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In this paper, we will study a class of large dimensional real or
complex sample covariance matrices in the form of Wy = S1/2X X*21/2,
Here X = (x;;)m,~ is an M X N random matrix with independent
entries ;5,1 <i < M,1 < j < N such that Ex;; = 0, E|z;;|* = 1/N.
On dimensions we assume that M = M(N) and N/M — d € (0,00)
as N — oo. For the deterministic positive definite M x M popula-
tion covariance matrix ¥, we will impose a quite general condition
which was used by Karoui in [9] on complex Wishart matrices. Such
a condition is particularly aimed at the right edge behavior of the
spectrum of Wy . In this paper, we will show that under some addi-
tional assumptions on the distributions of (;;)’s, the so-called local
MP type law holds on the right edge of the spectrum of Wy. The
local density problem was raised and developed by Erdos, Schlein,
Yau and Yin etc. in a series work [12]-[21] for Wigner matrices and
extended by Pillai and Yin [27] to sample covariance matrices in the
null case (X = I), which asserts that the limiting spectral distribu-
tions of the above random matrix models even hold in a microscopic
regime. The local MP type law will be a crucial input for our subse-
quent work [7] on establishing the edge universality of Wx. We will
essentially pursue the approach developed in [12]-[21] and [27] af-
ter deriving the so-called square root behavior of the spectrum on the
right edge in advance. And we will invoke an argument on stability of
the self-consistent equation of Stieltjes transform of the MP-type law
raised recently by Erdés and Farrell in [11] for generalized MANOVA
matrices.

1. Introduction. As a fundamental object in the theory of multivariate analysis, sample
covariance matrix is unremittingly studied by researchers and plays important roles in dealing
with large dimensional data arising from various fields such as genomics, image processing,
microarray, proteomics and finance, etc. in recent decades. Among numerous topics and methods,
the spectral analysis of large dimensional sample covariance matrices via the approaches in
the Random Matrix Theory (RMT) has attracted considerable interest among mathematicians,
probabilitists and statisticians. The study towards the eigenvalues of sample covariance matrices
can date back to the work of Hsu [24], and became flourishing after the seminal work of Marc¢enko
and Pastur [26], in which the authors raised the limiting spectral distribution (MP type law) for
a class of sample covariance matrices. After that, a lot of researchers took part in developing the
asymptotic theory of the empirical spectral distribution of large dimensional sample covariance
matrices. One can refer to [6, 8, 32] for instance. In the past few years, in order to tackle some
open problems on the local behavior of the eigenvalues for Wigner matrices, Erdos, Schlein
and Yau raised the so-called local semicircle law in [14]. The local semicircle law has been
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further improved and developed in the subsequent series work [12]-[21] of Erdds, Schlein, Yau
and Yin, etc. Moreover, in [18] and [27] the so-called local MP law was established for sample
covariance matrices with null population (X = Ijs) in different degrees. These local density
results have shown to be quite crucial in proving the universality property of various local or
global spectral statistics for the corresponding matrix models. One can refer to the following
long list of references [13, 17, 18, 19, 20, 27, 29, 30, 31, 33] or the survey paper [10] for further
reading. Moreover, the local density result is not only a technical input for establishing the
universality property for spectral statistics, it is also of great interest in its own right. Actually,
local density result can be viewed as a precise description of the convergence rate of the empirical
spectral distribution. The convergence rate issue is relatively more classical in RMT and had
been studied before the seminal work of Erdds, Schlein and Yau in [14] under the assumptions
in varying degrees. Not trying to be comprehensive, one can see [1, 2, 3, 4, 22, 23] for instance.

Very recently, Erdos and Farrell studied the local eigenvalue density of generalized MANOVA
matrices in the bulk case in [11]. As a by-product, the authors in [11] also provided a MP type
law for the local eigenvalue density of matrix T'/2X X*T"'/2 in the bulk case, where T is specified
to be the inverse of another sample covariance matrix which is independent of X X*. Obviously,
the matrix TY/2X X*T/2 in [11] can also be regarded as a sample covariance matrix with the
special random population 7. In this sense, [11] shed light on establishing the local MP type law
for Wy under our assumption. In this paper, we will derive a local MP type law on the right
edge for the sample covariance matrices with general population. Precisely, we will consider the
sample covariance matrix in the form of

(1.1) Wy =SY2X X520 X = (zi)m s

where {z;; :== 2;;(N),1 <i < M := M(N),1 < j < N} is a collection of independent real or
complex variables such that

1
E.%‘ij = O, E]acij]2 = N
To state our results, we introduce some basic notions at first.

1.1. Basic notions. In the sequel, we will denote the ordered eigenvalues of an nxn Hermitian
matrix A by

(1.2) An(A) < ... < Xa(A) < M(A).

Moreover, we call
1 n
Fa(A) = — Z; 1)<
i=
the empirical spectral distribution(ESD) of A. For ease of presentation, we set

N
dN::M—mlE(O,oo), as N — oo.

We denote the ESD of ¥ by

M
1
Hy(N) = 37 2 ium=<y
=1

and that of Wy by



Here 1s represents the indicator function of the event S. Define the N x N matrix
Wy = X*YX

which shares the same non-zero eigenvalues with Wy. Denoting the ESD of Wy by Fuy, by
definition we can see that

Fy(N) = d Ex(N) + (1 — dy) 1oy
If there is some definite distribution H such that
(1.3) Hy = H
as N — o0, it is well known that there are definite distributions Fy g and F; ;y such that
Fy = Fin, Fy=Fup
in probability. One can refer to [2] for instance. And we have the relation
(1.4) Fag=d '"Fgp+(1—d")lpe-

We call Fy g (vesp. Fy gr) as the limiting spectral distribution (LSD) of W (resp. Wy ). However,
for general ¥, Fy i usually has no closed form expression, so does F ;. To define Fyy g accurately,
we need the theory of Stieltjes transform. For any distribution function D, its Stieltjes transform
mp(z) is defined by

mp(z) = / - ! _aD())

for all z € C* := {w € C,Sw > 0}. And for any square matrix A, its Green function is defined
by

Galz)=(A—z2I)"t, zeCt.
For simplicity, we denote
m(z) = miy(2), m(z)i=me,,(2), ma(z) = ma(2), my(z) = mp, (2).
Particularly, we use the notation
G(z) =Gn(z) == (Wx —2I)7', zeCT.
By definition we have the elementary relation

1 1Y
mn(z) = NTT’G(Z) =~ ZGii(z),
i=1

where we use Gj;(2) to denote the (i, j)-th entry of G(z). Fortunately, the Stieltjes transform of
Fy i admits a self-consistent equation which is friendly for analysis. Actually m(z) is the unique
solution in C* of the self-consistent equation

1

(1.5) m(z) = —z+d*1fmdff(t)

for z € C*. One can again refer to [2] for instance. By the well known inverse formula of Stieltjes
transform, one can identify a distribution with its Stieltjes transform. We usually call (1.5) the
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self-consistent equation of MP type law, which is a generalization of the self-consistent equation
of the Stieltjes transform of classical MP law in the null case (X = Is). Moreover, from (1.4)
we also have

d!l-1

m(z) = . + d tm(z).

However, what we indeed need in the sequel is the non-asymptotic version of F; i which can
be obtained through replacing d and H by dy and Hy in Fypy and thus will be denoted
by Fyy my- More precisely, Fy, m, is the corresponding distribution function of the Stieltjes

transform may, my (2) :=mr, 4 (2) € C* satisfying the following self-consistent equation

1

(1.6) My Hy (2) = , zeCt.

—z+dy dHy (2)

1
f tmay, HN( z)+1
In other words, by the inverse formula of the Stieltjes transform, we can define

0, if x <0,
Fay iy (@) = Ligys1y(1—dy), if 2=0,

Ligys13(1 — dyt) +limyyo 2 [0 Smay, gy (E+in)dt,  if x> 0.

Correspondingly, we can define the non asymptotic versions of F; ;y and m(z) denoted by Fy 5
and m,, g, (2) respectively. For ease of notation, we will briefly denote

mo(2) i= may my(2), my(2) = mdN,HN(Z)v Fo:=Fayuy, Fo=Fqymy

in the sequel. By definition, we have

mo(z) = -1 + dytmg(2).

z

Moreover, the relation above still holds if we replace mg(z) and my(z) by my(z) and my(z) re-
spectively. To state our results, we need to further introduce a crucial parameter ¢ =: ¢(X, N, M).
Let

= c(Z,N, M), cel0,1/M(%)),

such that

(1.7) / (1 ic)\c>2dHN(/\) — dy.

It is easy to check that the definition of c is unique. Moreover, we set

(1.8) M (1 +dy / )>

By the discussions in [28] we can learn that F{ has a continuous derivative pg on R\ {0}. Actually,
by Lemma 6.2 of [5], it is not difficult to see the rightmost boundary of the support of pg is A,
defined in (1.8), i.e.

Ar = inf{z € R: Fy(z) = 1}.
Moreover, there exists

c=— lim mg(2).
zeCt—= A\, 0( )

The existence of lim,cc+_,, mo(z) for € R\ {0} has been proved in [28].



1.2. Main results. The main condition throughout the paper is as follows.

CONDITION 1.1.  Throughout the paper, we will need the following conditions.
(i)(On dimensions): We assume that there are some positive constants c; and Cy such that

5] <dN<C'1.

(11)(On X): We assume that {z;; = x;;(N),1 < i < M,1 < j < N} is a collection of
independent real or complex variables such that

1
Exij == 0, E‘CL‘MF == N

Moreover, we assume that v Nx;;’s have a sub-exponential tail, i.e. there exists some positive
constant 1y independent of i, j, N such that for sufficiently large t, one has

(1.9) P(|VNxzy| > t) < 75t exp(—t™).
(i13)(On X): We assume that

limNinf Ap(X) >0, limsupAi(¥) < o0
N

and

(1.10) limsup A1 (¥)c < 1.
N

REMARK 1.2.  We remind here that (iii) of Condition 1.1 was used by Karoui in [9] on the
complex Gaussian sample covariance matrices (i.e. complex Wishart matrices) to guarantee the
Tracy-Widom limit of the largest eigenvalue of Wy . Such a condition, especially (1.10) is aimed
at the behavior of eigenvalues on the right edge of the spectrum. It will be shown in next section
that (1.10) substantially implies a square root behavior of the density py which will be crucial
for our main result.

Moreover, we need the following terminologies on frequent events.
DEFINITION 1.3.  We say an event S happens with overwhelming probability if
P(S)>1- N4

for any fized large constant A > 0 when N s large enough. We say an event S holds with (-high
probability if there is some positive constant C' such that

P(S) > 1 — N exp(—¢°)
when N is large enough, where
o= pn = (log N)lglos N
which will be used as a crucial parameter throughout the paper.
At first, by the definitions of ¢, A, and (iii) of Condition 1.1, it is easy to see

co < ¢, A\ < Cy
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for some small positive constant ¢y and large positive constant Cy. Moreover, note that we have
the following elementary inequality

A (D)ALXX®) < AL W) < A (D)A(XX).

Now by the rigidity of the locations of the eigenvalues of X X* provided in Theorem 3.3 of [27]
and Condition 1.1 we know for any fixed positive constant { there exists

(1.11) A (2)(1 4+ Vd)?/5 < M (W) < 5M1(2)(1 + Vd)?
with (-high probability. Now we set
Cr = A (2)1 +Vd)?/Cy, Cr = Cor(E)(1+ Vd)2.

with some sufficiently large positive constant Cj such that A, € [2C;, C;/2]. Then by (1.11), we
can choose Cy sufficiently large such that

(1.12) C<MW) <G
with (-high probability. In the sequel, we will always write
z=FE+1m.
Then for ¢ > 0, we define two sets,
S()={2€C:<E<Ce*'N ' <n<1},
and
S, (6,¢)={2€C: N\ —¢<E<C,¢"N 1 <pn<1},

where ¢ is a sufficiently small positive constant. With the above notations we can state our main
result which can be viewed as a generalization of the strong local MP law for sample covariance
matrices in the null case provided in [27] by Pillai and Yin to a large class of non null cases.

THEOREM 1.4 (Strong local MP type law around \,). Let z = E +in. Under Condition 1.1
, for some positive constant C,

(1):
(1.13) N () —mo()] < O
~ - Nn
z€5-(¢,5C)
holds with overwhelming probability, and

(ii):

(119 N {r]rl;;qc:jk(z)ngerﬁ(z)rwC( Sriolz) | 1 )}

z€5r(¢,5C)

holds with overwhelming probability.

Now it has been well understood that the closeness of two Stieltjes transforms with small 7
is approximately equivalent to the closeness of their corresponding distribution functions in a
small scale. In this sense, (1.13) describes the fact that the ESD Fy is well approximated by the
LSD Fj even in a tiny interval on the right edge of F. More precisely, we have the following
result on the convergence rate of Fy on the right edge.
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THEOREM 1.5 (Convergence rate of Fiy around A,). Let ¢ be the positive constant in Theorem
1.4. Under Condition 1.1, for any ¢ > 0 there exists a constant C¢ such that the following events
hold with overwhelming probability.

(i): For the largest eigenvalue A\1(W), there exists

IAMOWV) = \| < N72/8,0

(ii): For any
FEi, Ey € P‘T -, Cr],

there exists

C(log N)p“

(1.15) [(Fn(Er) — Fn(E2)) — (Fo(Er) — Fo(E2))| < N

REMARK 1.6.  Similar results on the convergence rate of Wy on the whole real line R has been
given in [25] and [3] recently under weaker moment assumption on the entries of X. However, the
best rate in these papers is O(n_1/2) which is inadequate to help to establish the edge universality
property in our subsequent work [7].

1.3. Route of the proof. Crudely speaking, we will pursue the approach developed in the
series work [12]-[21] and [27]. Especially, the main roadmap for the proof will be analogous to
that for the null case in [27]. More specifically, we will follow the bootstrap strategy developed
in [19, 21, 12, 27] to establish the strong MP type law around A,. The word “bootstrap” means
that one can provide a weak law of the local eigenvalue density at first (in our case see Theorem
3.3), then the weak law can help to obtain the desired strong law through a bootstrap process.
One main technical tool to derive the strong law from the weaker one is an abstract decoupling
lemma from [27] (see Lemma 7.3 therein) which can help to bound the summation of a class of
weakly dependent random variables. Such a decoupling lemma is similar to Theorem 5.6 of [12]
and Lemma 4.1 of [21] but is more general and applicable to our model. However, most parts of
the proof require more general treatments and the generality of ¥ in our setting produces some
additional obstacles.

At first, in the null case, the limiting spectral distribution is well known as the classical MP
law which has a closed form. As a consequence, the properties of the Stieltjes transform of MP
law can be easily obtained. Actually, these basic properties are crucial inputs for establishing
the local MP law in the null case. One can refer to Lemma 6.5 of [27] for instance. However, in
the non-null case, to get the corresponding properties around A, is not a trivial thing. Actually,
the analysis towards the behaviors of pg and mg(z) will be our first main task. We will show
that pg admits a square root behavior in an interval [\, — ¢, \;] for some small positive constant
¢. Such a square root behavior is substantially guaranteed by (iii) of Condition 1.1 and will be
the basic ingredient to establish the properties of mg(z) in Lemma 2.3.

Another main difficulty comes from the complexity of the self-consistent equations for the
Stieltjes transforms (mpy and mg) which makes the proof of the strong local MP type law much
more cumbersome. For example, in [27], once the closeness of the self-consistent equations of
mypy and mg is obtained, the difference between my and mg themselves can be characterized
easily with the aid of the closed form of mg. However, in the non-null case, this step is much
more indirect. To overcome this difficulty, we will rely on an argument on the stability of the
self-consistent equation of the Stietjes transform for 772X X*T"/2 in [11]. Though the argument
in [11] was only provided for the bulk case, we find it can be extended to the edge case under
our assumptions on Wy.
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1.4. Notation and organization. Throughout the paper, we will use the notation O(-) and
o(+) in the conventional sense. And we will use C, Cy, C1, C2, C3 to denote some positive constants
whose values may be different from line to line. We say

r e~y

if there exist some positive constants C7 and Cs such that
Cily| < Ja] < Calyl.

We say two functions f(z), g(z) : C — C have the relation

f(z) ~g(2)

if there exist some positive constants C7 and C5 independent of z such that

Cilg(2)| < |f(2)] < Calg(2)].

Moreover, we will use Spec(A) to denote the spectrum of a matrix A. And we will denote the
operator norm and Hilbert-Schmidt norm of a matrix A by [|Al|op and ||A||ms respectively.

This paper is organized as follows. In Section 2, we will study the properties of mg(z) and pg
which will be crucial to our further analysis. In Section 3, we will prove that my(z) is close to
mo(z) when Rz is around A, i.e. the strong local MP type law holds around A,. In Section 4,
we will use the strong local MP type law to study the convergence rate of Fiy on the right edge.
Section 5 will be denoted to a corollary of our main theorems. Such a corollary will be used in
our subsequent work [7] on the edge universality of Wy.

2. Properties of pg and mg(z). At first, recall the notation z = F + in and define the
parameter

k:=k(z) = |E — A\

And we also need to recall the definitions of Cj, C, S(¢) and S,(¢, ) in the last section. We
will prove the following two lemmas. The first one claims the square root behavior of py(z) on
interval [\, — 2¢, \;] with some small positive constant ¢.

LEMMA 2.1.  Under Condition 1.1, there exists some sufficiently small constant ¢ > 0 inde-
pendent of N such that

(2.1) po(z) ~\/Ar —x, forallx € [\, —2¢, \y].

REMARK 2.2.  Note that in [26] and [28] the square Toot behavior of po(x) near the boundary
of its support has been discussed. However, the results in [26] and [28] does not imply (2.1) since
here mg(z) and po(x) are N-dependent. For general ¥, it is possible for the square root behavior
only holds in an interval ( with A, being its right end) with length of o(1). For ezample, when
p=mn, in the 1 spike case ¥ = (100,1...,1) (2.1) does not hold actually.

The second one collects some crucial properties of mg(z).

LEMMA 2.3. Under Condition 1.1, for some sufficiently small positive constant ¢ satisfying
(2.1), the following four statements hold.
(1): For z € S(0), we have

Imo(2)] ~ 1,



(ii): For z € S-(¢,0), we have

=i ifE>M\+1

JETN,  ifEED—&N+1)
(7ii): For z € S(0), we have

for some positive constant C.
(iv): For z € S,(¢,0), we have

’1 + tmo(z)\ > é(l + Al(z)mo(kr)) >cy, Vte [)\M(E), )\1(2)]

for some small positive constants ¢, co. Moreover, there exists a sufficiently small constant 7 :=
n(co), such that when z € S,(¢,0) with n <7, we also have

(2.2) L+ tRmo(z) > e(1 + M (Z)mo(Ar)) = o, VE € [Am(E), A (X))

REMARK 2.4. Note the second inequality in (iii) of Lemma 2.3 implies that Smo(z)/n is
decreasing in 1.

At first we come to prove Lemma 2.1, which Lemma 2.3 will heavily rely on.
PROOF OF LEMMA 2.1. For ease of presentation, we denote
mi(z) = Rmo(z), ma(z) = Smp(2).
Now let

mo(x) == zeal(%g;x mo(z), mi(x) =Rmo(z), ma(x)=me(zx).

By Theorem 1.1 of [28], we know mg(z) exists for all x € R\ {0}. Moreover, mq(x) is continuous
on R\ {0}. By definition and the inverse formula of the Stieltjes transform we have

pol) = %mQ(m z € R\ {0},

Thus it suffices to prove the square root behavior of ma(z) when z is to the left of A,. Note that
by the fact ma(\,) = 0 we have

Ar 1/2
ma(z) = <—2 mgmé(t)dt) .

Thus it suffices to show for some sufficiently small constant ¢ > 0 there exists some positive
constants C' > C’ independent of ¢ such that

(2.3) —C < mami(t) < —C', forall t € [\, — 2¢, \).

To verify (2.3), we start from (1.6), which can be rewritten as

(2.4) = —mg(2) + dy! / tmO(Zt)HdHN(t).
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When Rz > ¢y for any fixed positive number ¢y, it is easy to see from (2.4) that
(2.5) mo(z) ~1, if co<Rz<C, and 0<Yz<C

for some positive constant C. Note that for every fixed N, Hy(t) is a discrete distribution.
Therefore, for any 4, \j(¥)mo(z) + 1 does not tend to zero when z tends to some z € [c2, Cy].
Consequently, it is easy to see that (2.4) and (2.5) also holds for z = x € [ca, C;]. That implies

1
po(z) = —ma(x) <O(), co <z <N\
7r

Setting z = z in (2.4) and writing down the real and imaginary parts of both two sides we can
get

mi _1/ t(l +tm1)dHN(t)
T= o s Tdy 2 12m2
my +m3 (14 tmq1)?2 4+ t2m3
1 _ t2dH (t)
2.6 0 = — s —dy :
(26) 2 <m%+m% N / (14 tmq)? + t2m3

When mg(z) # 0, i.e. ma(z) > 0, (2.6) implies that

NoJ (4 tmy)? + 2m3
1 N t2dH (t)
2.7 0 = ——— —dit .
(2.7) m%—km% N / (1+tm1)2—i—t2m%

For simplicity, above we have omitted the variable x from the notation m;(z) and ma(z). We
remind here by continuity, (2.5) and the fact that 1+ \;(X)mo(x) # 0, we can see that (2.7) still
holds when A(> ¢3) is a boundary of the support of ma(z). Moreover, when A is a boundary of
the support of ma(x) and A > co with any fixed positive number co, (2.7) can be simplified to

1 . / t2dH (t)

(28) 0="200 ~ W | Grmmoe

since ma(A) = 0 in this case. Our analysis below will rely on (2.7). Thus at first we need to
guarantee the validity of the following lemma.

LEMMA 2.5. Under Condition 1.1, there exists some positive constant ¢ such that
ma(x) = mpo(x) >0
in [\ — 3¢, \p).

At first, we proceed to prove Lemma 2.1 assuming the validity of Lemma 2.5 and prove Lemma
2.5 after that. Using (2.6) and Lemma 2.5 we have (2.7). Now taking derivatives with respect
to x implicitly on both sides of two equations in (2.7), we can get

m1(As + miAz) — m3A;
2.9 mamb = ,
( ) 2T (A2 + m1A3)2 + ’I?’L%A%

where

_ t/dHp (t)
A = 2d
J N /((1+tm1)2+t2m%)2’

j=2,3.
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Note that obviously A; > 0, j = 2, 3. Moreover, if

(2.10) min(1 + X\;(X)mq(z)) > ¢/, for all =€ [\ — 26 \,)

for some positive constant ¢/, we also have in [\, — 2¢, \,.),

(2.11) 0 <m3As,m3A% < Cy
and
(2.12) Cy < Ay +miAsg < Cé

for some positive constants C7 and Co < C. If we can take a step further to show
(2.13) —2c; <my(z) < —¢1

for some positive constant c1, then (2.3) immediately follows from (2.9),(2.11),(2.12) and (2.13).
Therefore, it remains to show there exists some small positive constant ¢ such that (2.10) and
(2.13) holds for all = € [\, — 2¢, \,.).

Now note that

ml(/\r) = mo()\,,), mg()\r) = 0.

At first , by the fact that mi(\,) = —c and (1.7) we see my(A,) < 0. Setting z = A, in (2.4) we
can easily see that

7 S
2.14 ——c1 < r) < —=
(2.14) 16 Smi(d) < —e
for some positive constant ¢;. And by (iii) of Condition 1.1 and the fact that mi(\,) = —c we
also have
(2.15) min(1 + X\ (X)m1 () = 1+ X\ (Z)ma(Ay) > 2¢

for some sufficiently small positive constant ¢. Now we start from (2.14) and (2.15) to prove
(2.10) and (2.13) by continuity. To show (2.10) and (2.13) hold for all z € [\, —2¢, A,] with some
sufficiently small positive constant ¢ , we need to control the |m/(z)|. Differentiating implicitly
the first equation in (2.7) with respect to = again and use (2.9), we can get

my(Aa+miAs)—m3As

Imi(z) = |- LA Caat Aum o) AT
! As + myAs
(2.16) < C’miin 1T+ X (Z)ma(2)] 3

which can be easily checked by the definition of A;,j = 2,3. Now we set

Ao = Xo(6) = inf {az €A — 38\, : 11:;11((22)221((;)) > 1/2

(2.17) and my(t) € [-2¢1, —c1], Vo <t < )\T}.

Now we claim when ¢ is sufficiently small, there exists

(2.18) Ar — Ao > 22.
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Otherwise, we can assume A, — \g < 2¢ for arbitrary small constant ¢ thus A\g > A, — 3¢. Then
by continuity we have

1+ )\1(2)7711()\0) = 1/2(1 + Al(E)ml(Ar)), or ml()\o) = —2c; or —c|
If 14+ A (X)mi(Xo) = 1/2(1 + A1 (Z)mi(Ar)), by using (2.16) we have
¢ <1+ M(E)mi(Mo) — (1+ A (E)ymi(A)] < Ol + A (E)ma(Ae)| ¢

for some \¢ € [Ao, A]. However, by the definition of A\g, we get a contradiction if ¢ is selected to
be sufficiently small. If mj(\g) = —2¢1 or — ¢1, we see

1 ~
761 < M) = mi ()] < ClL+ M (Symi ()| %2

Then by definition of Ay, we also get a contradiction when ¢ is small enough. Thus we conclude
the proof. O

Now we come to prove Lemma 2.5.

PRrROOF OF LEMMA 2.5. We define the largest endpoint of the support of pg smaller than A,
by A.—. It suffices to show that there exists a sufficiently small constant ¢ such that

(2.19) Ar — A > 42,

Note that by (2.8), we know when A is an endpoint of the support of pp and A\ > ¢o with any
fixed positive number cs, there must be

2m2
(2.20) /M%dﬂlv(t) —dy, ma(\) =0.

In the sequel we assume A, > ¢y for some fixed positive number ¢y, otherwise (2.19) holds
naturally. We already know that mj();) is the unique solution of the equation

t22?
/WdHN(t) =dn

n (—1/A1(2),0). Thus we have
(2.21) M) € R\ (=1/A1(2), 0)

By (iii) of Condition 1.1, we have
5
(2.22) /M) =" <mi(\) < 24 < —d'

for some small positive constant ¢”’. Here the upper bound in (2.22) follows from (2.14). Hence,
(2.21) and (2.22) imply

(2.23) Imi(A) — mi(Ae_)| > ¢

Now use (2.4) we have

1A = D, a [ P O)ma (e )dHn (1)
I ’1 I /(

Ar B >\r— - ’ml(Ar)ml()‘rf L+ tml( ))(1 T tml( ))

(2.24)
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Note that from (2.5) we have
mi(Ar—), mi(Ar) ~ 1.
Then by (2.23) it suffices show that there exists some positive constant ¢ such that

_ t2m1 (A )m1 (AN )dHy (t)
‘1 - le / (14 tmy () (1 +tmy (X)) ‘ N

"

(2.25)

Now we come to verify (2.25). Note that by (2.20) we have

[y g TRLTOEAT 0
)

L+ tma(Ar)) (1 + tma (A, ))’

— gt 2mi(A\—)dHn (t / t2my (Ar)mi (A~ )dH y () ’
NS @ tma(A-))? (1 +tmi(A)) (1 +tmi(A—-))

_ g me) —my) / 2m2(\_ )dHy (1) '
N m1(A—) 1+ tmi(N_))2(L + tmi(0N)) |

Moreover, by assumption we have
1+tmi(\) >, Vte Spec(X).

Combining these facts with (2.23) and (2.20) for m; (A,—), we obtain (2.25) with some sufficiently
small ¢ > 0. Inserting (2.23) and (2.25) into (2.24) we obtain that (2.19) holds with some
positive constant ¢ := é(¢”, "), which implies Lemma 2.5. O

With the aid of Lemma 2.1, now we can start to prove Lemma 2.3.

PrOOF OF LEMMA 2.3. Note that by definition,

Smo(z) 1
" _/(CE—E)2+n2dFO(x)’

Thus the second inequality of (iii) follows directly. It suffices to verify (i), (ii), (iv) and the first
inequality of (iii) in the sequel. At first, we come to show (i). Note that when z € S(0),

C<EZC,.

Then it is easy to obtain (i) by (2.4).
Now we come to verify (ii). The proof of (ii) relies on Lemma 2.1. By definition we have

ma(2) = [ L dFy)

At first we deal with the case of

We do it as follows.
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Ar—¢C Ar
n n
- /0/2 <w—E>2+n2p0($>d“/A o BE g @ ot)
1 r

Ar
~ 77+/ VA — xde
A

e (A —x)? + (k4 n)?

¢ n
S S E—
" /0 21 (1 +1)2

Now if ¢ > k + 1, we have

¢ n - K+n n
/0752+(“+77)2\/£dt_/0 t2+< >““/ e AL

K+n c n
o (k+n)? + n)? wtn t
n

N

If ¢ < kK + 1, then we have

07 +77L N n
/0 e AL /0 CESEMa ==

Now we come to deal with the case of

E e[\ —¢ A\ +1n).

Note that our discussion for the case of £ > A, + 71 can be extended to the case of £ > A,.
Actually, in the region E € [A,, A, + 7], K < n, thus one has

Ui
~A/K+n.
VE+1N g

Therefore, it suffices to handle the case of E € [\, — ¢, ;). Note

Ar
- / N py(@)dz + O(n)

Ar—2¢C n Ar n
= / mﬂo(@dfﬁ +/\ . mpo(f)dff +O0(n)

_|_
>\7‘
S YT
A

26 (

By splitting the integral region [\, — 2¢, ;] into two parts by |z — E| > k or |z — E| < &, it is
easy to see

Smo(z) = O(Vk +1).

Thus we proved (ii).
Now we start to show the first inequality of (iii) whose proof will also relies on Lemma 2.1.
Note that by discussions above we have

Ar Ar
n n
Smo(2) 2/0/2 (‘T_E)zmzf’ﬂ(ﬂf)difz/A . @ =B g plo@dr
1 r—4C
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Then it is obvious that
(2.26) Smo(z) > Cn,
since
po(@) ~ VA —x ~ 1,z €[N\ — 28N —d.
At the end, we come to prove (iv). At first, we claim that when ¢ is small enough, there exists

2.27 inf |1+t > 17201+ M(D)mo(A), Vo € [\ — & Gyl.
(2:27) tE[AM(lg),)\l(E)}| mo(@)] = 1/2( 1(X)mo(Ar)), Vo €] é,Cy]

To see (2.27), we split the interval into (A, Cr] and [\, —¢, A\, ]. For the first case, it is not difficult
to see mo(x) = mq(x) is negative and increasing. Thus

inf 1+tmo(z)| = inf 1+ tmg(x
te[Au (E),A1(2)] | (@) te[/\M(Z)v/\l(E)}( ()

(2.28) = 14 )\1(Z)m0($) > 14 Al(Z)mo(AT)

when x > A,. For the second case, we recall A\g defined in (2.17) and the inequality (2.18). Then
it is obvious that

inf 1+ tmo(x > inf 1+tmi(x
teMr (2),A1(2)] | ol@)l = te[AM(E)m(E)}( 1(@))
(2.29) = 1+ Al(E)ml (.T}) > (1 + Al(E)mo(/\,,))

=

when z € [\, — ¢, A\y]. Thus (2.27) follows. Moreover, (2.28) and (2.29) also imply that

(2.30) inf (1+tmy(x)) >

1‘1‘)\ Z )\T , [= )‘T_~,Cr.
t€[An (2),A1(2)] ( 1(Z)mo(Ar)), z €] ¢, Gy

N | —

Now we extend (2.27) and (2.30) from the real line to the full region S,(¢,0). At first, we use
an elementary inequality which can be found in [5] (see the proof of Lemma 6.10 therein),

(2.31) (m(2)z + )] < max (4;“’ 2) ,

where m(z) := m(E +in) can be the Stieltjes transform of arbitrary probability measure and x
can be any positive number. By (2.31), we know that

: . n 1
inf 1+tmg(z)| >min | ———,= | .
e ol#)l 2 <4A1(2) 2)
Therefore, it suffices to show (2.2) when 7 is sufficiently small. To this end, we will combine
(2.30) and a bound of derivative of m;(z) with respect to n which can be obtained as follows.
By definition, we have for any n > 0,

r—F r—F
mi(z) = / mdﬂ)(m), Opymi(z) = —2/ @ (_ I i”n2)2dF0(x).

Now let a be a small positive constant. At first, we handle the case of E € [\, — ¢, \,]. We split
the estimation of 8,7m1(z) into two cases: k < 2771_0‘ and k > 2171_0‘. Note that for the first case,

we have
S (z— E)n
—i—/ pol(x)dx
</cl/2 E> (Rl

|Ogma(2)] = 2 +0()
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Bt Ul Ar 2 4 (1-a)/2
C / da:-i—/ T dr | + O(n
C1/2 (£ — )3 E—pl—a ! T ()

_ C(n—1+2a+77—1/2—5a/2)
— O(nflJrQOz)

IN

when « is chosen to be sufficiently small.
When k > 2171*0‘, we have

E—nl-e Ar E4nl—a (:C B E)n
Opymi(z = 2 / ‘|‘/ +/ po(@)dz| + O
‘ n 1( )‘ < /2 E4nl-o E-nl-o ) ((x_E)2+772)2 0( ) ( )
E+n1—a (1- B E)n
—14+2a
=2 /E—nla ((x — E)2 +n?)2 po(x)dz| + Cn~'F
E+4nl—e v — )y
= 2 /E_ma ((z (_ E)? j_ )2 (po(E) + PE)(‘S{E,Q;})(JC — E))dz| + Oy~ 142

by the mean value theorem, where {(p ;) is some real number between E and x. Note the
analyticity of po(z) in its support has been proved in [28]. Moreover, we have

()] ~ O —8)V2 te N — &\,

which is implied by (2.3) and Lemma 2.1. Thus by the assumption of x > 2n'~® we have

E+4nl—e (.I‘—EQ
n / —14+2«
) < 2 dx + C
am@l < 2 [l € )l + O
Bt 3—2a -4 . —1/2+a/2 —14+2a
< C n /A dx +1n
E_nlfa
S O(n—1+2a)

when « is chosen to be sufficiently small.
The case of E € (A, C;) is similar and simpler, thus we omit the details. Actually, for
E € [\ — ¢ C;], we have

|9y (2)] < O(n~'72)

for all n <7 with some some sufficiently small constant 7.
Now we recall (2.27) and fix an E € [\, — ¢, C;]. Since mo(E + in) is continuous for n > 0,
there exists some small positive 79 such that

14 tml(E + i’no) > é(l + tml(E)) > 3(1 + Al(E)ml()\r)), te [)\M(E), )\1(2)].

Now consider E + in € S;(¢,0). Note that we have mentioned above it suffices to consider the
case where 7 is sufficiently small. Observe that we have

Im1(E + in) —my (£ +ino)| =

n
8ym (E + it)dt’ <C
7o

n
/ t—1+2adt' < 077204'
10

Therefore, when 7 is sufficiently small, we have

inf L+ tmi(E +in)) > é(1+ A (Z)mi(\)) >
te{AM(lg),Al(z)]( ma(E +in)) 2 & 1(Z)mi1(Ar)) = co

for some small positive constant ¢, cg. Therefore, we conclude the proof. O
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3. Asymptotic analysis of mpn(z). In this section, we will prove the strong local MP
type law around A,. To this end, we will derive a self-consistent equation for muy(z), which is
quite close to that of mg(z) (see (1.6)). Then we can figure out the closeness of my(z) and
mo(z) through studying the stability of the self-consistent equation of mg(z) via pursuing the
argument in [11] with slight modification. The main proof route in this section is parallel to that
in [27]. However, owing to the generality of ¥, most parts require more general treatments.

To simplify some discussions in the sequel, we will truncate and renormalize v N x;; at first.
Let C{, be some sufficiently large positive constant. We set

8 Tij — By

R e T LS A o o s

Now set X := (Zij)m,n and X = (Zij)m,n. Correspondingly, let

xij

Wi = S2X X812 Wy = s12X X512,
Moreover, by (1.9) we see
(3.1) Wy = Wy
with probability larger than
(3.2) 1-0 (N2 exp(—(log N)TOC(/’)) > 1 — exp(—(log N)?)
if we choose C{, to be sufficiently large. Moreover, note that

Fij = dij + O(exp(—(log N)“%)).

Thus by using basic perturbation theory of eigenvalues such as Weyl’s inequality, we have
(33) max [MOWx) — AWx)| < NOO) exp(—(log N) ).
Consequently, by (3.1) and (3.3) we can work on WNNinstead of Wn. For ease of presentation,

we recycle the notation X and Wy to denote X and Wy, and we also denote the truncated and
renormalized variable Z;; by x;; in the sequel. Thus without loss of generality, we will assume

(3.4) max [V Nay| < (log N)%.
Z7J

Now we introduce some notation. We denote the Green functions of Wy and Wy respectively
by
GN(Z) = (WN — 2)71, QN(Z’) = (WN — Z)il,

where z € C*. For ease of presentation, when there is no confusion we will omit the subscript
N or variable z from the above notation. Note that by definition we have

my(z) = %TTG(Z), my(z) = %Trg(z),

and
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Furthermore, we use x; to denote the i-th column of X, and introduce the notation X to
denote the M x (N — |T|) minor of X obtained by deleting x; from X if i € T. For convenience,
we will briefly write ({i}) and ({7,j}) as (i) and (ij) respectively. Correspondingly, we denote

W = xMpx[ W = /2 x (T x(Mx51/2
and
Gy =WD 27t ¢gM(z) =W - )7L,
mD () = %trG(T)(z), mP () = %TTQ(T) (2).

In the sequel, we will keep the names of indices of X for X(T). That means
(T) _
Xij = Lgigry Xij-

Correspondingly, we will denote (i, j)-th entry of G(™(z) by GS-T)<Z) for all 4,7 ¢ T. Similarly,
we remind here the index (i, ) is not in the conventional sense. Note that by definition, G(T) is
an (N —|T|) x (N — |T|) matrix. However, here we use the index set {1,..., N} \ T instead of
{1,...,N —|T|}. Set

r, = Zl/QXi.

At first, we state the following Lemma which collects some basic formulas on the entries of
Green functions.

LEMMA 3.1.  Under the above notation, we have
(i):
1
a4 2r GO (2)r;

Gii(z) =

(ii):
(ii):

Gir(2)Grj(2)
Gkk(z) ’

PROOF. One can refer to Lemma 2.3 of [27] or Lemma 3.2 of [21] for instance. Actually, if
we regard r; as x; in [27], then G has the same structure as that in the null case in [27], so does

g. O

Gij(2) =G (2) + ij #k.

By Lemma 3.1 we see that

1 & 1 v 1
(3.5) my(2) = ;G“(z) - N ZZ_; 2+ 27 G0 (2)r;

Now we write

N
(3.6) my(z) = _% PR 1



where
. 1
Y; = 269 (2)r; + ~Tr(my(2)S + n7's.

Observe that
t

1
—T )Y I—lzzd—l/dH t).
N r(mN(z) + ) N 1—|—tmN(z) N()
Below we will use the decomposition
Yi:Z(Ti-i-Ui—l-V),
where
1
T = Ti(e) = 569 () — TG0 (2)3,
1 , 1
Ui :=Ui(z) = NTTQ(Z)(Z)E - NT’I“Q(Z)Z,
1 1
(3.7) Vi=V(z)= NTTQ(Z)Z - NTT(—sz(Z)Z — )7ty
Note that by definition
N
W= Zrirf, G(z) = (Z vy — 2I)7
i=1 i=1

Thus

G(z) — (—zmpy(2)Z — 20) 71
N

= —(—zmy(2)2 —2I)7? Zrirf — (—zmn(2)X| G(2).

i=1
Now using the Sherman-Morrison formula

_ 1 .~
I'*(C-l—rr*) lzmrc 1

for any invertable matrix C, we obtain

1 )
1 - = yrrc®
rir;G(z) TG0 (o) rir; G\ (2).

Therefore, we have

N
~(—zmy(2)8 = 27N ririG(2)
1=1
1

= - (mpy(z g (2).
(3.8) - g Z(l—l—rfg(i)(z)ri) (mn(2)E+ 1) 1ir; G (2)

Taking (3.5) into account we obtain

o r%;@)(z)r») . %(mN(z)E + 1)),

—(—zmy(2)2 = 2I) " H—2mn(2))2G(2)

(3.9) -
=1

~

19
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Combining (3.8) and (3.9) we obtain

- (- sz( )z - ZI)_1

N
Zz 14—r*g(Z

2)ri)

(m () + 1) 'raxi G0 (2) — - (ma(2)S + 1)1 26(2)

Therefore, we can further decompose V' (z) defined in (3.7) into four parts.

V(2) :=v1(2) + va(2) + v3(2) + v4(2),
where
AN N ‘ 1 : .
v (2) —5 2 Gi riGOS(m?(2)S + 1) ', — NTr(ms\l,)(z)E + 1)—129@2] :
=1 -
1 X - . . .
va(2) — 2 Gii [FiGUS(my(2)S 4+ )i — rigOs(mi(2)s + I)_lri} ,
=1 B
L [ (i) 1 (i)
_ I i —Iyo@)y _ & i —1
v3(2) N ; Gii _NTr(mN ()24 1) 2G"s NTr(mN ()2 +1) EQZ} ,
1L [1 0 1
v4(2) N z_; Gii _ﬁTr(m]f, ()2 +1)7'2gy - I (ma(2)3 + I)—lzgz] :

Moreover, we will denote

(3.10)

thus

i i= v1i(2) = r;GO8(m

v — ~Tr(m) (2)8 + 1) '5g0y

Vs +1)! ¥

| X
z) = N ;Giivli-

In the sequel, we will also encounter the quantity

Observe that if we can show that Y;’s are small enough, (3.

Ri(z) :=

rgOD(m ()% + I) 'S (mo(2) + 1) 7!
NTrg“ S(mP () + 1) S(mo(2)S + I) 'S,

6) turns out to be close to (1.6).

Roughly speaking, our main task in the sequel is to bound the quantities

lYi(z)|, i=1,...,N
in some region we are interested in. Then we will take a step further to figure out the closeness
of my(z) and mp(z). Specifically, We will provide bounds for the following quantities

Ag(z) == mlax|Gii(z) Ao(z) == max|Gyi(2)], A(z):=

— mopl\z2
o o(z)|

—mo(z)], Imn (2)
for all z € S,(¢, C) with some positive constant C. Our target in this section is to prove the
following theorem which is a slight modification of Theorem 1.4 under the additional condition

(3.4).
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THEOREM 3.2 (Strong local MP type law around A, for truncated matrix). Under Condition
1.1 and (3.4), for any ¢ > 0 there exists some constant C¢ such that

(1):
1
(3.11) A(z) < e —
ZGSTQ5C<) { Nn}

holds with C-high probability, and
(ii):

(3.12) ﬂ {Ao(z) + Ag(z) < % ( gn;gsz) n A}ﬁ)}

ZEST(675CC)

holds with C-high probability.

PROOF OF THEOREM 1.4 ASSUMING THEOREM 3.2. Note that by the definition of my(z2),
the fact of n > N~!, (3.2) and (3.3) we see that the difference between my(z) of the original
matrix and that of the truncated one is smaller that O(N~¢) with overwhelming probability for
any positive constant C' when N is large enough.Then we can easily recover (1.13) from (3.11).
Analogously, by spectral decomposition we can also easily see that (1.14) can be recovered from
(3.12). Thus we complete the proof of Theorem 1.4 assuming its truncated version Theorem
3.2. O

Roughly speaking, in this part, we will adopt the proof route of that for Theorem 3.1 of
[27]. At first, we will provide a weak bound for the strong local MP type law around the right
edge. And then we use the weak bound to get the strong bound. As mentioned in Introduction,
such a bootstrap strategy was developed in a series of work [19, 21, 12, 27]. However, since the
generality of our setting on X, most parts of the proof need new techniques thus the details are
relatively different from those of the null case in [27]. Especially, in the discussion of the stability
of the self-consistent equation of mg(z), we will extend an idea from [11] to our case.

3.1. Weak local MP type law around A.. In this subsection, we will prove the following weak
local MP type law in the region around A,.

THEOREM 3.3. Under Condition 1.1 and (3.4), for any ¢ > 0, there exists some positive
constant C¢ such that the event

1
N {Ad<z> £ A2 < go@l} .
/4
2€5,(6,5C¢) (N'n)
holds with C-high probability.
At first, it follows from the definitions that

(3.13) A(z) < Ai(2) < max|Gii(z) — muy(2)| + A(z).
For z € S,(¢,5C¢) and positive number K we define the event
Qz, K)

- {max {AO(Z),mgXIGﬁ(Z) — m(2)], max m<z>|,mgx|R@-<z>|,mgx|vu<z>|} > mf(z)}
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J{ e { max G5 ea(a) . a1 b > K20

with

Moreover, we set the events

E(2) == {Mo(2) + Aa(z) > (log N) '},
(3.14) D(z, K) == Q(z, K)° UZ(2).

In the sequel, we will frequently use the following large deviation estimates whose proof can be
found in [20].

LEMMA 3.4. Let x;,x;,1 # j be two columns of the matrix X satisfying (it) of Condition
1.1. Then for any M x 1 vector b and M x M matriz C independent of x; and X;, the following
three inequalities hold with C-high probability

(1):

1 cpTC
|x7Cx; — NT?“C| < WHCHHS-
(ii):
e
[x; Cx;j| < =[Ol s
(iii)

7 bl
Vi

Here 7 := 7(19) > 1 is some positive constant.

PROOF. See Appendix B of [20] for instance. O

To prove Theorem 3.3, we will provide the desired bound for the case of n ~ 1 at first. Then
we extend it to the full region S,(¢,5C;). To fulfill the first step, by (3.13) it suffices to prove
the following two lemmas.

LEMMA 3.5.  Under Condition 1.1 and (5.4), for any ¢ > 0, there exists a constant C¢ such
that the event

N k%)

2€5r(¢,5C¢),n~1

holds with C-high probability.
LEMMA 3.6.  Under Condition 1.1 and (3.4), for any ¢ > 0 there exists a constant C¢ such
that
C 1
N AR <%y

1/2
2€85r(¢,5C¢),n~1 (N’I])

holds with C-high probability.
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At first, we need the following bounds on the elements of Green functions to verify Lemmas
3.5 and 3.6.

LEMMA 3.7. When z € S,.(¢,5C¢) withn ~ 1, for any T C {1,...,N} with |T| = O(1) we
have

1
(3.15) G omiy ~ 1, AP <o), <Trig™] < 01
with (-high probability.
PRrooOF. By spectral decomposition, we have
§j (V).

k=1
Here A\ (WD) is the k-th largest eigenvalue of W(T) by the notation in (1.2) and

w (WD) o= (g WD),y o (W))T

is its corresponding unit eigenvector. Now similar to (1.12), we see A\; (WD) is bounded with ¢
high probability. Thus when z € S,(¢,5C¢) with n ~ 1 we have

(T) axMiy Ui (i (T)y 2 -1
|Gu ( )’ 2 ‘YGzz (Z) (Al(W(T)) _E')2 _|_772 Z|ukl(W )| 2C

for some positive constant C' with (-high probability. It is similar to show that mg\ﬁfr) ~ 1 with
¢-high probability. Moreover, we also have the definite upper bound

1 1
iW(T) i (WM < = < ¢
; )\k(W(T)) — Zuk ( )ukj( )| < n =
with some positive constant C. And we also have
T M <O ~1.
rlG Zw w(T o SO0
Thus we conclude the proof. O

Now we come to verify Lemma 3.5.

PRrROOF OF LEMMA 3.5. At first, we claim it suffices to show that for any fixed z € S,.(¢,5C)
with 1 ~ 1, there is some positive constant C; independent of z such that

max {Ao(z),mzax|G,-,-(z) — mN(z)],mzaX ]Ti(z)|,mzax|Ri(z)|,mzax|vli(z)|} < %W (2)
(3.16)

and

(3.17) mw{m?MM@HW(NTB)\W&H}<wQW%@
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hold with (-high probability. At first, by (2.31) we have
i _ 41131,
318) S+ D gl (95 + Ty < max (512, 2) 1

when 7 ~ 1. Moreover, we have already truncated the variables v/ N zi; at (log N )%. Then it
is easy to check the derivatives of the quantities G;;(2),T;(2),U;(2), Ri(2), vii(2), va(2), v3(z),
v4(2) with respect to z are all bounded by 7~4° in magnitude with some positive constant Aj.
Now we can assign an e-net on the region S,.(¢,5C¢) with e = N ~10040 (say) . Then it suffices to
show (3.16) and (3.17) for all z in this e-net. By the definition of {-high probability, it suffices
to prove (3.16) and (3.17) for any fixed z.

Note that when n ~ 1, by using (3.15) we have

(3.19) Giale) ~ 1, () ~ 1
with ¢-high probability. Using Lemma 2.3 and (3.19) we have
U(z)=0O(N"V?), p~l.
By the definition of Q(z, K), we should bound the following quantities
Ao(2), max |Gii(z) — my (2)], max|T;(2)], max |R; ()],

max [v13(2)], max [Ui(2)], [v2(2)], [vs(2)], [0a(2)]

when 7 ~ 1 one by one. We do it as follows.
At first, we remind here the basic inequality

(3.20) IAB||ms < [|Allopl| Bl s

for any two matrices A and B. Moreover, we have the following basic bound

(3.21) TrG(z) — TrGY(z) < O(n7Y).

To see (3.21), we denote the ESD of W](\;) by F](\}i). Then by Cauchy interlacing property we know
AvWN) < Avo1 (W) < - < Aa(Wh) < M(WY) < M(Wa),

which implies

i 1
sup | Fy(z) - Fyy(@)] < .
zeR
Therefore,
. 1 ;
Tr6(2) TGO < N [ mdin () - P )
22 < gt — =yl
(3.22) < 7 /(A_EPMQCM ™

By using formula (ii) of Lemma 3.1, Lemma 3.4 and Lemma 3.7, we can get that with ¢-high
probability,

. Ce¢ L
80(2)] < Cmax 69 (2)1;| < max 7 ([E1261) ()22 s



< 0% max||G)(2)||gs = CpC< max L()
N i#j
STrGU)(2) Sm (z 1
— Ce SET AR —) = C% N Sl
Cy I?%X\/ N O Oy o O
(3.23)
Here in the last step we have used the fact that n ~ 1 and
TrG(z) — TrGW) (2 ’ ‘T’I”G —TrGY( ’ ‘T?“G z) — TTG(ij)(z)’ <O(n™.
Now by (3.23) and the fact that n ~ 1 and thus
Smy(z) ~ 1
with (-high probability, we have
(pCC ..

(3.24) 40(2)] < CE max [690(2) s < O(s%0(2)

with (-high probability. Similarly, we also have

e

i mgXHQ“)(Z)HHs < 0(p%0(2))

with {-high probability.
For A4, we start from the observation

(3.25) max |Gy —my| < max |G — G,
1 17]
while
1 1
G.— G| = S -
| 1 ]J| —y— Zr;fg(z)ri —y - Zr;g(])r]

1 . .
< 1GuGyl (m =Tl + |Trgts Trg@m) :
where T; is defined in (3.7). Note that by using Lemma 3.4 again, we have

(3.26) )] < %~ HQ (2)Slms < CSOCC%HQ(“)(Z)HHS = 0(p“¥(2))

25

with (-high probability. Here the last step can be obtained by a calculation similar to that for

(3.24). Moreover, we have
1 : :
(3.27) STrd ()% - TrgY ()] < [Ui(2)] + |U; (2)|

Therefore, we come to estimate U;(z) below. Now using the Sherman-Morrison formula

A‘lrir;fA_l

Yyl g o It
(3.28) (A+r1ir}) A [rrA T

for any M x M invertible matrix A, we have

*g( DWACNS 1

U = (696 -0) Sl = 5| gy

N!zGii(z)] rigWxghr
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< o2 (|Lrgosgos| + 2160805 s
= "N\~ N

with (-high probability, where the last step above follows from Lemma 3.4.
Observe that

\Trg@)zg(i)z\ < TrgWx2(G0Y* < 016W|%4.
and
1692GDS| s < CJI(GD)?||ms < C|1GD] %5

Therefore we have

1 3TrgH
(3.29) Ui(2)] < CSOCCWHQ( ks = (pCCTQU = O(p“ 0 (2))
with ¢-high probability. Thus (3.25)-(3.29) imply that

max |Gyi(z) — my(2)| = O(p“¥(2))

with ¢-high probability.
Hence, it remains to bound

Ri(2), wyi(z), i=1,---,N, and wg(z), k=234

To bound these quantities, we recall (3.18). For v1;(z), we use Lemma 3.4 again. Thus we have

. i _ 1 i . .
max |vi;(z)] < max|riGOS(m(2)S + 1) 'r; — —Tr(m ()T + 1)~ 1560 ()3

N
e ) :
< max o ||(my () + 1) 1260 (2) S |ms
DN e — OfuCe
< Cmiax N 1GY |rs = O(¢~<¥(2))

with (-high probability, where the last inequality above follows from (3.18). Similarly we can
get that

[Ri(2)] = O(p“¥(2))

with (-high probability.
For va(z), we have

v2(2)] < C'max

riG0 ()% [(mN(z)E +0)7 - (mg\’[)(z)E T I)_l} i

riGD ()2 (my (2)S + 1) Hmy (2) — miP (2)S(mP () + 1)~ 'r

= max
3

IN

max my () = m{) (2) ( ‘Trg@(z)Z(mN(z)z + D)7 (2)s + 1)—12‘

1% 1G9 (2) Sy (2)E + 1) S(m (2)8 +I>12HH5)

IN

o @ (Lo % a0
max [my (2) —my (2)] I |G (2)| + NHQ (2)|lms

(3.30) < ClAo(2)]? = O(“ T2 (2)).
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with (-high probability. Here in the last inequality above we have used the fact that
ma(2) = my) ()] = O((Ao(2))?)

which is implied by (3.15) and (iii) of Lemma 3.1.
For v3(z), we can use the same approach as that we have used to bound U;(z) in (3.29).
Actually by using (3.28) and (3.15) again, we have

|v3(2)]

IN

C max
2

%Tr (99— 6()) Sm (=) + le\

rigOs(mi?(2)2 + 1)'5g@r
Trg®

N27)

= Cmax — |ZG”( )|

A

< CngC maX—HQ H%IS = goC< max O(ngC\Ilz(z)).

Moreover, the estimate of v4(2) is similar to that of va(z). Actually, we have

1 i _ 1 _

lvg(2)] < max NTr(mgv)(z)Z +1)7'86(2)E - NTT(mN(z)E +1) 129(2)2‘
< Cmax|my(z) — myY ()] = O(A2) = O(p%<W(2))

with (-high probability. Thus we conclude the proof of Lemma 3.5. O

With the aid of Lemma 3.5, we can prove Lemma 3.6 below.

PrROOF OF LEMMA 3.6. Similar to the discussion in the proof of Lemma 3.5, it suffices to
estimate A(z) for a fixed z. At first, we pursue the idea in [27] to introduce the function

D) = () —dyt [ )

Note that by the fact

it is not difficult to see that

(2)
431 = oL (Gl —ma ) _ ey
with (-high probability by using Lemma 3.5 and Lemma 3.7. By the fact that

(Gii(z))_l = —z+ dil

t
_ _dHN() -,
N /tmN(z)+1 ~(t)
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(3.31) and (1.6) we have
[D(mn)(2)] < Y]] + 0702 (2)

with (-high probability, where
N
1
—y Y

Therefore by the definition of D(u)(z) and the bounds for |Y;|, we know that in the case of n ~ 1,
there exists

((my(2))"" = (mo(2))~1) + dJ:fl/ <tm0(z) +1 tmN(Zz) + 1) dHN(t)‘ = (ng(an)l/z

with ¢-high probability. Taking the fact that mg(z), my(z

)
2my(2)mo(2)
(2) + D)(tmo(2) + 1)

~ 1 into account we obtain

332 (o) - ma() [1- it [ (o) = (2

with some function d¢(z) satisfying

1

(3.33) 160(2)] < ¢ (N2

with (-high probability. Now we need to estimate

1 t2my(2)mo(2)
L—dy / G (2) + D) (tmo(2) + 1) TN (®)

when 7 ~ 1.
Note that by Cauchy-Schwarz inequality, we have

1 t2mpy (2)mo(2)dHy ()
'dN / (tmn(2) 4+ 1)(tmo(2) + 1)‘

< ( WdHN(t)>l/2.< d!\flt2|m0(z)’2dHN(t)>l/2'

[tmy(2) + 1]2 [tmo(z) + 1]2
Now by (1.6)
t
14 2mo(z) —dy / mo dHN(t) =0,
tmo
we have
RY 2 -1 2 t
o) + 2pmo2) = di o) [ it () = .

Taking the imaginary part of the above equation we obtain

_ t23mo(2)
- 2rat 2 [ 270 ggN(t) =0
o)+ nlmo(2) + 5 fmo(2)? [ eSO E Gat () = o
which implies
- t2mo(2)|? [mo(2)[?
3.34 0<dy | —— 22 _dHy(t) =1- 22 p<1-6
(339 - /tm0(2)+1|2 () %mo(z)n<
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for some positive constant J. Here we have used the fact that 7 ~ 1 and (i) of Lemma 2.3.
Similarly, by the facts

(mN(Z))_l _ dji\ll / WdHN(t) +z= (S(]

and my(z) ~ 1 with ¢-high probability when 7 ~ 1, we can obtain

0< d]_\fl / MdHN(t) -1— 7’7)1]\[(2:)‘2

trnn(2) + 11 S (z) 1~ S0(2) <1

with -high probability, where §)(2) is some function such that |5)(z)| < ¢“</(Nn)Y/2. Here we
have used the fact that n ~ 1 and the bound (3.33).
Therefore we have

_ t2mN(z)m0(z)
(3.35) ‘1 N le/ Tmn (2) + D(tmo(2) 3 1) N ()] 2 co

for some positive constant c¢g. Hence, by (3.32), (3.33) and (3.35) we have

1
A < e i

Thus we complete the proof. O

Now ,we consider to extend the results to the case of n <« 1. To this end, we will provide the
desired bounds ((3.16) and (3.17)) under the condition that the event Z¢(z) happens at first,
then we prove that the event =Z¢(z) holds with (-high probability. Such a strategy is also parallel
to that of the null case in [27]. Similar to Lemma 3.5, we now need the following lemma for the
first step.

LEMMA 3.8. Under Condition 1.1 and (3.4), for any ¢ > 0, there exists a positive constant
C¢ such that

(| T(z¢%)

ZESr (5,504)

with (-high probability.
To prove Lemma 3.8, we will need the following lemma.

LEMMA 3.9. For z € S,(¢,5C¢), when the event Z°(z) happens , for any Gg)(z) with |T| =
O(1) and i,j € T we have

(3:36)  max |G — Gl = O(AY), Gy’ ~ 1, A= max |G (2)] < CA,
holds with C-high probability.
PRrOOF. Note that when the event Z¢(z) happens, we have
Gii ~1, Ay(2) < (logN)~L.

Now by (iii) of Lemma 3.1 and the induction method, we can easily conclude the proof. O

Now we come to show Lemma 3.8



30 Z.G. BAO ET AL.

ProOOF OF LEMMA 3.8. At first, we use the discussion in the proof of Lemma 3.5 again to
claim that it suffices to prove the result for any fixed z € S,(¢,5C;).

By the definition in (3.14), it suffices to show that (3.16) and (3.17) hold with (-high prob-
ability in Z¢(z). That means, we need to go back to the proof of Lemma 3.5. But this time we
have the condition that Z¢(z) happens instead of n ~ 1. Note that by definition, in Z°(z) we
have

A(2) < Aa(z) < (log N) ™.
Using (i) of Lemma 2.3, we have
(3.37) my(z) ~1, Gii(z) ~1, in Z°(z).

Note that in the proof of Lemma 3.5, every term except va(z) and v4(z) can finally be bounded
by some quantity in terms of max;; ||G#)||gs or max; ||G)||ys. Therefore, at first we will
bound [|G)||zs and [|G?||xrs. Note that

L TG i) STrG )
Hg(”)HHs — \/‘S rg :\/‘S " + O(N)

n n
STrG NA2
(3.38) - \/ S HO(5 )+ O(N),
n n
where the last step follows from (3.36). Now similar to (3.24), with the aid of (3.37), we see in

=¢(z), there exists

C, Cx 2
s (i) c. [Smn(2) A3 1
< of_ J < ¢, | 22N o Bl
Ao(2) O I?%XHQ (2)llas < Cp \/ Nn +O(Nn)+O(N)

Cp“e \/W + O(%) +0(Ao),

where we have used the fact that z € S,(¢,5C¢). Thus by (iii) of Lemma 2.3 we have
(3.39) Ao(2) < p“eU(2)
with ¢-high probability in Z¢(z). Inserting (3.39) into (3.38), we have
1 g
(3.40) GO @) s < w(2)
with ¢-high probability in =Z¢(z). Analogously, we also have
1 :
(3.41) IGO0 E)s < w(:)

with ¢-high probability in Z¢(z)

With the aid of (3.37), (3.40) and (3.41) it is not difficult to see (by using Lemma 3.9) the
estimates between (3.24) and (3.29) are still valid in =°(2) for all z € S,.(¢,5C¢).

Therefore, it remains to estimate R;, vi; and va, v3, v4. Actually, we need the following lemma.

LEMMA 3.10. Under Condition 1.1, for any ¢ > 0, there ewists a constant C: > 0, when
z € 5,(¢,5C¢), we have with (-high probability,

(342) (MW () + D) lops M () + 1) lops (mo(2)S + 1) |op < Ce

in 2¢(2). Moreover, we have with (-high probability,

(3.43) %Trlg(i)(z)\ < (log NYOO_for all = € 5,(2,5C¢).
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Note that by the estimates for R;, vi; and vg,v3,v4 in the proof of Lemma 3.5, we can easily
see that once Lemma 3.10 holds, Lemma 3.8 follows. Actually, with the aid of Lemma 3.10, we
can easily check that

(3.44) ], v, [vg] < O(WET2), Ry, |vii| < O(e%W), k=1,...,N

with ¢-high probability in Z¢(z).

Hence, it suffices to prove Lemma 3.10 below. To this end, we need the following crude bound
on the counting function of eigenvalues. Hereafter, we will use N7(A) to denote the number of
the eigenvalues of an Hermitian matrix A in the interval I.

LEMMA 3.11.  Under Condition 1.1, for any ¢ > 0 there exists some constant C¢c > 0 such
that for any interval I C [Cy, 00) with length |I| > ©°%¢ /N, we have

(3.45) Ni(W) < CCN|I|
with (-high probability.

PROOF. Let n > ¢°%¢/N. Note that for any interval I = [E — /2, E 4+ n/2] C [C}, 0] (thus
E —n/2 > C}) we have the elementary inequality

Ni(W) < CNnSmn(z), z=FE+1in,

thus
N
=1

Now we assume N;(W) > C¢Nn for any large constant C¢ to get a contradiction. It suffices to
show for any ¢ > 0, there exists a positive constant C’é such that

(3.46) ISGuu(2)| < C¢

with (-high probability if Ny(W) > C¢Nn. To verify (3.46) under the assumption of Ny(W) >
C¢Nn, we rewrite (i) of Lemma 3.1 as

1
2 2 3l s | (V@) 1) 2

Gy =

where A\ (W) > Mo(W®) > ... > Ay (W) are the eigenvalues of W and u,(W®), k =
1..., M are their corresponding unit eigenvectors. Then we have

1

(©) .
N+ AL G| (V@) i) 2
Cn

< N
T O V@) — B <2 [(aE (V) 1) 2

with (-high probability. Now by Cauchy interlacing property again we know for any interval I
there exists

SGii(z) <

(3.47)

(3.48) INI(W) = NyoWD)| < 1.
Thus by assumption, we have

IN(OWVI)| = #{k : A (WD) — E| < /2} > C:Ny
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with some sufficiently large C.. Now we set the projection matrix
P, = > w, (WD) (w, W))*.
k| A\ (W)~ E|<n/2
By assumption we have
TrP, = TrP2 > C:N.
Thus by Lemma 3.4, there exists

S (W) = XIS 2P,
k:| A (W) —E|<n/2

NT r2p, 32 40 < |S2P, 21/2||HS> > Cln

with (-high probability for some positive constant C¢. Thus by (3.47) we see that (3.46) holds
with (-high probability. Therefore we conclude the proof. O

Now we come to prove Lemma 3.10.

PROOF OF LEMMA 3.10. At first, we will show (3.43). By definition we have

1 1 X 1
- (%) _ = I
N TGN = 5 2 oy

Note that when z = E + in € S,.(¢,5C;) one has n > ¢°“¢ /N. Now we split R into

Ky
R:(—OO (U Ik> CT,OO) = Iy U (U Ik> Ulk, +1,

k=1

where K,, = O(n~!) and I, are non-intersecting intervals with |Ix| = n,k = 1,..., K,,. Specifi-
cally,

I = [\ — 28, A, — 264 19).

Now we write

Kn+1

1
7Tr\g Z > N O

k=0 1:0,(W@)er,

Then for z = E +in € S,(¢,5C¢), by invoking Lemma 3.11 and (3.48) we have
1 .
LTrG (2)] < 10200 N

with (-high probability.
Now we start to show (3.42). Note that in Z¢(z), we have

[ma(2) = mo(2)], [my (2) = mo(2)] < (log N) ™!
Therefore, it suffices to show that
(3.49) [(mo(2)E + 1) ]op = O(1), for z € S,.(¢,5C;),

which follows from (iv) of Lemma 2.3 immediately. O
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Therefore, we conclude the proof of Lemma 3.8. 0
Moreover, by definitions we also have the following lemma.

LEMMA 3.12. Let K be some positive number such that 1 < K < (Nn)'/2. Then for z €
Sr(€,5C¢), in T'(z, K) we have

(3.50) [D(my)(2)] < |[Y]] + O(K*P2(2)) + colz,).
PrOOF. Note that by the assumption on K, we have
KUV <1, in Z%z).

Hence, by the fact that G;;(2), mn(z) ~ 1 in Z¢(2) it is not difficult to see

N
%Z(Gii(z))_l = (mN(Z))_l+O(m?X|Gii(2)—mN(Z)|2)
i=1
= (mN(z))_1+O(K2\I/2(z)), in Q°%z, K)NE°(2)

from (3.31). Moreover, we recall the identity

(Gu‘(z))fl = —z+ d]_vl / 7 ¢

which implies
t

(my(2)) ™" = —z+d;,1/tmN(z)+1

Then by the definition of D(u)(z) we obtain
[D(mn)(2)] < Y]] + O(K*¥(2)), in Q°(z, K) NE(2),
which implies (3.50) in I'(z, K). O

dHy(t) — [Y] + O(K?%?(2)), in Q%z, K) NZ%(2).

Now we are on the stage to extend the estimate on A(z) to the case of n < 1. Actually, we
have the following crucial Lemma which is an extension of Lemma 6.12 of [27] to our non-null
case.

LEMMA 3.13. Let K = ¢°0) and L = O(1) be two positive numbers satisfying
ph > K*(log N)*.
And let S be an event satisfying
sc () TeEKN [ EZ%@).
2€8,(¢,L) 2€8,(,L),n=1
Assume that in S one has
'D(mn)(2)] <8(2) +00lzy, forall z € S.(¢, L),

where § : C — R := {x € R: z > 0} is a continuous function. Moreover, §(z) is decreasing in
n and |6(2)] < (log N)~8. Then there exists some positive constant C such that

6(2)

(3.51) Az) < C(logN)m

, forall z € S,(¢, L)

holds in S and
(3.52) sc (] E%).

2€8r(¢,L)
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PROOF. Note that we need to prove (3.51) and (3.52). By definition of =(z) it suffices to
prove that (3.51) holds when

(3.53) Ao(2) + Ag(2) < (log N)™?

and then prove (3.53) holds for all z € S,(¢, L) when the event S occurs. To this end, we define
the set of n

Ip == {n: Ao(E +if) + Ma(E + i) < (log N)™', ¥ > n, B+ if) € 8,(¢, L)}
At first, we come to show that (3.51) holds for z = E + in with n € Ig. By assumption, we have
I D(my)(E +in)| < 6(E +in), Vne€ lg.
Note that when n € Ig, we have
(3.54) ma(z) = mo(2) + O((log N) ™) ~ 1.
Thus similar to (3.32), by the definition of D(u)(z) here we also have

(3:55)  (molz) —mn(z)) [1_@1/ <tmN<sz Sitméf;HﬂHN(”] = bz,

with
00(2)] < O(8(2)), n€lp.

Similarly, in order to obtain a bound for A, we need to derive an estimate for the quantity

o 2my(2)mo(2)
‘1 i | (tmn(2) + 1) (tmo(2) + 1>dHN(“' |

However, unlike (3.35) whose estimation is based on the fact of n ~ 1, we need to do it for
general 7 this time. Thus more delicate calculation should be taken.

At first, by the discussion towards (3.32), we see (3.51) holds naturally when 7 ~ 1. Therefore,
in the sequel, we will assume n < 7 for some sufficiently small constant 7. Now we can write
(3.55) as

(mo(2) —mn(2))

t2m0( YdHp(t) 1 t2mo(2)dHy (t)
x [1 —dy / (tmo(z) + 1)2 +dy (mo(2) _mN(z))/ (tmy(2) + 1)(tmoe(2) + 1)2

(3.56) = do(2).
By (i) and (iv) of Lemma 2.3 and (3.54), we have

(3.57) | / e (t(;)o STl <€ itz e S (D).

for some positive constant C. Now we come to show that when n < 7 and ¢ is chosen to be
sufficiently small, we also have

2m z
(3.58) |/ . t 1)‘(]t(ﬂ20(z) " 1)2dHN(t)| >C7', ifze S, (L)

for some sufficiently large positive constant C. Note that by using (i) and (iv) of Lemma 2.3
and (3.54) again, it is easy to see
12

t2
'/ G (2) T D {tma(e) £ 12N () = / (imo(2) £ 1)°

dHy(t)] = O((log N) ™)
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when n € Ig. Thus it suffices to show that when n < % and ¢ is chosen to be sufficiently small,
there exists

2
|/(”n0(z)+1)3dHN(t)| SOl ifze 8. L),

For convenience we set
J(t) :=tmo(z) + 1.

Note that by (iv) of Lemma 2.3, we know both 7 (¢) and 37 (t) are positive when z € S,(¢, L).
Let

0(t) = arg(J (1)) € (0,7/2).

It is not difficult to see from the proof of (iv) of Lemma 2.3 that if ¢ is chosen to be sufficiently
small, we can guarantee that the parameter ¢y therein is much larger than ¢. Then by (ii) of
Lemma 2.3, when n > 7) we also have

Smo(z) < C\/E+ 1.

Therefore, when 7 and ¢ are sufficiently small, we have that 7 () is much larger than I7(t)
such that 6(t) < 7/18(say). That means we have

0< (0()) < n/6, thus RIW) > TP

when z € S,.(¢, L). Then it is easy to see

t2 .2 .
‘/WHW)’dHN(t)’ = §R/(tmo(z)Jr1)301HN(t) > C

for some positive constant C'. Then (3.57) and (3.58) together imply that

2m z
/<tmN<z)i1)?;nfL)o(z>+1)2dHN(t) ~1 ze8(EL), nelp <

when 7) and ¢ are sufficiently small. Therefore, by (3.56) we have
(3.59) a(2)(mo(z) — my(2))* + (1 = b(2)) (mo(2) — mn(2)) = do(2),

where

a(z) ~1, b(z) =dy' / (tmo(z) +1)2

Now we need to provide an upper bound for

1 —=b(2)].
Recall the formula in (3.34) and set
1 [ Bmo(2)]? [mo(2)
3.60 =dy | ———CF _dHpN(t) =1 — 1.

Note that since 1 > ¢(z) > |b(2)], it is obvious that

(3.61) |1 — b(2)] > max{l — c(z),|c(z) — b(2)]}.
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Thus it suffices to estimate the quantity

|e(2) — b(2)].

To this end, we use an idea in [11] which is provided for studying the stability of the Stieltjes
transform of Wy type matrices in the bulk case. Actually, we can extend the discussion in [11]
to the edge case for our model as well. For ease of presentation, we set

Ft) = m
Then
le(z) —b(2)] = (\f(t)l2f2(t))dHN(t)}
= dy (SF(t)*dHy(t) — 2i / RF()SF(t)dHn (t)
> 2dy) / (SF(1))2dHy (1)

> C@mo()? [ IFOP N0

Here we have used the relation
SF(t) Smo(2)

(3.62) IF@)| ~ [tmo(z) + 1|[mo(z)|’

and the fact that
(3.63) mo(z) ~1, 14+tmg(z) ~1, for z€ S.(¢0), t € Spec(X).

Moreover, by definition and (3.63) we also have

/|]: )[PdHy (t
Therefore, if Img(z) ~ 1, we have
(3.64) le(z) — b(2)| ~ Smo(2).

If Smo(z) < € for some sufficiently small constant € > 0, we can estimate |c(z) — b(2)| as
follows. Set

F(t) = ?OIF ().

From (3.62) we see SF(t) > 0, thus we have ¢ € (0, 7). By the assumption of Smg(z) < e, (3.62)
and (3.63) we obtain

sin ¢ < Cle,
thus
|cos | > 1/2

for sufficiently small e. Moreover, by (iv) of Lemma 2.3 and continuity, we have either cos ¢ > 1/2
or cos ¢ < —1/2 holds uniformly on ¢ € [Ay(X), A1 (2)]. Therefore, we have

e(2) = b(=)| = dy

[1F0F - Py
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= 24y

JEC sinqsdHN(t)\

Y

2dy!

/ | F(t)]? cos ¢ sin qdeN(t)' —2dy / | F(t)]? sin? pd H v (t)

Vv

dy)! / F(1)[2(sin é — 2sin? ¢)dHy (1)
> (2dw)"t [ 170 sinodH (0
(3.65) > Smo(z) / | F(t)|*dHn (t),

where in the last step we have used (3.62) and the fact that sin ¢ = SF(¢)/F(t). Therefore, by
(3.64) and (3.65) we always have

[1=b(2)] = |e(2) = b(2)| = eSmo(2)

for some positive constant e. Similar to the analysis in (3.65), when Smg(2) is sufficiently small,
we also have

|e(2) = b(2)] 2y

(3.66)

IN

/ |f(t)|2cos¢sin¢dHN(t)' + 2d / | F(t)]? sin? pd H (t)

CSmp(2)

N

for some positive constant C. Moreover, by (3.60) and (3.61) we also have

[mo(2)? U
3.67 1-b >1- = .
(3.67) 1=bE) 21 —el) = G o~ s
Thus we have for some positive constants €, €,
(3.68) |1 —b(2)| > emax{Smyp(2), %m?)(z)} > VK Fn,

which is implied by (ii) of Lemma 2.3. Moreover, when Smg(z) is sufficiently small, by (3.66)
we also have

(3.69)[1 = b(2)] < 1= e(2)] + |e(2) — b(2)| = O(5—=—) + O(Smo(2)) = O(v/5 + 7).

Smo(z)

Note that the function 6(E + in) is decreasing in 7, thus we can set

m = sup {n: O(E +in) = (log N)™'(k+n)} .

Solving (3.59) we obtain two solutions of my(z) as my1(z) and my2(z) such that

_ _ —(1=b(2)) + V(1 = b(2))* + 4a(z)do(2)
mv1(z) = mo(z) 2a(z) ;

and

—(1—-b(2)) — V(1 = b(2))? + 4a(2)d(2)
2a(z)

mpa(z) — mo(z) =

Here the square root is chosen to guarantee that

V(1= 0(2)) + 4a(2)do(2) = (1 — b(2)) + O(do(2))
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when n ~ 1.
When Jmy(z) is small enough, by (3.68) and (3.69) we see

1= b(z) ~ VEF .
Therefore, when 1 < 11, by definition we have

k+n< (logN)™
which implies

Smo(z) < 1

by Lemma 2.3. Thus for n < n;, we have
(3.70) 11— b(2)| ~ V& + 7 < Clog N)/6(2).
For n > n1, by the fact that §(z) is decreasing in n we know
(3.71) S(E +in) < (log N) Yk +m) < (logN) ' (k+1) < C(log N) 11— b(2)].
Therefore, (3.70) and (3.71) imply that

Imn1(2) —mna(2)] = ClL=b(2)| 2 CVE+n,  n>m
<

(3.72) C(log N)v/6(2), n <.

Observe that in Z¢(z) we have
mo(2) —mn(2)] < (log N)™.
Thus, when n ~ 1, it is obvious that
200 (2)
(1= b(2)) + V(T = (=) + 4a(=)00(7)

my(z) = mn1(2) = mo(2) + (

and
i(2) 0(2)
=) = CVrra

Now by (3.72) we know that my1(z) # mpy2(z) when n > ;. Therefore, for n > 1y, by continuity
we have

Imo(2) —mn(2)] < C

my(z) = my1(2),

and

5(2) (2) o)

0@ = T v+ V@ et nt o)

mo(z) ~ ()] < O

When n < 11, we have

Imo(2) —mn(2)] < [mo(z) — mni(2)] + [mn1(2) — ma2(z)]

< C(logN)\/d(z) < C(logN)\/%.

Therefore, we proved (3.51) when n € Ig.
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It remains to show that when S occurs, I is just exactly [@*N~! 1]. The proof is nearly
the same as the counterpart in [27]. However, for the convenience of the reader, we reproduce it
here. We assume Ip # [’ N~1 1] to get a contradiction. Note that if I # [@* N1 1], we can
set 1o = inf Iy which satisfies

(3.73) Ao(E +ing) + Ag(E +ing) = (log N)™*
Then by the definition of I'(z, K), we see in S
Ao(E + i) + max |Gii(E + i) — mn (E + imp)

(3.74) < KU(E +ing) < Ko 1?2 < (log N)~2
by the assumption of ¢* > K?(log N)*. Moreover, since 19 € I, we also have
(3.75) A(E + ing) < C(log N)\/6(E + ing) = O((log N)~3).
Thus (3.74) and (3.75) together imply that

Ao(E +ino) + Aa(E + ino) < O((log N)~2),
which contradicts with (3.73) when N is sufficiently large. Thus we complete the proof. O

Now we can start to prove Theorem 3.3.

PROOF OF THEOREM 3.3. Note that by the definitions of Q(z, K) and I'(z, K'), we have for
any ¢ > 0, there exists a positive constants C¢ such that

[Dmn)(2)] < [[V]] + O(max |Gii(2) = mn(2)[) + 0olz(y)
< ngC‘IJ(Z) + 00lz(,), Vz € S:(¢,5C)

holds on the event

) Te%).
ZEST(5,5C()
Now set
S = I(z,0%) N =¢(2)
2€5r(8,5C¢) z2€5r(¢,5C¢),n=1
and

5(z) = (N~
as in Lemma 3.13. We can get that
A(z) < o (Np) ™V Yz € S,(¢,5C,)

holds in S. Moreover, by Lemma 3.13 we know

(3.76) sc () E).

z€Sr (5,504)
Thus we have

A<Ag<(logN)™', WU(z)<C(Np)~Y2 inS.
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Moreover, by the definition of S, Lemma 3.8 and the fact that

N =

zESr (6,50{),7]:1

holds with (-high probability which is implied by Lemma 3.5 and 3.6, we see that S holds with
¢-high probability. Then by (3.76) and Lemma 3.8 we also know

N 2 ¢%)

2E€Sy (E,5CC)

holds with ¢-high probability. Therefore, by the definition of Q(z, p%¢) we see that Theorem 3.3
follows. m

3.2. Improved bound for [Y]. In order to prove Theorem 3.2, the main thing is to provide a
stronger bound for [Y]. More precisely, we need stronger bounds for [T] and v;(z). Here

1 N
7] =+ YT,
i=1

Similarly, we will denote

1 N
V)= 5 S Uile).

Recall the decomposition

4
YVi=Ti+Ui+V=T,+U;+ > v,
k=1
which implies that
4
Y] =[]+ [U]+ ) vk
k=1

Noting that by definitions, in I'(z, K') N E¢(z), we have
|Uz|7 |U2|7 |U3‘, |U4| = O(KQ\I’Q)

Such a strong bound is enough for our purpose. Thus our main task in this subsection is to
improve the bounds for [T] and v;. Actually, we will prove the following lemma.

LEMMA 3.14. Let K = %1 and 0 < L = O(1) satisfying o~ > K?(log N)*. Suppose that
for some event

oc (] @K)NE(2),
z2€8r(¢,L)

we have
Az) <A(z) <1, VzeS.(¢L),
where A(z) is some deterministic number. And we also have

P(©°) < exp(—p(log N)?)
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for some

(3.77) 1 < p < min{e"?K~ (log N)™!, %KT’l(log N)7%},

where T is the parameter in Lemma 3.4. Then there exists an event © C © such that
(3.75) P(©')) < 5 exp(-p)

and for any z € S.(¢, L), we have

(3.79) (7)) + || < CPPK? (82 + A, =
which implies
Y]] < CPK2 (324 AT), i@
REMARK 3.15. This lemma can be regarded as an extension of Lemma 7.1 of [27] to the

non-null case. Moreover, it is also analogous to Lemma 5.2 of [19], Corollary 4.2 of [21] and
Lemma 4.1 of [12] for Wigner matrices or the adjacency matrices of Erddos-Rényi graphs.

By definitions, we have

1 & 1
- E ( xo()y. _ (%)
[T] N 2 <ng r; NTTQ E) ,

and
V] =01 + 01
with
1 N
01 = —my () 5 ZH
| N
U1 = _N Z;(G“(Z) — mN(Z))Ulz(z)

Here v1;(z) is defined in (3.10).
Observe that in (,¢g, () (I'(2, K) NE°(2)), there exist the following bounds

[viil, |Gii(2) — my(2)] < K¥(z).

Thus in © there exists

01| < CK202.
Noting that in Z¢(z), we also have
my(z) ~ 1.
Hence, it suffices to bound [T and
N
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Note that both [T] and w are in the form of

(3.80)

with some matrix A® independent of x; but constructed from all the other x;,7 # 1. If we use
the notation E; to denote the expectation with respect to x;, we can also write

1 Y .
7=~ ;u ~E)r;¢Or;

and
1 & :
w= 2 (1~ E)riGOn(mi (2)S + 1) 'rs.
=1

In the sequel, we will use the notation

Qa =[] (1 -Ew),

keA

and Q3 = 1 — E; will be simply denoted by @Q;. To bound summation in the form of (3.80) ,
we will adopt the abstract decoupling lemma of [27] (see Lemma 7.3 therein), which is a large
deviation lemma for weakly hierarchically coupled random variables. We cite it as the following
lemma.

LEMMA 3.16 (Lemma 7.3, [27]). Let Z1,...,Zn be random variables which are functions of
;5,1 <1< M,1 <j<N. Let © be an event and p an even integer, which may depend on N.
Suppose the following assumptions hold with some constants Cy,c1 > 0.

(i) There exist some deterministic positive numbers X < 1 and Y such that for any set
AcC{1,2,....,N} withi € A and |A] < p, 1(0)(QaZ;) can be written as the sum of two new
random variables

1(0)(QaZi) = Zin +1(0)Qa1(0%)Z; 4
and
| Zia| < V(CLX)ADAL | Z; 4] < YNCUIAL

Here 1(©) represents the indicator function of ©.
(ii) For Z;, we have the rough definite bound

max | Z;| < YN
(iii) For © we have
P(0°) < exp(—c1 (log N)3/?p).

Then, under the assumptions (i), (ii) and (iii) we have
N p
(3.81) E (N—l > Qizi> < (Cp)*[x* + N71PYP
i=1

for some C > 0 and any sufficiently large N.
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REMARK 3.17. We remind here similar results also appeared in some previous work, such
as Theorem 5.6 of [12] and Lemma 4.1 of [21].

REMARK 3.18. Noting that once we have (3.81), we can use the Markov inequality to get
al 1
P <|N_1 > QiZi| = CYp° X + N_1]> < 5 exp(—p).
i=1
With the aid of Lemma 3.16, we now come to prove Lemma 3.14.

PRrROOF OF LEMMA 3.14. Note that it suffices to find an event ©" € O satisfying (3.78) such
that

(3.82) [T]| < CpP K202
and
w| < CpoK? (@2 + [\@)
in ©’. To simplify the discussion on w we introduce the quantities
it o= riGU%(me(z)S 4+ 1)
b = Qi =riGU%(me(2)S + 1) 'ry — %Tr(mo(z)il +1)7'xgiy

and

| X
W = N ; V14-
It suffices to show that in ©’, there exist (3.82) and
(3.83) w—a|<C (K]\\if + K2\i12> ,
(3.84) o] < CpP K202
At first, we come to show (3.83). Noting that by definition, we have
oy — B1| = ’Qi (r;g@)z [<mgy<z>z )7 (mo(2)E + 1)—1} ri)

= m(2) — mo(2)] ‘Qi (£:69S(m ()T + D718 (mo(=) + 1) i)
< CK(A+ A2V < C(KAY 4 K303) < C(KAV + K20?).

Here in the first inequality above we have used the fact that |m§\z,)(z) —mo(z)] < A+ CA? and
in the last step we have used the fact that KV <« 1 which is implied by the assumption on K
and L immediately. Note here we have used the fact that in I'(z, K') N Z¢(2),

IR = 1Qi (162 (m ()T + D7 S(mo(2)S + 1) 7'y ) | < KW(2).
Thus it remains to show (3.82) and (3.84). We will adopt Lemma 3.16 to prove both of these

two inequlities.
We remind here that we learn the proof strategy which will be used below from [12].
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At first, we come to deal with the simpler one (3.82). Note that
z+ zrfg(i)ri = —(Gii(z))_l.
Thus
T, = Qi(2Gi(2)) 7.

Since z € S, (¢, L), it suffices to bound
1 N
N > QiGa(2)
i=1

Now we can set Z; = (Gy;(2)) ! in Lemma 3.16. Then by Lemma 3.16 and the Markov inequality
it suffices to show that for i € A C {1,2,..., N} and |A| < p there exists Z; 4 and Z;  satisfying

1(0)(QaZi) = Zip +1(O)Qa1(0%) Zin, Zip < V(CX|ANA  Z; ) < YNCIA
(3.85)

with
(3.86) X=K¥, Yy=C

for some positive constant C. The proof of (3.85) is totally the same as the counterpart in the
null case, see the proof of Lemma 7.4 and Lemma 7.1 of [27]. The proof only depends on the
equations listed in Lemma 3.1, thus is also valid for our non-null case. So here we omit the
details. Our main target is to prove (3.84) in the sequel.

By Lemma 3.16, it suffices to show that there exists an event © with probability

P(©) > 1 — exp(—(log N)*p)
such that for i € A C {1,2,..., N} and |A| < p there exists 7; 4 and ; o satisfying

1(0)(Qari) = 7ia + 1(O)QAL(O) D5 a,  Tia < V(CXIANH, 0y 4 < YN
(3.87)
for some constant C' > 0, where X and ) are specified to be those in (3.86).
Noting that by the fact n > N~1 in S,(¢, L) and the truncation on z;;, we see (3.87) holds

naturally when A = {i}. Thus we can always assume |A| > 2 in the sequel. Now let A = A(W)
be a function of W and denote AT = AW™). Pursuing the idea in [12], we define

ASU . Z (=1)VIAM),
s\ucvcs

for any S,U C {1,2,..., N}. Then by definition it is not difficult to see for any S C {1,..., N},
there exists

A= > A

pcucs

Moreover, it is not difficult to see AU is independent of the k-th column of X if & € S\ U. Thus
we have

QsA=Qs Y AW =QsA%,

pcucs
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which implies that
Qui = QiQu\ (75 = Qu () A,
Now we set
Dip = 1(0)Qa1(0)(7;) A\ AV Dip = ()M B}

It is easy to get the bound of 7; 4 in (3.87), thus we only need to handle ; 4 below. That is to
say, we shall show that for 2 < |A| < p, there exist

(3.88) 1(0)(m) M < ycx|aADH, x =KV, y=c.
Now we need the following two lemmas.

LEMMA 3.19. Let p be an even number satisfying
1< p< 2K (logN)™,

then in (V,es, @) (F(z, K) NE(2)), for any T with |T| < p, there exist

T . T .
g;%IGZ)I < C'max |G, %rqc:f.i > cmin |Gy,

1

1
— STrG + Cp(K20?% + )

STrgM <
rg ¥

1
- N
for some positive constants C, c.
For ease of presentation, we denote
Mo == My(z) = (mo(2)S +1)~".
And now we set the event

T(z) =) {rfg(TU{i’j})(z)EMo(z)r; < KU(z)forall Te {1,...,N},i,j ¢ T,|T| < p} .
i#]

Then we have the following lemma
LEMMA 3.20. Let p be an even number satisfying
I<p min{%KT_1 (log N) 2, o2 K~ (log N)71}.
Then in (,es,er) (F(z, K) NE(2)), we have (,¢g, 1) Y (2) holds with probability larger than
1-— exp(—C’KTﬁl)
with some positive constant C.

In the sequel, we will assume

oc (] @K NE(2)NT(2).
z2€8r(¢,L)

Now we prove (3.88) assuming Lemma 3.19 and 3.20 at first and postpone the proofs of these
two lemmas after that. As a warm-up, we start with the case of |A| =2 and |A| = 3.
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Let A = {i,7} with some j # i. Note

(ﬁi)A\{i},A\{i} _ ﬁi{j}{j} — b — 51'(j)-
Note that for any set T we have the relation

(Tu{i,g}) G(T)
I';kg Tu{i,j r: = 2_17 for 7’5] € T.

Thus we have
(,;Z.)A\{i}A\{i} - rfg(i)EMOri _ rfg(ij)EMori
= —rfg(i)rjr;g(ij)ZMori
1

_ * (i) (i5)

= ~Trmgmn o e EMo

= ZG] r; Q ij) r;r; Q(ZJ)ZMOrz

= Gi(Gy)™? ;g DY Mor;
(3.89) < 0Xx?) in ©.
If |A| = 3, without loss of generality, we assume that A = {i, 7, k}, it is easy to see

() AMAE) - = Gij(Gii)_lrjg(ij)ZMori _ Gl(;?) (Ggf))_lr;fg(ijk)EMOri
= (Gij — Ggﬂ))(Gii)ilr;fg(ij)ZMOri
+G(Ga) ™t = (G eGP S Mor,

(23

(3.90) +G ()T (5 GD EMor; — riG IR S M),
Note that for any set T such that i, j, k & T, there exist

T Tu{k T T
Gz(j) _ Gz(j {k}) — ng)(G( )) 1G§€_])’

T)\— TU{k})\— T T) ; ~(TU{k})\—
(3.91) (G = (@) = — (¢ eR e e G
and
r;g(TU{i,j})EMOri . r;g(TU{i,j,k})EMori _ GgU{i})(Ggu{i}))_1rZQ(TU{i’j’k})2MOI‘i.
(3.92)
Thus we have
() MM = GO SNMri (Gii) T Gin(Gr) ™ Gy
—r3G DS Mori(Gis) G (Gre) ™ La(G) 1G(k)
+ G I Mer () G (G TG
< 0Xx?®), in ©.
Now we use the idea in [12] (see Section 5.2 therein) to introduce a class of rational functions
of resolvent matrix elements. For any fixed positive integer n we define
(i) a sequence of integers (ir)"'H satisfying iy # iry1 for 1 < k <n — 1 while i1 = ip41;

(ii) a collection of sets (U, )" _; satisfying i1,i2 € Uy and i, iq+1 & Ua,a > 2, and ) C U, C A
forall 1 <a <mn;
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(ili) a collection of sets (Tg)j_, satistying ig & Tg, and  C Ty C A for all 2 < 3 <n.
Then we define the random rational function

(3.93) D (i)™, (Ua)_y, (T)iy) = g,

where

layia+1’ 15,48

P=r; ¢Sy, [[%).,. @=[[c"%.
B=2

a=2

Noting that in the cases of |[A| = 2 and |A| = 3, we can write (7;)*\}A\#} a5 a summation of
rational functions in the form of

(3.94) £D (i) (Ua)ims,s (Ts) o)
Actually, for general S we have the following lemma.

LEMMA 3.21. LetSC{l,...,N} and i ¢ S. Then we have

2I8|

Ky
(ﬂi)&s = Z Dn’ D, = ZDn,/m
k=1

n=|[S|+1
where
2S
> K, <48l
n=|S|+1

and each Dy, is in the form of (3.94), with appropriate chosen sets (Ua)n—; and (Tg)j_y which
may be different for each F, .

PROOF. Set
A =SuU{i}.

We prove it by induction. Note that we already proved the cases of |A| = 2,3. At first, it is not
difficult to check the following relation,

() A MHAME = (5, AMEghAET} ((lji)A\{iJ}vA\{i,j}>(j)

for any j # i while j € A. Now we assume that (7;)*\{#:714\0:3} can be written in the form of

B! K
(ﬁi)A\{ZJ}vA\{ZJ} — Z Dn7 D?’L = Dn,k
n=lA\(B}+1 P

with some D, j in the form of (3.94) and K, satisfying

2|A\ {45}
Yo K, <4 g
n=[A\{i,j}+1
Then
2|A\{4,7}| 2IA\{i,5}H  Kn

A = N (D, -DP)y = Y S (Dax— DY),

n=[A\{7,j}[+1 n=|A\{i,j}|+1 k=1
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Now we assume that there are (i,)"*], (Uy)"_,, (Tp)j—o such that

r=1>

Dn,k — Q(Ul)EMorz H Gla,la+1 ﬁ (Ggi;)_l .
a=2 B=2

Then

Dy — DY) = r;,GUISMyr, H G\U=) ﬁ (G@@))*l

laytat1 8,13
a=2 £=2
n
U (UaU G TsVish)
r g( 1U{j} EMOI' HGZaﬂaii} H( 2/3/87,5 ’ )
a=2 B=2

Now obviously Dy, — DY L can be written as a sum of (2n — 1) terms, and every term contains
one and only one factor in one of the following forms

rfflg(Ul)EMoriQ - rflg(Ulu{j})EMoriQ,

Gl — el (60R) - (e
Now using (3.90) and (3.91) we see that D,, , — DSL is a sum of terms in the form of (3.93) with

n replaced by n 4 1 or n 4 2. Moreover, the total number of these terms in D,, ;, — D;Lj L is not
more than 2n — 1. These facts together imply that we can write

2A\{i}| K

(PR =SS S

n=|A\{i}|+1 k=1

and
2lA\{i}| K, 2|A\{i,j}]
YooY < K,(2n —1)
n=[A\{i}|+1 k=1 n=|A\{i,j}+1
< AMEBEAN (i AN {7, 5}
< AR )
Thus we can complete the proof by induction. O

Now by the definition of D,,, Lemma 3.19 and 3.20 we can find an event

oc (] @(K)NE(2)NT(2)

2€8,(6,L)
with probability

P(©) > 1 — exp(—p(log N)*/?)
such that (3.88) holds. Thus we conclude the proof of Lemma 3.14. O

Now we come to prove Lemma 3.19 and Lemma 3.20.
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PROOF OF LEMMA 3.19. Noting that by (iii) of Lemma 3.1, we have

m = (14‘0()(2))((;55))71
(AN VACET)

(Gii)il — (G(j))fl o

i

and

GGy

Tkk <A(1+0(X)), i#7j,

k
el < ‘Gz‘j -

which imply
(3.95)  min|GW| > (1 - 0(X))min|Gy|, max|G¥| < (1+0(X)) max|Gyl.
i#k ijAk Y i,

Thus we can get the first two inequalities of Lemma 3.19 by induction and the assumption that
pX < 1.
Now we come to show the third inequality of Lemma 3.19. Note that for z € S,.(¢,0)

1

1
NSTTQ(T) - TG

1 1 n
< |=gs7r¢™ - —_gT + O0O(=
‘N\S rG N\y rG O(N)

1 (T) P
S N igﬂ |G, Giil + O(=)

Now by (3.95) and (iii) of Lemma 3.1, it is not difficult to see that
G\D — G| < pK22,
Therefore, we conclude the proof. O

PROOF OF LEMMA 3.20. Similarly, it suffices to prove the result for any fixed z € S, (¢, L).
By using Lemma 3.4 and (iv) of Lemma 2.3 we have that

%Trg(Tu{ivj}) (z)
N2p

GMEN M) < K6 () s = K\/
holds with probability larger than
1-N¢ exp(—C'KTﬁl)

for some positive constants C, C’. Now by Lemma 3.19 and the assumption on p one has

STrG(z)

Ny V() S CKU(:), i T( K)NE)

rf G () B My (2)r < K\/

Now note
#H{T C {1,...,N}:|T| < p} = O(NPT).

Thus in I'(z, K) NE°(z), T holds with probability larger than
C -1 C/ -1
1 - O(NPCexp(—C'K™ ")) >1-— exp(—?KT )

by the assumption on p. Thus we conclude the proof. O
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3.3. Strong local MP type law around X,. Now we start to prove Theorem 3.2. The proof
relies on a bootstrap strategy we have mentioned in Introduction and is similar to that of the
null case in [27]. The main difference is that the iterate rate in the bootstrap process for our
non-null case is slower than that of the null case in [27]. Roughly speaking, we will show that if
for some exponent 7, A(z) < (Nn)~7 holds up to some logarithmic factor with high probability,

—(14371)

then A(z) < (Nn)~ % up to some logarithmic factor with high probability.

PrROOF OF THEOREM 3.2. We assume ¢ > 1. By Theorem 3.3, Lemma 3.8 and Lemma 3.20,
we know that for any ¢ > 0, there exists a positive constant C¢ such that

O1c ] (D(z¢%)NE(2) NT(2))
2€S5,(8,10C;)

holds with (¢ + 2(log 1.3)~1)-high probability. In the sequel, we assume
(3.96) C¢ > 7(10¢ + 20(log 1.3) 1),
where 7 > 1 is the parameter in Lemma 3.4. By Lemma 3.12 we know
Dma)(2)] < Co?Cew? + Y]], in ©y.
Now let A1 =1, thus A < Aq in ©7. Set
p=p1 = —log(1 —P(©1))/(log N)*

in Lemma 3.14. Then we have

p1 = C¢C+2(log 1‘3)_1/(log N)Q.
Recall the parameters K, L used in Lemma 3.14, L = 10C;, K = Y. Thus it is easy to check
(3.77) by (3.96).

By Lemma 3.14, we know for z € S,.(¢,10C;) there exists an event O2 such that

O C 01, P(O3) =1—exp(—p1)

and
C\
Y]] < (p20<+5g+1o(1og1.3)*1(\1,% AT, W = dmjo\];; A1, in O,
Then in ©5, we have
(397) |D(mN)(z)\ < ¢2C<+5C+10(10g 1.3)—1(‘1}% i Al\Ill).

Note that the r.h.s. of (3.97) is decreasing in n and by (3.96) it is less than (log N)~®. Then by
using Lemma 3.13 we have

2
(3.98)  A(2) < Ao(2) = @20<+6<+1000g1~3>1< L Skl )

+
VE+n+83  VEt+n+ AU

Now by using the fact that

Smo(z) < O(WVK+mn), inS.(¢10C;)
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one can easily get that

2 1/2
(3.99) L < oAy
VE+n+ 0 '
Moreover, in ©9 we have
(3.100) A1y < A Lk R

Vet t AT U (ke AU (AT

Note that we have

1 1
(3.101) < )
(A1 q)1/4 (Ay /1%)1/4
and
w2 Smo(2) /(N Ay /(N _ _
n 1¥1 n (Ay /ﬁ)lﬂ
(3.102)

Inserting (3.101) and (3.102) into (3.100) we have

Al\I/l 5/8 —3/8 3/4 —1/4
< C(A/°(N AVT(N .
e < C (AT @) A ) )

Combining (3.99) and (3.103) we have for z € S,.(¢, 10C;), there exists

(3.103)

A < Ay < p2Cct6C+10(log 1.3)~1 (A?/4(Nn)‘1/4) <1
Then iterating this process for Ky := loglog N/log 1.3 times, we have
Ok, C Oko—1, P(Ok,) =1 —exp(—pk,)
with
Pio = —log[l — P(Ox,_1)]/(log N)? = Cip¢ 2181 (1og N) =20 > ¢
and in O, one has

A(2) < Agy(2) = OO0t TIAR | ()7

(p20§+6€+10(10g 1.3)71 (Nn)—1+(3/4)Ko

¥

IN A

2C;+6¢+10(log 1.3) "1 +1 (Nn)—l

where in the last step we have used the fact that
K,
NG/ < ©

which can be easily verified by the definition of Ky. Thus we complete the proof of (3.11) by
adjusting the constant C¢ in Theorem 3.2. Moreover, by ©f, C ©1 and the definition of ©; we
obtain (3.12). O
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4. Convergence rate on the right edge. In this section, we will prove Theorem 1.5. To
this end, we need to translate the information on my(z) to the eigenvalues around A,. Actually,
we will turn to prove the result for the truncated matrices satisfying condition 1.5. In other
words, we will verify the following slight modification of Theorem 1.5.

THEOREM 4.1 (Convergence rate around A, for truncated matrix). Under Condition 1.1 and
(3.4), for any ¢ > 0 there exists a constant C¢ such that the following events hold with ¢-high
probability.

(i): For the largest eigenvalue \1(W), there exists

IMOW) = A < N72/3p5,
(ii): For any
ElaEQ S [)\7" - 6) CT‘]?
there exists

C(log N)p“

(4.1) |(Fn(E1) — Fn(E2)) — (Fo(Er) — Fo(E2))| < N

PROOF OF THEOREM 1.5 ASSUMING THEOREM 4.1. Note that by (2.1), (3.2) and (3.3) we
can easily recover the results from the truncated matrix to the original one with overwhelming
probability. O

Therefore, it suffices to prove Theorem 4.1 in the sequel.

PrROOF OF THEOREM 4.1. Relying on the strong local MP type law, the proof is analogous
to the counterparts in [21] and [27]. Note that by Lemma 2.1, it is easy to see

3¢
2-¢
1 — FO()\T — QOCCN72/3) ~ QOT

Then if (ii) of Theorem 4.1 holds,

M(W) 2 A, — N723p%
holds with ¢-high probability. Thus it suffices to prove that (ii) and
(4.2) AL(W) < A+ N723p%

hold with (-high probability.
At first we come to verify (4.2). We recall the fact that

CYl < )\1(W) < Cr

holds with (-high probability.
Therefore, to show (4.2), it suffices to prove for any ¢ > 0, there exists some C¢ > 0 such that

(4.3) max{\;j(W) : \;(W) < Cp} < A\, + N~2/3p%

with ¢-high probability. To this end, we recall the iteration process in (3.97) and (3.98). In the
sequel, we set C¢ = 5D¢. By (i) of Theorem 3.2, we know that with (-high probability,

%mo—%—]\%} 1 %m0+ﬁ

Smo—i-ﬁ
Ny N Ny

< CpPe N

[D(m)(2)] < "
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for some constants D¢, C' > 0. Thus we have

) %Tno—‘r]\,i
A(z) < Clog N)pPe ——— §:= — N1
(z) < C(log N)ep =75 4 Nu

Now for any F > A\, + N*2/3cp5D<, we choose
0= o De NT1/2,1/4
Note here
k=E— )\ >N23,0¢
It is easy to check the following relations,

D VE
(4.4) K> pUom, W > 1.

By using (ii) of Lemma 2.3, we have

1

and thus
C
5 < Nn)~2

Then we can get

1 1 1
46 Az <CpPe (D4 = ) — «
(49) (z) < C¢ (R+N77\/E)N77<<N77’

where we have used the fact that
Nk > C¢5D</2.

Then (4.5) and (4.6) together imply

Now by the basic relation
N(E —n,E+n) <CNnSmpy(z) <1

we know there is no eigenvalue in [E — 1, E + 7. Thus (4.3) is verified, so (4.2) follows.

For (ii), with the aid of Theorem 3.2, the proof of (4.1) is just the same as the proof of (8.6) in
[27]. The main strategy is to translate the closeness between my and mg to that of the spectral
distributions (Fx and Fp). Such a strategy is independent of the matrix model. Actually, we
only need to set the interval [A;, As] = [\, — ¢, C;] in Lemma 8.1 of [27] and the remaining part
of proof is totally the same as the counterpart in [27]. Thus here we do not reproduce the details.

Therefore, we complete the proof. O
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5. A corollary of Theorems 3.2 and 4.1. Below we will provide a corollary of Theorems
3.2 and 4.1 which will be used in our subsequent work [7]. Such a corollary can establish an
approximate equivalence between the distribution function of the largest eigenvalue and the
expectation of a functional of the Stieltjes transform. This equivalence will be crucial in the so
called Green function comparison procedure used in [7].

By using the square root behavior of pg(z) in Lemma 2.1 again, it is easy to see for any
positive constant C¢,

§C<
1 — Fy( — 200 N=2/3y o 222
N
when N is sufficiently large. Together with (4.1) we immediately get that
20,

¥
N

(5.1) Fn(A + 209 N723) — Fx (A, — 205 N72/3) <
with (-high probability. Moreover by Theorem 4.1, we also have
(5.2) M OW) = Ap| < N2/

with (-high probability. Thus to show Theorem 1.4, it suffices to assume that

Now set

For any £ < E; we denote
XE = 1g K,
For ease of presentation, we denote

1 n

C\l pr—
\S:U—in (22 +n2)’

Oy () := %

and the number of eigenvalues of Wy in an interval [E7, Eq] by
N(Ey, Ey) := N(Fy(E3) — Fn(Ey)).
By definition we have
N(E,E;) = Trxp(Wn).

Observe that

1 [Ee ,
Trxp— *0,(Wn) = N; Smy(y + in)dy,
Bl

which can be viewed as a smoothed version of the counting function Tryg(Wy) on scale . An
obvious advantage of Trxg_; * 6,(Wy) is that it can be represented in terms of the Stieltjes

transform. The following lemma claim that we can replace Trxg(Wy) by its smoothed approx-
imation T'rxg—; * 0,(Wn).
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COROLLARY 5.1. Letm = N—2/379% | = %N‘2/3_5 and h(zx) be a smooth cut-off function
satisfying

h(z)=1 if |2]<1/9, h(z)=0 if |z|>2/9, h'(z)<0 if z>0.

Then we have

Eh (Trxp—1 % 0y (WN)) < P(M(Wy) < E) < Eh (Trxp * 0y (W) + O(exp(—¢))
when N is sufficiently large.

At first, we need to prove the following lemma.

LEMMA 5.2. Let g = N=2/379 gnd |} = N=2/373¢ for any e > 0. If E satisfies

B = \| < St
we have
I Trxe(WN) = Trxp * 0y, (Wy)| < C (N> + N(E = 11, E+1y))

holds with C-high probability.

PROOF. The proof is similar to that of Lemma 4.1 of [27]. Thus we will just sketch it below.
By the assumption on F, (5.1) and (5.2), we can use (4.9) of [27], that is

Trxe(WN) = XxB * 0y (WN)| < CN(E — 1, E+ 1) + N7%)

+ ON771(E4—E)/ 2\smN(E y—i—zl )d

24108

By the bounds for A; (W) in (1.12), we know
/ L (E —y+il)dy = O(1)
Smy y+i
E—y>Cr Y +l2 '

with ¢-high probability. Now we further split the interval [—oo, C,] into (—oo, A, — ¢) and (A, —
¢, Cr]. When E —y € [\, — ¢, C,], we have
oG

ISmy(E —y+ily) — Smo(E —y +ily)| < NI

with (-high probability. When E — y € (—o0, A\, — ¢), by assumption on E we have y > ¢/2.
Thus we have

1
/ Bey<c, y +12\SmN(E y+zll)d
o< ys
1
_ A e RSB —y il + O)
r—C<E—y<

Moreover, it is not difficult to get
1

Nt B y<C, y +12\9mN(E y+zl1)d
r—C ys

Ce 1
Smo(E — y—l—zll)dy—{—(p/ -

1
S/ o2 2 72
A—i<B—y<C, Y2+ 1T Nl Sy —e<p—y<c, ¥* + 1§
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L By T hdy + 0
S, 2 | - Y- r’+1y+ Nil%

<C
M—i<B-y<C, Y2+ 1

with (-high probability. Then by the assumption on E and the definitions of n; and [y, it is not
difficult to obtain

1
1

through elementary calculations. Thus we conclude the proof. O

PrROOF OF COROLLARY 5.1. With the aid of Lemma 5.2, the proof of Corollary 5.1 is nearly
the same to that of Corollary 4.2 of [27] for the null case. Hence we do not reproduce the details
here. O
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