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Abstract

Suppose that {Xjk, j = 1, · · · , p1; k = 1, · · · , n} are independent and identically
distributed (i.i.d) real random variables with EX11 = 0 and EX2

11 = 1, and that
{Yjk, j = 1, · · · , p2; k = 1, · · · , n} are i.i.d real random variables with EY11 = 0
and EY 2

11 = 1, and that {Xjk, j = 1, · · · , p1; k = 1, · · · , n} are independent of
{Yjk, j = 1, · · · , p2; k = 1, · · · , n}. This paper investigates the canonical correlation
coefficients r1 ≥ r2 ≥ · · · ≥ rp1 , whose squares λ1 = r21, λ2 = r22, · · · , λp1 = r2p1 are
the eigenvalues of the matrix

Sxy = A−1
x AxyA

−1
y AT

xy,

where

Ax =
1

n

n∑
k=1

xkx
T
k , Ay =

1

n

n∑
k=1

yky
T
k , Axy =

1

n

n∑
k=1

xky
T
k ,

and
xk = (X1k, · · · , Xp1k)

T , yk = (Y1k, · · · , Yp2k)T , k = 1, · · · , n.

When p1 → ∞, p2 → ∞ and n → ∞ with p1
n → c1,

p2
n → c2, c1, c2 ∈ (0, 1), it is

proved that the empirical distribution of r1, r2, · · · , rp1 converges, with probability
one, to a fixed distribution under the finite second moment condition.
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1 Introduction

Canonical correlation analysis (CCA) deals with the relationship between two random
variable sets. Suppose that there are two random variable sets: x = {x1, . . . , xp1}, y =
{y1, . . . , yp2}, where p1 ≤ p2. Assume that there are n observations for each of the p1+ p2
variables and they are grouped into p1 × n random matrix X = (Xij)p1×n and p2 × n
random matrix Y = (Yij)p2×n respectively. CCA seeks the linear combinations aTx and
cTy that are most highly correlated, that is to maximize

r = Corr(aTx, cTy) =
aTΣxyc√

aTΣxxa
√

cTΣyyc
, (1.1)

where Σxx, Σyy are population covariance matrices for x, y respectively; Σxy is the
population covariance matrix between x and y.

After finding the maximal correlation r1 and associated combination vectors a1, c1,
CCA considers seeking a second linear combination aT

2 x, c
T
2 y that has the maximal cor-

relation among all linear combinations uncorrelated with aT
1 x, c

T
1 y. This procedure can

be iterated and successive canonical correlation coefficients r1, . . . , rp1 can be found. Sub-
stituting population covariance matrices with sample covariance matrices, r1, . . . , rp1 can
be recast as the roots of the determinant equation

det(AxyA
−1
y AT

xy − r2Ax) = 0, (1.2)

where

Ax =
1

n
XXT , Ay =

1

n
YYT , Axy =

1

n
XYT .

About this point, one may refer to page 284 of Mardia, Kent and Bibby (1979). The roots
of the determinant equation above go under many names, because they figure equally in
discriminant analysis, canonical correlation analysis, and invariant tests of linear hypothe-
ses in the multivariate analysis of variance. These are standard techniques in multivariate
statistical analysis. Section 4 of Wachter (1980) described how to transform these statisti-
cal settings to the determinant equation form. Johnstone (2008) also gave its applications
in these aspects in multivariate statistical analysis.

The empirical distribution of the canonical correlation coefficients r1, r2, · · · , rp1 is
defined as

F (x) =
1

p1
#{i : ri ≤ x}, (1.3)

where #{· · · } denotes the cardinality of the set {· · · }. When the two variable sets x
and y are independent and each set consists of i.i.d Gaussian random variables, Wachter
(1980) proved that the empirical distribution of r1, r2, · · · , rp1 converges in probability
and obtained an explicit expression for the limit of the empirical distribution when p1, p2
and n are all approaching infinity. From the determinant equation (1.2), it can be seen
that λ1 = r21, λ2 = r22, . . . , λp1 = r2p1 are eigenvalues of the matrix Sxy = A−1

x AxyA
−1
y AT

xy.
Hence the analysis of the empirical distribution of r1, r2, · · · , rp1 is equivalent to analyzing

2



the ESD of the matrix Sxy. Here for any p× p matrix A with real eigenvalues x1 ≤ x2 ≤
. . . ≤ xp, its ESD is defined as

FA(x) =
1

p
#{i : xi ≤ x}. (1.4)

The aim of this paper is to prove that the result in Wachter (1980) remains true
when the entries of X and Y have finite second moments but not necessarily Gaussian
distribution.

Theorem 1. Assume that
(a) X = (Xij)1≤i≤p1,1≤j≤n where Xij, 1 ≤ i ≤ p1, 1 ≤ j ≤ n, are i.i.d real random variables
with EX11 = 0 and E|X11|2 = 1.
(b) Y = (Yij)1≤i≤p2,1≤j≤n where Yij, 1 ≤ i ≤ p2, 1 ≤ j ≤ n are i.i.d real random variables
with EY11 = 0 and E|Y11|2 = 1.
(c) p1 = p1(n) and p2 = p2(n) with

p1
n
→ c1 and p2

n
→ c2, c1, c2 ∈ (0, 1), as n → ∞.

(d) Sxy = A−1
x AxyA

−1
y AT

xy where Ax = 1
n
XXT , Ay =

1
n
YYT and Axy =

1
n
XYT .

(e) X and Y are independent.
Then as n → ∞ the empirical distribution of the matrix r1, r2, · · · , rp1 converges almost

surely to a fixed distribution function whose density is

ρ(r) = ((r − L)(r + L)(H − r)(H + r))
1
2/[πc1r(1− r)(1 + r)], r ∈ [L,H], (1.5)

where L = |(c2 − c2c1)
1
2 − (c1 − c1c2)

1
2 | and H = |(c2 − c2c1)

1
2 + (c1 − c1c2)

1
2 |; and atoms

of size max(0, 1− c2/c1) at zero and size max(0, 1− (1− c2)/c1) at unity.

Remark 1. The inverse of a matrix, such as A−1
x and A−1

y , is the Moore-Penrose pseu-
doinverse, i.e. in the spectral decomposition of the initial matrix, replace each nonzero
eigenvalue by its reciprocal and leave the zero eigenvalues alone. This is because under
the finite second moment condition, the matrices Ax and Ay may be not invertible un-
der the classical inverse matrix definition. However, with the additional assumption that
EX4

11 < ∞ and EY 4
11 < ∞, we have the conclusion that the smallest eigenvalues of the

sample matrices Ax and Ay converge to (1−√
c1)

2 and (1−√
c2)

2 respectively[Theorem
5.11 of Bai and Silverstein (2009)], which are not zero since c1, c2 ∈ (0, 1). So Ax and
Ay are invertible with probability one under the finite fourth moment condition.

As stated previously, it is sufficient to analyze the limiting spectral distribution (LSD)
of the matrix Sxy, where LSD denotes the limit of the empirical spectral distribution as
n → ∞.

The strategy of the proof of Theorem 1 is as follows. Since the matrix Sxy is not
symmetric, it is difficult to work on it directly. Instead we consider the n× n symmetric
matrix

PyPxPy (1.6)

where
Px = XT (XXT )−1X, Py = YT (YYT )−1Y.
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Note that Px and Py are projection matrices. It is easy to see that the eigenvalues of the
matrix PyPxPy are the same as those of the matrix Sxy other than n−p1 zero eigenvalues,
i.e.

FPyPxPy(x) =
p1
n
FSxy(x) +

n− p1
n

I[0,+∞)(x). (1.7)

By (1.7) and the result in Wachter (1980), one can easily obtain the limit of FPyPxPy(x)
when the entries of X and Y are Gaussian distributed. To move from the Gaussian
case to non-Gaussian case, we mainly use Lindeberg’s method (see Lindeberg (1922) and
Chatterjee (2006)) and the Stieltjes transform. The Stieltjes transform for any probability
distribution function G(x) is defined as

mG(z) =

∫
1

x− z
dG(x), z ∈ C+ ≡ {z ∈ C, v = ℑz > 0}. (1.8)

An additional key technique is to introduce a perturbation matrix in order to deal
with the random matrix (XXT )−1 under the finite second moment condition.

2 Proof of Theorem 1

We divide the proof of Theorem 1 into 4 parts:

2.1 Step 1: Introducing a perturbation matrix

Let
A = PyPxPy.

In view of (1.7) it is enough to investigate FA to prove Theorem 1. In order to deal with
the matrix (XXT )−1, we make a perturbation of the matrix A and obtain a new matrix

B = PyPtxPy,

where Ptx = 1
n
XT ( 1

n
XXT + tIp1)

−1X, t > 0 is a small constant number and Ip1 is the
identity matrix of the size p1.
We claim that, with probability one,

lim
t→0

lim
n→∞

L
(
FA, FB

)
= 0. (2.1)

where L(FA, FB) is the Levy distance between two distribution functions FA(λ) and
FB(λ). By Lemma 6 in the Appendix,

L3(FA, FB) ≤ 1

n
tr(A−B)2 ≤ 1

n
tr(Px −Ptx)

2

=
1

n
tr
( 1
n
XXT [(

1

n
XXT )−1 − (

1

n
XXT + tIp1)

−1]
)2

≤ t2

n
tr(

1

n
XXT + tIp1)

−2, (2.2)
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where the second inequality uses the fact that ||Py|| = 1 with the norm being the spectral
norm and the last inequality uses the definition of the Moore-Penrose pseudoinverse so
that we may write

1

n
XXT [(

1

n
XXT )−1 − (

1

n
XXT + tIp1)

−1]

= UT



µ1

. . .

µm

0
. . .

0


UUT



t
µ1(µ1+t)

. . .
t

µm(µm+t)

−1
t

. . .

−1
t


U

= UT



t
µ1+t

. . .
t

µm+t

0
. . .

0


U.

Here µ1, . . . , µm are the nonzero eigenvalues of the matrix 1
n
XXT and UT is the eigenvec-

tors matrix of 1
n
XXT .

Given t > 0, by Theorem 3.6 in Bai and Silverstein (2009) (or see Jonsson (1982) and
Marčenko and Pastur (1967)) and the Helly-Bray theorem, we have with probability one

1

n
tr(

1

n
XXT + tIp1)

−2 =
p1
n

∫
1

(λ+ t)2
dFp1(λ) → c1

∫ b

a

1

(λ+ t)2
dFc1(λ)

=

∫ b

a

√
(b− λ)(λ− a)

(λ+ t)22πλ
dλ ≤

∫ b

a

√
(b− λ)(λ− a)

λ32π
dλ ≤ M,

where Fp1 is the ESD of the sample matrix 1
n
XXT , Fc1 is the Marcenko-Pastur Law,

b = (1 +
√
c1)

2 and a = (1 − √
c1)

2. Here and in what follows M stands for a positive
constant number and it may be different from line to line. This, together with (2.2),
implies (2.1), as claimed.

Let B̄ and Ā, respectively, denote analogues of the matricesB andA with the elements
of X replaced by i.i.d. Gaussian distributed random variables, independent of the entries
of Y. By (2.1) and the fact that, for any λ ∈ R,

|FA(λ)− F Ā(λ)| ≤ |FA(λ)− FB(λ)|+ |FB(λ)− F B̄(λ)|+ |F B̄(λ)− F Ā(λ)|,

in order to prove that, for any fixed t > 0, with probability one,

lim
n→∞

|FA(λ)− F Ā(λ)| = 0, (2.3)
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it suffices to prove with probability one,

lim
n→∞

|FB(λ)− F B̄(λ)| = 0. (2.4)

If we have (2.3), then for any λ ∈ R, with probability one,

lim
n→∞

|FPxPy(λ)− FPg
xPy(λ)| = 0. (2.5)

Since Py and Px stand symmetric positions in the matrix PxPy, as in (2.3) and (2.5),
one can similarly prove that for any λ ∈ R, with probability one,

lim
n→∞

|FPg
xPy(λ)− FPg

xP
g
y(λ)| = 0, (2.6)

where Pg
y is obtained from the matrix Py with all the entries of Y replaced by i.i.d

Gaussian distributed random variables, independent of Pg
x. Then (2.5) and (2.6) imply

that for any λ ∈ R, with probability one,

lim
n→∞

|FPxPy(λ)− FPg
xP

g
y(λ)| = 0. (2.7)

With the theorem obtained in Wachter (1980) and (2.7), our theorem is easily derived.
Hence the subsequent parts are devoted to proving (2.4).

2.2 Step 2: Truncation, Centralization, Rescaling and Tightness
of FB

With (1.8) of Bai and Silverstein (2004) and the arguments above and below, we can
choose εn > 0 such that εn → 0, n1/2εn → ∞ as n → ∞, and P (|Xij| ≥ n1/2εn) ≤ εn

n
.

Define
X̃ij = XijI(|Xij| < n1/2εn), X̂ij = X̃ij − EX̃11,

Ptx =
1

n
XT (

1

n
XXT + tIp1)

−1X, P̃tx =
1

n
X̃T (

1

n
X̃X̃T + tIp1)

−1X̃,

P̂tx =
1

n
X̂T (

1

n
X̂X̂T + tIp1)

−1X̂, B̃ = PyP̃txPy, B̂ = PyP̂txPy,

where X̃ = (X̃ij)1≤i≤p1;1≤j≤n and X̂ = (X̂ij)1≤i≤p1;1≤j≤n.
Let ηij = 1− I(|Xij| < n1/2εn). We then get by Lemma 4 in the appendix

sup
λ

|FB(λ)− F B̃(λ)| ≤ 1

n
rank(PyPtxPy −PyP̃txPy) ≤

1

n
rank(Ptx − P̃tx)

≤ 1

n
[rank(XT − X̃) + rank(XXT − X̃X̃T ) + rank(X− X̃T )] ≤ 4

n

p1∑
i=1

n∑
j=1

ηij.

Denote q = P (ηij = 1) = P (|Xij| ≥ n1/2εn). We conclude from Lemma 5 that for any
δ > 0,

P (sup
λ

|FB(λ)− F B̃(λ)| ≥ δ) ≤ P (
1

n

p1∑
i=1

n∑
j=1

ηij ≥ δ)
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= P (

p1∑
i=1

n∑
j=1

ηij − np1q ≥ np1(
δ

p1
− q))

≤ 2exp
(
−

n2p21(
δ
p1

− q)2

2np1q + np1(
δ
p1

− q)

)
≤ 2exp(−nh),

for some positive h. It follows from Borel-Cantelli’s lemma that

sup
λ

|FB(λ)− F B̃(λ)| → 0, a.s. as n → ∞.

Next, we prove that

sup
λ

|F B̂(λ)− F B̃(λ)| → 0, a.s. as n → ∞. (2.8)

Again by Lemma 4 we have

sup
λ

|F B̂(λ)− F B̃(λ)| ≤ 1

n
rank(B̂− B̃) ≤ 1

n
rank

[
P̂tx − P̃tx

]

≤ 1

n
rank

[ 1
n
X̃T

(
(
1

n
X̂X̂T + tIp1)

−1 − (
1

n
X̃X̃T + tIp1)

−1
)
X̃
]

+
1

n
rank

[ 1
n
X̃T (

1

n
X̂X̂T + tIp1)

−1EX̃
]
+

1

n
rank

[1
n
(EX̃T )(

1

n
X̂X̂T + tIp1)

−1X̃
]

+
1

n
rank

[ 1
n
(EX̃T )(

1

n
X̂X̂T + tIp1)

−1EX̃
]
.

Since all elements of EX̃ are identical, rank
(
EX̃

)
= 1. Moreover, from (2.10)

(
1

n
X̂X̂T + tIp1)

−1 − (
1

n
X̃X̃T + tIp1)

−1

= (
1

n
X̃X̃T + tIp1)

−1(
1

n
X̃X̃T − 1

n
X̂X̂T )(

1

n
X̂X̂T + tIp1)

−1

=
1

n
(
1

n
X̃X̃T + tIp1)

−1(−EX̃EX̃T + X̃EX̃T + (EX̃)X̃T )(
1

n
X̂X̂T + tIp1)

−1.

Hence

sup
λ

|F B̂(λ)− F B̃(λ)| ≤ M

n
→ 0.
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Let σ̂2 = E(|X̂ij|2) andˆ̂B = 1
nσ̂2 X̂

T ( 1
nσ̂2 X̂X̂T + tIp1)

−1X̂. Then by Lemma 6, we have

L3(F B̂, F
ˆ̂B) ≤ 1

n
tr(B̂−ˆ̂B)2

=
(σ̂2 − 1)2t2

n
tr
( 1
n
X̂X̂T (

1

n
X̂X̂T + σ̂2tIp1)

−1(
1

n
X̂X̂T + tIp1)

−1
)2

=
(σ̂2 − 1)2t2

n
tr
(
(
1

n
X̂X̂T + σ̂2tIp1 − σ̂2tIp1)(

1

n
X̂X̂T + σ̂2tIp1)

−1(
1

n
X̂X̂T + tIp1)

−1
)2

=
(σ̂2 − 1)2t2

n
tr
(
(
1

n
X̂X̂T + tIp1)

−1 − σ̂2t(
1

n
X̂X̂T + σ̂2tIp1)

−1(
1

n
X̂X̂T + tIp1)

−1
)2

≤ (σ̂2 − 1)2t2

n
p1

(
||( 1

n
X̂X̂T + tIp1)

−1||+ σ̂2t||( 1
n
X̂X̂T + σ̂2tIp1)

−1|| · ||( 1
n
X̂X̂T + tIp1)

−1||
)2

≤ (σ̂2 − 1)2t2

n
p1

4

t2
→ 0,

because σ̂2 → 1 and p1/n → c1 as n → ∞; where the first equality uses the formula
(2.10); the second inequality uses the matrix inequality that

tr(C) ≤ p1||C||,

holding for any p1 × p1 normal matrix C; and the last inequality uses the fact that

||( 1
n
X̂X̂T + σ̂2tIp1)

−1|| ≤ 1

σ̂2t
, ||( 1

n
X̂X̂T + tIp1)

−1|| ≤ 1

t
.

In view of the truncation, centralization and rescaling steps above, in the sequel, we
shall assume that the underlying variables satisfy

|Xij| ≤ n1/2εn, EXij = 0, EX2
ij = 1, (2.9)

and for simplicity we shall still use notation Xij instead of X̂ij.
We now turn to investigating the tightness of FB. For any constant number K > 0,∫

λ>K

dFB ≤ 1

K

∫
λdFB =

1

K

1

n
tr[PyPtxPy]

Since the largest eigenvalue of Py is 1 and Ptx is a nonnegative matrix we obtain

tr[PyPtxPy] = tr[PyPtx]

≤ tr[Ptx] = tr[
1

n
XXT (

1

n
XXT + tIp1)

−1] ≤ n.

The last inequality has used the facts that t > 0 and that all the eigenvalues of 1
n
XXT ( 1

n
XXT+

tIp1)
−1 are less than 1.
It follows that FB is tight.
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2.3 Step 3: Convergence of the random part

The aim in this section is to prove that

1

n
trB−1(z)− E

1

n
trB−1(z) → 0 a.s. as n → ∞.

To this end we introduce some notation. Let xk denote the kth column ofX and ek the
column vector of the size of p1 with the kth element being 1 and otherwise 0. Moreover,
define Xk to be the matrix obtained from X by replacing the elements of the kth column
of X with 0.

Fix v = Tz > 0. Define Fk to be the σ-field generated by x1, · · · ,xk. Let Ek(·)
denote the conditional expectation with respect to Fk and E0 denote expectation. That
is, Ek(·) = E(·|Fk) and E0(·) = E(·). Let

B−1(z) = (PyPtxPy − zI)−1, Bk = PyP
tx
k Py, B−1

k (z) = (PyP
tx
k Py − zI)−1,

where Ptx = 1
n
XT ( 1

n
XXT + tIp1)

−1X, Ptx
k = 1

n
XT

k (
1
n
XkX

T
k + tIp1)

−1Xk.
Define H−1

k = ( 1
n
XkX

T
k + tIp1)

−1 and H−1 = ( 1
n
XXT + tIp1)

−1.
Note that X = Xk + xke

T
k , that the elements of Xkek are all zero and hence that

XXT −XkX
T
k = xkx

T
k .

This implies that

H−1
k −H−1 =

1

n
H−1xkx

T
kH

−1
k =

1

1 + 1
n
xT
kH

−1
k xk

1

n
H−1

k xkx
T
kH

−1
k ,

where we make use of the formula

A−1
1 −A−1

2 = A−1
2 (A2 −A1)A

−1
1 , (2.10)

holding for any two invertible matrices A1 and A2;
and

(U+ uvT )−1u =
U−1u

1 + vTU−1u
, (2.11)

holding for any invertible matrices U and (U+ uvT ), vectors u and v. We then write

Bk −B = Py(P
tx
k −Ptx)Py = Py(C1 + C2 + C3 + C4)Py, (2.12)

where

C1 =
1

n

XT
kH

−1
k

1
n
xkx

T
kH

−1
k Xk

1 + 1
n
xT
kH

−1
k xk

, C2 = − 1

n

XT
kH

−1
k xke

T
k

1 + 1
n
xT
kH

−1
k xk

,

C3 = − 1

n

ekx
T
kH

−1
k Xk

1 + 1
n
xT
kH

−1
k xk

, C4 = − 1

n

ekx
T
kH

−1
k xke

T
k

1 + 1
n
xT
kH

−1
k xk

. (2.13)
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Now write

1

n
trB−1(z)− E

1

n
trB−1(z) =

1

n

n∑
k=1

[EktrB
−1(z)− Ek−1trB

−1(z)]

=
1

n

n∑
k=1

(Ek − Ek−1)(trB
−1(z)− trB−1

k (z))

=
1

n

n∑
k=1

(Ek − Ek−1)
[ 4∑

i=1

tr
(
B−1

k (z)PyCiPyB
−1(z)

)]
,

where the last step uses (2.10) and (2.12). Let || · || denote the spectral norm of matrices
or the Euclidean norm of vectors. It is observed that

||B−1(z)|| ≤ 1

v
, ||B−1

k (z)|| ≤ 1

v
, ||Py|| ≤ 1,

1

p1
trH−1

k ≤ 1

t
. (2.14)

and since xT
kH

−1
k xk ≥ 0 we have

1

1 + 1
n
xT
kH

−1
k xk

≤ 1. (2.15)

It follows that

|trB−1
k (z)PyC1PyB

−1(z)| =
1

n2

∣∣∣xT
kH

−1
k XkPyB

−1(z)B−1
k (z)PyX

T
kH

−1
k xk

1 + 1
n
xT
kH

−1
k xk

∣∣∣
≤ 1

v2n2
||xT

kH
−1
k Xk||2 ≤ 1

v2n
|xT

kH
−1
k xk|+

t

v2n
|xT

kH
−2
k xk|, (2.16)

where the last inequality uses the facts that ||xT
kH

−1
k Xk||2 = xT

kH
−1
k XkX

T
kH

−1
k xk and

H−1
k XkX

T
kH

−1
k = nH−1

k ( 1
n
XkX

T
k + tIp1 − tIp1)H

−1
k = nH−1

k − ntH−2
k .

We then conclude from Lemma 2, (2.14)-(2.16) that

E

∣∣∣∣∣1n
n∑

k=1

(Ek − Ek−1)trB
−1
k (z)PyC1PyB

−1(z)

∣∣∣∣∣
4

≤ M

n3

n∑
k=1

E
∣∣∣trB−1

k (z)PyC1PyB
−1(z)

∣∣∣4
≤ M

n7

n∑
k=1

E
∣∣∣xT

kH
−1
k xk

∣∣∣4 + M

n7

n∑
k=1

E
∣∣∣xT

kH
−2
k xk

∣∣∣4
= O(

1

n2
),

where the last step uses the facts that via Lemma 3 and (2.9)

1

n4
E
∣∣∣xT

kH
−1
k xk

∣∣∣4 ≤ 1

n4
ME

∣∣∣xT
kH

−1
k xk − trH−1

k

∣∣∣4 + 1

n4
ME|trH−1

k |4 ≤ M (2.17)
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and that
1

n4
E
∣∣∣xT

kH
−2
k xk

∣∣∣4 ≤ M. (2.18)

Similarly, we can also obtain for i = 2, 3, 4,

E| 1
n

n∑
k=1

(Ek − Ek−1)trB
−1(z)PyCiPyB

−1
k (z)|4 ≤ M

n2
. (2.19)

It follows from Borel-Cantelli’s lemma that

1

n
trB−1(z)− E

1

n
trB−1(z) a.s. n → ∞. (2.20)

2.4 Step 4: From Gaussian distribution to general distributions

This section is to prove that

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)] → 0 as n → ∞, (2.21)

where D−1(z) = (PyP
g
txPy − zI)−1, Pg

tx = 1
n
GT ( 1

n
GGT + tIp1)

−1G and G = (Gij)p1×n

consists of i.i.d. Gaussian random variables. We would point out that (2.4) follows
immediately from (2.20), (2.21), tightness of FB and the well-known inversion formula
for Stieltjes transform[Theorem B.8 of Bai and Silverstein (2009)]. We use Lindeberg’s
method in Chatterjee (2006) to prove this result.

To facilitate statements, denote

X11, · · · , X1n, X21, · · · , Xp1n respectively by X̂1, · · · , X̂n, X̂n+1, · · · , X̂p1n

and

G11, · · · , G1n, G21, · · · , Gp1n respectively by Ĝ1, · · · , Ĝn, Ĝn+1, · · · , Ĝp1n.

For each j, 0 ≤ j ≤ p1n, set

Zj = (X̂1, · · · , X̂j, Ĝj+1, · · · , Ĝp1n) and Z0
j = (X̂1, · · · , X̂j−1, 0, Ĝj+1, · · · , Ĝp1n). (2.22)

Note that X in B−1(z) consists of the entries of Zp1n. Hence we denote 1
n
trB−1(z) by

1
n
tr(B(Zp1n)− zI)−1. Define the mapping f from Rnp1 to C as

f(Zp1n) =
1

n
tr(B(Zp1n)− zI)−1. (2.23)

Furthermore we use the entries of Zj, j = 0, 1, · · · , p1n − 1, respectively, to replace

X̂1, · · · , X̂p1n, the entries of X in B, to constitute a series of new matrices. For these new
matrices, we define f(Zj), j = 0, 1, · · · , p1n − 1 as f(Zp1n) is defined for the matrix B.
For example, f(Z0) =

1
n
trD−1(z). We then write

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)] =

p1n∑
j=1

E
(
f(Zj)− f(Zj−1)

)
.

11



A third Taylor expansion yields

f(Zj) = f(Z0
j) + X̂j∂jf(Z

0
j) +

1

2
X̂2

j ∂
2
j f(Z

0
j) +

1

2
X̂3

j

∫ 1

0

(1− τ)2∂3
j f(Z

(1)
j (τ))dτ,

f(Zj−1) = f(Z0
j) + Ĝj∂jf(Z

0
j) +

1

2
Ĝ2

j∂
2
j f(Z

0
j) +

1

2
Ĝ3

j

∫ 1

0

(1− τ)2∂3
j f(Z

(2)
j−1(τ))dτ,

where ∂r
j f(·), r = 1, 2, 3, stand for the r-fold derivative of the function f in the j-th

coordinate, and
Z

(1)
j (t̃) = (X̂1, · · · , X̂j−1, τX̂j, Ĝj+1, · · · , Ĝpn),

Z
(2)
j−1(t̃) = (X̂1, · · · , X̂j−1, τ Ĝj, Ĝj+1, · · · , Ĝpn).

Since X̂j and Ĝj are both independent of Z0
j , E[X̂j] = E[Ĝj] = 0 and E[X̂2

j ] = E[Ĝ2
j ] = 1,

we obtain

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)]

=
1

2

p1n∑
j=1

E
[
X̂3

j

∫ 1

0

(1− τ)2∂3
j f(Z

(1)
j (τ))dτ − Ĝ3

j

∫ 1

0

(1− τ)2∂3
j f(Z

(2)
j−1(τ))dτ

]
.

Next we evaluate ∂3
j f(Z

(1)
p1n(τ)). Note that

∂H−1

∂Xij

= −H−1 ∂H

∂Xij

H−1. (2.24)

A simple but tedious calculation indicates that

∂B

∂Xij

=
1

n
Pyeje

T
i H

−1XPy +
1

n
PyX

TH−1eie
T
j Py

− 1

n2
PyX

TH−1(eie
T
j X

T +Xeje
T
i )H

−1XPy,

∂2B

∂X2
ij

=
2

n
Pyeje

T
i H

−1eie
T
j Py −

2

n2
Pyeje

T
i H

−1(eie
T
j X

T +Xeje
T
i )H

−1XPy

− 2

n2
PyX

TH−1(eie
T
j X

T +Xeje
T
i )H

−1eie
T
j Py −

2

n2
PyX

TH−1eie
T
i H

−1XPy

+
2

n3
PyX

T [H−1(eie
T
j X

T +Xeje
T
i )]

2H−1XPy,

12



∂3B

∂X3
ij

= − 6

n2
Pyeje

T
i H

−1(eie
T
j X

T +Xeje
T
i )H

−1eie
T
j Py −

6

n2
Pyeje

T
i H

−1eie
T
i H

−1XPy

+
6

n3
Pyeje

T
i [H

−1(eie
T
j X

T +Xeje
T
i )]

2H−1XPy −
6

n2
PyX

TH−1eie
T
i H

−1eie
T
j Py

+
6

n3
PyX

T [H−1(eie
T
j X

T +Xeje
T
i )]

2H−1eie
T
j Py

− 6

n4
PyX

T [H−1(eie
T
j X

T +Xeje
T
i )]

3H−1XPy

+
6

n3
PyX

TH−1(eie
T
j X

T +Xeje
T
i )H

−1eie
T
i H

−1XPy

+
6

n3
PyX

TH−1eie
T
i H

−1(eie
T
j X

T +Xeje
T
i )H

−1XPy.

Also, by the formula
1

n

∂trB−1(z)

∂Xij

= − 1

n
tr(

∂B

∂Xij

B−2(z)),

it is easily seen that

1

n

∂3trB−1(z)

∂X3
ij

= − 6

n
tr(

∂B

∂Xij

B−1(z)
∂B

∂Xij

B−1(z)
∂B

∂Xij

B−2(z))

− 1

n
tr(

∂3B

∂X3
ij

B−2(z)) +
3

n
tr(

∂2B

∂X2
ij

B−2(z)
∂B

∂Xij

B−1(z))

+
3

n
tr(

∂2B

∂X2
ij

B−1(z)
∂B

∂Xij

B−2(z)).

There are lots of terms in the expansion of 1
n
∂3trB−1(z)

∂X3
ij

and therefore we do not enumerate

all the terms here. By using the formula that, for any matrices A, B and column vectors
ej and ek,

tr(Aeje
T
kB) = eTkBAej, (2.25)

all the terms of 1
n
∂3trB−1(z)

∂X3
ij

can be dominated by a common expression. That is

|| 1
n

∂3trB−1(z)

∂X3
ij

|| ≤ M

n3
||H−1|| · ||XTH−1||+ M

n4
||XTH−1||3

+
M

n4
||H−1|| · ||XTH−1||2

+
M

n4
||H−1|| · ||XTH−1|| · ||XTH−1X||

+
M

n5
||H−1|| · ||XTH−1|| · ||XTH−1X||2

+
M

n5
||XTH−1||3 · ||XTH−1X||

+
M

n6
||XTH−1||3 · ||XTH−1X||2

+
M

n7
||XTH−1||3 · ||XTHX||3. (2.26)

13



Obviously

||H−1|| ≤ 1

t
. (2.27)

It is observed that

||XTH−1X||2 = λmax(X
TH−1XXTH−1X) = λmax(H

−1XXTH−1XXT )

≤ n2[1 + 2t||H−1||+ t2||H−2||] ≤ Mn2, (2.28)

where λmax(·) denotes the maximum eigenvalue of the corresponding matrix; and the
first inequality above utilizes the fact that H−1XXT = nH−1( 1

n
XXT + tIp1 − tIp1) =

nIp1 − ntH−1.
Similarly we can obtain

||XTH−1|| ≤ M
√
n. (2.29)

We conclude from (2.26)-(2.29) that

|| 1
n

∂3trB−1(z)

∂X3
ij

|| ≤ M

n5/2
. (2.30)

This implies that

E|X3
ij ·

1

n

∂3trB−1(z)

∂X3
ij

| ≤ M

n5/2
E[X3

ij] ≤
Mεn
n2

. (2.31)

Since all Xij and Wij play a similar role in their corresponding matrices, the above argu-
ment works for all matrices. Hence we obtain

|E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)]|

≤ M

p1n∑
j=1

[

∫ 1

0

(1− τ)2E|X̂3
j ∂

3
j f(Z

(1)
j (τ))|dτ +

∫ 1

0

(1− τ)2E|Ĝ3
j∂

3
j f(Z

(2)
j−1(τ))|dτ ]

≤ Mεn.

This ensures that

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)] → 0 as n → ∞.

Therefore the proof of Theorem 1 is completed.

3 Conclusion

Canonical correlation coefficients play an important role in the analysis of correlations
between random vectors[Anderson (1984)]. Nowadays, investigations of large dimensional
random vectors attract a substantial research works, e.g. Fan and Lv (2010). As future
works, we plan to develop central limit theorems for the empirical distribution of canoni-
cal correlation coefficients and make statistical applications of the developed asymptotic
theorems for large dimensional random vectors.
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4 Appendix

Lemma 1 (Burkholder (1973)). Let {Xk, 1 ≤ k ≤ n} be a complex martingale difference
sequence with respect to the increasing σ-field {Fk}. Then, for p ≥ 2,

E|
n∑

k=1

Xk|p ≤ Kp(E(
n∑

k=1

E(|Xk|2|Fk−1))
p/2 + E

n∑
k=1

|Xk|p).

Lemma 2 (Burkholder (1973)). With {Xk, 1 ≤ k ≤ n} as above, we have, for p > 1,

E|
n∑

k=1

Xk|p ≤ KpE(
n∑

k=1

|Xk|2)p/2.

Lemma 3 (Lemma B.26 of Bai and Silverstein (2009)). For X = (X1, · · · , Xn)
T i.i.d

standardized entries, C n× n matrix, we have, for any p ≥ 2,

E|X∗CX− trC|p ≤ Kp((E|X1|4trCC∗)p/2 + E|X1|2ptr(CC∗)p/2).

Lemma 4 (Theorem A.43 of Bai and Silverstein (2009)). Let A and B be two n × n
symmetric matrices. Then

||FA − FB|| ≤ 1

n
rank(A−B),

where ||f || = supx|f(x)|.

Lemma 5 (Hoeffding (1963)). Let Y1, Y2, . . . be i.i.d random variables, P (Y1 = 1) = q =
1− P (Y1 = 0). Then

P (|Y1 + · · ·+ Yn − nq| ≥ nε) ≤ 2e−
n2ε2

2nq+nε

for all ε > 0, n = 1, 2, . . ..

Lemma 6 (Corollary A.41 of Bai and Silverstein (2009)). Let A and B be two n × n
symmetric matrices with their respective ESDs of FA and FB. Then,

L3(FA, FB) ≤ 1

n
tr(A−B)2.
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