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SAM: Database Generation from Query Workloads 
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• Before migrating data from local to cloud, cloud providers need to 
benchmark different DBMS to recommend a product.

• Problem: Cloud Provider usually do not have access to the user’s 
database.

User’s data Benchmarking
Cloud DBMS

Jingyi Yang, Peizhi Wu, Gao Cong, Tieying Zhang, Xiao He. SAM: Database Generation from Query 
Workloads with Supervised Autoregressive Models. SIGMOD 2022



• On the other hand, cloud providers may have access to the user’s query 
logs and collect a set of queries & the result cardinalities.

• Observation: Queries and the result cardinalities provide information on 
the data distribution.
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SAM: Database Generation from Query Workloads 

SELECT * From census WHERE 
age > 40 and salary > 50K

Cardinality: 26992

Salary

Age

50K

40



SAM: Database Generation from Query Workloads 
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• Given a query workload with cardinalities, we aim to generate a synthetic 
database that satisfies the cardinality constraints and is close to the 
original database.

• Benchmarking can be conducted on the synthetic database.

User’s query 
workload

Benchmarking 
Cloud DBMS

Synthetic 
Database



SAM: Database Generation from Query Workloads 
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• Another use case is stress testing for databases with strict access 
controls.

• For example, core user database of a social media or e-commerce 
platform, where replication is highly restricted.

Query workload 
of core 
database

Stress TestingSynthetic 
Database



Database Generation From Query Workloads: 
• Consider a set of n queries 𝑄𝑄 and their cardinalities collected on a database 𝐷𝐷. 
• Aim to generate a database that satisfies the cardinality constraints and is close 

to the original database.
• Cross entropy between the discrete data distribution of the generated relation �𝑇𝑇

and original relation 𝑇𝑇 as a measure of closeness.

𝐻𝐻 𝑇𝑇, �𝑇𝑇 = −𝔼𝔼𝑥𝑥∼𝑇𝑇[𝑙𝑙𝑙𝑙𝑙𝑙 �(𝑆𝑆𝑆𝑆𝑙𝑙 𝑥𝑥 )]
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Problem Setup
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Workflow of SAM

• We propose SAM, a query-aware database generator based on 
autoregressive models:

• Learning stage: Efficiently and accurately learn the join data distribution
• Generation stage: Generate a high-fidelity database from the AR model
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Evaluation on Closeness 
• SAM generates a database that is closer to the original database. 
• SAM can well generalize to unseen queries, achieving 300X less mean 

error on IMDB.
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Evaluation on efficiency

• Processing time scales as a high-degree polynomial for PGM, 
but linearly for SAM. 

• Therefore, SAM can process query workloads of a much larger 
scale.
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Question： Can we have 
some foundation of 
different ML4DB tasks?

14

ML4DB Foundations

Index
Recommendation

Cost/Cardinality 
Estimator

Join Order 
Selection

View 
Advisor

Learned 
Optimizer

ML4DB Tasks 

…

Query Plans are used as 
inputs in many ML4DB 
tasks

Query plan 
representation is a key 
operation



• Cost and Cardinality Estimation [Sun., et al. VLDB 19]
 Uses Tree-LSTM to extract feature representation from a query plan
 Uses MLP to predict cost and cardinality
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Example: Cost Estimation

JOIN

JOIN C

A B

Model Input Model Output

Est. Cost: 123 ms
Est. Cardinality: 12345



• Index Recommendation [Bailu, D., et al. SIGMOD 19]
 Featurize a query plan by creating feature channels for each physical operator
 Perform classification on query plan pairs
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Example: Index Recommendation

JOIN

JOIN C

A B

First plan is better

JOIN

JOIN C

A B

First index is better

Model Input Model Output

Featuring Query Plan by Bailu, D. (2019).

Classifier



• Index Recommendation [Shi, et al. VLDB 23]
 Featurize a query plan & an index configuration as a set of index optimizable operations.
 Adopting attention-based model for interrelations between operations and indexes.
 Replacing “What-if” call to perform index cost reduction estimation. 
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Example: Index Recommendation

Hash Join
(store_sales.ss_item_sk = 

item.i_item_sk)

…

… …

Nested Loop
(store_sales.ss_sold_date_sk = 

date_dim.d_date_sk)

… …

Column name No. Rows NULL Frac Distinct Frac
date_dim.d_date_sk 73049 0.0 1.0

store_sales.ss_item_sk 2.88e+07 0.0 0.003

Database StatisticsQuery Plan

Feature Vector of Each Index Optimizable Operation

Set of Feature Vectors

Model Input

Index Benefits 
Estimation Model

Cost Reductions 
𝒓𝒓𝒓𝒓𝒊𝒊,𝒋𝒋

Index Selection 
Algorithms

Index 
Recommendations

Model Output
Original Query Plan & Index Configuration

Jiachen Shi, Gao Cong, Xiaoli Li. Learned Index Benefits: Machine Learning Based Index 
Performance Estimation. VLDB 2023



Example： Multiple query optimization
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• Multiple query optimization [Mo, et al. SIGMOD 24]
 Featurize concurrent query plans by creating feature channels for each node
 Featurize SQL query by extracting join graph and predicate information
 Predict the cost for plan generation

JOIN

JOIN

C

A B

costJOIN

D

Model Input Model Output

Cost estimation model

share

Join Scan Share A B …

1 0 0 1 1 …

0 0 1 1 1 …

… … … … … …

Song Song Mo, Yile Chen, Hao Wang, Gao Cong, Zhifeng Bao. Lemo: A Cache-Enhanced 
Learned Optimizer for Concurrent Queries. SIGMOD 2024



• Why is representation learning important?
 Non-trivial to define features from a query plan
 Difficult to deal with the tree structure of a query plan
 Input encoding is a key factor to the performance of all these methods

• Research Problem: Given a query plan, learn a vector representation to be used 
as the input to a ML4DB system

19

ML4DB Foundation Research Problem

JOIN

JOIN C

A B

Vector ML4DB 
System

Yue Zhao, Gao Cong, Jiachen Shi, Chunyan Miao. QueryFormer: a tree transformer model for 
query plan representation. VLDB 2022.



Intermediate 
nodes omitted

• Incorporate the statistics stored in a database
• Encode the tree structure of the input

 Parent-children dependency
 Long paths of information flow

20

Challenges

Example Query Plan derived 
from TPC-DS query 18.



• Plug and Play for existing ML4DB works

21

System Overview 



• Plug and Play for existing ML4DB works
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System Overview 



• Plug and Play for existing ML4DB works
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System Overview 
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QueryFormer Architecture 

JOIN

JOIN C

A B

• Goal: encode the tree structure of query 
plan
 Parent-children dependencies
 Long information paths

• Incorporate the tree structure:
 3 new designs from vanilla Transformer

1. Height Embedding
2. Tree-Bias Attention
3. Super Node



• Methodology: 
 Perform database tasks by replacing query plan representation of ML4DB work. Compare 

the performance with original ML4DB works
 Tasks: cost estimation, cardinality estimation, index recommendation, learned optimizer

• Dataset: both synthetic and real workloads with different characteristics

30

Experimental Settings

Table 1: Query Plan Sizes in datasets.



• Adopt the exact setting of E2E-Cost [Ji, 
S., et al. VLDB 19]

• Evaluation Metrics:
 Q-Error:

 Pearson Correlation of prediction and 
labels

• Results: 
 more than 40% improvement in Q-Error 

when comparing both:
 QF vs E2E-Cost
 QF-Multi vs E2E-Multi

31

Experimental Results: Cost Estimation

Table 3: Cost Estimation Results.



• Adopt the exact setting of AIMeetsAI 
[Bailu, D., et al. SIGMOD 19]

• Goal: to select indexes that accelerate 
query execution

• Relative time:


Exec. time with indexes

Exec. time without any index

• Results: 
 Better indexes are selected  20% less 

execution time on average

32

Experimental Results: Index Recommendation
Low

er is better

Fig 3. Relative Execution time of index recommended.



• Adopt the exact setting of BAO 
[Ryan, M., et al. SIGMOD 21]

• Goal: 
 To execute a workload (2240 

queries) as fast as possible

• Results: 
 16% less execution time

33

Experimental Results: Optimizer

Left is better

Fig 3. Queries completed over time.
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• Learned (spatial) indexes use machine learning models to map real 
values (spatial coordinates) to storage locations, e.g., RMI, PGM, 
ZM, RSMI, LISA, etc

Learned (Spatial) Index

R

R

35



Learned Indexes 
 They need to replace both the index structures and query processing algorithms 

currently used by the database systems. Such a radical departure -- >difficult to be 
deployed in database systems.

 Technical Limitations: Type of data, Type of queries, Updates, etc. 

ML Enhanced Indexes: Use ML to enhance (NOT replace) existing indexes
 RLR-Tree (SIGMOD’23): a better R-Tree for dynamic data
 Packing R-tree (SIGMOD’24): a better R-tree for bulk loading
 Learned Space-filling Curves(VLDB’23): for multiple dimensional data indexing or 

partitioning. 

Do not replace the index structures or the query processing algorithms

36

Learned Indexes vs. ML Enhanced Indexes



• A SFC is used to map a multi-dimensional data point  to a value
• Then a one-dimensional index can be used to index the mapped values

 B+tree index, supported by many DBMS, such as PostgreSQL, DynamoDB, HBase
 Learned indexes

37

Space-Filling Curve (SFC)

(a) C-curve (b) Z-curve (c) Hilbert curve

• Each type of SFC has a
fixed mapping function

• May not fit with different 
datasets/queries. 



• No single SFC can dominate the performance on all datasets and query 
workloads
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Design instance-optimized SFCs

1 2

3 4

5 6

7 8

9 10
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15 16
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16

𝑄𝑄1 𝑄𝑄2 𝑄𝑄1 𝑄𝑄2

(a) SFC-1 works best for 𝑄𝑄1.(b) SFC-2 works best for 𝑄𝑄2.



• Design a SFC that combines the advantage of multiple SFCs and thus reach to 
an optimized performance (piecewise SFC)
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Our Idea
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𝑄𝑄1 𝑄𝑄2 𝑄𝑄1 𝑄𝑄2 𝑄𝑄1 𝑄𝑄2

(a) SFC-1 works best for 𝑄𝑄1.(b) SFC-2 works best for 𝑄𝑄2. (c) SFC-3 combines SFC-1 and 
SFC-2, works best for both 
queries.

Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, Bin Cui. Towards Designing 
and Learning Piecewise Space-Filling Curves. VLDB23



• Database 𝐷𝐷
 Each data point 𝐱𝐱 ∈ 𝐷𝐷, has 𝑛𝑛 dimensions, denoted by 𝐱𝐱 =  (𝑑𝑑1,𝑑𝑑2, . . . ,𝑑𝑑𝑛𝑛)

• Query Workload 𝑄𝑄
 Each query 𝑞𝑞 ∈ 𝑄𝑄, 𝑞𝑞 = (𝑥𝑥min,𝑦𝑦min, 𝑥𝑥max, 𝑦𝑦max)

• Space-Filling Curve Design for Query Processing
 Given a database 𝐷𝐷 and a query workload 𝑄𝑄, develop a piecewise SFC, aiming to optimize 

the performance of an index built on the SFC values of data points in 𝐷𝐷.

40

Problem Statement



• Two preferred properties for an SFC mapping 𝑇𝑇: 𝐱𝐱 → 𝑣𝑣
 Injection property:

∀𝐱𝐱1 ≠ 𝐱𝐱2,𝑇𝑇 𝐱𝐱1 ≠ 𝑇𝑇(𝐱𝐱2)
 Monotonicity property:

𝐱𝐱′ = {𝑏𝑏1′ , … , 𝑏𝑏𝑛𝑛′ }
𝐱𝐱′′ = {𝑏𝑏1′′, … , 𝑏𝑏𝑛𝑛′′}

If 𝑑𝑑𝑖𝑖′ ≥ 𝑑𝑑𝑖𝑖′′ is satisfied for ∀𝑖𝑖 ∈ [1,𝑛𝑛]:
𝑇𝑇 (𝐱𝐱′) ≥ 𝑇𝑇 (𝐱𝐱′′)

41

Desired Properties

Monotonicity is desirable for designing window query algorithms: 
It guarantees that the SFC values of data points in a query rectangle fall in the 
range of the SFC values formed by two boundary points of the query 
rectangle



1. How to partition the space and design an effective BMP for each 
subspace?

2. How to design piecewise SFCs such that two properties hold?
3. How to design an instance-optimized piecewise SFC, given a database 

and query workload?

42

Design Challenges



• The bit merging pattern (BMP, Nishimura  & Yokota, SIGMOD’17) describes a 
set of bit merging-based SFCs.
 The input data is first written as the binary form, then merge the bit according to the 

pattern (e.g., XYXY) 

43

Bit Merging Pattern (BMP) 

x = (XX2, YY2)



• We propose a way of seamlessly integrating the subspace partitioning and BMP 
generation.

44

Piecewise SFC Design

(a) Example of Piecewise SFC Design.

follow the left-to-right BMP design: 
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned 

into two subspaces:  Left subspace 
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs 
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …

the two desired properties



• We propose a way of seamlessly integrating the subspace partitioning and BMP 
generation while ensuring the desired properties.
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Piecewise SFC Design

(a) Example of Piecewise SFC Design.

follow the left-to-right BMP design: 
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned 

into two subspaces:  Left subspace 
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs 
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …



• We propose a way of seamlessly integrating the subspace partitioning and BMP 
generation while ensuring the desired properties.
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Piecewise SFC Design

(a) Example of Piecewise SFC Design.

follow the left-to-right BMP design: 
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned 

into two subspaces:  Left subspace 
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs 
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …
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Piecewise SFC Design

(a) Example of Piecewise SFC Design.

• We propose a way of seamlessly integrating the subspace 
partitioning and BMP generation while ensuring the desired 
properties.

follow the left-to-right BMP design: 
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned 

into two subspaces:  Left subspace 
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs 
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …



• The BMTree is to model the partition and BMP design of a piecewise SFC.

48

Bit Merging Tree (BMTree)

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.



• The BMTree is to model the partition and BMP design of a piecewise SFC.
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Bit Merging Tree (BMTree)

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.



• The BMTree is to model the partition and BMP design of a piecewise SFC.
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Bit Merging Tree (BMTree)

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.



• We model the SFC design procedure as the BMTree construction procedure.
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and 

generate the next level of nodes.
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BMTree Construction

𝑥𝑥1

(1) BMTree whose root node 
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill 
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)



• We model the piecewise SFC design procedure as the BMTree construction 
procedure
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and 

generate the next level of nodes.
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BMTree Construction

𝑥𝑥1

(1) BMTree whose root node 
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill 
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)



• We model the piecewise SFC design procedure as the BMTree construction 
procedure.
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and 

generate the next level of nodes.

53

BMTree Construction

𝑥𝑥2 𝑦𝑦1

𝑥𝑥1

(3) BMTree constructed one 
level deeper

𝑥𝑥1

(1) BMTree whose root node 
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill 
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)



• We model the piecewise SFC design procedure as the BMTree construction 
procedure
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and 

generate the next level of nodes.
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BMTree Construction

𝑥𝑥2 𝑦𝑦1

𝑥𝑥1

(3) BMTree constructed one 
level deeper

𝑥𝑥1

(1) BMTree whose root node 
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill 
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

𝑦𝑦1

𝑦𝑦2 P=XXYY

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)



Why reinforcement learning:
 Heuristic methods are difficult to be designed.
 Modeled as a sequence of actions to select bits for tree nodes
 Utilizing reinforcement learning can directly optimize the BMTree based on 

the reward.
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Use Reinforcement Learning to construct BMTree



• We leverage Monte Carlo Tree Search method to help constructing BMTree.
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MCTS based BMTree Construction



• Experiment on PostgreSQL.

57

Comparing between SFCs

(a) I/O Cost (b) Query Latency

QUILTS, SIGMOD’17



• Two key operations of R-Tree, i.e., ChooseSubtree and Split. 
 ChooseSubtree: starting from the tree root, recursively choose which child 

node to insert the new data object, until a leaf node is reached. 
 Split: If the number of entries in a node exceeds the capacity, the Split 

operation is invoked to divide the entries into two groups.
• Variants of R-tree have different hand-crafted heuristics. But no 

single heuristic rule is dominant.

• RLR-Tree: use machine learning (ML) to construct a better R-Tree
for better query efficiency in a dynamic environment.
 We do NOT learn the data distribution (CDF). 
 We model ChooseSubtree and Split as two Markov Decision Processes 

(MDPs) and train reinforcement learning (RL) models to learn optimal 
policies. 
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Motivation: RLR-tree

Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, Bin Cui. Towards Designing 
and Learning Piecewise Space-Filling Curves. VLDB23



Overview (Offline Training): 
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RLR-Tree Overview



We train the RL agents for ChooseSubtree and Split together to further 
improve their performances.
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RLR-Tree Enhanced Training



Overview (Index Construction & Query Processing): 
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RLR-Tree Overview



RLR-Tree performance on range queries
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Experimental Results



RLR-Tree performance on KNN queries
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Experimental Results
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Open problems
• Foundations for ML4DB tasks

• Foundation models for ML4DB tasks
 Self-supervised
 Capability to generalize to different data
 Capability to generate across tasks

• How to handle data shift and workload shift
 Fine-tune models
 Transfer learning

• How to generate training data of high quality and of low cost

• What are important open problems in data systems?
69
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