

Geospatial Entity Representation: A Step Towards City Foundation Models

Gao Cong Nanyang Technological University

第二届中新数字经济与人工智能高峰论坛 THE 2^{sd} SINO-SINGAPORE SUMMIT FOR DIGITAL ECONOMY AND ARTIFICIAL INTELLIGENCE

Outline

- Target on a specific problem on **point spatial entity**
 - Spatial relationship extraction (SIGMOD'23)
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Our Research on Point Spatial Entity

Geospatial database

Name	Lat	Long	Address	Category
National Museum	1.29682	103.84877	93 Stamford Rd, 178897	Museums
Food for Thought	1.2963	103.84876	93 Stamford Road #01-04, National Museum, 178897	Asian Fusion
Museum Carpark	1.296509	103.84794		Parking
Harry's	1.2976	103.84905	90 Stamford Rd, 178903	Bars
Food for Thought	1.29675	103.8486		Restaurant

Geospatial DB

Although convenient, this representation hinders the exploration of **geospatial relationships** between the entities

Pasquale Balsebre, Dezhong Yao, Gao Cong, Weiming Huang, Zhen Hai: Mining Geospatial Relationships from Text. SIGMOD 2023

Geospatial KG

- Relationships between the entities exist and can be captured in a KG representation
- Knowledge Graphs are ubiquitous today and offer several advantages:
 - Machine-readable format
 - Can represent both entities and their relations
 - Widely adopted in AI applications
- Existing geoKGs represent only coarsegrained relationships

YAGO2Geo

Challenges

- Scarcity of complex geometries (i.e. polygons)
- Inaccuracy of the geo-positional systems

Centerpoint Mall, Toronto

Sources: YELP, OSM

Existing algorithms for KGC are not designed to take into account the **spatial position** of the nodes

Proposed solution

- Candidate Selection Step: Aim relationships
- Relation Prediction: Aim at ide
- The KG refinement: Aim to ext correctness

					# of Triples Relations						
City	$ \mathcal{S} $	$ \mathcal{E}_A $	$ \mathcal{R} $	Train	Valid	Test	part_of	same_as	serves	Category	Address
Singapore	17092	370	4	13076	5229	7852	8526	1547	2656	99.79%	67.21%
Toronto	18911	179	4	8488	3390	5101	5744	1262	1188	99.92%	62.87%
Seattle	10504	500	4	7906	3162	4747	4257	1138	1215	99.85%	68.06%
Melbourne	13473	190	4	3058	1220	1839	2675	610	432	99.94%	62.45%

Baselines

Experimental results			Singapo	re		Toronto)		Seattle			Melbour	ne
-	Model	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F 1
	TransE [6]	4.71	16.3	7.29 (± 0.41)	5.28	12.82	7.47 (± 0.28)	4.51	11.07	6.4 (± 0.79)	4.25	9.56	5.88 (± 0.55)
	SimplE [30]	6.64	19.27	9.87 (± 0.96)	4.98	18.3	7.82 (± 0.71)	7.75	9.84	8.66 (± 1.05)	6.9	13.33	9.09 (± 0.93)
	ComplEx-OWE [47]	60.18	44.29	51.02 (± 0.39)	60.5	41.13	48.97 (± 0.88)	40.21	29.77	34.2 (± 0.87)	66.54	41.9	51.42 (± 1.02)
	ConMask [50]	63.28	50.1	55.93 (± 0.46)	67.86	41.66	51.58 (± 0.78)	58.81	40.45	47.98 (± 0.32)	72.89	44.44	55.21 (± 0.6)
	KG-BERT (a) [65]	85.38	86.2	80.64 (± 1.31)	77.55	75.46	76.33 (± 0.99)	74.81	70.27	72.39 (± 1.44)	78.1	76.46	77.25 (± 1.71)
	KG-BERT (b) [65]	85.80	78.11	81.77 (± 0.7)	82.58	77.21	79.78 (± 1.25)	77.61	69.11	73.02 (± 1.09)	76.44	72.24	74.52 (± 1.95)
LLM-based Textual	PKGC [38]	80.55	73.38	76.79 (± 1.09)	84.13	67.87	75.13 (± 0.91)	78.44	62.58	69.61 (± 0.9)	77.7	73.96	75.78 (± 2.26)
encoding approaches	StAR [58]	65.15	72.66	68.7 (± 0.72)	76.48	80.1	78.24 (± 1.51)	60.96	58.24	59.56 (± 0.47)	81. 92	83.97	82.93 (± 0.86)
perform well	KG-BERT (+GH)	82.99	86.66	84.78 (± 1.11)	86.26	78.01	81.92 (± 1.28)	73.8	78.95	76.28 (± 1.67)	84.11	77.28	80.55 (± 1.23)
	Geo-ER [4]	88.27	84.7	86.44 (± 0.88)	87.25	81.74	84.4 (± 1.16)	78.58	78.91	78.74 (± 1.25)	82.6	88.21	85.31 (± 1.47)
	GTMiner	90.07	88.15	89.1* (± 1.04)	86.91	88.4	87.64* (± 1.49)	80.56	80.95	80.75* (± 1.21)	87.87	87.86	87.87* (± 1.31)
	GTMiner (+Ex)	90.17	89.25	89.65 (± 1.13)	87.0	89.29	88.13 (± 1.39)	80.8	82.37	81.57 (± 1.29)	88.1	88.78	88.24 (± 1.22)
	GTMiner (+Ex +Re)	91.33	89.25	90.27 (± 1.09)	88.08	89.23	88.66 (± 1.33)	81.27	82.37	81.81 (± 1.28)	88.27	88.69	88.47 (± 1.2)
	Δ_{F1}			+3.82%			+4.26%			+3.07%			+3.16%

Experimental results			Singapo	re		Toronte	o	Seattle				Melbour	ne
-	Model	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
	TransE [6]	4.71	16.3	7.29 (± 0.41)	5.28	12.82	7.47 (± 0.28)	4.51	11.07	6.4 (± 0.79)	4.25	9.56	5.88 (± 0.55)
	SimplE [30]	6.64	19.27	9.87 (± 0.96)	4.98	18.3	7.82 (± 0.71)	7.75	9.84	8.66 (± 1.05)	6.9	13.33	9.09 (± 0.93)
	ComplEx-OWE [47]	60.18	44.29	51.02 (± 0.39)	60.5	41.13	48.97 (± 0.88)	40.21	29.77	34.2 (± 0.87)	66.54	41.9	rme = F1 5.88 (± 0.55) 9.09 (± 0.93) 51.42 (± 1.02) 55.21 (± 0.6) 77.25 (± 1.71) 74.52 (± 1.95) 75.78 (± 2.26) 82.93 (± 0.86) 80.55 (± 1.23) 85.31 (± 1.47) 87.87* (± 1.31) 88.24 (± 1.22) 88.47 (± 1.2) +3.16%
	ConMask [50]	63.28	50.1	55.93 (± 0.46)	67.86	41.66	51.58 (± 0.78)	58.81	40.45	47.98 (± 0.32)	72.89	44.44	
	KG-BERT (a) [65]	85.38	86.2	80.64 (± 1.31)	77.55	75.46	76.33 (± 0.99)	74.81	70.27	72.39 (± 1.44)	78.1	76.46	77.25 (± 1.71)
	KG-BERT (b) [65]	85.80	78.11	81.77 (± 0.7)	82.58	77.21	79.78 (± 1.25)	77.61	69.11	73.02 (± 1.09)	76.44	72.24	74.52 (± 1.95)
	PKGC [38]	80.55	73.38	76.79 (± 1.09)	84.13	67.87	75.13 (± 0.91)	78.44	62.58	69.61 (± 0.9)	77.7	73.96	75.78 (± 2.26)
	StAR [58]	65.15	72.66	68.7 (± 0.72)	76.48	80.1	78.24 (± 1.51)	60.96	58.24	59.56 (± 0.47)	81.92	83.97	82.93 (± 0.86)
	KG-BERT (+GH)	82.99	86.66	84.78 (± 1.11)	86.26	78.01	81.92 (± 1.28)	73.8	78.95	76.28 (± 1.67)	84.11	77.28	80.55 (± 1.23)
Including geospatial	Geo-ER [4]	88.27	84.7	86.44 (± 0.88)	87.25	81.74	84.4 (± 1.16)	78.58	78.91	78.74 (± 1.25)	82.6	88.21	85.31 (± 1.47)
information further	GTMiner	90.07	88.15	89.1* (± 1.04)	86.91	88.4	87.64* (± 1.49)	80.56	80.95	80.75* (± 1.21)	87.87	87.86	87.87* (± 1.31)
improves the results	GTMiner (+Ex)	90.17	89.25	89.65 (± 1.13)	87.0	89.29	88.13 (± 1.39)	80.8	82.37	81.57 (± 1.29)	88.1	88.78	88.24 (± 1.22)
	GTMiner (+Ex +Re)	91.33	89.25	90.27 (± 1.09)	88.08	89.23	88.66 (± 1.33)	81.27	82.37	81.81 (± 1.28)	88.27	88.69	88.47 (± 1.2)
	Δ_{F1}			+3.82%			+4.26%			+3.07%			+3.16%

Spatial Keyword Query (Geographic IR)

- Take query keywords and location as input and output retrieved objects/documents
- Applications of spatial keeping
 Geographic search eeping
 - location-based servid
 - $\circ\,$ locally targeted web

Spatial Keyword Query Example on Yelp (or Meituan)

Geospatial entity representation learning

Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, Fuzheng Zhang: Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword Queries. SIGMOD 2023

POI recommendation

 Given a set of POIs, and a set of users each associated with a set of visited POIs, POI recommendation is to recommend for each user new POIs that are likely to be visited.

Quan Yuan, Gao Cong, Aixin Sun, Chin-Yew Lin, Nadia M. Thalmann. Category Hierarchy Maintenance: A Data-Driven Approach. SIGIR 2012

Other Types of POI recommendation

Context-aware POI recommendation

- Context: time, current location.
- E.g., Workplace + Friday Evening → Restaurant / Bar

Requirement-aware POI recommendation (w/o Group)

E.g., Mary wants to find a restaurant to have pizza with her friend Bob at 7:00 PM on Friday

Predict potential visitors for a POI (for ads)

- It can help POI owners to find potential customers for marketing
- E.g., given a POI restaurant, we want to predict potential consumers who would visit this restaurant in the next several hours

A Summary

Outline

- Target on a specific problem on **point spatial entity**
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Representation Learning for Road Networks

Motivation: many applications are built upon road networks, such as travel time estimation, traffic inference, etc.

- Target: derive effective representations that are robust and generic for downstream applications.
 - Road segment-based & trajectory-based applications

Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long, Yiding Liu, Arun Kumar Chandran, Richard Ellison: Robust Road Network Representation Learning: When Traffic Patterns Meet Traveling Semantics. CIKM 2021

Challenges

Common assumptions in graph learning may not hold

According to homophily, inter-connected nodes are more similar than distant ones.

 \rightarrow dh, gh, hi, hk should be similar

▷ In reality, *dh*, *hk* (secondary roads) have less traffic volume than *gh*, *hi* (primary roads).

Challenges

Feature uniformity

- Road networks in some regions share same features (e.g., residential area).
 - \rightarrow GNN aggregation will end up with same representations
- \triangleright *de*, *ad*, *ab*, *be* will be the same.
 - \rightarrow undesirable: *de* should be more correlated to *cd*, *ef*.

Method - Toast

\triangleright Overview

Traffic context aware skip-gram module

Trajectory-enhanced Transformer module

- Traffic context-aware skipgram module:
 - Capture **traffic patterns** (e.g., volume) to distinguish the discrepancies in challenge 1.

Trajectory-enhanced Transformer module:

• Consider **traveling semantics** (e.g., transition patterns) to avoid feature uniformity in challenge 2.

▷ Datasets:

• Road networks and trajectories from two cities

Dataset	#Road Segments	#Edges	#Trajectories
Chengdu	4,885	12,446	677,492
Xi'an	5,052	13,660	373,054

- ▷ Downstream applications:
 - Road label classification
 - Traffic inference
 - Trajectory similarity search
 - Travel time estimation

▷ Baselines:

Road segment representation learning

- Representative graph embedding methods:
 - Deepwalk (KDD' 14), node2vec (KDD' 16), GAE (NIPS' 16), GraphSAGE (NIPS' 17)
- Road segment specific embedding methods:
 - RFN (SIGSPATIAL' 19), IRN2Vec (SIGSPATIAL' 19), HRNR (KDD' 20)
- □ Trajectory representation learning
 - para2vec (ICML' 14), t2vec (ICDE' 18)

▷ Road segment-based application result:

Task	Road Label Classification					Traffic Inference			
	Che	ngdu	Xi	'an	Che	ngdu	Xi'an		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	MAE	RMSE	MAE	RMSE	
DW	0.522	0.493	0.552	0.524	7.32	9.14	6.78	8.57	
node2vec	0.524	0.495	0.586	0.559	7.12	9.00	6.41	8.22	
GAE	0.432	0.328	0.447	0.339	6.91	8.72	6.41	8.39	
GraphSAGE	0.452	0.324	0.466	0.347	6.48	8.52	6.12	7.98	
RFN	0.516	0.484	0.577	0.570	6.89	8.77	6.57	8.43	
IRN2Vec	0.497	0.458	0.531	0.506	6.52	8.52	6.60	8.59	
HRNR	0.541	0.527	0.631	0.609	7.03	8.82	6.52	8.45	
Toast	0.602	0.599	0.692	0.659	5.95	7.70	5.71	7.44	

▷ Trajectory-based application result

Trajectory similarity search Travel time estimation

	Che	engdu	Xi'an			
	MR	MR HR@10		HR@10		
para2vec	216.92	0.251	279.38	0.205		
t2vec	46.17	0.781	38.67	0.806		
LCSS	67.72	0.487	83.94	0.469		
EDR	458.20	0.174	529.74	0.119		
Fréchet	21.17	0.847	22.79	0.894		
Toast	10.10	0.885	13.71	0.905		

	Cher	ngdu	Xi'an		
	MAE	RMSE	MAE	RMSE	
para2vec	220.45	302.72	244.73	345.49	
t2vec	165.18	240.72	207.56	311.04	
Road-Pool	151.80	223.02	185.47	293.82	
Toast	127.80	190.86	175.68	265.09	

Outline

- Target on a specific problem on **point spatial entity**
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Region Spatial Entity Data

Business analytics

Deep Region	Applications:
Representation	Region analysis,
KDD'23	such as functions,
	property price, crime
	rate, populations, etc

Problem of Urban Region Representation Learning

Data

• Urban Region Representation Learning aims at learning effective feature vectors for urban regions to serve various downstream tasks.

Representations

Tasks

Our motivations

An Example Building Group (Singapore Public House) We focus on **OSM buildings.**

- Buildings, (or formally, building footprints), refer to the 2-D building polygon on the map
 - size, height, type, name...
- Building groups refers to the collection of buildings in a defined spatial area.
 - We use OSM road networks to partition buildings into building groups.

Yi Li, Weiming Huang, Gao Cong, Hao Wang, and Zheng Wang. Urban Region Representation Learning with OpenStreetMap Building Footprints. SIGKDD 2023

Introduction

Industrial Area

Residential Area

Example Building Groups with Specific Urban Functions Comparing to other data types, building data has **advantages**:

• Effectiveness

- Buildings directly carrying urban functions.
- Availability
 - Buildings are readily available in OSM

Related Work

• Heavily rely on trajectory data

Model	Data Source
Place2vec [29]	POI
Doc2Vec [30]	POI
HDGE [8]	trajectory, POI, demographic/geographic features
ZE-Mob [9]	trajectory, check-in
Fu et al. [11]	trajectory, POI
Zhang et al. [12]	trajectory, POI
ReMVC $[31]$	trajectory, POI
RegionEncoder $[10]$	trajectory, POI, satellite image
MVURE. [13]	trajectory, POI, check-in
MGFN [14]	trajectory
RegionDCL	building footprints, POI

Related Work

- Heavily rely on trajectory data
 - Ignore data-sparse areas
- Can't adapt to multiple region partition schemes

Regions in Land Use Classification

Regions in Population Density Estimation

Method

1. Partition the city into building groups with road network.

- 2. Encode building groups with POIs and regions with Transformer-based encoders.
- 3. Train the encoder with Group-level and Region-level contrastive learning

- Dataset: Singapore & New York City
- Partition=Singapore Subzone & New York Census Block

Table	1:	Dataset Statistics	
-------	----	---------------------------	--

City	Buildings	POIs	Building Patterns
Singapore	109,877	17,088	5,824
New York City	1,081,256	41,963	29,008

Land Use Inference

 Infer 5 types of land use (Residential, Industrial, Commercial, Open Space, Other)

Models		Singapore		New York City			
	L1↓	KL↓	Cosine↑	L1↓	KL↓	Cosine↑	
Urban2Vec	0.657 ± 0.033	0.467 ± 0.043	$0.804 {\pm} 0.017$	0.473 ± 0.018	0.295 ± 0.015	0.890 ± 0.007	
Place2Vec	0.645 ± 0.039	0.451 ± 0.047	$0.812 {\pm} 0.018$	0.518 ± 0.016	$0.308 {\pm} 0.012$	0.878 ± 0.005	
Doc2Vec	0.679 ± 0.050	0.469 ± 0.058	0.789 ± 0.027	0.506 ± 0.015	$0.299 {\pm} 0.016$	$0.885 {\pm} 0.008$	
GAE	$0.759 {\pm} 0.040$	0.547 ± 0.051	0.765 ± 0.022	0.589 ± 0.011	$0.365 {\pm} 0.011$	0.855 ± 0.007	
DGI	$0.598 {\pm} 0.029$	0.372 ± 0.032	0.846 ± 0.012	0.433 ± 0.009	$0.237 {\pm} 0.012$	0.907 ± 0.005	
Transformer	$0.556 {\pm} 0.046$	$0.357 {\pm} 0.070$	$0.850 {\pm} 0.026$	0.436 ± 0.020	$0.251 {\pm} 0.018$	$0.903 {\pm} 0.008$	
RegionDCL-no random	0.535 ± 0.054	0.321 ± 0.066	0.863 ± 0.030	0.422 ± 0.011	0.234 ± 0.010	0.910 ± 0.005	
RegionDCL-fixed margin	$0.515 {\pm} 0.042$	0.303 ± 0.040	0.872 ± 0.020	0.426 ± 0.011	$0.248 {\pm} 0.018$	0.905 ± 0.008	
RegionDCL	$0.498{\pm}0.038$	$0.294{\pm}0.047$	$0.879 {\pm} 0.021$	$0.418{\pm}0.010$	$0.229{\pm}0.008$	$0.912{\pm}0.004$	

Table 2: Land Use Inference in Singapore and New York City

Population Density Inference

• Similar results in inferring the population density within regions

Models		Singapore			New York City	
models	MAE↓	RMSE↓	\mathbb{R}^2 \uparrow	MAE↓	RMSE↓	$\mathbf{R}^2 \uparrow$
Urban2Vec	$6667.84 {\pm} 623.27$	8737.27 ± 902.41	$0.303 {\pm} 0.119$	5328.38 ± 200.58	7410.42 ± 261.89	0.522 ± 0.028
Place2Vec	6952.34 ± 713.30	9696.31 ± 1239.65	0.171 ± 0.121	8109.79 ± 175.18	10228.61 ± 261.43	0.096 ± 0.043
Doc2Vec	6982.85 ± 650.76	9506.81 ± 1052.25	0.206 ± 0.062	7734.56 ± 247.99	9827.56 ± 354.51	$0.166 {\pm} 0.031$
GAE	7183.24 ± 579.82	9374.20 ± 913.56	$0.163 {\pm} 0.112$	8010.73 ± 290.33	10341.09 ± 362.28	0.071 ± 0.027
DGI	6423.44 ± 671.25	8495.16 ± 972.87	0.305 ± 0.151	5330.11 ± 261.77	7381.92 ± 358.09	0.526 ± 0.032
Transformer	6837.67±716.28	9042.02 ± 1032.99	$0.269 {\pm} 0.081$	5345.17 ± 216.30	7379.47 ± 308.36	0.522 ± 0.039
RegionDCL-no random	6400.50 ± 630.35	8437.89 ± 993.41	$0.364 {\pm} 0.075$	5228.27 ± 210.46	7278.70 ± 322.85	$0.535 {\pm} 0.040$
RegionDCL-fixed margin	6237.61 ± 647.54	8387.56 ± 948.78	$0.365 {\pm} 0.107$	5125.66 ± 184.27	7159.65 ± 250.12	$0.551 {\pm} 0.033$
RegionDCL	$5807.54{\pm}522.74$	$7942.74{\pm}779.44$	$0.427{\pm}0.108$	$5020.20{\pm}216.63$	$6960.51 {\pm} 282.35$	$0.575 {\pm} 0.039$

Table 3: Population Density Inference in Singapore and New York City

Visualization

- Cluster the building group embeddings via K-Means
- Ours are visually close to the Singapore land use ground truth
- Baseline fails.

Outline

- Target on a specific problem on **point spatial entity**
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Introduction to Foundation Models

Foundations Models (FMs) represent a paradigm shift in Al

Advantages:

- Self-supervised pre-training
- Task-agnostic —> FMs develop capabilities that generalise across tasks
- Able to access Internet-scale amount of (unlabelled) data
- Easy to deploy to downstream applications (fine-tune or zero-shot)

Foundation Models

Large Language Model

42

Foundation Models in Different Domains

Natural Language Processing Stanford Alpaca **Stanford Alpaca**

ChatGPT/GPT-4 (OpenAl. 2023)

Computer Vision

Imagen (Saharia et al. 2022)

Segment Anying (Kirillov et al, 2023)

Reinforcement Learning

Gato (Reed et al. 2022)

Signal Processing

Whisper (Radford et al. 2022)

AGI on Geospatial Problems

How do the existing cutting-edge foundation models perform when compared with the state-of-theart fully supervised task-specific models on various geospatial tasks?

Gengchen Mai, Weiming Huang, et al. . <u>On the Opportunities and Challenges of Foundation Models</u> for Geospatial Artificial Intelligence. ACM TSAS 2024

Geospatial Semantics

• Investigate the performance of **GPT-3** on some well established **geospatial semantic tasks**:

Typonym Recognition

[Instruction] ...

Paragraph: Alabama State Troopers say a Greenville man has died of his injuries → after being hit by a pickup truck on Interstate 65 in Lowndes County.

Q: Which words in this paragraph represent named places?

A: Alabama; Greenville; Lowndes

...

```
Paragraph: The Town of Washington is to what Williamsburg is to Virginia.
```

- Q: Which words in this paragraph represent named places?
- A: Washington; Williamsburg; Virginia

Location Description Recognition

[Instruction] ...

Paragraph: Papa stranded in home. Water rising above waist. HELP 8111 Woodlyn Rd

- ↔ , 77028 #houstonflood
- Q: Which words in this paragraph represent location descriptions?
- A: 8111 Woodlyn Rd, 77028
- · · · ·

Paragraph: HurricaneHarvey Help Need AT 7506 Jackrabbit Rd, Houston, TX 77095.

- Q: Which words in this paragraph represent location descriptions?
- A: 7506 Jackrabbit Rd, Houston, TX 77095

*toponyms: proper names of places, also known as place names and geographic names.

GPT-3 Fewshot Learning for Geospatial Semantic Tasks

Task 1 & 2: Toponym Recognition & Location Description Recognition

• Typonym recognition: FMs (e.g., GPT-2/3) consistently outperform the fully-supervised baselines with only 8 few-shot examples

 Location Description Recognition: GPT-3 achieves the best Recall score across all methods

		Typonym			Location			
				Description		ion		
			Recognition		Recognition			
			Toponym Recognition		Location Description Recognition			n
	Model	#Param	Hu2014 Ju2016		HaveyTweet2017			
			Accuracy \downarrow	Accuracy \downarrow	Precision 🕽	Recall ↓	F-Score↓	_
	Stanford NER (nar. loc.) [30]	-	0.787	0.010	0.828	0.399	0.539	
	Stanford NER (bro. loc.) [30]	-	-	0.012	0.729	0.44	0.548	
	Retrained Stanford NER [30]	-	-	0.078	0.604	0.410	0.489	
(4)	Caseless Stanford NER (nar. loc.) [30]	-	-	0.460	0.803	0.320	0.458	
(A)	Caseless Stanford NER (bro. loc.) [30]	-	-	0.514	0.721	0.336	0.460	
	spaCy NER (nar. loc.) [44]	-	0.681	0.000	0.575	0.024	0.046	
	spaCy NER (bro. loc.) [44]	-	-	0.006	0.461	0.304	0.366	
	DBpedia Spotlight[99]	-	0.688	0.447	-	-	-	
	Edinburgh [7]	-	0.656	0.000	-	-	-	
(B)	CLAVIN [134]	-	0.650	0.000	-	-	-	
	TopoCluster [23]	-	0.794	0.158	-	-	-	
	CamCoder [33]	-	0.637	0.004	-	-	-	
(n)	Basic BiLSTM+CRF [77]	-	-	0.595	0.703	0.600	0.649	
(C)	DM NLP (top. rec.) [139]	-	-	0.723	0.729	0.680	0.703	
	NeuroTPR [135]	-	0.675†	0.821	0.787	0.678	0.728	
	GPT2 [115]	117M	0.556	0.650	0.540	0.413	0.468	
	GPT2-Medium [115]	345M	0.806	0.802	0.529	0.503	0.515	
	GPT2-Large [115]	774M	0.813	0.779	0.598	0.458	0.518	
(D)	GPT2-XL [115]	1558M	0.869	0.846	0.492	0.470	0.481	
(D)	GPT-3 [15]	175B	0.881	0.811*	0.603	0.724	0.658	
	InstructGPT [106]	175B	0.863	0.817*	0.567	0.688	0.622	
	ChatGPT (Raw.) [104]	176B	0.800	0.696*	0.516	0.654	0.577	47
	ChatGPT (Con.) [104]	176B	0.806	0.656*	0.548	0.665	0.601	. /

Health Geography

Task 4: US County-Level Dementia Time Series Forecasting

[Instruction] This is a set of time series forecasting problems.

The `Paragraph` is a time series of the numbers of deaths from

🛏 alzheimer's disease for one of US counties from 1999 to 2019.

The goal is to predict the number of deaths from alzheimer's disease at

```
↔ this county in 2020. Please give a single number as the
→ prediction.
```

```
--
```

```
Paragraph: At Santa Barbara County, CA, from 1999 to 2019, the numbers
```

←→ of deaths from alzheimer's disease are

```
→ 126 in 1999, 114 in 2000, 124 in 2001, 127 in 2002, 156 in 2003,
```

→ 154 in 2004, 175 in2005, 172 in 2006, 171 in 2007, 248 in 2008, 204

→ in 2009, 241 in 2010, 260 in 2011, 297 in 2012, 283 in 2013, 308 in

```
←→ 2014, 358 in 2015, 365 in 2016, 334 in 2017, 363 in 2018,
```

→ and 328 in 2019.

```
Q: Please forecast the number in 2020 at Santa Barbara County, CA?
```

A: 345

Listing 4. US county-level Alzimier time series forecasting with LLMs by zero-shot learning. Yellow block: the historical time series data of one US county. Orange box: the outputs of InstructGPT. Here, we use Santa Barbara County, CA as an example and the correct answer is 373.

Table 3. Evaluation results of various GPT models and baselines on the US county-level dementia time series forecasting task. We use same model set and evaluation metrics as Table 2.

	Model	#Param	MSE ↓	MAE↓	MAPE↓	\mathbb{R}^2 \uparrow
(A) Simple	Persistence [103, 107]	-	1,648	16.9	0.189	0.979
(B) Supervised ML	ARIMA [58]	-	1,133	15.1	0.193	0.986
	GPT2 [115]	117M	77,529	92.0	0.587	-0.018
	GPT2-Medium [115]	345M	226,259	108.1	0.611	-2.824
	GPT2-Large [115]	774M	211,881	94.3	0.581	-1.706
(C) Zaro chot II Ma	GPT2-XL [115]	1558M	162,778	99.8	0.627	-1.082
(C) Zero shot LLIVIS	GPT-3 [15]	175B	1,105	14.5	0.180	0.986
	InstructGPT [106]	175B	831	13.3	0.179	0.989
	ChatGPT (Raw.) [104]	176B	4,115	23.2	0.217	0.955
	ChatGPT (Con.) [104]	176B	3,402	20.7	0.231	0.944

Urban Geography

Task 6: Street View Image-Based Urban Noise Intensity Classification

Fig. 6. Some street view image examples in *SingaporeSVI*579 dataset. The image caption indicates the noise intensity class this image belongs to and the numbers in parenthesis indicate the original noise intensity scores from Zhao et al. [162].

Table 6. Evaluation results of various vision-language foundation models and baselines on the urban street view image-based noise intensity classification dataset, SingaporeSVI579 [162]. We classify models into two groups: (A) Supervised finetuned convolutional neural networks (CNNs); (B) Zero-shot learning with visual-language foundation models (VLFMs). We use accuracy and weighted F1 scores as evaluation metrics. The best scores for each group are highlighted.

	Model	#Param	Accuracy	F1
	AlexNet [74]	58M	0.452	0.405
(A) Supervised Einstrungd CNNs	ResNet18 [37]	11M	0.493	0.442
(A) Supervised Finetuned CNNs	ResNet50 [37]	24M	0.500	0.436
	DenseNet161 [48]	27M	0.486	0.382
	OpenCLIP-L [54, 113, 127]	427M	0.128	0.089
(B) Zero-shot FMs	OpenCLIP-B [54, 113, 127]	2.5B	0.169	0.178
	BLIP [81, 82]	3.9B	0.452	0.405
	OpenFlamingo-9B [11]	8.3B	0.262	0.127

Remote Sensing

Task 7: Remote Sensing Image Scene Classification

Table 7. Evaluation results of various vision-language foundation models and baselines on the remote sensing image scene classification dataset, *AID* [144]. We use the same model set as Table 6. "(*Origin*)" denotes we use the original remote sensing image scene class name from *AID* to populate the prompt while "(*Updated*)"indicates we update some class names to improve its semantic interpretation for FMs. We use accuracy and F1 score as evaluation metrics.

	Model	#Param	Accuracy	F1
	AlexNet [74]	58M	0.831	0.827
Supervised Finatured CNNs	ResNet18 [37]	11M	0.752	0.730
Supervised Finetuned Civits	ResNet50 [37]	24M	0.757	0.738
	DenseNet161 [48]	27M	0.818	0.807
	OpenCLIP-L (Origin) [54, 113, 127]	427M	0.708	0.688
	OpenCLIP-L (Updated) [54, 113, 127]	427M	0.710	0.698
	OpenCLIP-B (Origin) [54, 113, 127]	2.5B	0.699	0.668
Zero-shot FMs	OpenCLIP-B (Updated) [54, 113, 127]	2.5B	0.705	0.686
	BLIP (Origin) [82]	2.5B	0.500	0.473
	BLIP (Updated) [82]	2.5B	0.520	0.494
	OpenFlamingo-9B [11]	8.3B	0.206	0.154

Figure 1: Samples of AID: three examples of each semantic scene class are shown. There are 10000 images within 30 classes.

Figure from Xia et al. (2016)

GPT-3 Fewshot Learning for Geospatial Semantic Tasks

• Shortcoming of text FMs: by design they are unable to handle other data modality, e.g., geocoordinates, toponym resolution/geoparsing

• The predicted coordinates are not accurate

ulation of 260 as of july 1, 2015. ...

county seat of simpson county, ...

Outline

- Target on a specific problem on **point spatial entity**
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

A Multimodal City FM for GeoAl

Vision: a multimodal City FM for GeoAl that use their geospatial relationships as alignments among different data modalities.

Motivations of City Foundation Models

FMs have the potential to revolutionise the way we use geospatial data

Challenges

A slower adoption of FMs in the geospatial domain... why?

Data sources also present a challenge, different data comes from different providers, and is available in different places!

Attemp1: Use OpenStreetMap to Build a City Foundation Model

How to leverage the different data types and modalities in OSM, to **pre-train a geospatial FM**?

Pasquale Balsebre, et al. Towards City Foundation Models. On arXiv.

Attemp2: UrbanCLIP – a prompting framework for zero-shot urban land use inference

street view images through prompting a vision-language model. International Journal of Geographical Information Science, in press.

LLM for conversational city search

...such general models lack city-specific knowledge!

LLM for conversational city search

This type of place queries in plain language

- Can hardly be answered by traditional keyword-based map engines
- Are conversational in nature
- Require city-specific knowledge and spatial awareness, which current general purpose LLMs lack.

How about developing a chatbot on the map?

We trained LAMP on Singapore places data, including POIs, addresses, opening hours, positions... In this way, LAMP becomes aware of fine-grained urban places in Singapore, with a spatial sense (proximity)

Pasquale Balsebre, Weiming Huang, Gao Cong. LAMP: A Language Model on the Map. On arXiv.

Current position: 81, Victoria Street, 188065, Singapore
Query: I'd like to have japanese food. Could you find a place nearby?
LLaMa-2-70B-Chat: Sure, I'd be happy to help! There are several Japanese restaurants near Victoria Street,
Museum, Singapore. Here are a few options:
1. Sushi Tei – Located at 100 Victoria Street, #01-01, Singapore 188064.
2. Tsukemen Ginza - Located at 111 Middle Road, #01-01, Singapore 188969.
3. Ramen Nagi - <mark>Located at 100 Victoria Street, #01-02, Singapore 188064.</mark>
ChatGPT 3.5: Sure, one nearby Japanese restaurant to 81 Victoria Street, Singapore 188065 is "Shin Minori
Japanese Restaurant" located at <mark>81 Victoria Street, #01-01, Singapore 188065</mark> .
LAMP: I found two Japanese restaurants near your location:
- Shirokiya, located at 30 Victoria Street Chijmes, #01-05/06, 187996 ,
- Gyu Kaku Japanese BBQ, located at 30 Victoria Street, CHIJMES #01-01/03, 187996. It offers takeaway services and it is open
until 11pm.
Let me know if you need any more recommendations!

When queried to find a specific POI. ChatGPT and LLaMa-2 are prone to hallucinating, and create places that do not exist, to satisfy the user's query, often replicating the address of the user or their zip code.

hallucinated information shaded in Orange, and correct information in Green.

Current position: Rochor Road, Bugis, Downtown Core, Singapore, Central, 189352, Singapore
Query: Please recommend me some nearby food options
ChatGPT-4: After a quick search, I found a variety of food options near Rochor Road, Bugis. Here are some examples:
1. 328 Katong Laksa: famous for its Laksa, a spicy noodle soup.
2. Jing Hua Xiao Chi: offers Chinese and Asian cuisine.
LAMP: Here are 2 possible choices:
- THE SALADBOX, 191 Rochor Rd, #B2-08, Bugis MRT Station, 188476,
- Ji De Chi, 8 Liang Seah St, 189029. It is highly rated and has a price range of \$\$!

In some cases, GPT-4 provides places that are both relevant and existing. But such places are farther apart. In contrast, LAMP continues to provide nearby relevant places.

Relevant while far away information shaded in Yellow:, and correct information in Green

The left places are recommended by LAMP, while the right ones are from GPT-4.

Model	Truthfulness	Spatial Awareness	Semantic Relatedness
LLaMa-2-7B	0.12	0.2	0.76
LLaMa-2-70B	0.3	0.36	0.94
Claude	0.22	0.32	0.96
ChatGPT-3.5	0.68	0.6	0.98
ChatGPT-4 (Browsing)	0.94	0.82	1.0
LAMP-no-rq	0.76	0.84	1.0
LAMP	0.86	0.92	1.0

Table 2: Main results on conversational POI-retrieval inSingapore.

Overall, LAMP has a broad range of impacts in a smart city context:

- Can help users with every day's needs, finding places or planning a day out;
- Can increase the public services efficiency, e.g., find the closest government office for some service.
- In general, could assist urban planners and GIS experts in their job.

References and Acknowledgement

- Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, Fuzheng Zhang.
 Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword Queries. SIGMOD 2023
- Pasquale Balsebre, Dezhong Yao, Weiming Huang, Gao Cong, Zhen Hai.
 Mining Geospatial Relationships from Text. SIGMOD 2023
- Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, et al.: Robust Road Network Representation Learning: When Traffic Patterns Meet Traveling Semantics. CIKM 2021
- Yi Li, Weiming Huang, Gao Cong, Hao Wang, and Zheng Wang. Urban Region Representation Learning with OpenStreetMap Building Footprints. SIGKDD 2023
- Gengchen Mai, Weiming Huang, et al. . <u>On the Opportunities and</u> <u>Challenges of Foundation Models for Geospatial Artificial Intelligence</u>. ACM TSAS 2024
- Weiming Huang, Jing Wang, Gao Cong. Zero-shot urban function inference with street view images through prompting a pre-trained vision-language model. IJGIS in press.
- Pasquale Balsebre, Weiming Huang, Gao Cong. LAMP: A Language Model on the Map. On arXiv.
- Pasquale Balsebre, Weiming Huang, Gao Cong, Yi Li Towards City Foundation Models. On arXiv.

Shang Liu

Yi Li

Pasquale Balsebre

Yile Chen

Di Yao

Kaiyu Feng

Gengchen Mai

Weiming Huang