.8420 | 0.9740
(170,340,680) | 0.8450 | 0.9760
(190,380,760) | 0.8580 | 0.9680
(210,420,840) | 0.8420 | 0.9670
(230,460,920) | 0.8440 | 0.9810
(250,500,1000) | 0.8620 | 0.9810

*The powers are under the alternative hypothesis that Y;; = X3 —

p1+1,‘..

,p2; t = 1,...

,n, where €5:,7 = p1 +1,...

independent with X;; and w = 4, 10.

,p2; t = 1,...
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y;p1 and Yy = g4, =

,n are standard normal distributed and



Table 8: Empirical powers of the proposed test T, at 0.05 significance level for uncorrelated
but dependent case.

(p1,p2,m) w=4|w=10
(100,50,80) | 0.7010 | 0.8520
(140,70,120) | 0.6990 | 0.8730
(180,90,150) | 0.7210 | 0.8880
(200,100,170) | 0.7830 | 0.8930
(240,120,180 | 0.8320 | 0.9250
(280,140,250) | 0.8590 | 0.9750
(320,160,270) | 0.8990 | 0.9840
( )
( )
( )
( )

360,180,290) | 0.9120 | 0.9900
400,200,310) | 0.9420 | 0.9960
440,220,330) | 0.9770 | 1.0000
480,240,350) | 0.9890 | 1.0000

*The powers are under the alternative hypothesis that Yy = Xj; — EX,¢ = 1,2,...,p1 and Y = €j1,j =
pr+1,...,p2;t = 1,...,n, where €.,,7 = p1 +1,...,p2; t = 1,...,n are standard normal distributed and
independent with X;; and w = 4,10. The parameter ¢ in the statistic 7}, takes value of 40. The original statistic
T, in Theorem 3 is used.

Table 9: P-values for (p1,p2) companies from basic industry section and capital goods section

of NYSE.

P-values (pr,p2,m) | (p1,p2,n)

(10,15,20) | (15,20,25)

P-value Interval | No. of Exp. | No. of Exp.
[0, 0.05] 56 60
[0.05,0.1] 22 20
0.1,0.2] 9 12
[0.2,0.3] 2 5
[0.3,0.4] 10 0
[0.4,0.5] 1 3
[0.6,0.7] 0 0
[0.8,0.9] 0 0
[0.9,1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic industry section and capital
goods section, each of which has n daily stock returns during the period 1990.1.1 — 2002.1.1. The number of
repeated experiments is 100. All the closed stock prices are from WRDS database. No. of Exp. is the number of

experiments whose P-values are in the corresponding interval.
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Table 10: P-values for (p1,p2) companies from public utility section and capital goods section

of NYSE.

P-values (p1,p2,m) (p1,p2,n)

(10,15,20) | (15,20,25)

P-value Interval | No. of Exp. | No. of Exp.
[0,0.05] 76 84
[0.05,0.1] 10 12
[0.1,0.2] 4 2
[0.2,0.3] 7 1
[0.3,0.4] 0 1
[0.4,0.5] 2 0
[0.6,0.7] 1 0
[0.8,0.9] 0 0
[0.9,1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic industry section and capital
goods section, each of which has n daily stock returns during the period 1990.1.1 — 2002.1.1. The number of
repeated experiments is 100. All the closed stock prices are from WRDS database. No. of Exp. is the number of

experiments whose P-values are in the corresponding interval.

Table 11: P-values for (p1,p2) companies from finance section and healthcare section of NYSE.

P-values (p1,p2,m) (p1,p2,n)

(10,15,20) | (15,20,25)

P-value Interval | No. of Exp. | No. of Exp.
[0,0.05] 90 92
[0.05,0.1] 4 5
[0.1,0.2] 5 1
0.2,0.3] 1 2
[0.3,0.4] 0 0
[0.4,0.5] 0 0
[0.6,0.7] 0 0
[0.8,0.9] 0 0
[0.9,1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic industry section and capital
goods section, each of which has n daily stock returns during the period 1990.1.1 — 2002.1.1. The number of
repeated experiments is 100. All the closed stock prices are from WRDS database. No. of Exp. is the number of

experiments whose P-values are in the corresponding interval.
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