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LIMITING LAWS FOR DIVERGENT SPIKED EIGENVALUES

AND LARGEST NON-SPIKED EIGENVALUE OF SAMPLE

COVARIANCE MATRICES

T. TONY CAI, XIAO HAN, AND GUANGMING PAN

Abstract. We study the asymptotic distributions of the spiked eigenvalues and
the largest nonspiked eigenvalue of the sample covariance matrix under a general
covariance matrix model with divergent spiked eigenvalues, while the other eigen-
values are bounded but otherwise arbitrary. The limiting normal distribution
for the spiked sample eigenvalues is established. It has distinct features that the
asymptotic mean relies on not only the population spikes but also the nonspikes
and that the asymptotic variance in general depends on the population eigenvec-
tors. In addition, the limiting Tracy-Widom law for the largest nonspiked sample
eigenvalue is obtained.

Estimation of the number of spikes and the convergence of the leading eigen-
vectors are also considered. The results hold even when the number of the spikes
diverges. As a key technical tool, we develop a Central Limit Theorem for a
type of random quadratic forms where the random vectors and random matrices
involved are dependent. This result can be of independent interest.

KEYWORDS: Extreme eigenvalues, factor model, principal component anal-
ysis, sample covariance matrix, spiked covariance matrix model, Tracy-Widom
distribution.

1. Introduction

Covariance matrix plays a fundamental role in multivariate analysis and high-
dimensional statistics. There has been significant recent interest in studying the
properties of the leading eigenvalues and eigenvectors of the sample covariance ma-
trix, especially in the high-dimensional setting. See, for example, [2, 10, 12, 13, 21,
26–29, 31]. These problems are not only of interest in their own right they also have
close connections to important statistical problems such as principal component
analysis and testing for the covariance structure of high-dimensional data.

Principal component analysis (PCA) is a widely used technique in multivariate
analysis for a range of purposes, including dimension reduction, data visualization,
clustering, and feature extraction [1, 20]. PCA is particularly well suited for the set-
tings where the signal of interest lies in a much lower dimensional subspace and it
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has been applied in a broad range of fields such as genomics, image recognition, data
compression, and financial econometrics. For example, widely used factor models in
financial econometrics typically assume that a small number of unknown common
factors drive the asset returns [15]. In PCA, the leading eigenvalues and eigenvec-
tors of the population covariance matrix need to be estimated from data and are
conventionally estimated by their empirical counterparts. It is thus important to
understand the spectral properties of the sample covariance matrix.

1.1. The Problem. To be concrete, consider the data matrix Y = ΓX where
X = (x1, · · · ,xn) is a (p+ l)×n random matrix whose entries are independent with
zero mean and unit variance and Γ is a p×(p+ l) deterministic matrix with l/p → 0.
Let Σ = ΓΓ⊺ be the population covariance matrix. The sample covariance matrix
is defined as

(1.1) Sn =
1

n
YY⊺ =

1

n
ΓXX⊺Γ⊺.

Denote the singular value decomposition (SVD) of Γ by

(1.2) Γ = VΛ
1
2U,

where V and U are p× p and p× (p+ l) orthogonal matrices respectively (VV⊺ =
UU⊺ = I), and Λ is a diagonal matrix consisting in descending order of the eigen-
values µ1 ≥ · · · ≥ µp of Σ.

In statistical applications such as PCA, one is most interested in the setting where
there is a clear separation between a few leading eigenvalues and the rest. In this
case, the leading principal components account for a large proportion of the total
variability of the data. We consider in the present paper the setting where there are
K spiked eigenvalues that are separated from the rest. More specifically, we assume
that µ1 ≥ · · · ≥ µK tend to infinity, while the other eigenvalues µK+1 ≥ · · · ≥ µp

are bounded but otherwise arbitrary. Write

(1.3) Λ =

(
ΛS 0
0 ΛP

)
,

where ΛS = diag(µ1, ..., µK) and ΛP = diag(µK+1, ..., µp).
A typical example of (1.3) is the factor model

(1.4) Y = ΛF+TZ = (Λ T)

(
F

Z

)

where Λ is p×K-dimensional factor loading, F is the corresponding K × n factor,
T is p × p matrix and Z is the idiosyncratic noise matrix. A common assumption
is that the singular values of the factor part ΛF are significantly larger than those
of the noise part (otherwise the signals are overwhelmed by noise). Indeed, [30]
considered the weak factor model to test the number of factors, where the leading
eigenvalues contributed by the factor part are of order pθ for some θ ∈ (0, 1). [4] and
[23] assume that the leading eigenvalues of the pervasive factor model are of order
p. Here Γ = (Λ T) is not a square matrix, and thus it is necessary to consider the
setting where Γ is rectangular.
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A second example is the covariance matrix Σ used in the intraclass correlation
model, where the covariance matrix is of the form

Σ = (1− ρ)I+ ρee⊺.

Here I is the identity matrix, e = (1, 1, ..., 1)⊺ and 0 < ρ < 1. It is easy to see that
the leading eigenvalue of Σ is pρ+ (1− ρ), while the other eigenvalues are equal to
(1− ρ).

We study in the present paper the asymptotic distributions of the leading eigen-
values and the largest nonspiked eigenvalue of the sample covariance matrix Sn,
under the general spiked covariance matrix model given in (1.2) and (1.3) with
divergent spiked eigenvalues µ1 ≥ · · · ≥ µK . In many statistical applications, de-
termining the number of principal components is an important problem. We also
consider estimation of the number of spikes as well as the convergence of the leading
eigenvectors.

The model defined through (1.2) and (1.3) belongs to the class of spiked covariance
matrix models. Johnstone [26] was the first to introduce a special spiked covariance
matrix model, where the population covariance matrix is diagonal and is of the form

Σ = diag(µ2
1, ..., µ

2
K , 1, ..., 1)(1.5)

with µ1 > µ2 · · · ≥ µK > 1. [26] established the limiting Tracy-Widom distribu-
tion for the maximum eigenvalue of the real Wishart matrices when p and n are
comparable. The spiked covariance matrix model (1.5) in [26] has been extended
in various directions. So far the focus has mostly been on the settings of bounded
spiked eigenvalues with all the nonspiked eigenvalues being equal to 1. See more
discussion in Section 1.3.

1.2. Our contributions. In this paper, we first establish the limiting normal distri-
bution for the spiked eigenvalues of the sample covariance matrix Sn. The limiting
distribution has a distinct feature. Unlike in the more conventional settings, the
asymptotic variance in general depends on the population eigenvectors. More pre-
cisely, the variance of a spiked sample eigenvalue depends on the right singular vector
matrix U defined in the SVD (1.2) (but not the left singular vector matrix V). The
limiting distribution of the spiked sample eigenvalues also precisely characterizes the
dependence on the corresponding population spiked eigenvalues as well as the non-
spiked ones. New technical tools are needed to establish the result. In particular,
we develop a Central Limit Theorem (CLT) for a type of random quadratic forms
where the random vectors and random matrices involved are dependent. This result
can be of independent interest. In addition, we establish the limiting Tracy-Widom
law for the largest nonspiked eigenvalue of Sn.

The limiting distributions for the spiked eigenvalues and the largest nonspiked
eigenvalue have important applications. In particular, based on our theoretical re-
sults, we propose an algorithm for estimating the number of the spikes, which is
of interest in many statistical applications. We also consider the properties of the
sample eigenvectors corresponding to the spiked eigenvalues and show that they are
consistent estimators of the population eigenvectors in terms of the L2 norm. An
important improvement of our paper over many known results in the literature is
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that our results hold even when the number of the spikes diverges as n, p → ∞, and
we allow the nonspiked eigenvalues to be unequal.

1.3. Background and related work. Since the seminal work of Johnstone [26],
the special spiked covariance matrix model (1.5) has been studied much further and
the model has been extended in various directions. See, for example [2, 3, 6, 11–
13, 27, 28, 31, 33, 34]. We discuss briefly here some of these results. This review is
by no means exhaustive.

Paul [31] showed that if p/n → γ ∈ (0, 1) as n → ∞, and the largest eigenvalue
µ1 of Σ satisfies µ1 ≤ (1 +

√
γ), then the leading sample principal eigenvector v̂1 is

asymptotically almost surely orthogonal to the leading population eigenvector v1,
i.e., |v′

1v̂1| → 0 almost surely. Thus, in this case, v̂1 is not useful at all as an
estimate of v1. Even when µ1 > (1 +

√
γ), the angle between v1 and v̂1 still does

not converge to zero unless µ1 → ∞.
Baik and Silverstein [2] considered a case where the covariance matrix

Σ = V

(
ΛS 0
0 I

)
V⊺(1.6)

with ΛS being a diagonal matrix of fixed rank and V a unitary matrix. It is shown
that the spiked eigenvalues tend to some limits in probability, assuming that the
spectral norm of ΛS is bounded and limn→∞

p
n = γ ∈ (0,∞). Bai and Yao [6] further

showed that the spiked eigenvalues converge in distribution to Gaussian distribution
or the eigenvalues of a finite dimensional matrix with i.i.d. Gaussian entries. Baik,
et al. [3] investigated the asymptotic behavior of the largest eigenvalue when the
entries of X follow the standard complex Gaussian distribution and observed a phase
transition phenomenon that the asymptotic distribution depends on the scale of the
spiked population eigenvalues. Recently, Bloemendal et al. [11] obtained the precise
large deviation of the spiked eigenvalues and non-spiked eigenvalues under a more
general model than (1.6). We should note that the above results only consider the
the case of bounded spiked eigenvalues with the nonspiked eigenvalues all being
equal to 1.

Jung and Marron [28] and Shen et al. [33] considered the model

Y = VΛ
1
2X,(1.7)

where the entries of X are i.i.d. standard normal random variables, and Λ =
diag(µ1, ..., µK , µK+1, · · · , µp) is the diagonal matrix consisting of the population
eigenvalues, and V is an orthogonal matrix. [28] and [33] showed the almost sure
convergence of the spiked eigenvalues when the spiked population eigenvalues sat-
isfy that p/(µjn), j = 1, · · · ,K tend to positive constants or zero and µK+1, · · · , µp

are approximately equal to one. The almost sure convergence of the eigenvectors
associated with the spikes is also investigated.

Wang and Fan [34] further developed the asymptotic distribution of the largest
sample eigenvalues of the model (1.7) under a more general setting, which allows
µK+1, ..., µp to be any bounded number and the entries of X to be i.i.d. subGaussian
random variables. The asymptotic behaviors of the corresponding eigenvectors are
also discussed in [34]. Here we would like to point out that [34] did not provide the
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limits in probability of spikes for general µK+1, ..., µp when p/(µjn), j = 1, · · · ,K,
tend to positive constants. To the best of our knowledge, the asymptotic behavior of
the spiked eigenvalues for general µK+1, ..., µp when p/(µjn), j = 1, · · · ,K, converge
to positive constants is still open.

Note that [28], [33] and [34] swapped the roles of the sample size n and the
dimension p so that they essentially studied the matrix X⊺ΛX. This is equivalent
to assuming that the population covariance matrix is diagonal. Indeed, as will be
seen later, in general the asymptotic variance of the spiked eigenvalues depends on
the population eigenvectors. This phenomenon does not occur under the previously
studied model.

1.4. Organization of the paper. The rest of the paper is organized as follows.
Section 2 establishes the limiting normal distribution for the spiked eigenvalues and
the limiting Tracy-Widom distribution for the largest nonspiked eigenvalue of the
sample covariance matrix Sn. An algorithm for identifying the number of spikes is
developed in Section 3. Section 4 considers the properties of the principal compo-
nents and shows that the sample eigenvectors corresponding to the spiked eigenvalues
are consistent estimators of the population eigenvectors in terms of the L2 norm.
Most of the results developed for Sn also hold for the centralized sample covariance
matrices and this is discussed in Section 5. Section 6 investigates the numerical
performance through simulations and an application of a factor model. The proof
of one of the main results is given in Section 7 and the proof of the other results is
provided in the supplementary material [14].

2. Asymptotics for Spiked Eigenvalues and Largest Nonspiked

Eigenvalue of Sn

We investigate in this section the limiting laws for the leading eigenvalues and the
largest nonspiked eigenvalue of the sample covariance matrix Sn under the general
spiked covariance matrix model (1.2) and (1.3) with divergent spiked eigenvalues
µ1 ≥ · · · ≥ µK , while the other eigenvalues are bounded but otherwise arbitrary.
We begin with the notation that will be used throughout the rest of the paper.

For two sequences of positive numbers an and bn, we write an & bn when an ≥ cbn
for some absolute constant c > 0, and an . bn when bn & an. We write an ∼ bn
when both an & bn and an . bn hold. Moreover, we write an ≪ bn when an/bn → 0.
For a sequence of random variables An, if An converges to b in probability, then we

write An
i.p.→ b. We say an event An holds with high probability if P(An) ≥ 1−O(n−l)

for some constant l > 0. Denote the j-th largest eigenvalue of a matrix M by λj(M)

and the largest singular value by ‖M‖. Set ‖M‖F =
√

tr(MM⊺). For simplicity,
denote by λ1 ≥ λ2 ≥ ... ≥ λK ≥ · · · ≥ λp the ordered eigenvalues of the sample
covariance matrix Sn, and denote by µ1 ≥ µ2 ≥ ... ≥ µK ≥ · · · ≥ µp the ordered
eigenvalues of the population covariance matrix Σ. Throughout this paper c and C
are constants that may vary from place to place.

To investigate the sample covariance matrix Sn in (1.1) with the population co-
variance matrix Σ specified in (1.2) and (1.3) we make the following assumptions.
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Assumption 1. {xj = (x1j , · · · ,xp+l,j)
⊺, j = 1, ..., n} are i.i.d. random vectors.

{xij : i = 1, ..., p + l, j = 1, ..., n} are independent random variables such that
Exij = 0, E|xij |2 = 1, E|xij|4 = γ4i and supi γ4i ≤ C.

Assumption 2. p & n and the K largest population eigenvalues µi are such that
di ≡ p

nµi
→ 0, i = 1, 2, ...,K. And for i = K + 1, ..., p, µi are bounded by C.

Moreover, K
n1/6 → 0 and K2dK → 0.

Assumption 2′. p
n → 0, µi ≫ 1, i = 1, ...,K and K ≪ min{p, n1/6}.

Note that we do not assume that p and n are of the same order. The following
theorems hold either under Assumption 2 or Assumption 2′ except Theorem 2.5.
We only give the proofs under Assumption 2. The proofs under Assumption 2′ are
similar and thus we omit them.

Assumption 3. There exists a positive constant c not depending on n such that
µi−1

µi
≥ c > 1, i = 1, 2, ...,K.

Assumption 3 implies that the spiked eigenvalues are well-separated. It also im-
plies that λ1 > λ2 > ... > λK with probability tending to 1 by Theorem 2.1 below.

2.1. Asymptotic behavior of the spiked sample eigenvalues. Our first result
gives the limits in probability for the spiked eigenvalues of Sn, λ1 ≥ ... ≥ λK .

Theorem 2.1. Suppose that Assumption 1 holds. Moreover, either Assumption 2
or Assumption 2′ holds. Then

λi

µi
− 1 = Op(di +

K4

n
+

1

µi
),(2.1)

uniformly for all i = 1, ...,K.

Remark 1. As mentioned in the introduction, PCA is an important statistical tool
for analyzing high-dimensional data. Several recent results on high-dimensional PCA
are quite relevant to Theorem 2.1. Recently [7] considered AIC and BIC criteria for
selecting the number of significant components in high dimensional PCA when p
and n are comparable. Comparing to the paper [7], Theorem 2.1 here covers Lemma
2.2(i) of [7] and we allow K to tend to infinity. Their assumption µK+1 = · · · =
µp = 1 is also relaxed to bounded eigenvalues here. In addition, checking the proof of
Theorems 3.3 and 3.4 of [7], we find that for general population covariance matrices,

their criteria Ãj and B̃j for estimating the number of spikes may not work since it
highly depends on the assumption µK+1 = · · · = µp = 1, as demonstrated in Table
4 given in Section 6. In addition, Theorem 2.1 also covers part of Theorem 3.1 in
[33] where it assumes normality for the data.

Note that λi
µi

i.p.→ 1 does not imply that λi is a good estimator of µi due to the fact

that µi tends to infinity. Moreover, Theorem 2.1 does not precisely characterize how
the nonspiked population eigenvalues affect the spiked sample eigenvalues. To see
this, it is helpful to make a comparison with the conventional setting studied in [2].
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Consider the model (1.6) and recall the assumptions of [2] that 1+
√
γ < µi = O(1)

and γ = limn→∞
p
n ∈ (0,∞). It was shown in [2] that

(2.2) λi
a.s.→ µi +

γµi

µi − 1
.

So the effect of the population eigenvalues on the corresponding sample eigenvalues
can be precisely characterized in the setting considered in [2]. On the other hand,
one cannot see the effect of the nonspiked population eigenvalues on the spiked
sample eigenvalues from (2.2). Note that if there are no spikes, then all the sample
eigenvalues are not bigger than (1 +

√
γ)2 with probability one. When there are

sufficiently large spikes, the sample spikes are pulled outside of the boundary (1 +√
γ)2 due to the population spikes with probability one. Moreover, (2.2) precisely

quantifies the effect of the population spike. In view of this, one would ask whether
there is a similar phenomenon for unbounded spikes. Indeed, it is natural to imagine
that for the case µi → ∞, the term γµi

µi−1 will not disappear and thus one needs to

subtract it from λi in order to obtain the CLT. Surprisingly, a more precise limit
of λi turns out to be determined not only by µi but also the nonspiked eigenvalues.
This is very different from (2.2) and can be seen clearly from (2.9) below.

We now characterize how the population eigenvalues including spiked eigenvalues
and non-spiked eigenvalues affect the sample spiked eigenvalues. To this end, corre-

sponding to (1.3), partition U as U =

(
U1

U2

)
, where U1 is the K× (p+ l) submatrix

of U, and define

(2.3) Σ1 = U
⊺
2ΛPU2.

For any distribution function H, its Stieltjes transform is defined by

mH(z) =

∫
1

λ− z
dH(λ), for all z ∈ C+.

For any θ 6= 0, let m̃θ(z) be the unique solution to the following equation

m̃θ(z) = −
(
z − 1

n
tr(I+ m̃θ(z)

Σ1

θ
)−1Σ1

θ

)−1

, z ∈ C+,(2.4)

where C+ denotes the complex upper half plane and Σ1 is defined in (2.3). Here
m̃θ(z) is the limit of the Stieltjes transform of the empirical distribution function of
the random matrix 1

nθX
⊺Σ1X, associated with the nonspiked population eigenval-

ues. Indeed, as will be seen, for θ ≫ p
n ,

m̃θ(z)−
1

n
Etr(zI− 1

nθ
X⊺Σ1X)−1 → 0

for z ∈ C+ by a slight modification of the proof of Appendix 7.2. One can also
refer to (1.6) of [9] or (6.12)-(6.15) of [5] for (2.4). One may see below that m̃θ(z)
describes the collective contribution of the nonspiked eigenvalues of Σ to the spiked
sample eigenvalues.

By (2.4), we set θi to be the solution to

m̃θi(1) +
θi
µi

= 0,(2.5)
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where m̃θi(1) = lim
z∈C+→1

m̃θi(z). It turns out that θi instead of µi is the more precise

limit of the spiked sample eigenvalues λi. From (2.5) one can see that θi depends
on µi as well as the nonspiked part Σ1. Indeed, this point can be seen more clearly
from (2.9) below. To the best of our knowledge, such a dependence of θi on µi as
well as the nonspiked part Σ1 has never been appeared in the literature before.

Assumption 4. Assume that the following limits exist:

σi = lim
p→∞

√√√√
p+l∑

j=1

(γ4j − 3)u4ij + 2, σij = lim
p→∞

p+l∑

s=1

(γ4s − 3)u2isu
2
js.

We are ready to state the asymptotic distribution of the spiked eigenvalues of Sn.
Let u⊺

i be the i-th row of U with uij being the (i, j)-th entry of U.

Theorem 2.2. Suppose that Assumptions 1, 3, and 4 hold. Moreover, either As-
sumption 2 or Assumption 2′ hold. Then for all i = 1, 2, ...,K,

√
n
λi − θi

θi

D−→ N
(
0, σ2

i

)
.(2.6)

Moreover, for any fixed r ≥ 2
(√

n
λ1 − θ1

θ1
, ...,

√
n
λr − θr

θr

)
D−→ N

(
0,Σ(r)

)
,(2.7)

where Σ(r) = (Σ
(r)
ij ) with

Σ
(r)
ij =

{
σ2
i , i = j

σij, i 6= j,

It follows from (2.4) and (2.5) that m̃θi(1) → −1. Therefore θi
µi

→ 1. However,

we can not replace θi by µi in (2.7) directly because the convergence rate of θi
µi

to 1

is unknown. Indeed, by (2.4), we have

θ = − θ

m̃θ(1)
+

p−K

n

∫
tdFΛP

(t)

1 + tm̃θ(1)θ−1
,(2.8)

where FΛP
is the empirical spectral distribution of ΛP . Here for any n×n symmetric

matrix A with real eigenvalues, the empirical spectral distribution (ESD) of A is
defined as

FA(x) =
1

n

n∑

i=1

I{λi(A)≤x}.

Together with (2.5), we conclude that

θi = µi(1 +
p−K

n

∫
tdFΛP

(t)

µi − t
).(2.9)

By the Taylor’s expansion we have

θi
µi

= 1 + ffi +O(
p

nµ2
i

),(2.10)
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where

f =
1

p−K

p∑

j=K+1

µj and fi =
p−K

nµi
.

In particular, for the special case µK+1 = ... = µp = 1, (2.9) yields that

(2.11) θi = µi(1 +
p−K

n(µi − 1)
).

It is interesting to note that, although here the spiked eigenvalues µ1, · · · , µK are
divergent, this is consistent with the right hand side of (2.2), which is for the con-
ventional setting of bounded spiked eigenvalues. It then follows from (2.10) that

(2.12)
√
n
(λi

µi
− 1− ffi +O(

p

nµ2
i

)
)

D→ N
(
0, σ2

i

)
.

Remark 2. We note that Assumption 4 is not needed if we consider the individual
asymptotic distribution of the spiked sample eigenvalues. To see this, it suffices to

normalize (λi−θi)/θi by σi =

√
p+l∑
j=1

(γ4j − 3)u4ij + 2. Moreover, the joint distribution

of λi−θi
σiθi

, i = 1, ..., r tends to the normal distribution with the covariance matrix being

the correlation matrix corresponding to Σ(r).

Remark 3. It is helpful to compare the above theorem with Theorem 3.1 of [34].
Besides the difference between the models in (1.2) and (1.7), one of the key differ-
ences is that σ2

i in (2.12) depends on the entries of the eigenvector matrix U while
the variance in Theorem 3.1 of [34] does not depend on it. This is due to the fact

that [34] assumes that U = I. Secondly, Theorem 3.1 of [34] involves Op(
√
p√

nµi
)

which reduces to O( p
nµ2

i
) (essentially O( 1

µi
)) in (2.12) by dropping the additional

√
p√
n
. Thirdly we also allow K to diverge. Fourthly [34] assumes xij to be subGaus-

sian random variables while Theorem 2.2 holds under the bounded fourth moment
assumption.

In view of (2.10) we need to estimate f and fi in practice. A natural estimator

of fi is
p−K
nλi

by Theorem 2.1. For f , one can use

(2.13) f̂ =
1
n tr(ΓXX⊺Γ)−∑K

i=1 λi

p−K − pK/n

which was proposed in [34]. When p ∼ n, by Proposition 1 in the next section, K
can be estimated accurately.

Moreover, Theorem 2.2 can be extended to the case when the population eigen-
values µi have multiplicity more than one.

Assumption 5. Suppose that K ≪ n1/6, αL = µK = ... = µK−nL
< αL−1 =

µK−nL+1... < α1 = µn1 = ... = µ1, and there exists a constant c such that αi−1

αi
≥

c > 1, i = 1, 2, ...,L. Moreover, n1,..., nL are finite.
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Assumption 6. Suppose that the following limits exist

G(ri, k1, k2, l1, l2) = lim
n→∞

n2 × Cov(u⊺
ri+k1

x1u
⊺
ri+l1

x1,u
⊺
ri+k2

x1u
⊺
ri+l2

x1).

If either the fourth moments γ4s = 3, s = 1, ..., p+l or the entries of the population
eigenvectors satisfy min

r∈{k1,k2,l1,l2}
max

j
|uri+r,j| = o(1), then

g(ri, k1, k2, l1, l2) =

{
1 if k1 = k2 and l1 = l2 or k1 = l2 and l1 = k2

0 otherwise.

Then we have the following result.

Theorem 2.3. Suppose that Assumptions 1, 5 and 6 hold. Moreover, either As-
sumption 2 or Assumption 2′ holds. Let

θi = αi(1 +
p−K

n

∫
tdFΛP

(t)

αi − t
).

Let ri =
∑i−1

j=0 nj, for i = 1, 2, ...,L. Then
√
n

θi
(λri+1 − θi, λri+2 − θi, ..., λri+ni − θi)

D→ Ri,(2.14)

where Ri are the eigenvalues of ni × ni Gaussian matrix Si with ESi = 0 and the
covariance of the (Si)k1,l1 and (Si)k2,l2 being G(ri, k1, k2, l1, l2).

The proof of Theorem 2.2 requires new technical tools. The following CLT for
a type of random quadratic forms, where the random vectors and random matri-
ces involved are dependent, plays a key role in the proof. This result can be of
independent interest.

Theorem 2.4. Suppose that Assumption 1 holds and the spectral norm of Σ1 is
bounded. In addition, suppose that there exist orthogonal unit vectors w1 and w2

such that w⊺
1U

⊺
2 = w

⊺
2U

⊺
2 = 0 and w

⊺
1w2 = 0. If θ

p+l
n

→ ∞ and θ → ∞, then

√
n

σ̃1

(
w

⊺
1X(nI−X⊺Σ1

θ
X)−1X⊺w1 + m̃θ(1)

)
D→ N (0, 1)(2.15)

and √
n

σ̃12
w

⊺
1X(nI−X⊺Σ1

θ
X)−1X⊺w2

D→ N (0, 1)(2.16)

where σ̃2
1 =

∑p+l
j=1[(γ4j − 3)w4

1j ] + 2, σ̃2
12 =

p+l∑
s=1

[(γ4s − 3)w2
1sw

2
2s] + 1 and wij is the

j-th element of wi, i = 1, 2.

2.2. Tracy-Widow law for the largest nonspiked eigenvalue of Sn. We now
turn to the limiting distribution of the largest nonspiked eigenvalue of the sample
covariance matrix Sn. The limiting law is of interest in its own right and it is also
important for the estimation of the number of the spikes. To this end we introduce
additional assumptions.

Assumption 7. There exist constants ck such that E|xij |k ≤ ck for all k ∈ N+.
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Assumption 8. Recall (1.3) and (2.3). Let mΣ1(z) be the Steiltjes transform of the
limit of the spectral distribution (LSD) of 1

nX
⊺Σ1X and let γ+ be the right most

end point of the LSD of X⊺Σ1X. Suppose that

lim sup
n

µK+1d < 1,(2.17)

where d = − lim
z∈C+→γ+

mΣ1(z).

Intuitively, (2.17) restricts the upper bound of µK+1 to ensure λK+1 to be a
nonspiked eigenvalue. Denote the i-th largest eigenvalue of 1

nX
⊺Σ1X by νi. Note

that the limiting law of ν1 is the Type-1 Tracy-Widom distribution.

Theorem 2.5. Suppose Assumptions 3, 7, and 8 hold. In addition, either Assump-
tion 2 or 5 holds. Recalling l above (1.1), l ≪ n1/6 and p ∼ n. For any i satisfying
1 ≤ i−K ≤ log n, we have, with high probability,

|λi − νi−K | ≤ n−2/3−ǫ,

In particular, λK+1 has limiting Type-1 Tracy-Widom distribution.

Remark 4. Theorem 2.5 shows that the non-spiked sample eigenvalues λK+1, λK+2,...,
λK+r share the same asymptotic distribution as ν1, ν2,..., νr since the fluctuation
of ν1, ν2,..., νr are n−2/3 ≫ n−2/3−ǫ. Here r is a fixed integer. See [8] and [22] for
more details.

3. Estimating The Number of Spiked Eigenvalues

Identifying the number of spikes is an important problem for a range of statistical
applications. For example, a critical step in PCA is the determination of the number
of the significant principal components. This issue arises in virtually all practical
applications where PCA is used. Choosing the number of principal components is
often subjective and based on heuristic methods. As an application of the main
theorems discussed in the last section, we propose in this section a procedure to
identify the number of the spiked eigenvalues.

Suppose that the conditions of Theorem 2.5 hold. Define the asymptotic variance
of ν1 by (see also (3) of [18] )

σ3
n =

1

d3
(1 +

p−K

n

∫
(

λd

1− λd
)3dFΛP

(λ)).(3.1)

By Theorem 2.5, λK+1 has the same asymptotic distribution as ν1. Together with
Theorem 1 of [18], we have

n2/3λK+1 − γ+
σn

D−→ TW1,(3.2)

where TW1 is the Type-1 Tracy-Widom distribution. Onatski [30] also established
such a result for the complex case, but Theorem 1 of [30] requires that the spiked

eigenvalues are much bigger than n2/3 and p/n = o(1). Moreover, the statistics used
in [30] does not estimate γ+ and σn, while our approach estimates them.

Recall that γ+ is the asymptotic mean of λK+1. From (3.2) one can see that the

confidence interval of γ+ is [λK+1 − w∗σnn−2/3, λK+1 + w∗σnn−2/3], where w∗ is a
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suitable critical value from the Type-1 Tracy-Widom distribution. This, together
with Theorem 2.2, implies that it suffices to count the number of the eigenvalues
of Sn that lie beyond (γ+ + w∗σnn−2/3 log n) to estimate the number of spikes K
where log n can be replaced by any number tending to infinity. However, in practice
γ+ and σn are unknown and need to be estimated.

We first consider estimation of σn. It turns out that

σn =


− lim

z→γ+
+

∫ dF0(x)
(x−z)3

(
∫ dF0(x)

(x−z)2
)3




1/3

,(3.3)

where F0(x) is the limit of the spectral distribution function of 1
nX

∗Σ1X (see Sec-
tion 7 in the supplementary material). Moreover, one can verify that with high
probability

λK+1 ≤ λn1/6 + log n× n−5/9(3.4)

(see Section 7 in the supplementary material). In view of (3.4) we estimate F0(x)

by its empirical version λn1/6 , λn1/6+1, ..., λn in (3.3), i.e. we exclude the first n1/6

eigenvalues of Sn. Moreover, for γ+ in (3.3), we use λn1/6 +n−4/9 to replace it. The

reason for using λn1/6 +n−4/9 to estimate γ+ instead of λn1/6 is to avoid singularity

in
∫ dF0(x)

(x−γ+)3
. The estimator of σn is then given by

σ̂n =

(
−

1
n−n1/6

∑n
i=n1/6

1
(λi−z0)3

( 1
n−n1/6

∑n
i=n1/6

1
(λi−z0)2

)3

)1/3

, where z0 = λn1/6 + n−4/9.

We next consider estimation of γ+, the asymptotic mean of λK+1. By the as-
sumption that K ≪ n1/6, it follows from Theorems 2.2 and 2.5 that λn1/6 is not a
spiked eigenvalue. Based on this, an upper bound of λK+1 is given in (3.4). Hence
we use the following p̂0 as an initial upper bound of λK+1

p̂0 = λn1/6 + log n× n−5/9.(3.5)

Although p̂0 is a good upper bound for λK+1 theoretically, it does not depend
on σn and hence in practice p̂0 may not work well. Based on (3.2), we propose the
following iteration approach to update p̂0. The idea behind the iteration is that
even if p̂0 is not larger than λK+1 in practice, p̂0 is still close to λK+1. Thus by
(3.2), there is at least one eigenvalue in the interval [p̂0, p̂0 + w∗mnσnn

−2/3], where
mn → ∞.

(1) Define the initial value p̂0 in (3.5).
(2) Suppose that we have p̂m−1. If there is at least one eigenvalue of Sn belong-

ing to [p̂m−1, p̂m−1 + 2.02(log n)σnn
−2/3], where 2.02 is the 99% quantile of

Type-1 Tracy-Widom distribution, we renew p̂n = p̂n−1 +2.02 log nσnn
−2/3.

Here log n can be also replaced by the other number tending to infinity too.
Otherwise the iteration stops.

(3) After getting p̂n, we return to Step 2 until the iteration stops.

(4) Denote the final value of the above iteration by p̂end. We define K̂ to be the
number of eigenvalues larger than p̂end.



13

Theorem 2.5 implies that K̂ is a good estimator of the number of significant
components K.

Proposition 1. Under the conditions of Theorem 2.5, we have K̂ = K with high
probability.

Identifying The Number of Factors. A closely related problem is the estimation
of the number of factors under a factor model, which is widely used in financial
econometrics. Consider the factor model

yt = Λft +Tεt, t = 1, 2, . . . , n,(3.6)

where Λ is p×K-dimensional factor loading, ft is the corresponding K-dimensional
factor, {εit : i = 1, 2, . . . , p; t = 1, 2, . . . , n} are the independent idiosyncratic com-
ponents.

In many applications, the number of factors K is unknown. An important step
in factor analysis is to determine the value of K. Let F = (f1, ..., fn), Z = (ε1, ..., εn)
and Y = (y1, ...,yn). Then (3.6) can be rewritten as

(3.7) Y = ΛF +TZ = (Λ T)

(
F

Z

)
.

Suppose that

(
F

Z

)
satisfies Assumptions 1 and 7 and (Λ T) satisfies Assump-

tions 2 and 8. It is easy to conclude that the (K +1)-st largest eigenvalue of 1
nYY⊺

follows the Type-1 Tracy-Widom distribution asymptotically. The following result
is a direct consequence of Proposition 1.

Corollary 1. For the model (3.6), if

(
F

Z

)
satisfies Assumptions 1 and 7 and (Λ T)

satisfies Assumptions 2 and 8, K ≪ n1/6 and p ∼ n, then we have K̂ = K with high
probability.

Comparing to the approaches in [4] and [30], here we allow the number of factorsK
to diverge with n. Moreover, we only assume that the spiked population eigenvalues
diverge to infinity, while [4] and [30] assume that they are much larger than n2/3 or
grow linearly with n.

4. Estimating the Eigenvectors

As mentioned in the introduction, the leading eigenvectors of the population co-
variance matrix are of significant interest in PCA and many other statistical appli-
cations. They are conventionally estimated by their empirical counterparts.

We consider in this section estimation of the population eigenvectors associated
with the spiked population eigenvalues µ1,...,µK , involved in σ2

i in (2.7). To this
end, we first characterize the relationship between the sample eigenvectors and the
corresponding population eigenvectors. Write the population eigenvectors matrix V

as V = (v1, · · · ,vp).
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Theorem 4.1. Suppose that the conditions of Theorem 2.2 hold. Let ξi be the
eigenvector of Sn corresponding to the eigenvalue λi. Then for 1 ≤ i ≤ K, we have

v
⊺
i ξiξ

⊺
i vi

i.p.−→ 1.(4.1)

Theorem 4.1 also implies that for i = 1, ...,K, j = 1, ..., p, i 6= j, we have

v
⊺
j ξiξ

⊺
i vj

i.p.−→ 0.

One should notice that the convergence is uniformly for j = 1, ..., p since 1 = ξ⊺i ξi =∑p
j=1 v

⊺
j ξiξ

⊺
i vj .

Theorem 4.1 shows that the sample eigenvector ξi is a good estimator of vi up to
a sign difference. An immediate application of Theorem 4.1 is to estimate σ2

i for the
case when V = U⊺ and γ41 = ... = γ4p = γ4 by Corollary 2. This corollary shows
that the empirical eigenvector plays an important role in statistical inference of the
spiked eigenvalue.

Corollary 2. Under the conditions of Theorem 4.1, we have
p∑

j=1

v4ij −
p∑

j=1

ξ4ij
i.p.−→ 0.

We now consider the extension to the case when the multiplicity of the population
eigenvalues µi is more than one. Correspondingly the following corollary holds and
its proof is the same as that of Theorem 4.1.

Corollary 3. Recall the definition of ri above (2.14). Under the conditions of
Theorem 2.3, The angle between vk, k ∈ {ri−1 + 1, ..., ri} and the subspace spanned
by {ξj , j = ri−1 + 1, ..., ri} tends to 0 in probability. In other words, we have

v
⊺
k(

ri∑

j=ri−1+1

ξjξ
⊺
j )vk

i.p.−→ 1, k ∈ {ri−1 + 1, ..., ri}.

Corollary 3 shows that the sample eigenvectors {ξj , j = ri−1 + 1, ..., rj} are close
to the space spaned by {vj , j = ri−1 + 1, ..., rj}.

5. Centralized sample covariance matrices

So far we have focused on the non-centralized sample covariance matrix Sn. We
now turn to its centralized version

S̃n =
1

n

n∑

i=1

Γ(xi − x̄)(xi − x̄)⊺Γ⊺ = ΓX(I− 1

n
11⊺)X⊺Γ⊺,

where 1 is the n×1 vector with all elements being 1. Denote (I− 1
n11

⊺) by Υ. First
we have the following Lemma.

Lemma 1. Under the conditions of Theorem 1, we have
√
n

σ̃1

(
w

⊺
1XΥ(nI−ΥX⊺Σ1

θ
XΥ)−1X⊺w1 + m̃θ(1)

)
D→ N (0, 1)(5.1)
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and √
n

σ̃12
w

⊺
1XΥ(nI−ΥX⊺Σ1

θ
XΥ)−1ΥX⊺w2

D→ N (0, 1)(5.2)

where σ̃2
1 =

∑p+l
j=1[(γ4j − 3)w4

1j ] + 2, σ̃2
12 =

p+l∑
s=1

[(γ4s − 3)w2
1sw

2
2s] + 1 and wij is the

j-th element of wi, i = 1, 2.

By Lemma 1 and checking carefully the proofs of the main results, it can be seen
that all arguments remain valid if X is replaced by XΥ (note that Υ2 = Υ). So
Theorem 2.1–Corollary 3 hold for 1

nΓXΥX⊺Γ⊺ as well.

6. Numerical Results

In this section we illustrate some of the theoretical results obtained earlier through
numerical experiments. We first use simulation to confirm that the asymptotic
behavior of the spiked eigenvalues is indeed affected by the population eigenvectors.

Let K = 2 and ΛP = diag(µ3, ..., µp). Suppose that {µi, i = 3, ..., p} are
i.i.d. copies of the uniform random variable U(1, 2). Define v1 = ( 1√

2
, 1√

2
)⊺,

v2 = ( 1√
2
,− 1√

2
)⊺, V̆ = (v1,v2) and ΛS = diag(800, 200). We now define two

different population matrices

Σ2 =

(
ΛS 0
0 ΛP

)
, Σ3 =

(
V̆ΛSV̆

⊺ 0
0 ΛP

)
.

Then the eigenvalues of Σ2 and Σ3 are the same but the eigenvectors corresponding
to the first two largest eigenvalues are different. Consider the case p = n and
X = (xij) are i.i.d. U(−

√
3,
√
3). Denote by λ̌1 and λ̆1 respectively the largest

eigenvalues of the sample covariance matrices 1
nΣ

1/2
2 XX⊺Σ

1/2
2 and 1

nΣ
1/2
3 XX⊺Σ

1/2
3 .

Table 1 reports the sample variance of the rescaled eigenvalues
√
nλ̌1

800 and
√
nλ̆1

800 . It
can be seen that the behavior of the spiked sample eigenvalues is indeed affected by
the population eigenvectors.

Table 1. The variances of the rescaled largest eigenvalues

p 200 400 600 800 1000

Σ2 0.8111 0.7965 0.8287 0.7574 0.7874
Σ3 1.2507 1.4051 1.2800 1.5012 1.3911

We now consider estimating the number of factors under the factor model (3.7):

Y = ΛF+TZ.

In the simulation, the entries of F and Z follow the standard Gaussian distribution.

Consider two choices: T = T1 orT2, whereT1 = I,T2 = diag(1, 1, ..., 1︸ ︷︷ ︸
p/2

,
1√
2
, ...,

1√
2︸ ︷︷ ︸

p/2

).
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Let Λ be a p×K matrix with nonzero entries being (Λ11, ...,ΛKK) = (
√

b21 − 1, ...,
√

b2K − 1)

where K = 5⌈n1/7⌉+ 1, and (b1, .., bK) =
√

(6, ..., 6 +K − 1) ∗ r + 1, 0 ≤ r ≤ 1.
Since the estimator in [30] performs better than that in [4], we shall only con-

sider the estimator given in [30] for our comparisons. We compare the accuracy of
estimating the number of factors K for three methods: our procedure proposed in
Section 3, the method introduced in [30], and the approach given in [7], which are
denoted by CHP, Ons, and BYK, respectively. Here we omit the simulation results
of BIC used in [7] for reasons of space. The initial value of p̂0 in (3.5) is replaced by

λ15⌈n1/6⌉+logn×n−5/9 according to our extensive simulations in order to reduce the

number of updating iteration. Here we replace λ⌈n1/6⌉ by λ15⌈n1/6⌉ and one should

note that all of the conclusions in Section 3 still hold since 15 is a constant. The
approach in Section 5.3 of [30] uses the ratio of the differences of the adjacent sample
eigenvalues to conduct the sequential test of

H0 : K = k0 vs H1 : k0 < K < k1,

from k0 = 0 to k0 = k1 − 1. [7] uses AIC based on sample eigenvalues to estimate
K.

Different combinations of n and p are considered. The following tables report the
proportion of times the number of factors is correctly identified, i.e. K̂ = K, where
for each (n, p) we repeat 500 times. Different choices of r (ranging from 0.3 to 1) are
also considered. From Tables 2 and 3, one can see that the accuracy of our approach
increases as (n, p) become larger. Comparing to [30], one can find that our approach
works much better when the number of factors increases with n. This is reasonable
since the estimator given in [30] is very sensitive to the predetermined non-spiked
eigenvalue (i.e. k1 in [30]). If k1 is too large, the power may be poor. Tables 2
and 3 show that the method based on the AIC criterion and our procedure have
similar performance. But as mentioned earlier in Remark 1, the model in [7] only
allows that µK+1 = ... = µp = 1, which is a special case of what we consider in the
present paper. Indeed, Table 4 also confirms that for the non-identity matrix T2,
the method based on the AIC criterion performs much worse than our approach.
Therefore, our procedure is preferred for the case where µK+1, ..., µp are unknown.

7. Proofs

In this section, we prove one of the main results, Theorem 2.4. The proof of
Theorem 2.2 is involved. For reasons of space, we prove Theorem 2.2 in detail in the
supplement [14]. The proofs of the other results and additional technical lemmas
are also provided in the supplement [14].

7.1. Proof of Theorem 2.4. Themain idea of this proof is to first expressw⊺
1X(nI−

X⊺Σ1
θ X)−1X⊺w1 as a sum of martingale differences and then apply the central limit

theorem for the martingale difference.
We below consider the case p & n and prove (2.15) only because the case p

n → 0
and (2.16) can be proved similarly. First of all, we need to do truncation and
centralization on xij as in the first paragraph of Section 12 in the supplement [14].
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Table 2. Ratio of Identifying The Correct Number of Factors with T1

r\(n, p) (50,50) (50,100) (50,150)

CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.608 0.052 0.610 0.192 0.072 0.330 0.068 0.060 0.122
0.4 0.816 0.064 0.706 0.442 0.046 0.618 0.184 0.056 0.368
0.5 0.904 0.044 0.662 0.676 0.040 0.788 0.450 0.062 0.606
0.6 0.892 0.038 0.612 0.832 0.044 0.880 0.638 0.064 0.800
0.7 0.906 0.050 0.636 0.880 0.044 0.870 0.756 0.064 0.866
0.8 0.914 0.060 0.638 0.918 0.048 0.886 0.868 0.070 0.880
0.9 0.908 0.054 0.648 0.948 0.058 0.866 0.916 0.056 0.910
1.0 0.914 0.050 0.616 0.946 0.052 0.872 0.912 0.082 0.896

Table 3. Ratio of Identifying The Correct Number of Factors with T1

r\(n, p) (100,100) (100,200) (100,300)

CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.954 0.052 0.974 0.772 0.034 0.854 0.392 0.076 0.482
0.4 0.980 0.038 0.982 0.942 0.034 0.984 0.782 0.058 0.908
0.5 0.956 0.056 0.974 0.964 0.052 0.990 0.938 0.056 0.976
0.6 0.972 0.050 0.976 0.980 0.048 0.994 0.966 0.066 0.990
0.7 0.970 0.058 0.974 0.978 0.050 0.986 0.972 0.074 0.996
0.8 0.954 0.040 0.974 0.972 0.042 0.998 0.984 0.064 0.980
0.9 0.954 0.050 0.980 0.970 0.042 0.986 0.980 0.044 0.984
1.0 0.950 0.052 0.972 0.958 0.052 0.984 0.982 0.074 0.988

Table 4. Ratio of Identifying The Correct Number of Factors with T2

r\(n, p) (100,100) (100,200) (100,300)

CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.946 0.062 0.490 0.938 0.062 0.658 0.792 0.040 0.716
0.4 0.928 0.042 0.454 0.974 0.042 0.624 0.968 0.044 0.710
0.5 0.944 0.044 0.424 0.968 0.058 0.682 0.986 0.038 0.704
0.6 0.926 0.052 0.440 0.966 0.046 0.672 0.978 0.066 0.654
0.7 0.926 0.034 0.434 0.970 0.066 0.662 0.972 0.040 0.670
0.8 0.918 0.060 0.450 0.978 0.060 0.650 0.986 0.042 0.660
0.9 0.928 0.052 0.434 0.978 0.052 0.608 0.980 0.058 0.670
1.0 0.930 0.048 0.410 0.980 0.036 0.614 0.976 0.048 0.658
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In fact, by (12.2)-(12.6), we conclude that the truncation and centralization do not
affect the CLT. i.e. we can get the following inequality similar to (12.7)

w
⊺
1X(nI−X⊺Σ1

θ
X)−1X⊺w1 = w

⊺
1X̃(nI− X̃⊺Σ1

θ
X̃)−1X̃⊺w1 + op(

1√
n
),

where X̃ is the truncated and centralized version of X. The argument is standard
and we omit the details here. Therefore, for simplicity we below assume that

Exij = 0, |xij | ≤ δn 4
√
np.

Calculation of The Variance. Define the following events

Fd = {‖ 1
n
X⊺Σ1X‖ ≤ 4‖Σ1‖(1+

p

n
)}, F (k)

d = {‖ 1
n
X

⊺
kΣ1Xk‖ ≤ 4‖Σ1‖(1+

p

n
)}, k = 1, ..., n,

where Xk = X − xke
⊺
k, xk is the k-th column of X and ek = (0, .., 0, 1, 0, ..., 0)⊺ is

a M -dimensional vector with only k-th element being 1. By Theorem 2 of [16], we
have

(7.1) I(Fd) = 1 and I(F
(k)
d ) = 1, k = 1, ..., n

with high probability.
We define Σ1

θ = Σ̃1, A = I − 1
nX

⊺Σ̃1X, Ak = I − 1
nX

⊺
kΣ̃1Xk and A(k) =

Ak − 1
nX

⊺
kΣ̃1xke

⊺
k. Then A = Ak − 1

n(ekx
⊺
kΣ̃1Xk + X

⊺
kΣ̃1xke

⊺
k + ekx

⊺
kΣ̃1xke

⊺
k).

Therefore,

w
⊺
1X(nI−X⊺Σ1

θ
X)−1X⊺w1 =

1

n
w

⊺
1XA−1X⊺w1.(7.2)

By the definition of Xk and Ak, we observe that the k-th row and k-th colomn
of Ak are 0 except for the diagonal entry. Hence it is not hard to conclude the
following important facts

e
⊺
kA

−1
k ek = 1,(7.3)

e
⊺
iA

−1
k ek = 0, i 6= k(7.4)

and

XkA
−1
k ek = Xkek = 0.(7.5)

In the sequel, we prove the central limit theorem for 1
nw

⊺
1XA−1X⊺w1I(Fd) instead of

1
nw

⊺
1XA−1X⊺w1. In fact, it follows from (7.1) that I(Fd) = 1 with high probability.

Therefore 1
nw

⊺
1XA−1X⊺w1 and 1

nw
⊺
1XA−1X⊺w1I(Fd) have the same central limit

theorem. Let Ek = E(.|x1, ...,xk), E = E(.) and write

w
⊺
1XA−1X⊺w1I(Fd)− Ew⊺

1XA−1X⊺w1I(Fd)(7.6)

=

n∑

k=1

(Ek − Ek−1)w
⊺
1XA−1X⊺w1I(Fd)

=

n∑

k=1

(Ek − Ek−1)
(
w

⊺
1XA−1X⊺w1I(Fd)−w

⊺
1XkA

−1
k X

⊺
kw1I(F

(k)
d )

)
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=

n∑

k=1

(Ek − Ek−1)
(
w

⊺
1XA−1X⊺w1 −w

⊺
1XkA

−1
k X

⊺
kw1

)
I(Fd) + op(n

−2)

=

n∑

k=1

(Ek − Ek−1)(I1 + 2I2 + I3 −w
⊺
1XkA

−1
k X

⊺
kw1)I(Fd) + op(n

−2),

where the third equality follows from (7.1), I1 = (w⊺
1xk)

2e
⊺
kA

−1ek, I2 =
∑

i 6=k w
⊺
1xkw

⊺
1xie

⊺
iA

−1ek,

and I3 =
∑

i,j 6=k w
⊺
1xiw

⊺
1xje

⊺
iA

−1ej . We define

ak = 1− 1

n
(x⊺

kΣ̃1XkA
−1
(k)ek + x

⊺
kΣ̃1xke

⊺
kA

−1
(k)ek)(7.7)

and

bk = 1− 1

n
e
⊺
kA

−1
k X

⊺
kΣ̃1xk.(7.8)

We next simplify the formula. Noting that w
⊺
1X = w

⊺
1Xk + w

⊺
1xke

⊺
k, by the

formulas

W−1 = Q−1 − Q−1(W −Q)Q−1

1 + tr(Q−1(W −Q))
(7.9)

and

(Q+

m∑

j=1

ab⊺j )
−1a =

Q−1a

1 +
∑m

j=1 b
⊺
jQ

−1a
,(7.10)

we have

(7.11)

A−1 = A−1
(k) +

A−1
(k)(ekx

⊺
kΣ̃1Xk + ekx

⊺
kΣ̃1xke

⊺
k)A

−1
(k)

nak

= A−1
k +

A−1
k X

⊺
kΣ̃1xke

⊺
kA

−1
k

nbk
+

A−1
(k)(ekx

⊺
kΣ̃1Xk + ekx

⊺
kΣ̃1xke

⊺
k)A

−1
(k)

nak

and

I1 = (w⊺
1xk)

2e
⊺
kA

−1ek =
(w1xk)

2e
⊺
kA

−1
(k)ek

ak
(7.12)

=
(w1xk)

2e
⊺
kA

−1
k ek

ak(1− 1
ne

⊺
kA

−1
k X

⊺
kΣ̃1xk)

=
(w1xk)

2e
⊺
kA

−1
k ek

akbk
=

(w1xk)
2

akbk
.

Moreover, it follows from (7.3), (7.4) and (7.9) that

bk = 1− 1

n
e
⊺
kA

−1
k X

⊺
kΣ̃1xk = 1(7.13)

and

ak = 1− 1

n
x
⊺
kΣ̃1XkA

−1
(k)ek = 1− 1

n2
e
⊺
kA

−1
k ekx

⊺
kΣ̃1XkA

−1
k X

⊺
kΣ̃1xk(7.14)

= 1− 1

n2
x
⊺
kΣ̃1XkA

−1
k X

⊺
kΣ̃1xk.
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By the Cauchy interlacing property we know

1

n2
x
⊺
kΣ̃1XkA

−1
k X

⊺
kΣ̃1xkI(Fd) ≤

1

n2
x
⊺
kΣ̃1xk‖Σ̃1/2

1 XkA
−1
k X

⊺
kΣ̃

1/2
1 ‖I(Fd)(7.15)

=
1

n2
x
⊺
kΣ̃1xk‖A−1

k X
⊺
kΣ̃1Xk‖I(Fd) ≤

1

n2
x
⊺
kΣ̃1xk‖A−1

k ‖‖X⊺
kΣ̃1Xk‖I(Fd)

≤ 2(
p

nθ
)2.

This implies that

akI(Fd) = 1 +O((
p

nθ
)2).(7.16)

As for the term i 6= k, by (7.4), (7.5), (7.9) and (7.10) we have

(7.17) A−1ek =
A−1

(k)ek

ak
=

A−1
k ek

ak
+

A−1
k X

⊺
kΣ̃1xk

akbk
=

A−1
k ek

ak
+

A−1
k X

⊺
kΣ̃1xk

ak
.

We then conclude that

I2 =
∑

i 6=k

w
⊺
1xkw

⊺
1xie

⊺
iA

−1ek =
w

⊺
1XkA

−1
k X

⊺
kΣ̃1xkx

⊺
kw1

nak
.(7.18)

It follows from (7.4), (7.5) and (7.11) that for i, j 6= k

(7.19)

I3 =
∑

i,j 6=k

w
⊺
1xiw

⊺
1xje

⊺
iA

−1ej

=
∑

i,j 6=k

w
⊺
1xiw

⊺
1xje

⊺
iA

−1
k ej +

∑

i,j 6=k

w
⊺
1xiw

⊺
1xje

⊺
i

A−1
(k)(ekx

⊺
kΣ̃1xke

⊺
k + ekx

⊺
kΣ̃1Xk)A

−1
(k)

nak
ej

= w
⊺
1XkA

−1
k X

⊺
kw1 +

w
⊺
1XkA

−1
(k)(ekx

⊺
kΣ̃1xke

⊺
k + ekx

⊺
kΣ̃1Xk)A

−1
(k)X

⊺
kw1

nak
.

Consider (Ek − Ek−1)(I3 −w
⊺
1XkA

−1
k X

⊺
kw1)I(Fd) next.

We claim that

w
⊺
1XkA

−1
(k)(ekx

⊺
kΣ̃1xke

⊺
k + ekx

⊺
kΣ̃1Xk)A

−1
(k)X

⊺
kw1

nak
(7.20)

is negligible. Let Bk = Σ̃1XkA
−1
k X

⊺
kw1w

⊺
1XkA

−1
k X

⊺
kΣ̃1. Indeed, by (7.9) and (7.3)-

(7.5) we have A−1
(k) = A−1

k + 1
nA

−1
k X

⊺
kΣ̃1xke

⊺
kA

−1
k . This, together with (7.3), (7.4)

and (7.5) implies that

(7.20) =
w

⊺
1XkA

−1
k X

⊺
kΣ̃1xke

⊺
kA

−1
k ekx

⊺
kΣ̃1XkA

−1
k X

⊺
kw1

n2ak
=

x
⊺
kBkxk

n2ak
.

It follows from (7.19) and (7.3)-(7.5) that

n∑

k=1

(Ek−Ek−1)(I3−w
⊺
1XkA

−1
k X

⊺
kw1)I(Fd) =

n∑

k=1

(Ek−Ek−1)
x
⊺
kBkxk

n2ak
I(F

(k)
d )+op(n

−2).
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Considering the second moment of the above equation, by Lemma 8.10 of [5] we
have

n∑

k=1

E|(Ek − Ek−1)
x
⊺
kBkxk

n2ak
|2I(F (k)

d ) ≤ 4

n4

n∑

k=1

E|x⊺
kBkxk|2I(F (k)

d )(7.21)

≤ 8

n4

n∑

k=1

E|x⊺
kBkxk − trBk|2I(F (k)

d ) +
8

n4

n∑

k=1

E|trBk|2I(F (k)
d )

≤ Cp2

nθ2
≪ N,

where we used the inequality

trBk ≤ XkA
−1
k X

⊺
kΣ̃

2
1XkA

−1
k X

⊺
kI(F

(k)
d ) = O(

p2

θ2
).

We conclude that

1

n

n∑

k=1

(Ek − Ek−1)(I3 −w
⊺
1XkA

−1
k X

⊺
kw1)I(Fd) = op(

1√
n
),

which is negligible.
Next we consider I1 and I2. It follows from (7.12) and (7.18) that

1√
n

n∑

k=1

(Ek − Ek−1)(I1 + 2I2)I(Fd)(7.22)

=
2√
n

n∑

k=1

(Ek − Ek−1)
((w1xk)

2

2ak
+

w
⊺
1XkA

−1
k X

⊺
kΣ̃1xkx

⊺
kw1

nak

)
I(Fd).

We claim that the second term of (7.22) is negligible. Actually, similar to (7.21), it
is easy to show that

n∑

k=1

(Ek − Ek−1)
w

⊺
1XkA

−1
k X

⊺
kΣ̃1xkx

⊺
kw1

nak
I(Fd) = op(

√
n)

Therefore, the leading term of (7.22) is

1√
n

n∑

k=1

(Ek − Ek−1)
(w⊺

1xk)
2

ak
I(Fd)

=
1√
n

n∑

k=1

(Ek − Ek−1)
(1 − ak)(w

⊺
1xk)

2

ak
I(Fd) +

1√
n

n∑

k=1

(Ek − Ek−1)(w
⊺
1xk)

2I(Fd).

Similar to (7.21), by (7.16) we can show that

1√
n

n∑

k=1

(Ek − Ek−1)
(1− ak)(w

⊺
1xk)

2

ak
I(Fd) = op(1).

It suffices to show CLT for

1√
n

n∑

k=1

(Ek − Ek−1)(w
⊺
1xk)

2 =
1√
n

n∑

k=1

[
(w⊺

1xk)
2 − 1

]
.(7.23)
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By the CLT for the sum of i.i.d. variables, we conclude that

1√
nσ

n∑

k=1

(Ek − Ek−1)(w
⊺
1xk)

2 D→ N(0, σ2),

where

σ2 =
1

n
E
[
(w⊺

1xk)
2 − 1

]2
=

∑p+l
i=1 γ4iw

4
1i + 3

∑p+l
i 6=j w

2
1iw

2
1j − 1

n
(7.24)

=

p+l∑

i=1

(γ4i − 3)w4
1i + 2.

7.2. Calculation of the Mean. This section is to calculate the expectation of
1
nw

⊺
1XA−1X⊺w1I(Fd). The strategy is to prove that

√
nE

[
1

n
w

⊺
1X

0A−1(X0)⊺w1I(Fd) + m̃θ(1)

]
→ 0,(7.25)

and

1√
n
E
[
w

⊺
1XA−1X⊺w1I(Fd)−w

⊺
1X

0A−1(X0)⊺w1I(Fd)
]
→ 0,(7.26)

where X0 = (x0
1, ...,x

0
n) is (p + l)× n matrix with i.i.d. standard Gaussian random

variables. As before, we omit I(Fd) in the following proof.
We prove (7.26) first by the Lindeberg’s strategy. Define

Z1
k =

k∑

i=1

xie
⊺
i +

n∑

i=k+1

x0
i e

⊺
i , Z0

k =
k−1∑

i=1

xie
⊺
i +

n∑

i=k

x0
i e

⊺
i ,

Zk =
k−1∑

i=1

xie
⊺
i +

N∑

i=k+1

x0
i e

⊺
i , Â1

k = I− 1

n
(Z1

k)
⊺Σ̃1Z

1
k,

Â0
k = I− 1

n
(Z0

k)
⊺Σ̃1Z

0
k and Âk = I− 1

n
Z
⊺
kΣ̃1Zk.

Then we have X = Z1
N , X0 = Z0

1, Z
0
k+1 = Z1

k. It follows that

1√
n
E
[
w

⊺
1XA−1X⊺w1 −w

⊺
1X

0A−1(X0)⊺w1

]
(7.27)

=
1√
n

n∑

k=1

E
[
w

⊺
1Z

1
k(Â

1
k)

−1(Z1
k)

⊺w1 −w
⊺
1Z

0
k(Â

0
k)

−1(Z0
k)

⊺w1

]

=
1√
n

n∑

k=1

E
[
w

⊺
1Z

1
k(Â

1
k)

−1(Z1
k)

⊺w1 −w
⊺
1ZkÂ

−1
k Z

⊺
kw1

]

+
1√
n

n∑

k=1

E
[
w

⊺
1ZkÂ

−1
k Z

⊺
kw1 −w

⊺
1Z

0
k(Â

0
k)

−1(Z0
k)

⊺w1

]
.
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For any k, similar to the expansions from (7.11)-(7.20), we can get

E
[
w

⊺
1Z

1
k(Â

1
k)

−1(Z1
k)

⊺w1 −w
⊺
1ZkÂ

−1
k Z

⊺
kw1

]
(7.28)

= E

[
(w1xk)

2

âk
+

2w⊺
1ZkÂ

−1
k Z

⊺
kΣ̃1xkx

⊺
kw1

nâk
+

x
⊺
kB̂kxk

n2âk

]
,

where B̂k = Σ̃1ZkÂ
−1
k Z

⊺
kw1w

⊺
1ZkÂ

−1
k Z

⊺
kΣ̃1 and âk = 1 − 1

n2x
⊺
kΣ̃1ZkÂ

−1
k Z

⊺
kΣ̃1xk.

Let āk = 1− 1
n2 trΣ̃1ZkÂ

−1
k Z

⊺
kΣ̃1, τk = âk − āk. Then we have

1

âk
=

1

āk
− τk

âkāk
.(7.29)

By Lemma 8.10 of [5], we conclude that

E|τk|2 = E| 1
n2

x
⊺
kΣ̃1ZkÂ

−1
k Z

⊺
kΣ̃1xk −

1

n2
trΣ̃1ZkÂ

−1
k Z

⊺
kΣ̃1|2(7.30)

≤ C

n4
tr(Σ̃1ZkÂ

−1
k Z

⊺
kΣ̃1)

2 = O(
d2

p
).

Consider the first term at the right hand side of (7.28). It follows from (7.29), (7.30)
and Holder’s inequality that

(7.31) |E((w1xk)
2

âk
− (w1xk)

2

āk
)| = |E(w1xk)

2τk
âkāk

| ≤ C
√
E(w1xk)4

√
Eτ2k = O(

d√
p
).

Thus we conclude that

E
(w1xk)

2

âk
= E

(w1xk)
2

āk
+O(

d√
p
) = E

1

āk
+ o(

1√
n
).

Moreover, a similar approach can be applied to the other terms at the right hand
side of (7.28) and thus we have

1√
n

n∑

k=1

E
[
w

⊺
1Z

1
k(Â

1
k)

−1(Z1
k)

⊺w1 −w
⊺
1ZkÂ

−1
k Z

⊺
kw1

]
(7.32)

=
1√
n

n∑

k=1

E

[
1

āk
+

2w⊺
1ZkÂ

−1
k Z

⊺
kΣ̃1w1

nāk
+

trB̂k

n2āk

]
+ o(1).

By the same arguments above, we can also get

1√
n

n∑

k=1

E
[
w

⊺
1ZkÂ

−1
k Z

⊺
kw1 −w

⊺
1Z

0
k(Â

0
k)

−1(Z0
k)

⊺w1

]
(7.33)

= − 1√
n

n∑

k=1

E

[
1

āk
+

2w⊺
1ZkÂ

−1
k Z

⊺
kΣ̃1w1

nāk
+

trB̂k

n2āk

]
+ o(1).

Combining (7.27), (7.32) and (7.33), the equation (7.26) holds.
We next prove (7.25). To simplify notation, we use X for X0 and hence assume

that X follows standard normal distribution. By w
⊺
1U

⊺
2 = 0, we conclude that w⊺

1X



24 T. TONY CAI, XIAO HAN, AND GUANGMING PAN

is independent of A and hence 1
nEw

⊺
1XA−1X⊺w1 = 1

nEtrA
−1. By (6.2.4) of [5](or

Lemma 3.1 of [9]), we have

1

n
EtrA−1 = E

1

1 + r
⊺
1A

−1
1 r1

,

where we denote A = Σ̃
1/2
1 XX⊺Σ̃

1/2
1 − I, ri =

1√
N
Σ̃
1/2
1 xi and Aj =

∑
i 6=j rir

⊺
i − I.

By Lemma 8.10 of [5], we have

E|r⊺1A−1
1 r1 −

1

θN
trA−1

1 Σ1| ≤
C

n2
trΣ̃2

1 = o(M−1),(7.34)

which concludes that E 1
1+r

⊺

1A
−1
1 r1

= E 1
1+ 1

θN
trA−1

1 Σ1
+ o(n−1/2). Moreover,

E| 1

1 + 1
θN trA−1

1 Σ1

− 1

1 + 1
θNEtrA−1

1 Σ1

|2 ≤ C

n2
E|trA−1

1 Σ1 − EtrA−1
1 Σ1|2

≤ C

n
E|β12r⊺2A−2

12 r2|2 = o(n−1).(7.35)

Hence E 1
1+ 1

θN
trA−1

1 Σ1
= 1

1+ 1
θN

EtrA−1
1 Σ1

+ o(n−1/2). Define βi = 1
1+r

⊺

i A
−1
i ri

, bi =

1
1+ 1

nθ
EtrΣ1A

−1
i

, and αi = r
⊺
iA

−1
i ri − 1

nθ trΣ1A
−1
i . By the equality that

A1 + I− b(θ)Σ̃1 =
∑

i 6=1

rir
⊺
i − b(θ)Σ̃1,

we have

A−1
1 = −(I− b1(θ)Σ̃1)

−1 + b1(z)A(θ) +B(θ) + C(θ),(7.36)

where

A(θ) =
∑

i 6=1

(I− b1(θ)Σ̃1)
−1(rir

⊺
i −

1

nθ
Σ1)A

−1
i ,

B(θ) =
∑

i 6=1

(βi − b1)(I − b1(θ)Σ̃1)
−1rir

⊺
iA

−1
i ,

C(θ) = n−1b1(I− b1(θ)Σ1)
−1Σ̃1

∑

i 6=1

(A−1
1 −A−1

1i ).

For A(θ), similar to (7.34) we have
(7.37)
1

n
E|trA(θ)Σ̃1| ≤

1

n

∑

i6=2

E|r⊺i A−1

i Σ̃1(I−b1(θ)Σ̃1)
−1ri−

1

nθ
tr(Σ1A

−1

i Σ̃1(I−b1(θ)Σ̃1)
−1)| = o(M−1).

Similar to the previous inequalities (7.34)-(7.35) or as in Chapter 9 of [5], we can
also show that B(θ) and C(θ) are negligible. Hence we get

(7.38)
1

n
EtrA−1

1 Σ̃1 = − 1

n
tr(I− b1(θ)Σ̃1)

−1Σ̃1 + o(n−1/2),

which implies that

1

n
EtrA−1 =

1

1− 1
n tr(I− 1

n(EtrA
−1)Σ̃1)−1Σ̃1

+ o(n−1/2),(7.39)
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By the Steiltjes transform of the limit of the ESD of any sample covariance matrix,
there exists only one m̃θ(z) such that (One can also refer to (1.6) of [9] or (6.12)-
(6.15) of [5])

m̃θ(z) = − 1

z − 1
n tr(I+ m̃θ(z)Σ̃1)−1Σ̃1

, z ∈ C+.(7.40)

Consider the difference between (7.39)-(16.4) and denote δ = 1
nEtrA

−1 + m̃θ(1). It
is easy to conclude that

δ(1 +

1
ntr

[
(I− 1

n(EtrA
−1)Σ̃1)

−1Σ̃1(I+ m̃θ(1)Σ̃1)
−1Σ̃1

]

(1− 1
n tr(I− 1

n(EtrA
−1)Σ̃1)−1Σ̃1)(1 − 1

n tr(I+ m̃θ(1)Σ̃1)−1Σ̃1)
) = o(n−1/2).

Together with the fact that ‖Σ̃1‖ = O(θ−1), it follows that δ = o(1/
√
n). Therefore,

we have shown that
√
n(

1

n
EtrA−1 + m̃θ(1)) → 0. �(7.41)
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Supplement to “Limiting Laws for Divergent Spiked Eigenvalues and

Largest Non-spiked Eigenvalue of Sample Covariance Matrices”

This note summarizes the supplementary materials to the paper “Limiting Laws
for Divergent Spiked Eigenvalues and Largest Non-spiked Eigenvalue of Sample Co-
variance Matrices”. We first briefly discuss the quantities γ+ and σn defined in
Section 3 and then provide detailed proofs of the main theorems and some technical
results given in the paper. More specifically, we prove in detail here Theorems 2.1,
2.2, 2.3, 4.1, 2.5, Lemma 1 and Corollary 2.

8. Discussion on γ+ and σn

Below we discuss the unknown parameters γ+ and σn. In order to find an upper
bound of λK+1, by (3.2), a key step is to estimate σn and γ+. By (3) and (11) of
[18], we have

σn = (
1

2

∂3f(z)

∂z3
|z→d)

1/3,

where

f(z) = −γ+z + log(z) − p−K

n

∫
log(1− zλ)dFΛP

(λ) + C, C is a constant.

It is straightforward to get

∂f(s)

∂s
= −γ+ +

1

s
+

p−K

n

∫
λdFΛP

(λ)

1− λs
.(8.1)

Let t = −mΣ1(z). Then by the equality that

z = −1

t
+

p−K

n

∫
λdFΛP

(λ)

1 + λt
,

we have ∂f(t)
∂t = −γ+ − z. Therefore, ∂3f(t)

∂t3
= −∂2z

∂t2
. Recall the definition of t,

t = −mΣ1(z) = −
∫

dF0(x)

x− z
,

where F0(x) is the c.d.f. determined by mΣ1(z). We have the following two equa-
tions:

(8.2) 1 = −∂z

∂t

∫
dF0(x)

(x− z)2
, 0 = −∂2z

∂t2

∫
dF0(x)

(x− z)2
+ 2(

∂z

∂t
)2
∫

dF0(x)

(x− z)3
.

It follows from (3.1), (8.1)-(8.2) that

σn = (− lim
z→γ+

+

∫ dF0(x)
(x−z)3

(
∫ dF0(x)

(x−z)2
)3
)1/3(8.3)

By the singular value inequality or interlacing inequality, we have

λn1/6 ≥ νn1/6+K .

By Theorem 3.14 of [24], we have

|νn1/6+K − γn1/6+K | ≤ n−2/3,
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with high probability, where

i

n
=

∫ γ+

γi

dF0(x).

By Lemmas 2.3 and 2.5 of [8], we have dF0(x)
dx ∼ √

γ+ − x, then

γ+ − ν1/6+K ∼ n−5/9.

Therefore γ+ − νn1/6+K ≤ logn
2 × n−5/9 with high probability. Therefore, together

with Theorem 2.5, with high probability

λK+1 ≤ λn1/6 + log n× n−5/9.(8.4)

9. Proof of Theorem 2.1

Below, we consider i = 1, ...,K. Note that the non-zero eigenvalues of ΓXXTΓT

are equal to those of UXXTUTΛ. By Weyl’s inequality, we have

|σi(Λ1/2UX)− σi(

(
Λ
1/2
S 0
0 0

)
UX)| ≤ ‖

(
0 0

0 Λ
1/2
P

)
UX‖,

where σi(A) is the i-th largest singular value of A. By Theorem 1 of [16], un-
der Assumption 2(ii), with probability tending to 1, we have ‖ 1

nU2XXTUT
2 ΛP‖ ≤

‖ 1
nU2XXTUT

2 ‖‖ΛP ‖ ≤ ‖ 1
nXXT ‖‖ΛP ‖ ≤ 2Cp

n . Define B =

(
ΛS 0
0 0

)
. By assump-

tion 3, we have

λi(
1
nUXXTUTΛ)− λi(

1
nUXXTUTB)

µi
= Op(di).(9.1)

Moreover, it is easy to see that the non-zero eigenvalues of λi(
1
nUXXTUTB) are

the same as those of the K ×K block C = 1
nΛ

1/2
S U1XXTUT

1 Λ
1/2
S , where U1 is the

first K rows of U. By Theorem 7.1 of [6] and Chebyshev’s inequality, we can show
that ‖ 1

nU1XXTUT
1 − IK‖∞ = Op(

K√
n
). Moreover, the determinant for calculating

the eigenvalue λi(
1
nΛ

1/2
S U1XXTUT

1 Λ
1/2
S ) is equivalent to

det(
1

n
U1XXTUT

1 − λi(C)Λ−1
S ) = 0.(9.2)

By the Leibniz’s formula for the determinant, it is easy to conclude that λi(C)
µi

−1 =

Op(
K4

n ) uniformly for all i = 1, ...,K. Combining with (9.1), we conclude that

λi(
1
nUXXTUTΛ)− µi

µi
= Op(

K4

n
+ di)

uniformly for all i = 1, ...,K.
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10. Proof of Theorem 2.2

10.1. Outline of The Proof. If λi is the spiked eigenvalue of Sn, then by the deter-
minantal equation (10.7) below we conclude that λi satisfies the following equation

(10.1) det(Λ−1
S

− 1

n
U1X(λiI−

1

n
X⊺U

⊺
2ΛPU2X)−1X⊺U

⊺
1) = 0.

We will prove that the diagonal entries of 1
nU1X(λiI − 1

nX
⊺U

⊺
2ΛPU2X)−1X⊺U

⊺
1

dominate the determinant above. Roughly speaking, by ignoring the negligible terms
we can get the following equation

(10.2) µ−1
i − 1

n
u
⊺
iX(λiI−

1

n
X⊺U

⊺
2ΛPU2X)−1X⊺ui = 0.

We can further get

µ−1
i − 1

n
u
⊺
iX(θiI−

1

n
X⊺U

⊺
2ΛPU2X)−1X⊺ui ≈ (λi−θi)

1

n
u
⊺
iX(θiI−

1

n
X⊺U

⊺
2ΛPU2X)−2X⊺ui.

Therefore the CLT of (λi − θi) is determined by the asymptotic distribution of
1
nu

⊺
iX(θiI− 1

nX
⊺U

⊺
2ΛPU2X)−1X⊺ui. Therefore we need to establish CLT of the ran-

dom quadratic forms in Theorem 2.4. Similarly, the correlation of λi and λj are also
determined by 1

nu
⊺
iX(θiI− 1

nX
⊺U

⊺
2ΛPU2X)−1X⊺ui and

1
nu

⊺
jX(θjI− 1

nX
⊺U

⊺
2ΛPU2X)−1X⊺uj.

Proof of Theorem 2.2 under Assumption 7

This section is to prove a weaker version of Theorem 2.2 first. i.e. We assume
that Assumption 7 holds instead of Assumption 1. Assumption 7 is then removed
at Section 12 in the supplementary. Define B(x) = xI− 1

nX
⊺U

⊺
2ΛPU2X.

First of all, we prove CLT for a fixed i, i ∈ {1, ...,K}. By the definition of λi, it
solves the equation

det(λiI−
1

n
Λ1/2UXX⊺U⊺Λ1/2) = 0.

By the simple fact that det(I−CD) = det(I −DC), we have

det(λiI−
1

n
X⊺U⊺ΛUX) = 0.(10.3)

Recalling the notations above Assumption 1, (10.3) is equivalent to

det(λiI−
1

n
X⊺U

⊺
2ΛPU2X− 1

n
X⊺U

⊺
1ΛSU1X) = 0.(10.4)

By Theorem 2.1, λiI − 1
nX

⊺U
⊺
2ΛPU2X is invertible with probability tending to 1.

Hence with probability tending to 1, (10.4) is equivalent to

det(I − 1

n
X⊺U

⊺
1ΛSU1X(λiI−

1

n
X⊺U

⊺
2ΛPU2X)−1) = 0.(10.5)

Therefore, λi satisfies the following equation

(10.6) det(I − 1

n
Λ
1/2
S U1XB−1(λi)X

⊺U
⊺
1Λ

1/2
S ) = 0.

i.e.

(10.7) det(Λ−1
S

− 1

n
U1XB−1(λi)X

⊺U
⊺
1) = 0.
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Recalling (2.5), we have

m̃θi(1) +
θi
µi

= 0.

Since m̃θi(x) is a increasing function of x for x ≥ 1/2(x ≥ 1/2 is outside the spectrum

of m̃θi(x)) and ‖Σ1
µi

‖ = Op(di), we conclude that θi = µi(1+O(di)). We denote λi−θi
θi

by δi. For convenience, we only prove the central limit theorem for λ1 and the other
eigenvalues can be handled similarly. First of all, we have
(10.8)

U1XB−1(λ1)X
⊺U

⊺
1 = U1XB−1(θ1)X

⊺U
⊺
1 − δ1θ1U1XB−1(λ1)B

−1(θ1)X
⊺U

⊺
1.

Hence (10.7) can be rewritten as

(10.9) det(θ1Λ
−1
S

− θ1
n
U1XB−1(θ1)X

⊺U
⊺
1 +

δ1θ
2
1

n
U1XB−1(λ1)B

−1(θ1)X
⊺U

⊺
1) = 0.

To illustrate the main idea of our proof, we give a simple example. Suppose K = 2
and we have shown that

θ1Λ
−1
S

− θ1
n
U1XB−1(θ1)X

⊺U
⊺
1 =

(
Ŝn Op(

1√
n
)

Op(
1√
n
) 1 + op(1)

)

and
θ21
n
U1XB−1(λ1)B

−1(θ1)X
⊺U

⊺
1 = −

(
1 + op(1) op(1)
op(1) 1 + op(1)

)
,

where
√
nŜn

D→ N (0, 1). Then (10.9) becomes

det

(
Ŝn + δ1(1 + op(1)) Op(

1√
n
) + op(δ1)

Op(
1√
n
) + op(δ1) 1 + op(1) + δ1(1 + op(1))

)
= 0.

By Leibniz’s formula for the determinant of a matrix, we have

δ1(1 + op(1)) + Ŝn(1 + op(1)) + op(
1√
n
) = 0,

which implies that
√
nδ1 =

√
nŜn + op(1)

D→ N (0, 1).
By the example above, similar to the proof of Theorem 3.1 in [6], the key steps are

to establish the central limit theorem for the entries of 1√
n
θ1U1XB−1(θ1)X

⊺U
⊺
1 and

the entry wise limit of
θ21
n U1XB−2(θ1)X

⊺U
⊺
1 by Leibniz’s formula for the determinant

of a matrix.
Let u⊺

i be the i-th row of U1. By Theorem 2.4, we have

√
n(

θ1
n
u
⊺
iXB−1(θ1)X

⊺ui + m̃θ1(1))
D→ N

(
0, σ2

i

)
(10.10)

and
1√
n
θ1u

⊺
iXB−1(θ1)X

⊺uj
D→ N (0, σij + 1) , i 6= j,

where σi and σij are defined above (2.6). By Chebyshev’s inequality and the proof
of Theorem 2.4 we have

P( max
1≤i,j≤k

|θ1
n
u
⊺
iXB−1(θ1)X

⊺uj + δijm̃θ1(1)| ≥
ǫ√
n
)
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≤
∑

1≤i,j≤k

P(|θ1
n
u
⊺
iXB−1(θ1)X

⊺uj + δijm̃θ1(1)| ≥
ǫ√
n
)

≤
∑

1≤i,j≤k

NE|θ1n u
⊺
iXB−1(θ1)X

⊺uj + δijm̃θ1(1)|2
t2

= O(
K2

ǫ2
),(10.11)

which implies that max1≤i,j≤k |θ1n u
⊺
iXB−1(θ1)X

⊺uj + δijm̃θ1(1)| = Op(
K√
n
). It fol-

lows that

θ1Λ
−1
S

− θ1
n
U1XB−1(θ1)X

⊺U
⊺
1(10.12)

=




Ŝn Op(
K√
n
) .. .. Op(

K√
n
)

Op(
K√
n
) Op(1) .. .. Op(

K√
n
)

. ... .. .

. ... Op(1) Op(
K√
n
)

Op(
K√
n
) ... Op(

K√
n
) Op(1)



,

where Ŝn = θ1
n u

⊺
1XB−1(θ1)X

⊺u1 + m̃θ1(1). Moreover, we claim that there exists
δn → 0 such that

‖θ
2
1

n
U1XB−2(θ1)X

⊺U
⊺
1 + (1 + δn)m̃θ1(1)I‖∞ = Op(

K√
n
),(10.13)

whose proof is given in section 10.1.1. By Theorem 2.1 and (2.5) we have

‖θ
2
1

n
U1XB−1(λ1)B

−1(θ1)X
⊺U

⊺
1 −

θ21
n
U1XB−2(θ1)X

⊺U
⊺
1‖∞

= δ1‖
θ31
n2

U1XB−1(λ1)X
⊺Σ1XB−2(θ1)X

⊺U
⊺
1‖∞ = Op(

K4

n
+ d1),(10.14)

which, together with (10.13), implies that

‖θ
2
1

n
U1XB−1(λ1)B

−1(θ1)X
⊺U

⊺
1 + (1 + δn)m̃θ1(1)I‖∞ = Op(

K2

√
n
+

K4

n
+ d1).

By Leibniz formula for determinant and a tedious calculation, one can show that

δ1(1 +Op(K
2d1 +

K6

n
)) + Ŝn(1 + op(1)) + op(

1√
n
) = 0.

By (10.10) we have shown that

√
nδ1

D→ N
(
0, σ2

1

)
,

and the proof of this section is complete.

10.1.1. Proof of (10.13). The proof of (10.13) is similar to Section 7.2 and we merely

give a sketch of the proof. We consider a special entry E(θ
2
1
n u

⊺
1XB−2(θ1)X

⊺u1+(1+

δn)m̃θ1(1))
2 of (10.13) as an example. First of all, as in (7.6)- (7.24), one can
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show that E|θ
2
1
n u

⊺
1XB−2(θ1)X

⊺u1 − E θ21
n u

⊺
1XB−2(θ1)X

⊺u1|2 = O( 1n). Therefore by
Chebyshev’s inequality, we have

1

n
‖θ2

1
U1XB−2(θ1)X

⊺U
⊺

1
− Eθ2

1
U1XB−2(θ1)X

⊺U
⊺

1
‖∞ = Op(

K√
n
).

Next, by the interpolation method introduced in Section 7.2 we can show that

θ21
n
Eu⊺

1XB−2(θ1)X
⊺u1 + (1 + δn)m̃θ1(1)(10.15)

=
θ21
n
Eu⊺

1X
0B−2

0 (θ1)(X
0)⊺u1 + (1 + δn)m̃θ1(1) + o(

1√
n
),

where B0(θ1) = θI− 1
n(X

0)⊺U⊺
2ΛPU2X

0 and the above equation implies that

‖θ
2
1

n
U1X

1B−2(θ1)X
⊺U

⊺
1 + (1 + δn)m̃θ1(1)I‖∞

= ‖θ
2
1

n
U1X

0B−2
0 (θ1)(X

0)⊺U⊺
1 + (1 + δn)m̃θ1(1)I‖∞ +Op(

K√
n
).

Moreover, note that

E
θ21
n
u
⊺
1X

0B−2
0 (θ1)(X

0)⊺u1 + (1 + δn)m̃θ1(1)I =
θ21
n
Etr[B−2

0 (θ1)] + (1 + δn)m̃θ1(1)I.

Let ν̃i be the i-th largest eigenvalue of θ1B
−1
0 (θ1). Then we have

θ21
n
EtrB−2

0 (θ1) =
1

n
E

n∑

i=1

ν̃2i .

By (7.41) we have 1
nE
∑n

i=1 ν̃i = −m̃θ1(1) + o( 1√
n
). Together with the simple fact

that ν̃i = 1 + O(
√
dK) with high probability, we conclude that there exists such

δn → 0 such that

1

n
E

n∑

i=1

ν̃2i = −(1 + δn)m̃θ1(1) + o(
1√
n
).

Up to now, we have shown that

E‖θ
2
1

n
U1X

0B−2
0 (θ1)(X

0)⊺U⊺
1 + (1 + δn)m̃θ1(1)I‖∞ = O(

K√
n
)

and hence

E‖θ
2
1

n
U1XB−2(θ1)X

⊺U
⊺
1 + (1 + δn)m̃θ1(1)I‖∞ = O(

K√
n
).

10.1.2. Joint Distribution (2.7). This section aims at proving the asymptotic joint
distribution of the spiked eigenvalues. i.e. (2.7). By the argument leading to (7.23),
we conclude that it suffices to consider the asymptotic joint distribution of

(
1√
n

n∑

k=1

((u1xk)
2 − 1), ...,

1√
n

n∑

k=1

((urxk)
2 − 1)

)
, r ≥ 2.(10.16)
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The covariance of the cross term is

1

n

n∑

k=1

E
[(
(uixk)

2 − 1
)(
(ujxk)

2 − 1
)]

=

(∑p+l
s=1(γ4s − 3)u2isu

2
js

)

n

−→ lim
n→∞

p+l∑

s=1

(γ4s − 3)u2isu
2
js = σij .(10.17)

11. Proof of Lemma 1

Proof. Recalling A = I − 1
nX

T Σ̃1X, let AΥ = I − 1
nΥXT Σ̃1XΥ and A(Υ) = I −

1
nX

T Σ̃1XΥ. By Theorem 2.4, it suffices to show that

(11.1)

1

n
(wT

1 XA−1XTw1 −wT
1 XΥA−1

Υ ΥXTw1)I(Fd) = oL1(1/
√
n),

(11.2)

1

n
(wT

1 XA−1XTw2 −wT
1 XΥA−1

Υ ΥXTw2)I(Fd) = oL1(1/
√
n),

where Σ̃1 =
Σ1
θ . We prove (11.1) and (11.2) can be shown similarly. In the following

proof we also omit I(Fd) to simplify notation. First of all, we have

1

n
wT

1 XΥA−1
Υ ΥXTw1 =

1

n
wT

1 XA−1
Υ XTw1(11.3)

− 2

n2
wT

1 X11TA−1
Υ XTw1 +

2

n3
wT

1 X11TA−1
Υ 11TXTw1.

Let ∆ = 1
n2ΥXT Σ̃1XΥA−1

Υ . It is easy to see that

1

n
A−1

Υ =
1

n
I+∆,

and ‖∆‖ = o( 1n ). It follows that

2

n2
wT

1 X11TA−1
Υ XTw1 =

2

n2
wT

1 X11TXTw1 +
2

n
wT

1 X11T∆XTw1.

A direct calculation indicates that

2

n2
E|wT

1 X11TXTw1| =
2

n
.(11.4)

Holder’s inequality ensures that

2

n
E|wT

1 X11T∆XTw1| ≤(11.5)

2

n

√
E|wT

1 X11TXTw1|
√

E|wT
1 X∆T11T∆XTw1| = o(1/

√
n).

Therefore,
2

n2
wT

1 X11TA−1
Υ XTw1 = oL1(1/

√
n).
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Similarly, we have

2

n3
wT

1 X11TA−1
Υ 11TXTw1 = oL1(1/

√
n).

In view of (11.3), it remains to show that

1

n
wT

1 XA−1
Υ XTw1 −

1

n
wT

1 XA−1XTw1 = oL1(1/
√
n).(11.6)

It is not hard to see that
(11.7)
1

n
A−1

Υ − 1

n
A−1 =

1

n2
A−1

Υ (
1

n2
11TXT Σ̃1X11T − 1

n
11TXT Σ̃1X−XT Σ̃1X

1

n
11T )A−1.

By (11.7), consider one term in the left hand side of (11.6) first, i.e.

1

n3
wT

1 XA−1
Υ 11TXT Σ̃1XA−1XTw1.(11.8)

By the property that Υ1 = 0 and Υ2 = Υ, we have

1

n
A−1

Υ 1 =
1

n

∞∑

k=0

(
1

n
ΥXT Σ̃1XΥ)k1 =

1

n
1.

It follows from (11.4) that

E|(11.8)| =
1

n3
E|wT

1 X11TXT Σ̃1XA−1XTw1|

≤ 1

n3

√
E(wT

1 X1)2
√

E(1TXT Σ̃1XA−1XTw1)2 = o(1/
√
n).(11.9)

Similar to (11.9), one can prove

1

n4
wT

1 XA−1
Υ 11TXT Σ̃1X11TA−1XTw1 = oL1(1/

√
n).

For the remaining term of (11.7)

1

n
wT

1 X(nI−ΥXT Σ̃1XΥ)−1XT Σ̃1X11T (nI−XT Σ̃1X)−1XTw1,

Similar to (11.9), it suffices to show

1

n
wT

1 XA−11 = OL1(1/
√
n).(11.10)

Actually, applying the same strategy as in (7.6)-(7.24), we can prove that

1

n
wT

1 XA−11I(Fd)−
1

n
EwT

1 XA−11I(Fd) = OL1(1/
√
n).(11.11)

Moreover, applying the strategy of Section 7.2, one can show that

1

n
EwT

1 XA−11I(Fd) = O(1/
√
n).(11.12)

The detailed proof of (11.11) and (11.12) is omitted since it is even simpler than
that of Theorem 2.4. �
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12. Relax Assumption 7: Truncation and Centralization

This section is to truncate and centralize xij. By assumption 1, there exists a
positive sequence δn satisfying

(12.1) lim
n→∞

1

npδ4n

p+l∑

i=1

n∑

j=1

E|xij |4I(|xij | > δn 4
√
np) = 0, δn ↓ 0, δn 4

√
np ↑ ∞.

We first truncate xij to x̂ij = xijI(|xij | < δn 4
√
np) and then get the centralized

version x̃ij =
x̂ij−Ex̂ij

σi
, where σi is the standard deviation of x̂ij . It is easy to see

that

P(X 6= X̂) ≤
p+l∑

i=1

n∑

j=1

P(|xij | ≥ δn 4
√
np)

≤ C

npδ4n

p+l∑

i=1

n∑

j=1

E|xij |4I(|xij | > δn 4
√
np) → 0.(12.2)

It follows that

P(U1X(λiI−
1

n
XTΣ1X)−1XTUT

1 6= U1X̂(λiI−
1

n
X̂TΣ1X̂)−1X̂TUT

1 ) → 0.

For convenience, define BX(x) = xI− 1
nX

TΣ1X. Hence with probability tending to
1, the proofs of the above theorems based on (10.7) are equivalent to

(12.3) det(Λ−1
S

− 1

n
U1X̂B

X̂
(λi)

−1X̂TUT
1 ) = 0.

Note that

|1− σ2
i | ≤ 2|E(x2

ij)I(|xij | > δn 4
√
np)|

≤ 2(np)−1/2δ−2
n E|xij|4I(|xij | > δn 4

√
np),(12.4)

|Ex̂ij| ≤ δ−3
n (np)−3/4E|xij|4I(|xij | > δn 4

√
np),(12.5)

and

1

n
Etr(X̂− X̃)(X̂− X̃)T ≤

p+l∑

i=1

n∑

j=1

E|x̂ij − x̃ij|2

≤ C

n

p+l∑

i=1

n∑

j=1

(
(1− σi)

2

σ2
i

E|x̂ij|2 +
1

σ2
i

|Ex̂ij|2) = o(
1

n
).(12.6)

By (12.4), (12.5) and (12.6), replacing X̂ by X̃, it is easy to show the perturbation

is op(Kn−1/2), which means that

(12.7)
1

n
‖U1X̂B

X̂
(λi)

−1X̂TUT
1 −U1X̃B

X̃
(λi)

−1X̃TUT
1 ‖∞ = op(Kn−1/2µ−1

i ),

and
1

n
‖uT

i X̂B
X̂
(λi)

−1X̂Tui − uT
i X̃B

X̃
(λi)

−1X̃Tui‖∞ = op(n
−1/2µ−1

i ).
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Therefore, (10.7) can be rewritten as
(12.8)

det(Λ−1
1 −U1X̃B

X̃
(λi)

−1X̃TUT
1 +op(Kn−1/2µ−1

i )(11T−eie
T
i )+op(n

−1/2µ−1
i )eie

T
i ) = 0,

where op(.) is the entry wise order. One should notice that we deal with ( 1nU1X̂B
X̂
(λi)

−1X̂TUT
1 )ii

independently with the other entries and hence we have the order op(n
−1/2µ−1

i )eie
T
i .

From the proof of Theorem 2.2, it is not hard to find out that the terms involving
op(Kn−1/2) are negligible and does not affect CLT(see (10.12)), which means that
we can prove Theorem 2.2 from the following equality

(12.9) det(µiΛ
−1
1 − µiU1X̃(λiI− X̃TΣ1X̃)−1X̃TUT

1 ) = 0.

Checking on the proof of Theorem 2.2, all arguments hold for X̃ as well. Up to now,
we have relaxed Assumption 7 and finish this section.

13. Proof of Theorem 2.3.

The proof of Theorem 2.3 is almost the same as that of Theorem 2.2. We illustrate
the joint distribution of the first n1 eigenvalues as an example. Checking on the proof
of Theorems 2.2 and 2.4 carefully, we can get the following equality similar to (10.12)

θ1Λ
−1
S

− θ1
n
U1XB−1(θ1)X

TUT
1(13.1)

=




S̃n Op(
K√
n
) .. .. Op(

K√
n
)

Op(
K√
n
) Op(1) .. .. Op(

K√
n
)

. ... .. .

. ... Op(1) Op(
K√
n
)

Op(
K√
n
) ... Op(

K√
n
) Op(1)



,

where S̃n is a n1 × n1 matrix such that
√
nS̃n

D→ R1. Here R1 follows normal
distribution with ER1 = 0 and the covariance of the (R1)k1,l1 and (R1)k2,l2 is

limn→∞N2 × Cov(uT
k1
xuT

l1
x,uT

k2
xuT

l2
x). The asymptotic distribution of R1 is en-

sured by the fact that the upper left n1×n1 block of θ1Λ
−1
S

− θ1
n U1XB−1(θ1)X

TUT
1 is

constructed by the entries with the expressions similar to (2.15) or (2.16). Therefore,
by the Skorokhod strong representation and the corresponding arguments similar to
page 464-465 of [6] we conclude Theorem 2.3.

14. Proof of Theorem 4.1

Proof. Without loss of generality, we only consider the first spiked eigenvalue λ1.
The other spiked eigenvalues λ2, ..., λK can be handled similarly. By Cauchy’s inte-
gral theorem and the residue theorem, with high probability, we have

vT
1 ξ1ξ

T
1 v1 = − 1

2πi

∮

Π
vT
1 G̃(z)v1dz,

where G̃(z) = (Sn− zI)−1 and Π is a contour enclosing λ1 but the other eigenvalues
λi. The existence of the contour Π is ensured by Theorem 2.1 and Assumption 3.
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In the sequel, we directly work on the integral − 1
2πi

∮
Π G̃(z)dz. Write

(14.1)

vT
1 G̃(z)v1 = vT

1 (Sn − zI)−1v1 = eT1 (
1

n
Λ1/2UXXTUTΛ1/2 − zI)−1e1

=

(
1
nλ1u

T
1 XXTu1 − z 1

nλ
1/2
1 uT

1 XXT ŨT
2 Λ

1/2
2

1
nλ

1/2
1 Λ

1/2
2 Ũ2XXTu1

1
nΛ

1/2
2 Ũ2XXT ŨT

2 Λ
1/2
2 − zI

)−1

11

=

(
1

n
λ1u

T
1 XXTu1 − z − 1

n2
λ1u

T
1 XXT ŨT

2 Λ
1/2
2 (

1

n
Λ
1/2
2 Ũ2XXT ŨT

2 Λ
1/2
2 − zI)−1Λ

1/2
2 Ũ2XXTu1

)−1

.

The aim is to prove 1
n2λ1u

T
1 XXT ŨT

2 Λ
1/2
2 ( 1nΛ

1/2
2 Ũ2XXT ŨT

2 Λ
1/2
2 −zI)−1Λ

1/2
2 Ũ2XXTu1

converges to 0 in probability. Not that Λ2 contains the remainingK−1 spiked eigen-
values and the other non-spiked eigenvalues. Moreover, the non-spiked eigenvalues

are all dominated by z. Hinted by this observation, we write Λ2 =

(
Λ21 0
0 ΛP

)

and Ũ2 =

(
U21

U2

)
, where Λ21 is (K − 1)× (K− 1) diagonal matrix and U21 is the

corresponding (K − 1)× (p + l) eigenvector matrix. It follows that

(
1

n
Λ
1/2
2 Ũ2XXT ŨT

2 Λ
1/2
2 − zI)−1 =

(
1
nΛ

1/2
21 U21XXTUT

21Λ
1/2
21 − zI 1

nΛ
1/2
21 U21XXTUT

2 Λ
1/2
P

1
nΛ

1/2
P U2XXTUT

21Λ
1/2
21

1
nΛ

1/2
P U2XXTUT

2 Λ
1/2
P − zI

)−1

=

(
A B

BT C

)−1

=

(
(A−BC−1BT )−1 −(A−BC−1BT )−1BC−1

−C−1BT (A−BC−1BT )−1 C−1 +C−1BT (A−BC−1BT )−1BC−1

)
,

(14.2)

where A, B and C are defined in an obvious way. By the definitions of A, B and
C and the choice of Π, it is easy to see that

‖Λ−1/2
21 B‖ = Op(

√
p

n
), ‖C‖ = Op(|z|)(14.3)

and

‖C−1‖ = Op(
1

|z| ).(14.4)

Moreover, ‖A − Λ21 + zI‖ = op(1) since the dimension of A is (K − 1) × (K − 1).
By (14.2), a straight forward calculation for block matrices yields

XT ŨT
2 Λ

1/2
2 (

1

n
Λ
1/2
2 Ũ2XXT ŨT

2 Λ
1/2
2 − zI)−1Λ

1/2
2 Ũ2X(14.5)

= XTUT
21Λ

1/2
21 (A−BC−1BT )−1Λ

1/2
21 U21X−XTUT

21Λ
1/2
21 (A−BC−1BT )−1BC−1Λ

1/2
P U2X

−XTUT
2 Λ

1/2
P C−1BT (A−BC−1BT )−1Λ

1/2
21 U21X

+XTUT
2 Λ

1/2
P

(
C−1 +C−1BT (A−BC−1BT )−1BC−1

)
Λ
1/2
P U2X.

Although the expression of (14.5) is complicated, it is not hard to conclude that all
terms at the right hand side of (14.5) are op(1) in terms of the spectral norm. For
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instance, we calculate one term XTUT
21Λ

1/2
21 (A−BC−1BT )−1Λ

1/2
21 U21X. Note that

‖Λ1/2
21 (A−BC−1BT )−1Λ

1/2
21 ‖

= ‖( 1
n
U21XXTUT

21 − zΛ−1
21 − Λ

−1/2
21 BC−1BTΛ

−1/2
21 )−1‖ ≤ 2(14.6)

with probability tending to 1, where we use the fact that Λ
−1/2
21 B = 1

nU21XXTUT
2 Λ

1/2
P

and therefore ‖Λ−1/2
21 BC−1BTΛ

−1/2
21 ‖ = op(1) by (14.3)-(14.4). Hence,

1

n2
uT
1 XXT ŨT

2 Λ
1/2
2 (

1

n
Λ
1/2
2 ŨT

2 XXT Ũ2Λ
1/2
2 − zI)−1Λ

1/2
2 Ũ2XXTu1

≤ Op(
1

n2
uT
1 XXTUT

21U21XXTu1) + op(1).(14.7)

By the fact that the rank of U21 is K − 1 and uT
1 U

T
21 = 0, it suffices to consider

such a term uT
1 XXTu2u

T
3 XXTu1, where uT

1 u2 = uT
1 u3 = 0, uT

2 u3 = 0 or 1. Since
1
n2EuT

1 XXTu2u
T
3 XXTu1 = O(n−1), we conclude that

(14.8)
1

n2
E|uT

1 XXTUT
21U21XXTu1| =

1

n2
EuT

1 XXTUT
21U21XXTu1 = O(

K2

n
).

Combining (14.2)-(14.8), we get that (14.1) ∼ (λ1 − z)−1 with probability tending
to one. Noticing that (14.7) holds uniformly for z ∈ Γ, we have (14.1) ∼ (λ1 − z)−1

holds uniformly for z ∈ Γ. i.e. with probability tending to one and for all z ∈ Γ, we
have

(14.9) vT
1 ξ1ξ

T
1 v1 → 1.

�

15. Proof of Corollary 2

Without loss of generality, we assume eigenvectors are real, otherwise we consider∑p
j=1 |vij|4. Since ξi and −ξi are regarded as the same eigenvectors in the eigenvector

space, we always choose the direction such that vT
1 ξ1 ≥ 0. Therefore, by (14.9) we

have

vT
i ξi

i.p.−→ 1.

By Theorem 4.1, we have
∑p

j=1[vij − ξij ]
2 = op(1), which implies that

max
j

|vij − ξij| = op(1).

Therefore, we get

p∑

j=1

|v4ij − ξ4ij | ≤
p∑

j=1

(|vij |+ |ξij|)3 max
j

|vij − ξij| = op(1).

This conclusion tells us that the sample eigenvector is a proper estimation of
∑p

j=1[v
4
ij ].
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16. Proof of Theorem 2.5

Inspired by [11] and [22] in this section we establish asymptotic distribution of
the largest non-spiked eigenvalues of the sample covariance matrices 1

nΓXXTΓT .

For simplicity and consistency with the papers such as [8] and [22], we absorb 1√
n

into X and consider the eigenvalues of the matrix ΓXXTΓT instead. That is to
say, var(xij) = 1

n and E|xij |k ≤ ck
nk/2 . Without loss of generality, we assume that

µK+1 > 1. Correspondingly, νi is the i-th largest eigenvalue of XTΣ1X in this
section. Let D(z) = zI−XTUT

2 ΛPU2X. As the first step of the proof of Theorem
2.5, by (10.6), we have the following Lemma

Lemma 2. If λ is not the eigenvalue of XTΣ1X, then λ is the eigenvalue of
ΓXXTΓT is equivalent to

det(I− Λ
1/2
S U1XD−1(λ)XTUT

1 Λ
1/2
S ) = 0.

In order to show the eigenvalue sticking, we need to prove the local law for

U1XD−1(z)XTUT
1 ,(16.1)

where U1U
T
2 = 0. First of all, we consider the special case l = 0. To this end, we

introduce the following linearization matrix

(16.2)

H(z) :=




zI XTUT
2 Λ

1/2
P XTUT

1

Λ
1/2
P U2X I 0
U1X 0 I




−1

=

(
I 0

0 (UT
2 Λ

1/2
P ,UT

1 )

)−1(
zI XT

X Σ̃

)−1(
I 0

0 (UT
2 Λ

1/2
P ,UT

1 )
T

)−1

,

where the last equality follows from the assumption that L = 0 and Σ̃ =

(
ΛP 0
0 I

)
.

By simple calculation, it is easy to see that the lower right block of H(z) is equal to
(I−U1XD−1(z)XTUT

1 )
−1. We introduce a definition before giving the local law.

Definition 1. Let

ξ = {ξ(N)(u) : N ∈ N, u ∈ U (N)}, ζ = {ζ(N)(u) : N ∈ N, u ∈ U (N)}
be two families of nonnegative random variables, where U (N) is a parameter set (can
be either dependent on or independent of N). If for all small positive ǫ and σ, there
exists a number N(ǫ, σ) only depending on ǫ and σ such that

sup
u∈U (N)

P
[
|ξ(N)(u)| > N ǫ|ζ(N)(u)|

]
≤ N−σ

for large enough n ≥ n(ǫ, σ), then we say that ζ stochastically dominates ξ uniformly
in u. We denote this relationship by ξ ≺ ζ or ξ = O≺(ζ). Moreover, if there exists

a constant C such that C−1 ≤ ξ
ζ ≤ C, then we say ξ ∼ ζ.



41

By Theorem 3.7 of [24], we conclude that

(16.3) ‖(I −U1XD−1(z)XTUT
1 )

−1 − (I+mΣ1(z))
−1‖∞ ≺

√
1

nκ(z)
,

where mΣ1(z) is the unique solution of the following equation

mΣ1(z) = − 1

z − 1
n tr(I+mΣ1(z)Σ1)−1Σ1

, z ∈ C+,(16.4)

κ(z) = |ℜz − γ+|, n−2/3+5ǫ ≤ ℜz − γ+ ≤ 2γ+ and γ+ is the rightmost end point
of the density determined by mΣ1(z). Similarly, it follows from Theorem 3.6 of [24]
that

‖(I −U1XD−1(z)XTUT
1 )

−1 − (I+mΣ1(z))
−1‖∞ ≺ Φ(z),(16.5)

where Φ(z) =

√
ℑmΣ1

(z)

nℑz + 1
nℑz , ℑz ≥ n−2/3−ǫ and −c ≤ ℜz−γ+ ≤ n−2/3+5ǫ for some

small constant c. But this is not enough for the proof since z is very large when we
consider the spiked eigenvalues. We below prove a stronger version of (16.3) instead.

Before doing it, note that our objective is U1XD−1(z)XTUT
1 instead of (I −

U1XD−1(z)XTUT
1 )

−1 by (16.1). Therefore, we first need to develop its upper bound
from (16.3). By the formula that

A−1 −B−1 = −A−1(A−B)B−1,

we have the following Neumann series

(16.6)

U1XD−1(z)XTUT
1 +mΣ1(z)I = (I +mΣ1(z)I)− (I−U1XD−1(z)XTUT

1 )

=
∞∑

r=1

(−1)r+1(1 +mΣ1(z))
r+1∆r,

where ∆ = (I−U1XD−1(z)XTUT
1 )

−1 − (I+mΣ1(z)I)
−1. By (16.3), we know that

‖∆‖∞ ≺
√

1
nκ . Moreover, by the large deviation bound(see Lemma 3.4 of [9], [11]

or [22]) we have

‖mΣ1(z)U1XXTUT
1 −mΣ1(z)I‖∞ ≺

√
1

n
.(16.7)

The expansion at the right hand side of (16.6) is ensured by the fact that z is very
close to or outside the support of XTUT

2 ΛPU2X and ‖∆‖ ≪ 1. Together with the

fact that K ≪ n1/6 ≪ √
nκ, we conclude that

(16.8)

‖U1XD−1(z)XTUT
1 +mΣ1(z)U

T
1 XXTU1‖∞ ≺

√
1

nκ
, n−2/3+5ǫ ≤ ℜz − γ+ ≤ 2γ+.

Up to now, we only show (16.8) holds for the case l=0. When l 6= 0, we can find

a l× (p+ l) matrix U3 such that U3U
T
1 = 0 and U3U

T
2 = 0. Let Ũ1 = (UT

1 ,U
T
3 )

T .
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Since the dimension of Ũ1XD−1(z)XT ŨT
1 is (l +K) × (l +K) and l +K ≪ n1/6.

Then by similar arguments from (16.3) to (16.8) we have

(16.9)

‖Ũ1XD−1(z)XT ŨT
1 +mΣ1(z)Ũ

T
1 XXT Ũ1‖∞ ≺

√
1

nκ
, n−2/3+5ǫ ≤ ℜz − γ+ ≤ 2γ+.

This implies that (16.8) also holds for the case l ≪ n1/6. Similarly, we also have
(16.10)

‖Ũ1XD−1(z)XT ŨT
1 +mΣ1(z)Ũ

T
1 XXT Ũ1‖∞ ≺ Φ(z),ℑz ≥ n−2/3−ǫ,−c ≤ ℜz−γ+ ≤ n−2/3+5ǫ.

In the sequel we prove the local law when z is far away from γ+.

Theorem 16.1. For all ℑz ≥ 0, ℜz = t ∼ ϕ(n) and ϕ(n) → ∞ when n → ∞, we
have

‖U1XD−1(z)XTUT
1 +mΣ1(z)U1XXTUT

1 ‖∞ ≺ 1

κ(t)
√
n
.(16.11)

Proof. We prove

uT
1 XD−1(t)XTu1 +mΣ1(t)u

T
1 XXTu1 ≺

1

κ(t)
√
n
.

as an example. The other entries of (16.11) can be shown similarly. Define

ms(z) = −uT
1 XD−1(z)XTu1 −mΣ1(z)u

T
1 XXTu1, z ∈ C+, ℜz ≫ 1,

and

(16.12)

F s(x) =

n∑

i=1

uT
1 Xζiζ

T
i X

Tu1I(νi ≤ x)− F0(x)(dx)u
T
1 XXTu1,

where F0(x) is the c.d.f. determined by mΣ1(z), νi = λi(X
TΣ1X) and ζi is the

corresponding eigenvector. Hence, we have the steitjes transform

ms(z) =

∫
ρs(dx)

x− z
, ℑz > 0.(16.13)

We next apply the Helffer-Sjöstrand formula to the following function

fz(x) =
1

x− z
.

Let ω = x + yi ∈ C. Then define ∂f(ω)
∂ω̄ = ∂f(ω)

∂x + i∂f(ω)∂y . In order to apply the

Helffer-Sjöstrand formula(referring to [17]), we need to look for a smooth version of

fz(x), i.e. we define a smooth function χ(ω) ∈ [0, 1], ω ∈ C+ satisfying ∂χ(ω)
∂ω̄ ≤ C,

where C is a constant. We choose a small constant ω′ > 0 and require χ(ω) = 1 for
all ω belongs to ω′-neighbourhood of [−1, γ+] and 0 outside the 2ω′-neighbourhood
of [−1, γ+]. By rigidity of the eigenvalues, i.e. |ν1 − γ+| ≺ n−2/3, we conclude
that suppρs ⊂ (−2ω′, γ+ + 2ω′) with high probability. Therefore we can choose
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suitable z to be away from the support of XTΣ1X, i.e. z > γ+ + 3ω′. Then by the
Helffer-Sjöstrand formula, we have that for all x ∈ suppρs,

fz(x) =
1

π

∫

C

∂ω̄(fz(ω)χ(ω))

x− ω
dω.(16.14)

By the trivial fact that
∫
ρs(dx) = 0, we have

ms(z) =

∫
ρs(dx)fz(x) =

1

π

∫

C
fz(ω)∂ω̄(χ(ω))m

s(ω)dω,(16.15)

where the second equality follows from the fact that fz(ω) is analytic away from

suppρs. By the definition of χ, we have {∂χ
∂ω̄ 6= 0} ⊂ {ω : dist[−1, γ+] ∈ [ω′, 2ω′]}

and on this interval we conclude that |fz(ω)| ∼ κ−1(z). Moreover, following from

(16.9), we have ms(ω) ≺ 1√
n
in the set {∂χ

∂ω̄ 6= 0}. Therefore we have

ms(z) ≺ 1√
n
κ−1(z).

Up to now, we have shown that (16.11) holds when ℑz > 0. To complete our proof,
let z = t + in−10. By the continuity of mΣ1(z) and XTUT

2 ΛPU2X − zI, it is easy
to conclude (16.11). �

Immediately, we can get Corollary 4 from Theorem 16.1.

Corollary 4. Under the conditions of Theorem 16.1 we have

‖U1XD−1(t)XTUT
1 +mΣ1(t)I‖∞ ≺ 1

κ(t)
√
n
.(16.16)

Proof. This corollary follows from Theorem 16.1 and the large deviation inequality
that

‖mΣ1(t)U1XXTUT
1 −mΣ1(t)I‖∞ ≺ 1

κ(t)
√
n
.

�

By the singular value inequality, we have the following Lemma.

Lemma 3.

σK+i(Λ
1/2UX) ≤ σi(Λ

1/2
P U2X), i = 1, 2, ..., p −K,

where σj(.) represents the j-th largest singular value.

In view of Lemma 3, there are at most K spiked eigenvalues. Moreover, we need
the eigenvalues of XTΣ1X to be distinct. To this end, we assume that the entries
of X are all absolutely continues. Otherwise we consider the matrix X + e−nY

instead, where Y is a (p+ l)×n matrix consisting of i.i.d. standard normal random
variables. It is easy to see that such a perturbation doesn’t change the desired
spectral properties and then the eigenvalues of (X+ e−nY)TΣ1(X+ e−nY) are all
distinct almost surely.

In the sequel, we assume that the following events hold and all Lemmas below
are based on these events:

1. All eigenvalues of XTΣ1X are distinct.
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2. For all α = 1, 2, ..., n, we have U1Xζα 6= 0, where ζα is the eigenvector of
XTΣ1X corresponding to the α-th largest eigenvalue.

3. The rigidity result associated with XTΣ1X holds for ǫ/2 for all νi ≥ γ+ −
n−2/3+5ǫ, for example |ν1 − γ+| ≤ n−2/3+ǫ/2 and

‖U1XD−1(z)XTUT
1 +mΣ1(z)I‖∞ ≤ nǫ/2

κ(z)
√
n
, ℜz ≫ 1.(16.17)

Here Claims 1 and 2 hold by the absolutely continuous of the entries of X. Claim 3
is guaranteed by Corollary 4 and [8], [24]. In the sequel, define the intervals

Ii = [µi − µiKn−1/2+2ǫ, µi + µiKn−1/2+2ǫ], i = 1, ...,K.

I0 = [γ+ − n−2/3+2ǫ, γ+ + n−2/3+2ǫ].

Γ(d) =
K⋃

i=0

Ii.

The following proposition is to prove that Γ(d) is the permission area for the spiked
eigenvalues and the extremal bulk eigenvalues.

Proposition 2. Under Assumptions 2 or 5, the following holds:

Ii
⋂

I0 = ∅, i = 1, ...,K,

and

σ(ΓXXTΓT )
⋂

[γ+ − n−2/3+2ǫ,∞) ⊂ Γ(d),(16.18)

where σ(ΓXXTΓT ) represents the set of the eigenvalues of ΓXXTΓT .

Proof of Proposition 2. First of all, it is trivial to get Ii
⋂

I0 = ∅, i = 1, ...,K by
the definition of Ii. Therefore it suffices to show (16.18). We define a K×K matrix
M(t) with its entries being

Mij(t) = (U1XD−1(t)XTUT
1 )ij − δijµ

−1
i .(16.19)

By Lemma 2, we conclude that t ∈ σ(ΓXXTΓT )/σ(Σ
1/2
1 XXTΣ

1/2
1 ) if and only if

M(t) is singular. Therefore we focus on the value t * σ(Σ
1/2
1 XXTΣ

1/2
1 ). First

we consider the case when t ≥ γ+ + n−2/3+2ǫ. By Corollary 4 we have M(t) =

−mΣ1(t)I− Λ−1
S

+O( nǫ/2

κ(t)
√
n
), where A = O(1) means ‖A‖∞ = O(1). On the other

hand, for all t ∈ [log µK ,∞] \⋃K
i=1 Ii, by mΣ1(t) = −1

t (1 + o(1)) we have

min
k

{|mΣ1(t)I+ µ−1
k |, k = 1, ...,K} ≥ Knǫ

κ(t)
√
n
.

Therefore any t ∈ [log(νK),∞] \⋃K
i=1 Ii is not an eigenvalue of ΓXXTΓT with high

probability. Moreover, by Weyl’s inequality, we have

|σi(Λ1/2UX)− σi(Λ
1/2
S U1X)| ≤ σ1(Λ

1/2
P U2X) ∼ 1,

which implies that the first K eigenvalues of ΓXXTΓT do not belong to [γ+ +

n−2/3+2ǫ, log µK ] with high probability by the fact that σK(Λ
1/2
S U1X) ≥ √

µ
K
|(1−
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√
K
n )| ≫ log µK . Also, by Lemma 3, we conclude that the (K + 1)-th eigenvalue of

ΓXXTΓT is smaller than γ+ + n−2/3+2ǫ with high probability. Therefore, together
with Lemma 3, [γ+ + n−2/3+2ǫ, log νK ] is a forbidden area of the eigenvalues of
ΓXXTΓT . �

Proposition 3. Under Assumption 2, for large enough n, each interval Ii, i =
1, ...,K contains exactly one eigenvalue of ΓXXTΓT .

Proof. We choose a positive oriented contours C =
⋃K

i=1 Ci ⊂ C \ [γ−, γ+] such that
each contour Ci encloses di but no other points of µj , j 6= i. Moreover, the radius
of each contour enclosing µi is of the same order of µi. By Assumption 3, such
contours exist. In view of Proposition 2, it suffices to prove that there exists exactly
one eigenvalue of ΓXXTΓT in each contour. Recalling that M(z) in (16.19), we
define the following two functions

Fn(z) = det(M(z)), fn(z) = det(mΣ1(z)I+ Λ−1
S

).

By the definition of C, the functions Fn and fn are holomorphic in C. Furthermore,
the construction of Ci ensures that each Ci contains exactly one root of fn(z) = 0.
For instance, we look at the first contour C1 containing µ1. For any z ∈ C1,ℑz 6= 0,
it is easy to see that ℑfn(z) 6= 0. If z ∈ C1,ℑz = 0, then mΣ1(z) is an increasing
function of z. Combining with the fact that mΣ1(z)I + Λ−1

S
is a diagonal matrix,

we conclude that there is only one root of fn(z) = 0 in C1. By (16.17) and Lebniz’s
formula for the determinant, it is not hard to see that

|fn(z)− Fn(z)| ≤
K2nǫ/2

√
n

min
z∈∂Ci

|fn(z)|,

which implies that Fn(z) also contains exactly one root of Fn(z) = 0 in Ci by Rouché’s
theorem. Notice that this arguments hold uniformly for i = 1, ...,K, by Proposition
2 and Ii ⊂ Ci. We finish our proof. �

Similarly, we have

Proposition 4. Under Assumption 5, for large enough n, each interval
⋃mi+ni

j=mi+1 Ij =

Imi+1, i = 0, ...,L contains exactly ni eigenvalue of ΓXXTΓT .

Assume that ΓXXTΓT and Σ
1/2
1 XXTΣ

1/2
1 do not have the same eigenvalue. Be-

fore considering the phase transition, we show the following delocalization result,
which is used in the eigenvalue counting arguments.

Lemma 4. Assume that ζi is the eigenvector of (XTUT
2 ΛPU2X− tI)−1 correspond-

ing to the eigenvalue νi ≥ γ+ − n−2/3+5ǫ for a sufficiently small constant ǫ. We
have

eTkU
T
1 Xζi ≺

1√
n
.

Proof. By (16.8) with z = vi + in−1+ι, 0 < ι, we have

(16.20) eTkU1XD−1(z)XTUT
1 ek +mΣ1(z)e

T
kU

T
1 XXTU1ek ≺

√
1

nκ
≤ n−1/8.
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Therefore, with high probability eTkU1XD−1(z)XTUT
1 ek = O(1). Moreover,

−ℑeTkU1XD−1(z)XTUT
1 ek = n−1+ι

∑

j

eTkU1Xζjζ
T
j X

TUT
1 ek

|νj − z|2(16.21)

≥ n−1+ιe
T
kU1Xζiζ

T
i X

TUT
1 ek

|νi − z|2 =
(eTkU

T
1 Xζi)

2

n−1+ι
.

Since ι can be arbitrary small, the proof of this Lemma is complete. �

16.1. The Non-spiked eigenvalues. Considering the non-spiked eigenvalues, we
prove the following area is forbidden for the eigenvalues of ΓXXTΓT .

(16.22) t ∈ [γ+ − n−2/3+2ǫ, γ+ + n−2/3+2ǫ], dist(t, σ(Σ
1/2
1 XXTΣ

1/2
1 )) ≥ n−2/3−2ǫ.

Similar to the arguments of Proposition 2, we aim at showing that for t satisfying
(16.22), M(t) is non singular. Choosing η = n−2/3−ǫ and z = t+ iη, we have

|
[
U1XD−1(t)XTUT

1 −UT
1 XD−1(z)XTUT

1

]
ij
|(16.23)

≤
∑

α

|〈XTUT
1 ei, ζα〉|2 + |〈XTUT

1 ej, ζα〉|2
2

∣∣∣∣
1

λα − t
− 1

λα − z

∣∣∣∣

≤
∑

α

|〈XTUT
1 ei, ζα〉|2 + |〈XTUT

1 ej, ζα〉|2
2

η

η2 + (λα − t)2

= −ℑ(U1XD−1(z)XTUT
1 )ii −ℑ(U1XD−1(z)XTUT

1 )jj,

where ζα is the eigenvector of XTΣ1X corresponding to the α-th largest eigenvalue.
Therefore, by local law we have

(16.24)

M(t) = −mΣ1(z)I − Λ−1
S

+O(nǫ/2ℑmΣ1(z) +
nǫ/2

nη
) = −mΣ1(z)I− Λ−1

S
+O(n−1/3+2ǫ).

Since |mΣ1(z)| ∼ 1, we have |mΣ1(z) + µ−1
i | ∼ 1, i = 1, ...,K uniformly. Therefore,

it is easy to see that M(t) is non singular for t satisfying (16.22). Up to now, we are
ready to prove Theorem 2.5.

Actually, once the tools and results including Lemma 2–(16.22) are available, the
the proof of Theorem 2.5 is almost the same as the proof of Proposition 6.8 in [22].
The only difference is that we only prove that the eigenvalues are sticking with the
order n−2/3−ǫ instead of n−1+ǫ, which is caused by allowing K to tend to infinity.
Hence we ignore the details.

The detailed proof is similar to Proposition 6.8 in [22] and thus we omit it.
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