
Diversity-Aware Top-k Publish/Subscribe for Text Stream

Lisi Chen
School of Computer Engineering
Nanyang Technological University

lchen012@e.ntu.edu.sg

Gao Cong
School of Computer Engineering
Nanyang Technological University

gaocong@ntu.edu.sg

ABSTRACT

Massive amount of text data are being generated by a huge num-
ber of web users at an unprecedented scale. These data cover a
wide range of topics. Users are interested in receiving a few up-to-
date representative documents (e.g., tweets) that can provide them
with a wide coverage of different aspects of their query topics.
To address the problem, we consider the Diversity-Aware Top-
k Subscription (DAS) query. Given a DAS query, we continu-
ously maintain an up-to-date result set that contains k most re-
cently returned documents over a text stream for the query. The
DAS query takes into account text relevance, document recency,
and result diversity. We propose a novel solution to efficiently
processing a large number of DAS queries over a stream of doc-
uments. We demonstrate the efficiency of our approach on real-
world dataset and the experimental results show that our solution
is able to achieve a reduction of the processing time by 60–75%
compared with two baselines. We also study the effectiveness of
the DAS query.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Indexing methods

Keywords

text stream; diversification; publish/subscribe

1. INTRODUCTION
Massive amount of text data are being generated by a huge num-

ber of web users at an unprecedented scale. For example, Twitter,
which allows user to compose tweets containing up to 140 charac-
ters, has more than 284 million monthly active users who posted
500 million tweets per day1.

Such text data can be modeled as continuously arriving streams,
and building publish/subscribe systems that can support a large

1https://about.twitter.com/company (accessed date: 6 Nov, 2014)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749451.

number of subscribers for a text stream has many real-world ap-
plications. For example, users on Twitter want to be updated with
tweets on some specific topics (e.g., food poisoning vomiting). As
another example, because social updates (e.g., tweets) often offer
the quickest first-hand reports of news events, comments and re-
views indicating the public view, business promotion information,
etc., a news website may want to annotate each news with its up-to-
date relevant tweets [32]. In these applications, users would prefer
to be updated with a few representative tweets rather than being
overwhelmed by a large number of tweets.

Based on these applications, we consider the top-k subscription
query, for which we rank-order documents and return a represen-
tative set of documents. The rationale behind is analogous to the
reason that search engines rank-order documents matching a query
rather than employ the boolean retrieval model (e.g., the resulting
number of matching documents of a boolean filter can far exceed
the number a human user could possibly sift through [26]). In fact,
the top-k publish/subscribe query that ranks documents based on
their relevance to query keywords has been studied in recent years
(e.g., [18,30,32]). The state-of-the-art top-k publish/subscribe sys-
tem for tweets [32] returns a subscriber top-k tweets that are ranked
based on both keyword relevance and tweet recency.

However, a major problem of these top-k publish/subscibe sys-
tems is that they do not consider the diversification of results. The
problem of result diversification has drawn considerable attention
as a way to increase user satisfaction in recommendation systems
and web search [11]. Similarly, diversifying the top-k subscription
result will provide users a better coverage of different aspects of the
query. Moreover, queries are sometimes ambiguously or vaguely
specified. For example, queries issued on Twitter only contain 1.64
keywords on average [34], which indicates the need for result di-
versification. Note that relevance, recency, and diversity are con-
sidered in existing work on tweet search [7, 32].

Taking into account diversity in top-k publish/subscribe system
incurs new challenges. First, it is an open problem to define the
diversity-aware subscription query. On the one hand, we should
consider all the three aspects in the definition. On the other hand,
the definition should allow us to develop efficient algorithm to han-
dle a large number of subscription queries. To address the chal-
lenge, we propose a new type of top-k subscription query, which is
referred to as Diversity-Aware Top- k Subscription (DAS) query.
The DAS query takes into account the following three aspects in
evaluating its results: (1) Text relevance; (2) Document recency; (3)
Result diversity. DAS queries are treated as subscriptions and doc-
uments from a text stream are published items in the publish/subscribe
system. Each DAS query maintains a result set that contains k most
recently returned documents for the query over a stream of docu-
ments. A DAS query is triggered by a new published document

only if updating its result set with the new document increases the
diversity and relevance score of the current result set. The diver-
sity and relevance score is computed by considering all the three
aspects.

The second challenge is that the proposed publish/subscribe sys-
tem should efficiently support millions of subscription queries and
determine whether each query can be triggered by a new document.
A straightforward approach would work as follows: given a new
published document dn, for each DAS query q we compute the
diversity and relevance score of the result set with the oldest doc-
ument replaced by dn. If the score is larger than the diversity and
relevance score of the current result set, document dn becomes a
result, replacing the oldest document in q.R; otherwise dn is not a
result. Because every document in each query result set is involved
in determining whether a new document can be a new result, it is
rather costly to process a large number of DAS queries. This calls
for an effective filtering technique to make the publish/subscribe
system efficient. To address the challenge, we propose a novel ap-
proach including the following key techniques.

(1) We propose the concepts of individual filtering condition and
group filtering condition to help determine whether a DAS query
and a group of DAS queries can be filtered out by each new docu-
ment, respectively.

(2) We develop the group filtering technique to efficiently com-
pute group filtering condition. Specifically, we propose the concept
of minimal covering set (MCS) and define the MCS maximization

problem to find a set of MCSs for utilizing the documents that are
shared by the results of different queries in a group. Then we devise
an efficient algorithm to solve the problem and based on the MCS
we develop a technique to efficiently estimate the group filtering
condition.

(3) We develop the individual filtering technique to further im-
prove the efficiency of generating individual filtering condition.

In summary, the paper’s contributions are threefold.
First, we define the DAS query, which considers diversity, rele-

vance, and recency. We build the first diversity-aware top-k pub-
lish/subscribe system for a text stream, which aims to maintain the
up-to-date results for a large number of DAS queries over a text
stream.

Second, we propose a novel approach comprising the aforemen-
tioned key techniques that is capable of processing a large number
of DAS queries efficiently.

Third, we conduct an extensive experimental study for evaluat-
ing the paper’s proposals on real-world datasets of a large scale
collected from Twitter. Our experiments demonstrate that our pro-
posed filtering techniques are able to improve the runtime perfor-
mance by 60% to 75% compared with two baselines developed by
us. Our user study result demonstrates that the DAS query pro-
duces results with comparable quality in comparison to the queries
defined by two state-of-the-art diversity-aware systems [12, 27],
which are developed for processing a single query, rather than a
large number of subscription queries. Moreover, our experimental
results show that the existing diversity-aware systems [12, 27] fail
to work for a set of 2M subscription queries, while our approach
can efficiently support them. Our system runs faster than the two
state-of-the-art diversity-aware systems by more than an order of
magnitude for 100K subscription queries.

The rest of this paper is organized as follows. Section 2 defines
the DAS query. Section 3 presents an overview of the proposed
solution. Section 4 introduces our methods for representing and
indexing DAS queries, and the concepts of individual filtering con-
dition and group filtering condition. Based on the filtering condi-
tions we detail the group filtering technique and individual filtering

technique in Section 6 and Section 7, respectively. Then we present
the experimental studies in Section 8. Section 9 reviews the related
work, and Section 10 concludes the paper. Proofs, baselines, and
additional experimental results are put in Appendix.

2. PROBLEM STATEMENT
We introduce the text stream and define the Diversity-Aware

Top-k Subscription (DAS) query.

Definition 1: Text Stream. A text stream comprises a sequence of
text documents, each denoted by a triple d = 〈id, vd, tc〉, where
id is the document id, which is assigned based on the creation
time of d, vd is a sequence of words from the vocabulary V =
{w1, w2, ..., w|V |}, and tc indicates the creation time of d. ✷

The text documents in Definition 1 can be tweets in Twitter, posts
and comments on Facebook, etc.

Intuitively, given a stream of text, Diversity-Aware Top-k Sub-
scription (DAS) query is to continuously maintain the result set
over time, which contains top-k ranked documents based on their
diversity and relevance scores. The following is considered in the
diversity and relevance score: (1) Relevance, which is the text rel-
evance between the document and the query keywords. The DAS
query favors the documents that are relevant to the query keywords;
(2) Diversity, which is measured by the sum of pair-wise similari-
ties between any two documents in the query result set (the lower
value indicates the higher degree of diversity); (3) Recency, which
is computed based on the arrival time of a document. The DAS
query favors the newly arrived documents. Note that recency is im-
portant for data streams. According to a comparison between mi-
croblog search and web search [34], the intent for microblog search
is always inclined to find more fresh information. Some other lit-
eratures also claim that tweets are often tied to some specific event
and their relevance to a query declines as time passes (e.g., [32,37]).

Definition 2: Diversity-Aware Top-k Subscription (DAS) Query.

A DAS query is represented by a tuple q = 〈id, ψ〉, where id indi-
cates the query id, and ψ is a set of query keywords. We use q.R to
denote the result set of q, where |q.R| = k.

A DAS query aims to continuously feed the user with new docu-
ment dn that can be ranked within the top-k based on the following
criteria:

(1) If dn does not contain any keyword in q.ψ, dn cannot become
a result of q.

(2) Let de be the document with the earliest time of arrival in
q.R. If by replacing de with dn, the diversity and relevance score
of q.R becomes larger, then dn will replace de as the new result of
q; otherwise dn cannot be a result of q. ✷

We define the diversity and relevance score based on the max-

sum diversification, which is a natural bi-criteria objective function
that considers both the relevance and dissimilarity of a selected
set [16]. Such function is widely applied and studied for result
diversification (e.g., [5, 16, 27]). Specifically, the diversity and rel-
evance score of query q, denoted by DR(q.R), is computed as fol-
lows:

DR(q.R) = α×
∑

di∈q.R

R(q, di) + (1− α)×D(q.R), (1)

where R(q, d) computes the relevance score between query q and
document di, D(q.R) computes the diversity score of documents
in q.R, and α ∈ [0, 1] is a system parameter that specifies the trade-
off between relevance and diversity.

Relevance: Following the previous work (e.g., [32]), we compute
the score of relevance between query q and document d by com-
bining the score of text relevance and a temporal decaying factor,

which is as follows:

R(q, d) = TRel(q, d)× T (d), (2)

We use language models to compute the score of text relevance
TRel(q, d), which is described as follows:

TRel(q, d) =
∏

w∈q.ψ

PS(d.vd, w), (3)

where PS(d.vd, w) is the text relevance of term w to d.vd, which
is computed as follows:

PS(d.vd, w) = (1− λ)
Num(d.vd, w)

|d.vd|
+ λ

Num(Coll, w)

|Coll|
,

where Num(d.vd, w) is the number of occurrences of w in d.vd,
Num(Coll, w) represents the number of occurrences of w in the
document collection Coll, and λ is a smoothing parameter of the
Jelinek-Mercer smoothing method.

Note that other measurements of text relevance (e.g., cosine sim-
ilarity) can also be applied in our proposed method.

Recency: The recency of document d, which is denoted by T (d),
is calculated by the exponential decay function, namely:

T (d) = B−(tcur−d.tc), (4)

where B is base number that determines the rate of the recency
decay, tcur indicates the current time, and d.tc refers to the cre-
ation time of d. The function is monotonically decreasing with
tcur − d.tc. It is introduced in [23] and is applied (e.g., [2, 24, 32])
as the measurement of recency for stream data. Based on the ex-
perimental studies [14], the exponential decay function has been
shown to be effective in blending the recency and text relevancy of
documents.

Diversity: Given a query result set q.R, we compute the diversity
score of q.R following the max-sum objective function, which is
widely used for result diversification (e.g., [5,16,27]), by summing
up the dissimilarity score of any pairs of documents in q.R, which
is defined as follows:

D(q.R) =
2

k − 1

∑

di,dj∈q.R

d(di, dj), (5)

where
d(di, dj) = 1− Sim(di, dj) (6)

and Sim(di, dj) denotes the cosine similarity between di.vd and
dj .vd, Note that 2

k−1
is used for balancing out the fact that there

are k−1
2

pairs for each document in the similarity sum.
We aim to develop a scalable solution to maintain the up-to-date

results for a large number of DAS queries over a stream of text.
Millions of DAS queries can easily fit into the available memory
of modern servers. Hence, our solution is developed under this set-
ting. In the case that the DAS queries cannot fit into memory, we
can employ our proposed solution on multiple servers, each han-
dling a subset of DAS queries independently.

3. FRAMEWORK OVERVIEW
We aim at addressing the problem of answering a large num-

ber of DAS queries over text streams. A straightforward approach
would work as follows: given a new published document dn, for
each DAS query q we compute the diversity and relevance score
of q.R with de replaced by dn (de represents the document with
the earliest time of arrival in q.R). If the diversity and relevance

score is larger than the diversity and relevance score of q.R, doc-
ument dn becomes a result and is used to replace de in q.R; oth-
erwise dn is not a result. Note that for each new document dn
we need to compute the diversity and relevance score with respect
to each query result set q.R, and for each query result set we need
to separately evaluate the similarity between dn and each document
q.R\{q.de}. Therefore, the approach is computationally expensive
especially when the number of queries is large or the documents ar-
rive at a high rate. Hence, we need a more efficient mechanism to
handle DAS queries over the data stream, where both new queries
and new documents arrive in a streaming manner.

An underlying idea of many publish/subscribe systems (e.g., [10,
32]) is to group subscription queries such that they can be evaluated
simultaneously for a new published document. Motivated by these
systems, we also expect to design an approach to grouping DAS
queries and DAS query results such that queries in one group can be
evaluated simultaneously, thus reducing the computation of query
processing. Specifically, we propose the concepts of query filtering

condition and group filtering condition respectively for filtering out
the documents that cannot be the result for any query. Based on
the concepts we group and index the DAS queries by the block
based inverted file and we develop a two-stage filtering mechanism,
which is briefed as follows.

(1) Group filtering technique, which is used for checking whether
a new document can be a result of some query in a query block
based on the group filtering condition. We propose the concept of
minimal covering set to help generate the group filtering condition
for each query block. Then we develop an efficient algorithm to
derive the minimal covering sets based on the results of queries in
each block. With the generated minimal covering sets, we develop
an approach to handling queries in a block simultaneously for a
new document. This technique will be presented in Section 5.

(2) Individual filtering technique, which is utilized when a query
cannot be filtered during the group filtering stage. We propose the
technique to optimize the filtering efficiency while taking into ac-
count the available memory space. This technique will be presented
in Section 6.

Figure 1 illustrates our proposed architecture for processing DAS
queries. Blue arrows denote the process of a queries and green ar-
rows denote the process of documents. A user may both issue a
query and generate a document.

When the system receives a DAS query, the query is firstly ini-
tialized by traversing the document lists, then it is inserted into the
query inverted file and the query result index. The query inverted
file consists of query postings lists and group-based query result

summaries. Each query postings list corresponds to a term, and the
list stores the ids of the queries that contains the term. The group-
based query result summaries store the minimal covering sets for
each query block. The query result index consists of query result

tables and aggregated term weight summaries that maintain the re-
sult of each query.

When a new document dn arrives, it is stored in the document
lists that stores the text and temporal information of each arrived
document. Then we regard dn as “query” and based on the group
filtering technique we traverse the query inverted lists and the group-
based query result summaries to filter dn over the blocks of query
inverted file. If a block cannot filter dn, we visit the query result
tables and the aggregated term weight summaries for each query q
in the block to determine whether q can include dn as their results.
Finally, dn are pushed to the users who issue the queries that can
include dn as their result.

Table 1 presents the notations frequently used in the paper.

����������	

�������

�������	�����

����������	

����	������	

��������

����	�������	
���

���������	

���	������	

��������

����	

�������	

��������	

 ����

����	

!�������	 ����

����	������	

������

"���	#���	

��������$��	�����

����	������	����%

��������

����

Figure 1: Architecture for Processing DAS Queries

Notation Definition
q.R result of query q

dn a new document
q.de document with the earliest creation time in q.R

q.R′ q.R ∪ {dn} \ {de}
G a group of queries
qe query with earliest de among all queries in a group
b a block of query postings list

drq(dn) div and rel score of q contributed by dn

drq(q.de) div and rel score of q contributed by q.de

TRelmax(G, dn) max{TRel(q, dn)|qi ∈ G}
Simmin(G, dn) min{

∑
dj∈qi.R

′\{dn} Sim(dj , dn)|qi ∈ G}

Uw(b) universe of block b in postings list of w
Qs(b, di) a set of queries in b that contain di in their results

AW(wi, Sd) aggregated term weight of wi w.r.t. Sd

Table 1: Summary of Notations

4. REPRESENTING AND INDEXING DAS
QUERIES

We introduce our proposed method of representing and index-
ing DAS queries, which lays the foundation of our group filter-
ing technique and individual filtering technique. We first propose
the concept of individual filtering condition to represent each DAS
query (Section 4.1). Based on the individual filtering condition, we
develop an approach to deriving a group filtering condition for a
group of queries, and show how to use the group filtering condi-
tion to determine whether a new document can be a result of some
query in a group (Section 4.2). Finally we develop an approach to
indexing DAS queries (Section 4.3).

4.1 Individual Filtering Condition
We propose the concept of individual query filtering condition to

represent the DAS query, which is used for determining whether a
new document can be a result of a query.

We use dn to denote a new document, q to denote a DAS query,
q.de to denote the document with the earliest arrival time in q.R,
and q.R′ to denote an updated q.R where de is replaced by dn
(i.e., q.R′ = q.R ∪ {dn} \ {q.de}). Based on Definition 2, to
check whether dn can be a result of q we need compare DR(q.R)
and DR(q.R′). However, it is time-consuming to re-compute the
two values each time when a new document arrives (the complexity
of the re-computation is O(k2) for each query). We need a more
efficient way to compare the two values.

Specifically, we find that the comparison between DR(q.R) and
DR(q.R′) can be deduced to an equivalent comparison that is much
more efficient. The details are presented in Lemma 1.

Let drq(q.de) be the diversity and relevance score of q con-
tributed by q.de, drq(dn) be the diversity and relevance score of

q contributed by a new document dn. We compute drq(q.de) and
drq(dn) as follows.

drq(q.de) = α×R(q, q.de)+
2− 2α

k − 1

∑

di∈q.R\{q.de}

d(q.de, di). (7)

drq(dn) = α×R(q, dn) +
2− 2α

k − 1

∑

di∈q.R′\{dn}

d(dn, di). (8)

Lemma 1: Given a new document dn, we have:

DR(q.R′)−DR(q.R) = drq(dn)− drq(q.de). (9)

Proof Sketch: The proof can be found in the Appendix. ✷

Based on Lemma 1, we just need compare drq(dn) and drq(q.de)
for determining whether dn can be a result of q, and the complex-
ity is O(k). This is much more efficient than computing DR(q.R)
and DR(q.R′).

From Equation 2, we observe that drq(q.de) is independent of
the contents of new documents, while drq(dn) depends on the new
documents. Hence we use drq(q.de) as the filtering threshold to
represent the DAS query q. Specifically, for a new document dn, if
drq(dn) > drq(q.de), then dn is a result of q; otherwise dn cannot
be a result of q.

The filtering condition of a DAS query is defined as follows:

Definition 3: Filtering Condition of DAS Query: Given a DAS
query q and a new document dn, the filtering condition of q w.r.t.
dn is:

drq(dn) ≤ drq(q.de). (10)

Here drq(q.de) is independent of dn and it is called filtering thresh-

old. If Inequation 10 is satisfied, then dn is filtered out. ✷

4.2 Group Filtering Condition
Section 4.1 introduces how to derive the filtering condition of a

DAS query. We proceed to present how to generate filtering con-
dition for a group of queries, which lays the foundation of our ap-
proach to filtering new documents simultaneously for a group of
queries.

Let G = {q0, q1, ..., qn−1} be a group of n DAS queries. Based
on Equation 10 we can obtain a filtering threshold of G by com-
puting the minimum filtering threshold for all queries in G, i.e.,
min{drqi(qi.de)|qi ∈ G}. If a new document dn satisfies the fol-
lowing condition, then dn is filtered out by G.

max{drqi (dn)|qi ∈ G} ≤ min{drqi (qi.de)|qi ∈ G} (11)

Inequation 11 is the exact group filtering condition for G, where
min{drqi(qi.de)|qi ∈ G} is the corresponding filtering threshold.
However, both of the two values are computationally expensive for
each group G, which is O(k|G|). We develop more efficient ways
to compute a lower bound of filtering threshold of G and an ap-
proximate value of max{drqi(dn)|qi ∈ G} respectively to expe-
dite the checking of whether a new document can be a result of
some queries in G.

4.2.1 Lower bound of group filtering threshold

Since drqi(qi.de) depends on time, the filtering threshold ofG is
also time-dependent. Therefore, the exact value of filtering thresh-
old for G need be updated by re-computing drqi(qi.de) for each qi
inG when a new document arrives. Such frequent re-computations
are computationally expensive.

To avoid the expensive re-computation, we propose a method
to estimate a lower bound of filtering threshold for G, which is

denoted by F̃TG:

F̃TG = DTRelmin(G)− α× TRel(qm, qm.de)× (1− T (qe.de)),
(12)

where

DTRelmin(G) =

min{α · TRel(qi, qi.de) +
2− 2α

k − 1

∑

dj∈qi.R\{qi.de}

d(dj , qi.de)|qi ∈ G},

(13)

qm is the query in G such that

TRel(qm, qm.de) = max{TRel(qi, qi.de)|qi ∈ G}, (14)

and qe denotes the query with earliest de among all queries in G.
Note that TRel(qm , qm .de), DTRelmin(G), and qe.de are time-
independent, so we can store them and then when a new document
arrives the complexity of deriving F̃TG is only O(1), rather than
O(k|G|) as discussed earlier.

Lemma 2 establishes the correctness of F̃TG.

Lemma 2: Given a set of DAS queries G, we always have:

F̃TG ≤ min{drqi (qi.de)|qi ∈ G}. (15)

Proof Sketch: The proof can be found in the Appendix. ✷

4.2.2 Computing max{drqi(dn)|qi ∈ G}

The exact value of max{drqi(dn)|qi ∈ G} can be computed
only by calculating each drqi(dn), which is also time-consuming.
So the next problem is how to derive an approximate value (upper
bound) of max{drqi(dn)|qi ∈ G} without checking each query in
G and its results.

We first introduce two notations: TRelmax(G, dn) represents
the maximum text relevance between dn and the queries in G,
which is defined by Equation 16, and Simmin(G, dn) refers to the
minimum sum of similarities between dn and the results of queries
in G, which is defined by Equation 17.

TRelmax(G, dn) = max{TRel(q, dn)|qi ∈ G} (16)

Simmin(G, dn) = min{
∑

dj∈qi.R′\{dn}

Sim(dj , dn)|qi ∈ G}. (17)

The way to compute an approximate max{drqi(dn)|qi ∈ G} is
established in Lemma 3.

Lemma 3: Given a set of DAS queries G, we always have:

max{drqi (dn)|qi ∈ G}

≤ α× TRelmax(G, dn) +
2− 2α

k − 1
(k − 1− Simmin(G, dn)).

Proof Sketch: The proof can be found in the Appendix. ✷

The remaining problem is how to compute Simmin(G, dn) and
TRelmax(G, dn), which is very important for the efficiency and is
respectively discussed in Section 5 and Section 7.

4.3 Indexing DAS Queries
Before introducing the approaches to computing TRelmax(G, dn)

and Simmin(G, dn), we first present how to index the DAS queries.
We organize the DAS queries into an inverted file, which can

help prune the queries that do not share any keywords with a new
document. The inverted file consists of postings lists, each of which
is associated with a term w and comprises a sequence of postings.

Each posting contains the identifier of a query q that contains term
w. With the inverted file, we are able to discard the queries that do
not share any common term with the new document. Recall that
according to Definition 2 if a new document does not contain any
query keyword of a DAS query, the document will not be a result.

Specifically, we use the block based inverted file to index the
DAS queries. As illustrated in Figure 2, in the block based inverted
file, each postings list consists of a number of postings block, each
of which contains at most pmax postings, where pmax is a system
parameter. Each posting stores a query id, and the postings in each
postings list are sorted in ascending order of their query ids.

To enable group filtering under the block based inverted file, we
augment each block bi with the following components:

(1) minID and maxID, which respectively indicates the min-
imum and maximum ids of postings (queries) in bi;

(2) DTRelmin(bi) (Equation 13);
(3) TRel(qm, qm.de) (Equation 14);
(4) qe.de, which denotes the earliest de of queries in bi;
(5) Result summary of bi, which summarizes the results of queries

in bi with minimal covering sets. This is a key component for our
proposed group filtering technique, and will be introduced in Sec-
tion 5.

To enable individual filtering for each query, we also index the
results of each query with a query result index, which will be de-
tailed in Section 6.

��������� �����	
��

�

�

���������	����
�� ��

�

������������

���������	����
�� ��

���������	����
�� ��

�

�

����	�����������
 ���� ���� ����� �

������ �

��

� ���

����������	��������

�� ���

������

Figure 2: Query Inverted File

5. GROUP FILTERING TECHNIQUE
We proceed to present the group filtering technique based on the

query inverted file.
At the beginning, we briefly introduce our approach to process-

ing DAS queries when a new document arrives. The high-level idea
is as follows. For a new document dn we traverse the query post-
ings lists of all the terms contained in dn.vd simultaneously based
on the Document-at-a-Time (DAAT) technique [26]; for each post-
ings list we maintain a cursor that specifies the query id we cur-
rently visit. Before visiting the postings (queries) in a new block
b, we apply group filtering condition to check whether b can be
filtered without evaluating each individual query in b.

Recall that the group filtering condition for block b consists of
three components, namely TRelmax(b, dn), Simmin(b, dn), and

F̃Tb. We first present how to estimate TRelmax(b, dn), and then
we focus on how to efficiently compute Simmin(b, dn), which is
the most challenging problem in the group filtering stage.
Estimating TRelmax(b, dn). Based on the postings lists and the
DAAT technique, we compute an upper bound of TRelmax(b, dn)
as follows. Let pw be the current position of the cursor in the post-
ings list of w. An upper bound of TRelmax(b, dn), which is de-

noted by T̃Relmax(b, dn), is computed as follows:

T̃Relmax(b, dn) = max{PS(dn.vd, wi)|wi ∈ dn.ψ∧pwi
≤ b.maxID}.

(18)

Lemma 4 establishes the correctness of T̃Relmax(b, dn).

Lemma 4: Given a new document dn and a block b, we always
have:

T̃Relmax(b, dn) ≥ TRelmax(b, dn).

Proof Sketch: The proof can be found in the Appendix. ✷

We proceed to present how to compute Simmin(b, dn). From
Equation 17, we observe that we have to evaluate each qi ∈ b to
compute the value of Simmin(b, dn). However, it is time-consuming
to evaluate each query in a block for computing Simmin(b, dn).
Therefore, the challenge here is how to compute an approximate
value of Simmin(b, dn) without the need of evaluating each query
in the block.

To solve the problem, we propose the concept of minimal cover-
ing set (MCS) and we define the MCS maximization problem that
aims at generating maximum number of minimal covering sets for
each block bi. Then we develop an efficient algorithm for MCS
maximization problem. Based on the minimal covering sets for
bi, we develop an approach to computing an approximate value of
Simmin(bi, dn) without evaluating every query in bi.

5.1 MCS Maximization Problem
Before introducing the MCS maximization problem, we present

the concept of minimal covering set.
Recall that we want to compute an approximate Simmin(b, dn)

without checking the result of each query in b. However, it is dif-
ficult to achieve this because each query in b has different results.
Nevertheless, we observe that some queries in b may share some
common documents in their results. Therefore, we propose the
concept of minimal covering set for representing a set of documents
that are shared by the results of queries in b.

We first present the concept of universe.

Definition 4: Universe of a block. Let b = {q0, q1, ..., qn−1} be
a block in the query postings list of term w. The universe of b,
denoted by Uw(b), satisfies the following conditions:

(1) Uw(b) ⊆
⋃
qi∈b

{qi.R \ {qi.de}};
(2) For each di in Uw(b), w ∈ di.vd. ✷

Note that the document with the earliest arrival time in each
query result set will not be considered for matching new docu-
ments. The reason that it will be removed when the query result
is updated by a new document so that it will not induce any change
w.r.t. the diversity score of the query. The minimal covering set is
defined as follows.

Definition 5: Minimal Covering Set (MCS). Let Qs(b, di) be
{qj |qj ∈ b ∧ di ∈ qj .R \ {qj .de}}, which is a set of queries in
b that contain di in their results. A set of documents S is called a
minimal covering set (MCS) of queries in block b if the following
two conditions are satisfied:

(1)
⋃
di∈S

Qs(b, di) = b;
(2) ∀di ∈ S, S \ {di} does not satisfy (1). ✷

In Definition 5, condition (1) suggests that given an MCS S, the
result of each query in b contains at least one document in S as
its result, and condition (2) requests MCS be the minimal set that
satisfies condition (1).

We can generate a number of MCSs based on Uw(b) and the
queries in b. Let Sw(b) be the set of disjoint MCSs generated
from Uw(b). For a new document dn, we can estimate an ap-

proximate value of Simmin(b, dn) (denoted by S̃immin(b, dn)) by
Equation 19.

S̃immin(b, dn) =
∑

Si∈Sw(b)

min{Sim(dn, dj)|dj ∈ Si}

+minSim(Uw(b), dn)× (k − |Sw(b)|),

(19)

where minSim(Uw(b), dn) is the minimum possible similarity
between dn and any documents in Uw(b).

We next present how to compute minSim(Uw(b), dn). Let w
be the term of the postings list that b belongs to and di.vd.w be the
term frequency of w in di.vd. minSim(Uw(b), dn) is computed
by Equation 20.

minSim(Uw(b), dn) =
min{di.vd.w | di ∈ Uw(b)} × dn.vd.w

max{‖ di.vd ‖| di ∈ Uw(b)}× ‖ dn.vd ‖
.

(20)
Note that both min{di.vd.w | di ∈ Uw(b)} and max{‖ di.vd ‖|
di ∈ Uw(b)} are independent of the content of the new document
dn. As a result, if we index the above two values for each block,
then the complexity of computing minSim(Uw(b), dn) is O(1).

We proceed to demonstrate the effectiveness of MCS. Since
min{Sim(dn, dj)|dj ∈ Si} relies on the content of dn, we are
unable to compute it before dn arrives. Here we assume that the
expected value of min{Sim(dn, dj)|dj ∈ Si} for each Si is es.
Based on this assumption, we propose Lemma 5 to demonstrate

that S̃immin(b, dn) is affected by the number of MCSs in Sw(b).

Lemma 5: Let Sw(b) and S
′
w(b) be two sets of pairwise dis-

joint MCSs based on the universe Uw(b) s.t. |Sw(b)| ≥ |S
′
w(b)|,

and min{Sim(dn, dj)|dj ∈ Si} = es for each Si. Assume that

S̃immin(b, dn) is computed by Equation 19 based on Sw(b), and

S̃im
′

min(b, dn) is computed by Equation 19 based on S
′
w(b), then

we have:
S̃immin(b, dn) ≥ S̃im

′

min(b, dn). (21)

Proof Sketch: The proof can be found in the Appendix. ✷

Example 1 illustrates the concept of MCS.

Example 1: Let b be a block containing 8 postings (queries) in the
query postings list and Uw(b) be {d1, d2, ..., d9}. For each query
in b the corresponding results in Uw(b) are shown in Figure 3. The
id of a document is assigned based on its arrival time and the results
of each query are sorted in descending order of their document ids.
Note that we exclude d0 from Uw(b) since d0 is the document with
the earliest arrival time in the results of each query. For better illus-
trating the MCS, we represent the result of each query by Table 2,
where “X” denotes that the corresponding document is a result of
the corresponding query.

From Table 2, we can find that S0 = {d1} is an MCS because
all queries in b have d1 as their results, S1 = {d4, d5} is also an
MCS because all the queries in b contains either d4 or d5 in their
results, while S2 = {d6, d7} cannot be an MCS since q3 is not
covered by S2, and S3 = {d3, d4, d6} cannot be an MCS either
because there exists one or more MCSs that belong to the subsets
of S3 (e.g., {d3, d4}). ✷

�

�� �� �� �� �� �� �	 �

��������	���
���	�

�

�	

��

��

��

��

��

�

�	

��

��

��

��

�

��

��

��

��

��

��

��

��

��

��

�

�	

��

��

��

��

�

�

��

��

��

��

��

�

��

��

��

��

��

�

��

��

��

��

Figure 3: Results of Queries in Block b

q0 q1 q2 q3 q4 q5 q6 q7
d1 X X X X X X X X
d2 X X X
d3 X X X X
d4 X X X X X X
d5 X X X X
d6 X X X
d7 X X X X X
d8 X X X X
d9 X X X X

Table 2: Inverted Lists for Query Results in b

Lemma 5 suggests that to obtain a tight estimation of Simmin(b, dn)
we aim at maximizing the number of disjoint MCSs (i.e., |Sb|) for
each block b. We define MCS maximization problem as follows.

Definition 6: MCS Maximization Problem: Let b = {q1, q2, ..., qn}
be a block of n DAS queries, and Uw(b) = {d1, d2, ..., dm} be the
universe of b. The MCS maximization problem is to find a set of
MCSs Sw(b) with the maximum cardinality such that (1)(∀Si ∈
Sw(b))Si ⊆ Uw(b); (2) (∀Si, Sj ∈ Sw(b))Si ∩ Sj = ∅. ✷

Theorem 1: The MCS maximization problem is NP-hard.

Proof Sketch: The proof can be found in the Appendix. ✷

Note that we do not compute a new set of MCSs for b (i.e.,Sw(b))
whenever a new document becomes a result of some queries in b.
Instead, Sw(b) may be used by multiple new documents. We dis-
cuss the update of Sw(b) in Section 7.1.

5.2 Algorithm for MCS Maximization
Since MCS maximization problem is NP-hard, computing the

exact result of Sw(b) is computationally prohibitive. We develop
a greedy algorithm with a (smax/2+ ǫ) approximation ratio where
smax refers to the maximum cardinality of the MCS generated
from Uw(b) and ǫ refers to an arbitrarily small value.

The high-level idea of the algorithm is to greedily select the doc-
ument from Uw(b) that is included as a result by the largest number
of queries as their results to generate a MCS.

Algorithm 1: GreedyMcsGen (Block b, Universe Uw(b),

{Qs(b, di)|di ∈ Uw(b)})

1 Sw(b)← ∅;
2 Ur ← Uw(b);
3 while Ur is not empty do

4 Sr ← ∅;
5 Qr ← all queries in b;
6 while Qr is not empty do

7 dm ← NULL;
8 cmax ← 0;
9 for each di ∈ (Ur \ Sr) do

10 if |Qs(di) ∩Qr| > cmax then

11 cmax ← |Qs(di) ∩Qr|;
12 dm ← di;
13 Sr .add(dm);
14 Ur .remove(dm);
15 if Ur is empty then

16 break;
17 Qr ← Qr \Qs(dm);
18 Sw(b).add(Sr);
19 return Sw(b);

Algorithm 1 shows the pseudo code. It uses the following vari-
ables: Ur is used for storing the documents in Uw(b) that are not
returned as an element in MCS yet, Sr is used for maintaining the
current MCS under generation, and Qr is used for storing the cur-
rent set of queries that do not contain any document in Sr as their
results. We initialize Ur to be Uw(b) (line 2), Sr to be empty (line
4), and Qr to be the queries in b (line 5). Next, for generating a
MCS we first choose an document dm from Ur that is included as
a result by the largest number of queries (lines 9-12). Then we add
the chosen document dm into Sr (line 13), remove dm from Ur
(line 14), and remove the queries of which results contain dm from
Qr (line 17). The process is repeated until Qr is empty, indicating
that an MCS is generated (i.e. Sr). When an MCS is generated,
we add Sr into Sw(b) (line 18). The algorithm terminates when
Ur becomes empty.

We proceed to analyze the approximation ratio of GreedyMcsGen.
We denote the optimal number of disjoint MCSs by Ropt, and the
number of disjoint MCSs found by GreedyMcsGen by RG. The
cardinality of the MCS with the maximum number of documents
is denoted by smax. We have the following theorem:

Theorem 2: (smax/2 + ǫ)RG ≥ Ropt, where ǫ is an arbitrary
small value.

Proof Sketch: The proof can be found in the Appendix. ✷

6. INDIVIDUAL FILTERING TECHNIQUE
For a new document dn and a block b, if the queries in b cannot

filter out dn in the group filtering stage, we need separately evaluate
each query in b for checking whether dn is a result of the query. In
this section, we present the technique for evaluating each query
based on the query filtering condition introduced in Section 4.1.

According to Equation 10, we need calculate drq(dn) and com-
pare it with drq(q.de) to determine whether new document dn can
replace de in q.R. If q.de is replaced by dn, we update drq(q.de)
because the document with the earliest arrival time in q.R is changed.

We present how to compute drq(dn) in Section 6.1 and then we
present the structure of query result index in Section 6.2.

6.1 Computation of drq(dn)

For computing drq(dn), according to Equation 7 we need com-
pute (1) TRel(q, dn), and (2) the sum of similarities between dn
and the other documents in q.R′ (i.e.,

∑
dj∈q.R′\{dn} Sim(dj , dn)).

As shown in Equation 3, the computation of TRel(q, dn) is simple.
Consequently, we focus on efficiently computing (2).

A straightforward way is to compute Sim(dn, di) for each di
and sum them up, which is time-consuming. Nevertheless, we find
that some documents in q.R may share the same term. To improve
the computation efficiency, we propose the concept of aggregated

term weight and we build the aggregated term weight summaries

to store the aggregated term weight of each term appearing in a
set of documents. Such summary file allows us to get the sum of
similarities without computing the similarity of every document in
q.R with dn.

The concept of aggregated term weight is defined as follows.

Definition 7: Aggregated Term Weight. Letwi be a term, dj .vd.wi
be the term frequency of wi in dj .vd, and S be a set of documents.
Denoted by AW(wi, S) the aggregated term weight of wi w.r.t. S
is computed by:

AW(wi, S) =
∑

dj∈(S\{de})∧wi∈dj .vd

dj .vd.wi

‖ dj .vd ‖
. (22)

✷

Based on Definition 7, we are able to compute the sum of simi-
larities between dn and the documents in S by Lemma 6.

Lemma 6:

∑

dj∈S\{de}

Sim(dj , dn) =
∑

wi∈dn.vd

AW(wi, S)× dn.vd.wi

‖ dn.vd ‖
(23)

Proof Sketch: The proof can be found in the Appendix. ✷

Note that the aggregated term weight summaries will be used for
handling each new document dn. However, we observe that main-
taining the aggregated term summaries for each query will induce
extra space overheads though it will speed up the computation of
similarity. To balance the trade-off between querying efficiency
and space overheads, we maintain two result sets for q, namely
q.R1 and q.R2. The aggregated term weight summaries are built
just based on the documents in q.R1 (except q.de). We develop an
approach to determine whether dn belongs to q.R1 or q.R2, which
will be discussed in Section 7.1.

6.2 Query Result Index
We proceed to introduce the query result index for storing the

result of each query.
As mentioned in Section 4.3, we index the results of each query

with a query result index. Given a query q, the query result in-
dex of q consists of three components: (1) Query result table
of q w.r.t. q.R1, which indexes the information of documents in
q.R1; (2) Query result table of q w.r.t. q.R2, which indexes the
information of documents in q.R2; (3) Query result summaries for
q.R1 \ {q.de}, which stores the aggregated term weight of each
term of documents in q.R1 \ {q.de}.

Id TRel Accumulated Similarity
dz.id TRel(qi, dz) 0
dy.id TRel(qi, dy) Sim(dy, dz)
dx.id TRel(qi, dx) Sim(dx, dy) + Sim(dx, dz)
dw.id TRel(qi, dw) Sim(dw, dx) + Sim(dw, dy) + Sim(dw, dz)

...
dh.id TRel(qi, dh) ...
de.id TRel(qi, de) Sim(de, dh) + · · · + Sim(de, dz)

Table 3: Query Result Table of qi w.r.t. qi.R1

Term Aggregated Term Weight
wi AW(wi, Sd)
wj AW(wj , Sd)
wk AW(wk, Sd)
... ...
wr AW(wr, Sd)

Table 4: Query Result Summaries for qi.R1 \ {qi.de}

Table 3 illustrates the query result table of qi w.r.t. qi.R1. The
documents in qi.R1 are sorted in descending order of their arrival
times. In particular, for each document di we store: (1) Document
id; (2) Text relevance between qi and di; (3) Accumulated simi-
larities of di, computed by Equation 24, is the sum of similarities
between di and the documents in qi.R with arrival times earlier
than di.

Simacc(qi.R, di) =
∑

dj∈qi.R∧dj .tc>di.tc

Sim(di, dj). (24)

Based on the query result tables for qi.R1 and qi.R2, drqi(qi.de)

can be computed as follows:

drqi (qi.de) =

α× TRel(qi, qi.de) +
2− 2α

k − 1
(k − 1− Simacc(qi.R, qi.de)).

(25)

Table 4 illustrates the query result summaries of qi.R1 \{qi.de}.

Individual Filtering Steps: We present the procedures for pro-
cessing a new document dn over a query q. When dn arrives, we
first visit the query result table that contains de to retrieve TRel(q, q.de)
and Simacc(q.R, q.de). Then we compute drq(q.de) based on
Equation 25. Next we visit the query result summaries to retrieve
AW(wi, q.R1) for each wi ∈ q.ψ and visit the document lists to
retrieve the text information of each di ∈ qi.R2. Finally we com-
pute drq(dn) and compare it with drq(q.de) to determine whether
dn can be a result of q. If dn is a result of q, we update the two
query result tables and the query result summaries.

7. ALGORITHM FOR DAS QUERY
In this Section, we first present our techniques for updating the

indexing structure (Section 7.1), and then we introduce the algo-
rithm for processing DAS queries when a new document arrives
(Section 7.2).

7.1 Index Update
We observe that if a query result set q.R is updated by a new

document dn, the oldest document in q.R is discarded, and the sec-
ond oldest document in q.Rwill become the oldest document in the
new result set q.R′. Consequently, we need update the following
four components: (1) Query result table of q; (2) Aggregated term
weight summaries of q; (3) The MCSs in the group-based query
result summaries of the blocks that q belongs to. The update of
query result table is quite straightforward. We proceed to introduce
the updates of aggregated term weight summaries and the MCSs.

Update of Aggregated Term Weight Summaries. Recall that
if a new document dn is a result of q, we need determine whether
the term weights of dn should be included by the aggregated term
weight summaries. In other words, we need determine whether
dn belongs to q.R1 or q.R2. We develop an approach to opti-
mizing querying efficiency while taking into account the available
memory space. Specifically, we first introduce a system parame-
ter Φmax denoting the total available memory space for aggregated
term weight summaries and maintain two document sets, namely
q.R1 and q.R2. The aggregated term weight summaries are built
just based on the documents in q.R1 (except q.de). If storing the
aggregated term weights of dn will use out the available memory,
we move dn into q.R2 and do not generate aggregated term weights
for dn; otherwise we put dn into q.R1 and update the aggregated
term weight summaries by the term weights of dn.

Update of Group-based Query Result Summaries. For every
new document dn and every evaluated block bi we need update the
MCSs of bi that are affected by the results changes of queries in
bi induced by dn. However, such frequent updating operations are
time-consuming. To alleviate the burden of updating Sw(bi), we
do not update Sw(bi) each time when the result of a query in bi is
changed. Instead, when we reach the end of each block bi we just
remove the MCSs in Sw(bi) of which documents are affected by
the results changes induced by dn. Note that such updating method
does not affect the correctness of the group filtering condition gen-
erated from bi and the next new document. We can easily prove it
based on Equation 19. If the current number of MCSs in Sw(bi)
divided by the initial number of MCSs in Sw(bi) generated by Al-
gorithm 1 is smaller than the system parameter δs (δs ∈ [0, 1]), we

invoke Algorithm 1 for re-generating Sw(bi). Note that accord-
ing to Equation 19 the generated group filtering condition is still
correct.

7.2 Document Processing
Recall that for each block bi from the postings lists of terms in

dn, we compute T̃Relmax(bi, dn) by Equation 18 and compute

S̃immin(bi, dn) based on Equation 19.
Then we check whether bi can be filtered without evaluating each

individual query in bi based on Lemma 7.

Lemma 7: dn can be discarded by the queries in b if:

α× T̃Relmax(b, dn) +
2− 2α

k − 1
(k − 1− S̃immin(b, dn)) ≤ F̃Tb

Proof Sketch: Based on Equation 11, Lemma 2, and Lemma 3, we
can easily derive the conclusion. ✷

Lemma 7 enables us to efficiently determine whether dn cannot
be a result for any query in a block. If it can be determined, we
move the cursor to the first query in the next block; otherwise the
cursor is forwarded to the next query, and we need activate individ-
ual filtering steps for checking each individual query in the block
to determine whether dn is a result.

We are now ready to present our algorithm for maintaining the
top-k results of individual queries over each new document dn in a
stream. The algorithm traverses the postings lists of every term in
dn concurrently, with Lemma 7 deployed to prune the search space.

Algorithm 2: DocumentProcess (Document dn)

1 Result← ∅; Sw ← dn.ψ;
2 for each wi ∈ Sw do
3 pwi

← id of the first query in I(wi);
4 while Sw 6= ∅ do
5 wm ← term with the minimum pwi

for all wi ∈ Sw;
6 pwm ← FindNext(I(wm), {pwi

}wi∈Sw
, Result);

7 if pwm reaches the end of the current block bc then
8 Update DTRelmin(bc) and max{TRel(qi, de)|qi ∈ bc};
9 Qu ← {qj |qj ∈ bc ∧ qj ∈ Result};

10 for each qj ∈ Qu do
11 Remove the MCS of bc containing qj .de;
12 if |Swm (bc)cur|/|Swm (bc)initial| < δs then
13 GreedyMcsGen (bc, Uwm (bc),

{Qs(b, di)|di ∈ Uwm (bc)});
14 if pwm reaches the end of I(wm) then
15 Sw ← Sw \ wm;

Algorithm 2 shows the pseudo code. We first introduce the vari-
ables in Algorithm 2. Sw is for storing the terms in dn.vd of which
postings lists are not completely traversed, |Sw(bc)

cur| denotes
the cardinality of current Sw(bc), and |Sw(bc)

initial| refers to the
cardinality of initial Sw(bc).

We initialize the cursor pwi
of each postings list to be its first

element (line 1). Here I(w) represents the postings list for term w
(lines 2–3). Next, we choose the postings list of wm whose current
posting has the minimum query id among all the postings lists of
the terms of dn (line 5). Then we invoke function FindNext to eval-
uate the queries sequentially untilwm is not the term with the mini-
mum pwi

(line 6). If the cursor reaches the end of the current block
bc, we update DTRelmin(bc) and max{TRel(qi, qi.de)|qi ∈ bc}
(line 8). Then, for each query qj of which result is updated by dn,
we remove the MCS that contains the updated qj .de in the result
of qj from the query result summaries of bc (lines 9–11). If the
cardinality of current Swm(bc) divided by the cardinality of the

initial Swm(bc) is smaller than δs, which is a system parameter,
then we invoke GreedyMcsGen to re-generate the Swm(bc) based
on the current results of queries in bc (lines 12–13). We will remove
wm from Sw if pwm reaches the end of I(wm) (lines 14–15). The
above process is repeated until Sw is empty.

Function FindNext(I (w), {pw}w∈Sw , Result)

1 pc← pw;
2 bc ← the block containing pc;
3 if pc = bc.first then
4 if Lemma 7 is satisfied then
5 bc← bc.next; pc← bc.first;
6 else
7 q ← the query indicated by pc;
8 Invoke individual filtering steps;
9 if dn is the result of q then

10 Result.add(q);
11 Update the the query result table and aggregated term weight

summaries of q;
12 pc ← pc.next;
13 return pc;

Function FindNext has three parameters. I(w) denotes the post-
ings list we are evaluating now, {pw}w∈Sw denotes a set of cursors
w.r.t. the terms in Sw, and Result is the set of queries of which re-
sults are updated by dn. First, pc and bc are respectively initialized
as the current posting and block (lines 1–2). If pc is the first posting
in bc, i.e., none of the queries in bc have been evaluated, then we
check whether bc can be skipped based on Lemma 7. Specifically,
if Lemma 7 is satisfied, none of the queries in bc can include dn
as a result, and thus we skip bc and forward the cursor to the next
block (lines 4–6). However, if pc is not the first posting in bc, which
indicates that bc cannot be skipped as a whole, then we invoke the
individual filtering steps introduced in Section 6.2 for determining
whether dn can be a result of q (line 8). If dn is a result of q, we
add q as the query that matches dn (line 10). Then we update the
the query result table and aggregated term weight summaries of q
(line 11). Finally, we move pc to the next posting and return pc.

8. EXPERIMENTAL STUDY

8.1 Baselines
Because no algorithm exists for processing DAS queries, we de-

velop two baselines by utilizing existing index structures for pro-
cessing a large number of DAS queries, namely IRT and BIRT. In
addition, to study the effectiveness of the DAS query, we present
how to extend two existing diversity-aware algorithms, namely DisC
[12] and MSInc [27], to process subscription (standing) queries
over the text stream. Due to the space limitation, we present the
baselines in Appendix A.

8.2 Experimental Setup
Our experiments are conducted on a real-life dataset collected

from Twitter, which contains 10 million tweets collected from Mar
2012 to Nov 2012. There are 2.4 million distinct terms in the
dataset (excluding stop-words), and the average number of terms
in each tweet is 8.
Query Generation: We generate two set of queries for our ex-
periments. The first set of queries, denoted by LQD, consists of
2M subscription queries. To generate a query for LQD, we first
randomly pick a tweet in the dataset, then we randomly choose a
specified number of terms (1 to 5) from the tweet as the query key-
words (i.e.,q.ψ). Note that the tweets posted by the user may reveal

the interests of the user, and thus the subscription query generated
in this way would be close to real queries. Actually, popular words
or trending topic words are more likely to appear in the queries
generated in this way than less popular words.

We also generate a smaller set of queries (denoted by SQD) that
contains 100K subscription queries. For each query in SQD we
randomly choose 1-5 trending topics as query keywords from the
Twitter 2012 trending topic page2. These queries might be more
similar to the real-life search queries.

We use LQD, the larger set of queries, to study the runtime per-
formance of our proposed methods for processing the DAS queries,
and use SQD to evaluate the effectiveness of the DAS query by
comparing with DisC and MSInc. We also conduct a set of exper-
iments to compare the efficiency of our system and the two other
diversity-aware systems, DisC and MSInc.

Default values for parameters are presented in Table 5. Note that
due to the space limitation, we put some experimental results in
Appendix B.

Table 5: Default Values for each Parameter
Parameter Setting Default

query terms 1 to 15 1 to 5
document terms 5 to 20 N.A.

parameter α 0.1 to 0.9 0.3
number of results 10 to 50 30

postings in each block 32 to 4096 256
decaying scale 0.1 to 0.9 0.5

Φmax 0.5GB to 2GB 0.5GB
δs 0.1 to 0.9 0.5

queries 2M to 8M 2M
sliding window size |Wf | 5K to 20K 10K

We implemented all algorithms in Java on a PC with Intel(R)
Core(TM) i7-4770k @3.50GHz and 16GB RAM.

8.3 Experimental Results for DAS Queries
We evaluate the runtime performance of document processing

for each method developed for processing DAS queries on LQD.
For a new document dn, the runtime cost for processing dn consists
of the following two parts: (1) Time cost for finding the queries
that can include dn as their results; (2) Time cost for index update,
which includes the cost for updating query result summaries, query
result tables, and aggregated term weight summaries.

We use GIFilter to denote the method with both group filtering
technique and individual filtering technique, and we use IFilter to
denote the method with only individual filtering technique applied.

Time Effect: In this set of experiments, each method runs for
120 minutes (which is simulation duration, denoted by ∆tsim), on
LQD. We set the decaying scale B−∆tsim at 0.5. To make sure
that all the methods can handle, we issue 1 document and 1 new
query each second. At the beginning, each method is initialized
with 2,000,000 DAS queries. We report the average runtime of
document processing and the average runtime for query insertion
during each period of 10 minutes.

Figure 4(a) shows that our GIFilter exhibits the best performance
on the larger queryset LQD. It is able to reduce the runtime of the
best baseline BIRT by 60%-70% . The reasons could be explained
as follows. For IRT, we need to check each posting in the postings
list of each term of a new document. While for BIRT, postings are
indexed by blocks, which may help prune the queries in a block-
based manner during the search of postings list. Therefore, BIRT
performs slightly better than IRT. However, neither IRT nor BIRT

2https://2012.twitter.com/en/trends.html

have the aggregated term weight summaries for each query. They
have to evaluate every document in the results of the queries in
the postings lists that are not skipped. Consequently, with the help
of aggregated term weight summaries IFilter is able to reduces the
runtime of BIRT by 25% to 30%. Nevertheless, the pruning tech-
nique of IFilter is does not consider the diversity aspect w.r.t. new
document and a block of queries. We find that GIFilter reduces
the runtime of IFilter by 40% to 50%. Such performance improve-
ment is contributed by the minimal covering sets in the query result
summaries for each block.

Figure 4(b) shows the performance of query insertion for each
method. Because IFilter maintains for each query aggregated term
weight summaries, and GIFilter maintains for each block query re-
sult summaries (apart from the aggregated term weight summaries
for each query). The query insertion for IFilter and GIFilter takes
longer than that of the other methods. However, the time for the
query insertion is negligible compared with the time for document
processing. Furthermore, in the publish/subscribe scenario the fre-
quency of query insertion is normally much lower than that of doc-
ument arrivals, and thus the portion of query insertion cost will
be even smaller than that shown in Figure 4(b). Hence, for some
experiments we only show the document processing cost while ig-
noring the query insertion cost.

Effect of the Number of Query Keywords: We proceed to eval-
uate the effect of the number of query keywords on efficiency. Fig-
ure 5(a) shows that the runtime of document processing for all the
methods increases as we increase |q.ψ|, but the increase is mild.
This is because that increasing the number of query keywords will
increase the average number of postings of each postings list, which
will lead to an increase in the number of queries to be evaluated
for each document. We also observe that GIFilter consistently im-
proves on the runtime performance of BIRT by at least 50%.

Figure 5(b) demonstrates the runtime of query insertion for each
method. We observe that the runtime of all methods increases
slightly as |q.ψ| increases.

Number of Maintained Query Results: This experiment evalu-
ates the effect of parameter k on the performance. Figure 6 shows
that the runtime of all methods for document processing moder-
ately increases as we increase the number of results maintained by
each query. The reason is that the higher value of k will increase
the cost for computing the diversity score.

Number of Indexed Queries: This experiment is to evaluate the
effect of the number of indexed queries. The number of queries
scales from 2M to 8M. Obviously, increasing the number of in-
dexed queries leads to the increase of postings in each postings list.
Hence, more postings will be retrieved and evaluated while pro-
cessing a new document. Figure 7(a) and Figure 8 show that both
the runtime for document processing and the index size exhibit a
linearly increasing trend for all methods as we increase the number
of indexed queries. Figure 7(b) demonstrates the performance of
query insertion as we increase the number of indexed queries. We
notice that the number of indexed queries does not have a signifi-
cant impact on the performance of query insertion.

8.4 Comparison with Other Diversity-Aware
Systems

8.4.1 Effectiveness

To evaluate the result quality of our DAS query, we conduct a
user study on the users’ satisfaction on the result sets produced
by each method (i.e., DisC, MSInc, and GIFilter). Note that IRT,
BIRT, IFilter, and GIFilter are all developed for processing DAS

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 100110120

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Time Elapses (minutes)

IRT
BIRT

IFilter
GIFilter

(a) Doc Processing

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100110120

R
u

n
ti

m
e
 f

o
r

Q
u

e
ry

 I
n

se
rt

io
n

 (
m

s)

Time Elapses (minutes)

IRT
BIRT

IFilter
GIFilter

(b) Query Insertion

Figure 4: Time Effect on LQD

0

500

1000

1500

2000

1 3 5 7 9 11 13 15

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Number of Query Keywords

IRT
BIRT

IFilter
GIFilter

(a) Doc Processing

0

5

10

15

20

25

1 3 5 7 9 11 13 15

R
u

n
ti

m
e
 f

o
r

Q
u

e
ry

 I
n

se
rt

io
n

 (
m

s)

Number of Query Keywords

IRT
BIRT

IFilter
GIFilter

(b) Query Insertion

Figure 5: Number of Query Keywords

0

300

600

900

10 20 30 40 50

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Number of Results Maintained

IRT
BIRT

IFilter
GIFilter

Figure 6: Effect of k

0

1000

2000

3000

2M 4M 6M 8M

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Number of Indexed Queries

IRT
BIRT

IFilter
GIFilter

(a) Doc Processing

0

5

10

15

2M 4M 6M 8M

R
u

n
ti

m
e
 f

o
r

Q
u

e
ry

 I
n

se
rt

io
n

 (
m

s)

Number of Indexed Queries

IRT
BIRT

IFilter
GIFilter

(b) Query Insertion

Figure 7: Scalability on LQD

 0

 2

 4

 6

 8

 10

 12

 14

 16

2M 4M 6M 8M 4M

In
d

e
x

 S
iz

e
 (

G
B

)

Number of Indexed Queries

IRT
BIRT

IFilter
GIFilter

Figure 8: Memory Cost

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100110120

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Time Elapses (minutes)

IRT
BIRT
IFilter

GIFilter
DisC

MSInc

(a) Doc Processing

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100110120

R
u

n
ti

m
e
 f

o
r

Q
u

e
ry

 I
n

se
rt

io
n

 (
m

s)

Time Elapses (minutes)

IRT
BIRT
IFilter

GIFilter
DisC

MSInc

(b) Query Insertion

Figure 9: Time Effect on SQD

queries, and they produce the same result. Hence, we only use GI-
Filter for user study. We follow the methodology and procedure of
user study in previous work [40] on diversity-aware system, which
is detailed as follows.

First, we generate 50 subscription queries by choosing 50 trend-
ing topics as query keywords from the 2012 Twitter trending topics.

Second, we process the 50 subscription queries over the tweets
stream for each method under different parameter settings. For
MSInc and GIFilter we set the parameter α that specifies the trade-
off between relevance and diversity to be 0.3 and 0.7, and the num-
ber of results (i.e., k) to be 5. For DisC, we set the size of each
window frame (i.e., |Wf |) to be 10K. Because DisC does not offer
an parameter to directly set the number of results returned, we fine-
tune the similarity threshold r such that the queries return 5 results
on average. We record 3 result sets of each query at 3 randomly
selected timestamps such that at each selected timestamp, the set
of results returned by DisC contains exactly 5 results to avoid the
rating bias induced by the number of results.

Third, for each result set, we display the query keywords, the
timestamp where the result set is recorded, and the content along
with the arrival time of each tweet in the set. We ask 3 annotators
to rate the quality of the result set and record the average score
on each rating aspect. Specifically, each user is required to rate
his/her satisfaction towards the result set in terms of the following
three aspects: (1) The relevance of each result (scales ranged from
“not relevant” to “very relevant”, mapped to values 1 to 5); (2)
The recency of each result (scales ranged from “not fresh/timely”
to “very fresh/timely”, mapped to values 1 to 5); (3) Whether the
result set reflects a broad or narrow range of his/her interests (scales
ranged from “very narrow” to “very broad”, mapped to values 1 to
5); (4) Overall satisfaction with the results (scales ranged from “not
satisfied” to “very satisfied”, mapped to values 1 to 5).

Table 6: User Study Result
Method Relevance Recency Range of Int. Overall

GIFilter α=0.3 3.5 4.2 4.0 3.9
GIFilter α=0.7 4.0 4.5 2.9 3.2
MSInc α=0.3 3.4 4.0 4.1 3.9
MSInc α=0.7 4.2 4.4 3.0 3.3

DisC 2.6 3.6 3.5 3.1

Table 6 shows the result of our user study. Following [19], we
compute the consistency of different annotators by computing the
average linearly weighted Cohen’s kappa between all pairs of raters
for each rating aspect of each method. The kappa values for rele-
vance are in the range of 0.52-0.67, for recency in the range of
0.61-0.78, for range of interests in the range of 0.36-0.55, and for
overall satisfaction in the range of 0.38-0.42. We find that the re-
sults returned by GIFilter and MSInc have similar quality in terms
of all rating aspects. In particular, when α is set at 0.3 (i.e., diver-
sity is playing a more important role in query processing), GIFilter
and MSInc produce the result sets with the same quality w.r.t. over-
all satisfaction. When α is set at 0.7 (i.e., relevance and recency
weight more in query processing), the result quality of MSInc is
slightly better than that of GIFilter. In addition, the result quality
of DisC is substantially worse than that of GIFilter and MSInc.

8.4.2 Efficiency

In this set of experiments, we study the efficiency of DisC and
MSInc in comparison to our proposed methods for processing DAS
queries. Because DisC and MSInc fail to process the queries in
LQD over the text stream with 1 document and 1 new query each
second (i.e., the time of processing 1 document over LQD exceeds
1 second), we compare with DisC and MSInc on SQD.

Similar to the settings for LQD, each method runs for ∆tsim =
120 minutes and the decaying scaleB−∆tsim is set at 0.5. To make
sure that all the methods can handle, we also issue 1 document and
1 new query each second. Because the subscription queries in DisC
are executed periodically over a sliding window, we execute each
query in DisC every 10 minutes. To ensure the comparability of
document processing between DisC and the other streaming-based
approaches, we measure the runtime of document processing for
DisC by the following equation.

DocProcessT imeDisC =
TotalQueryingT ime(∆t)

DocNum(∆t)
,

where TotalQueryingT ime(∆t) denotes the total time spent for
query processing during the time period of ∆t, andDocNum(∆t)
denotes the number of documents arrived during ∆t. At the begin-
ning, each method is initialized with 100,000 queries. We report the
average runtime of document processing and the average runtime
for query insertion during each period of 10 minutes.

Figure 9(a) demonstrates that our proposed methods for process-
ing DAS queries outperform DisC and MSInc on SQD. In partic-
ular, GIFilter is able to reduce the runtime of DisC and MSInc by
more than an order of magnitude.

Figure 9(b) shows the performance of query insertion on SQD.
Similar to the result on LQD (i.e., Figure 4(b)), the query insertion
for IFilter and GIFilter takes longer than that of the other methods
on SQD. The detailed reasons have been presented in Section 8.3.
Nevertheless, the time for the query insertion is negligible com-
pared with the time for document processing.

9. RELATED WORK
Streaming-based Diversification. Our problem is related to the
problem of continuously monitoring k-most diverse items over con-
tinuous data. Drosou et al. [13] propose a cover-tree based index
for continuously maintaining the k-most diverse set over a sliding
window based on the Max-min diversification. Minack et al. [27]
propose an approach to find a diverse set by processing items in
a streaming manner based on Max-sum or Max-min diversifica-
tion. Borodin et al. [5] study the Max-sum diversification problem
on stream data and they adopt monotone submodular functions for
measuring the diversity. Panigrahi et al. [28] model the problem of
selecting a diverse set from a stream of items as a covering problem.
Specifically, each item is annotated by a set of features, and the
problem is to select a diverse set to cover as many features as pos-
sible. However, these solutions focus on a single query and cannot
be used to efficiently maintain a large number of result sets simul-
taneously, which is a major challenge for top-k publish/subscribe
systems [32]. In addition, the methods proposed in [5, 13] are not
for a text stream.

Cheng et al. [7] study the problem of selecting the minimum rep-
resentative (diverse) subset of tweets for a small group of queries
from the same user. The problem is substantially different from our
problem in three aspects. First, it returns a single set of tweets as
the result for all queries in the group while we maintain a set of
results for each query. Second, their diversity model is different
from our work. Instead of using inter-tweet similarity metric, they
assign each tweet with a value on the selected diversity dimension
(e.g., timestamp or sentiment polarity). Third, their proposal does
not handle millions of subscription queries as we do.

Lourenco et al. [21] study the problem of selecting a set of train-
ing items periodically over the text stream based on two criteria,
namely adaptiveness and memorability, for sentiment analysis. Their
problem is different from our problem, and we do not see their tech-
niques can be used for our problem.

Top-k Publish/subscribe over Text Stream. Closest to our prob-
lem setting is the existing work on top-k publish/subscribe sys-
tems [6,17,18,29,32], in which published items trigger a subscrip-
tion only if it ranks among the top-k published items for the sub-
scription. In the setting of most of these systems [17, 18, 29], the
relevance of an item remains constant during a pre-specified time
interval, and once its lifetime exceeds, the item simply expires. The
expired item is then replaced by the most relevant unexpired item.
The setting is different from our setting where time is part of the
ranking score. In the sense, the setting of top-k publish/subscribe
systems in [6, 32] is similar to ours. For [32] the published items
are tweets and the subscriptions are news. While for [6] the pub-
lished items are geo-tagged tweets and the subscriptions are Points
of Interest (POIs). In the above two studies, the published items
do not have a fixed expiration time. Instead, time is a part of the
relevance score, which decays as time passes. Older items retire
from the top-k only when new items that score higher arrive. The

inverted files are used as the indexes and the classic information re-
trieval methods are adapted for the ranking. Our work differs from
these studies in that we consider the diversity of published items for
each subscription as part of the ranking score, which renders the so-
lutions [6,32] inapplicable, and this also introduces new challenges
for top-k publish/subscribe.

In addition, Rao et al. [30] study the problem of processing con-
tinuous top-k queries over document streams. They propose a graph
based query indexing structure based on the “covering relationship”
among queries. However, it does not consider the diversity issue.
We do not see a way to adapt it for handling DAS queries.

Query Result Diversification. Query result diversification has
been extensively studied for recent years. Most previous work on
query result diversification can be classified into the following two
categories: implicit and explicit [31, 39]. Our problem belongs to
the former category.

The implicit approaches assume that similar documents cover
similar aspects and model inter-document dependencies (e.g., Max-
sum diversification and Max-min diversification). Most work on
implicit query result diversification aims at finding a set of k items
based on a scoring function that considers both relevance and di-
versity (e.g., [36]). Khan et al. [22] study the problem of the con-
current diversification problem for answering multiple diversified
top-k queries over static data. Angel et al. [3] study the problem
of diversified keyword search in documents based on user behav-
ior model. Fraternali et al. [15] aim at answering diversified top-k
query over low-dimensional vector space. Zhang et al. [38] fo-
cus on the spatial keyword search diversification on road networks.
Abbar et al. [1] study the problem of set-based recommendation of
diverse articles. Diversity in [1] is measured through incorporating
entities and sentiment extracted from comments of articles. Re-
cently, Liang et al. [25] tackle the problem of result diversification
by data fusion approaches. However, these problems substantially
differ from our diversity-aware publish/subcribe problem and their
proposals are not for stream data.

The explicit approaches for query result diversification model a
set of query topics (aspects) and return documents for each of them
(e.g., [8, 9, 31, 33, 35]). However, the query aspects are unavailable
for our problem.

10. CONCLUSIONS
We consider the problem of maintaining up-to-date results for a

large number of DAS queries. The DAS query takes into account
text relevance, document recency, and result diversity in evaluat-
ing the query rseult. We propose a novel mechanism to efficiently
processing a large number of DAS queries. In particular, based on
the concept of filtering conditions, we develop group filtering tech-
nique and individual filtering technique for determining whether a
new document can be a result of each DAS query. The experimen-
tal results on real-world dataset show that our solution is able to
achieve a reduction of the processing time by 60–75% compared
with two baselines.

11. ACKNOWLEDGEMENT
This work is supported by a Singapore MOE AcRF Tier 2 Grant

(ARC30/12) and a grant awarded by Microsoft Research.

12. REFERENCES

[1] S. Abbar, S. Amer-Yahia, P. Indyk, and S. Mahabadi.
Real-time recommendation of diverse related articles. In
WWW, pages 1–12, 2013.

[2] G. Amati, G. Amodeo, and C. Gaibisso. Survival analysis for
freshness in microblogging search. In CIKM, pages
2483–2486. ACM, 2012.

[3] A. Angel and N. Koudas. Efficient diversity-aware search. In
SIGMOD, pages 781–792, 2011.

[4] T. Apaydin and H. Ferhatosmanoglu. Access structures for
angular similarity queries. IEEE Trans. Knowl. Data Eng.,
18(11):1512–1525, 2006.

[5] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification,
monotone submodular functions and dynamic updates. In
PODS, pages 155–166, 2012.

[6] L. Chen, G. Cong, X. Cao, and K.-L. Tan. Temporal
spatial-keyword top-k publish/subscribe. In ICDE, 2015.

[7] S. Cheng, A. Arvanitis, M. Chrobak, and V. Hristidis.
Multi-query diversification in microblogging posts. In
EDBT, pages 133–144, 2014.

[8] V. Dang and W. B. Croft. Diversity by proportionality: an
election-based approach to search result diversification. In
SIGIR, pages 65–74, 2012.

[9] V. Dang and W. B. Croft. Term level search result
diversification. In SIGIR, pages 603–612, 2013.

[10] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. Yfilter:
Efficient and scalable filtering of XML documents. In ICDE,
pages 341–342, 2002.

[11] M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Record, 39(1):41–47, 2010.

[12] M. Drosou and E. Pitoura. Disc diversity: result
diversification based on dissimilarity and coverage. PVLDB,
6(1):13–24, 2012.

[13] M. Drosou and E. Pitoura. Dynamic diversification of
continuous data. In EDBT, pages 216–227, 2012.

[14] M. Efron and G. Golovchinsky. Estimation methods for
ranking recent information. In SIGIR, pages 495–504. ACM,
2011.

[15] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k
bounded diversification. In SIGMOD, pages 421–432, 2012.

[16] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, pages 381–390, 2009.

[17] P. Haghani, S. Michel, and K. Aberer. Evaluating top-k
queries over incomplete data streams. In CIKM, pages
877–886, 2009.

[18] P. Haghani, S. Michel, and K. Aberer. The gist of everything
new: Personalized top-k processing over web 2.0 streams. In
CIKM, pages 489–498, 2010.

[19] C. Hauff, F. de Jong, D. Kelly, and L. Azzopardi. Query
quality: user ratings and system predictions. In SIGIR, pages
743–744, 2010.

[20] C. A. J. Hurkens and A. Schrijver. On the size of systems of
sets every t of which have an sdr, with an application to the
worst-case ratio of heuristics for packing problems. SIAM J.

Discrete Math., 2(1):68–72, 1989.
[21] R. L. Jr., A. Veloso, A. M. Pereira, W. M. Jr., R. Ferreira, and

S. Parthasarathy. Economically-efficient sentiment stream
analysis. In SIGIR 2014, pages 637–646, 2014.

[22] H. A. Khan, M. Drosou, and M. A. Sharaf. Scalable
diversification of multiple search results. In CIKM, pages
775–780, 2013.

[23] X. Li and W. B. Croft. Time-based language models. In
CIKM, pages 469–475. ACM, 2003.

[24] H. Liang, Y. Xu, D. Tjondronegoro, and P. Christen.
Time-aware topic recommendation based on micro-blogs. In
CIKM, pages 1657–1661, 2012.

[25] S. Liang, Z. Ren, and M. de Rijke. Fusion helps
diversification. In SIGIR, pages 303–312, 2014.

[26] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

information retrieval. Cambridge University Press, 2008.
[27] E. Minack, W. Siberski, and W. Nejdl. Incremental

diversification for very large sets: a streaming-based
approach. In SIGIR, pages 585–594, 2011.

[28] D. Panigrahi, A. D. Sarma, G. Aggarwal, and A. Tomkins.
Online selection of diverse results. In WSDM, pages
263–272, 2012.

[29] K. Pripužić, I. P. Žarko, and K. Aberer. Top-k/w
publish/subscribe: Finding k most relevant publications in
sliding time window w. In DEBS, pages 127–138, 2008.

[30] W. Rao, L. Chen, S. Chen, and S. Tarkoma. Evaluating
continuous top-k queries over document streams. World Wide

Web, 17(1):59–83, 2014.
[31] R. L. T. Santos, C. Macdonald, and I. Ounis. Exploiting

query reformulations for web search result diversification. In
WWW, pages 881–890, 2010.

[32] A. Shraer, M. Gurevich, M. Fontoura, and V. Josifovski.
Top-k publish-subscribe for social annotation of news.
PVLDB, 6(6):385–396, 2013.

[33] I. Szpektor, Y. Maarek, and D. Pelleg. When relevance is not
enough: promoting diversity and freshnessin personalized
question recommendation. In WWW, pages 1249–1260,
2013.

[34] J. Teevan, D. Ramage, and M. R. Morris. #twittersearch: a
comparison of microblog search and web search. In WSDM,
pages 35–44, 2011.

[35] S. Vargas, P. Castells, and D. Vallet. Explicit relevance
models in intent-oriented information retrieval
diversification. In SIGIR, pages 75–84, 2012.

[36] M. R. Vieira, H. L. Razente, M. C. N. Barioni,
M. Hadjieleftheriou, D. Srivastava, C. T. Jr., and V. J.
Tsotras. On query result diversification. In ICDE, pages
1163–1174, 2011.

[37] L. Wu, W. Lin, X. Xiao, and Y. Xu. LSII: an indexing
structure for exact real-time search on microblogs. In ICDE,
pages 482–493, 2013.

[38] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and
X. Wang. Diversified spatial keyword search on road
networks. In EDBT, pages 367–378, 2014.

[39] Y. Zhu, Y. Lan, J. Guo, X. Cheng, and S. Niu. Learning for
search result diversification. In SIGIR, pages 293–302, 2014.

[40] C. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, pages 22–32, 2005.

APPENDIX

A. BASELINES

A.1 Baselines for Processing DAS Queries

Inverted File Plus Query Result Tables (IRT): This baseline
is developed for processing DAS queries. It consists of a query
inverted file and query result tables, which is referred to as IRT.
We use the inverted file to index DAS queries. We also main-
tain a query result table for each query. When a new document
dn arrives, we traverse the postings lists for each term in dn.vd
in the Document-at-a-Time (DAAT) [26] manner. For each post-
ing (query) q, we visit its corresponding query result table and
determine whether dn can update the result of q based on Def-
inition 3. In addition, for improving the filtering efficiency, we
first compute α × TRel(q, dn) + 2 × (1 − α), which is based
on Equation 7 by regarding d(dn, di) as 1. Then we compare it
with drq(q.de) based on the individual filtering condition in Defi-
nition 3. If α×TRel(q, dn)+2× (1−α) ≤ drq(q.de), we skip q
since it dn will not a result of q; otherwise, we further check each
document in q.R for computing an exact drq(dn). If dn is a result
of q, we update the query result table of q. Note that this base-
line utilizes the filtering threshold proposed in Definition 3, and it
is not the straightforward method introduced in Section 3, which
performs much worse.

Block based Inverted File Plus Query Result Tables (BIRT):

This baseline uses a block based inverted file to index the DAS
queries, which is referred to as BIRT. BIRT partitions each post-
ings list into blocks, each of which contains a pre-specified number
of postings. Similar to Algorithm 2, while processing each new
document dn we traverse the corresponding postings lists with the
forward block skipping technique. When we visit block bi, we use
Lemma 7 to determine whether bi can be skipped by dn. Because
BIRT does not contain the query result summaries for each block,

we are cannot derive S̃immin(bi, dn) based on the MCSs for bi as
it is done in our proposed method. Hence, we use 0 as the value of

S̃immin(bi, dn), which is the minimum possible value of similar-
ity.

A.2 Algorithms for Processing DisC
The Dissimilar and Covering Diversity (DisC Diversity) Sys-

tem [12] is a state-of-the-art diversity-aware system for processing
a single query over static data.

Given a set of items P , DisC [12] aims at selecting a Dissim-

ilar and Covering subset S ⊆ P such that: (1) All items in P
are similar with at least one item in S; (2) No two items in S are
similar with each other. Here two items o1 and o2 are considered
to be similar if dist(o1, o2) ≤ r, where r is a tuning parameter
and dist(o1, o2) can be any distance function. Two algorithms,
BasicDisC and GreedyDisC [12], are developed for processing a
single DisC query over static data, and we extend them to process
standing queries over text stream as follows.

The similarity measurement of DisC must be a distance metric,
and we use angular similarity to measure the similarity between two
documents. Note that angular similarity has been used in informa-
tion retrieval for semantic analysis of text documents [4]. Specifi-
cally, given two documents di and dj , we have:

Sim(di, dj) = 1−
cos−1(CosineSimilarity(di, dj))

π
.

We assume that documents from the text stream are already indexed
by an inverted file. In other words, we do not consider the cost

of maintaining inverted file for the text stream, which is a setting
favoring the DisC system. We maintain a sliding window of size
|Wf | over the text stream and move forward the window frame
periodically. For each window frame, we employ BasicDisC or
GreedyDisC algorithm to find a Dissimilar and Covering subset of
documents within the window frame.

GreedyDisC produces results with better quality than BasicDisC
does. But BasicDisC is much more efficient than GreedyDisC. We
choose the most favorable setting for DisC, namely, we use Ba-
sicDisC for efficiency study and use GreedyDisC for effectiveness
study. In the rest of this paper, we call them DisC uniformly.

A.3 MSInc Algorithm
MSInc [27] is the state-of-the-art streaming-based diversification

algorithm that takes diversity, relevance, and recency into consid-
eration. Similar to DisC, MSInc is also developed for processing a
single query over a static set of items. However, it is a stream-based
approach that processes items in an incremental manner for main-
taining a diverse set. Hence, MSInc can be extended to process
standing query over text stream.

B. ADDITIONAL EXPERIMENTS
In this section, we present some additional experimental results.

Effect of Block Size: This round of experiments is to evaluate
the performance of the methods utilizing block structure, includ-
ing BIRT, IFilter, and GIFilter, when we vary the the number of
postings in each block. Figure 10 shows the trend of the document
processing cost w.r.t. the block size. If the block size is too small,
then the number of blocks we need to evaluate will increase. On the
other hand, if the block size is too large, the possibility for skipping
a block will decrease despite the reduction of the number of blocks
to be visited while processing a new document. The performance
is not significantly affected by the block size for all methods when
we vary the number of postings in each block from 128 to 2048.
However, when we set it below 128 or over 2048, The performance
of GIFilter will deteriorate significantly.

Arrival Rate: We vary the arrival rates of both documents and
queries. Figure 11(a) presents the total time costs in every 1 minute
for document processing when we vary the arrival rate of docu-
ments from 0 to 200 documents/minute with 2M DAS queries in-
dexed. We find that GIFilter is capable of processing 200 docu-
ments with 2M indexed queries while the other methods fail to han-
dle. Figure 11(b) presents the total runtime of query insertion when
we vary the arrival rate of DAS queries. Although the query inser-
tion cost of GIFilter is moderately higher than the the other three
methods, the arrival rate of query is much lower than the arrival rate
of document under the publish/subscribe scenario in practice.

Effect ofα: In this experiment, we investigate the effect of the sys-
tem parameter α. A lower value of α indicates the greater weight
for the diversity score, while a larger value of α indicates more em-
phasis on the text relevance. From Figure 12, we observe that for
IRT and BIRT the performance of document processing is greatly
affected by α. The reason is that the filtering conditions generated
by them are solely based on the text relevance. When α is large
and text relevance dominates the ranking, their filtering conditions
work better. We also observe that GIFilter exhibits a nearly con-
sistent trend as we vary α. The reason is that the group filtering
condition generated by GIFilter is based on both text relevance and
diversity score.

In particular, at α = 0.9 (text relevance has a high weight), the
performances of the two baselines are even slightly better than GI-
Filter. This is because that the effectiveness of filtering conditions

0

200

400

600

800

32 64 128 256 512 1024 2048 4096

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Number of Postings in a Block

BIRT
IFilter

GIFilter

Figure 10: Block Size

0

20

40

60

0 50 100 150 200

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
s)

Arrival Rate (documents/minute)

GIFilter
IFilter
BIRT

IRT

(a) Doc Arr Rate

0

0.5

1

1.5

2

0 50 100 150 200

R
u

n
ti

m
e
 f

o
r

Q
u

e
ry

 I
n

se
rt

io
n

 (
s)

Arrival Rate (queries/minute)

IRT
BIRT
IFilter

GIFilter

(b) Query Arr Rate

Figure 11: Arrival Rate

0

300

600

900

1200

0.1 0.3 0.5 0.7 0.9

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

α

IRT
BIRT

IFilter
GIFilter

Figure 12: Effect of α

0

300

600

900

0.1 0.3 0.5 0.7 0.9

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Decaying Scale

IRT
BIRT

IFilter
GIFilter

Figure 13: Decaying Scale

0

200

400

600

800

0 500 1000 1500 2000

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Size of Aggregated Term Weight Summaries (MB)

IFilter GIFilter

Figure 14: Effect of Φmax

0

100

200

300

400

0.1 0.3 0.5 0.7 0.9

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Update Threshold for Query Result Summaries

BIRT

Figure 15: Effect of δs

0

300

600

900

1200

5 10 15 20

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Number of Document Terms

IRT
BIRT

IFilter
GIFilter

Figure 16: # Doc Terms

0

500

1000

1500

0.5M 1M 1.5M 2M

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Number of Indexed Queries

IRT
BIRT

IFilter
GIFilter

Figure 17: Scala. on SQD

0

500

1000

1500

5K 10K 15K 20K

R
u

n
ti

m
e
 f

o
r

D
o

c
 P

ro
c
e
ss

in
g

 (
m

s)

Size of Sliding Window

DisC

Figure 18: Effect of |Wf |

generated by the two baselines are close to that generated by GI-
Filter, and GIFilter incurs runtime overheads for maintaining query
result summaries and aggregated term weight summaries.

Decaying Scale: We evaluate the effect of the decaying scale. Fig-
ure 13 shows that the runtime for document processing decreases
as we increase the decaying scale. The reason is that a lower value
of decaying scale will increase the number of queries that have a
new document to be their results.

Effect of Φmax: In this experiment, we vary the size of aggregated
term weight summaries for IFilter and GIFilter. Figure 14 shows
that both methods exhibit better performance as we increase the
value of Φmax.

Effect of δs: We evaluate the effect of δs for GIFilter. Figure 15
demonstrates that GIFilter performs best when δs is set as 0.5. The
reason can be explained as follows. If δs is too small, the number
of MCSs for each block may not be enough for generating an ef-
fective the group filtering condition. However, if δs is too large,
MCSs for each block may be updated frequently, which will incur
additional runtime costs.

Effect the Number of Distinct Document Terms: In this set of
experiments, we vary the number of distinct terms in a document
from 5 to 20. Figure 16 shows that GIFilter consistently reduces
the runtime of the two baselines by 50%-70% when the number of
unique document terms is varied. We also note that the document
processing costs increase linearly for all methods as we increase
the number of distinct terms. The reason is that the more terms
there are in a new document dn, the more postings lists are to be
retrieved during the process of finding the queries that can have dn
as a result.

Scalability on SQD: We evaluate the scalability effect on SQD
by varying the number of queries from 0.5M to 2M. As shown in
Figure 17, when the number of queries is 2M, which is the same
as the number of queries in LQD, the relative performances of IRT,
BIRT, IFilter, and GIFilter are similar to those on LQD.

Effect of Sliding Window Size: We evaluate the effect of sliding
window size (i.e., |Wf |) for DisC. Figure 18 shows that the runtime
of document processing exhibits a linearly increasing trend when
we vary the window size from 5K to 20K.

C. PROOFS

Proof of Lemma 1.

Based on Equation 1 and Equation 5 we have:

DR(q.R′)−DR(q.R)

=α× (
∑

di∈q.R′

R(q, di)−
∑

di∈q.R

R(q, di)) +

2× (1− α)

k − 1
[

∑

di∈q.R′\{dn}

d(dn, di)−
∑

di∈q.R\{q.de}

d(q.de, di)],

where
∑

di∈q.R′

R(q, di)−
∑

di∈q.R

R(q, di) = R(q, dn)−R(q, q.de).

So based on Equation 8 and Equation 7, we have Equation 9.

Proof of Lemma 2.

Let qr be the query in G at time tcur s.t.

drqr (qr.de) = min{drqi(qi.de)|qi ∈ G}

Then we have:

min{drqi (qi.de)|qi ∈ G} =

α× TRel(qr, de) +
2× (1− α)

k − 1

∑

dj∈qr.R\{qr.de}

d(dj , qr.de)−

α× TRel(qr, qr.de)× (1−B−(tcur−qr.de.tc)).

Because TRel(qm, qm.de) ≥ TRel(qr, qr.de) and qe.de.tc ≤
qr.de.tc, we can deduce that

TRel(qr, qr.de)× (1−B−(tcur−qr.de.tc)) ≤

TRel(qm, qm.de)× (1−B−(tcur−qe.de.tc)).

Then, we find that

DTRelmin (G) ≤

α× TRel(qr, qr.de) +
2× (1− α)

k − 1

∑

dj∈qr.R\{qr.de}

d(dj , qr.de).

Thus we complete the proof.

Proof of Lemma 3.

Let drqm(dn) = max{drqi(dn)|qi ∈ G}. According to Equa-
tion 4, we know that T (dn) = 1 because dn.tc = tcur , so based
on Equation 7 we have:

drqm (dn) = α× TRel(qm, dn)

+
2× (1− α)

k − 1
(k − 1−

∑

di∈qm.R′\{dn}

Sim(dn, di))

Because
TRelmax(G, dn) ≥ TRel(qm, dn)

and
Simmin(G, dn) ≤

∑

di∈qm.R′\{dn}

Sim(dn, di),

we complete the proof.

Proof of Lemma 5.

According to Equation 19, we have:

S̃immin(b, dn) =

es × |Sw(b)|+minSim(Uw(b), dn)× (k − |Sw(b)|)

and

S̃im
′

min(b, dn) =

es × |S
′
w(b)|+minSim(Uw(b), dn)× (k − |S′

w(b)|).

Because minSim(Uw(b), dn) ≤ es and |Sw(b)| ≥ |S
′
w(b)|, we

complete the proof.

Proof of Lemma 6.

We have:
∑

dj∈S

Sim(dj , dn) =

1

‖ dn.vd ‖

∑

dj∈S\{de}

∑
wi∈dj .vd∧wi∈dn.vd

dj .vd.wi × dn.vd.wi

‖ dj .vd ‖
=

dn.vd.wi

‖ dn.vd ‖

∑

dj∈S\{de}∧wi∈dj .vd

dj .vd.wi

‖ dj .vd ‖
=
dn.vd.wi

‖ dn.vd ‖
AW(wi, S).

Proof of Lemma 4.

Since the query ids in a postings list are sorted in ascending
order, if pw > b.maxID, then based on the DAAT scheme it
suggests that: (1) dn cannot be a result of any query in b; or (2)
queries in b that can have dn as their results have already been
found. Hence, unevaluated queries in b cannot contain any term
that does not belong to the set {wj |wj ∈ dn.ψ∧pw ≤ b.maxID}.
So according to Equation 3 the text relevance between dn and any
query in b cannot exceedmax{PS(dn.vd, wi)|wi ∈ dn.ψ∧pw ≤
b.maxID}. So we complete the proof.

Proof of Theorem 1.

This problem can be reduced from the NP-hard maximum in-

dependent set problem. Given a graph G(V,E), maximum inde-
pendent set problem finds a set of vertices Vm ⊆ V with maxi-
mum cardinality such that for every two vertices in V there is no
edge connecting the two. Let Ev be a set of edges connecting to
vertex v. We reduce maximum independent set problem to our
problem by mapping each edge in E to a document in Uw(b), and
mapping Evi for each vi ∈ V to a set of documents S such that⋃
di∈S

Qs(b, di) = b.

Proof of Theorem 2.

Given a universe Uw(b) and {Qs(b, di)|di ∈ Uw(b)}, let Ub be
the set of all MCSs that can be generated from Uw(b), Sopt

w (b) ⊆
Ub be the set of disjoint MCSs with optimal cardinality, and S

G
w(b) ⊆

Ub be the set of disjoint MCSs generated by GreedyMcsGen. Let s
be any fixed integer, and S

T
w(b) ⊆ Ub be any set of disjoint MCSs

satisfying Condition (i).
(i) For each p ≤ s, the union of any p + 1 disjoint sets among

Ub intersects at least p + 1 sets among S
T
w(b). According to the

theorem proved by [20], we have:

|Sopt
w (b)|/|ST

w(b)| ≤ smax/2 + ǫ.

We next prove S
G
w(b) satisfies Condition (i). Assume that SG

w(b)
does not satisfy Condition (i). Then there must be an MCS S ∈
S
G
w(b) and another MCS S′ ∈ Ub such that S′ $ S. Conse-

quently, based on Definition 5 S cannot be an MCS, which leads
contradiction. As a result, we complete the proof.

