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Abstract—Data sets that are acquired in many practical sys- The question therefore naturally arises as to the accuracy with
tems can be described as the output of a multidimensional linear which these parameters can be estimated. The Cramér—Rao
separable-denominator system with Gaussian measurement noise.|OWer bound (CRLB) gives a lower bound for the covariance

An important example is nuclear magnetic resonance (NMR) spec- fth t timat f biased estimai d
troscopy. In NMR spectroscopy, high-accuracy parameter estima- orthe parameter estimates of an unblased estimation procedure

tion is of central importance. A classical result on the Cramér—Rao for a given data set [5], [9], [17]. The CRLB is in fact typically
lower bound states that the inverse of the Fisher information ma- calculated as the inverse of a matrix called the Fisher infor-

trix (FIM) provides a lower bound for the covariance of any un-  mation matrix (FIM). The relevance of this result is not only
biased estimator of the parameter vector. The calculation of the to evaluate a particular estimation procedure but can also give

FIM is therefore of central importance for an assessment of the ac- . . . -
curacy with which parameters can be estimated. It is shown how guidance for an appropriate design of an experiment to collect

the FIM can be expressed using the matrices that determine the data (see, e.g., [13]). In many experimental situations, there is
system that generates the data set. For uniformly sampled data, it a limit on the number of data points that can be acquired. For

is shown how the FIM can be expressed through the solutions of example, in clinical trials of drugs, patients cannot be subjected
Lyapunov equations. The novel techniques are demonstrated with 4 g arpitrary number of blood tests. It is therefore important
an example arising from NMR spectroscopy. to develop a strategy for experiment design that is likely to
produce good quality parameter estimates while keeping the
number of data samples low.

In [13], the FIM was derived for a concrete problem arising in
NMR spectroscopy. The approach taken there was to derive the
. INTRODUCTION FIM from first principle using “hand calculations” to perform

ATA that can be considered to be generated by a mdfe derivatives that lead to the analytical expressions for each

tidimensional linear separable-denominator continuo@8!try of the matrix. This is a time-consuming and cumbersome
system appears in many areas of applications. For examE2Cess that needs to be repeated for each, possibly minor, mod-
shown ([14] and see, e.g., [2] and [6] for general referencd§fhnique in a routine manner in the applications at hand. The

that the data of a so-called two-dimensional (2-D) NMmRUrpose of the current paper is to develop techniques that allow
experiment typically has the form for a more systematic derivation of the FIM for data that arises

A A At as the output of a multidimensional separable-denominator con-
y(tr, to) = Cre™ M F + Cre™1T Agpe™% By tinuous system.

t1,t2 >0 1) Expressions for the FIM in system theoretic terms have ap-
peared in the literature before in the context of the modeling

ible sizes. The fundamental problem in NMR spectroscopy § Stationary time series [10], [15], [18]. Recently, a system-

that the system matrices are dependent on parameters (e.g.2}ifeinvestigation of the CRLB or FIM for the case of one-di-

resonant frequencies of the magnet spins) that need to be dggnsional (1-D) deterministic dynamic systems corrupted by

mated through the experiment. measurement noise is presented in [12]. The classes of 1-D data

Estimation of parameters that determine dynamic data isdgcussed in [12} include data of the form given by

frequently encountered problem in many areas of applications. y(t) = ce™th, t>0.

Index Terms—Cramér—Rao lower bound, Fisher information
matrix, Lyapunov equation, multidimensional linear systems,
NMR spectroscopy, parameter estimation.

whereAqq, Ao, Aso, C1, By, andF are matrices of compat-
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(see, e.g., [3], [7], and [16]). However, to our best knowledge, Assume that we have acquired noise corrupted samples
a closed-form expression for the CRLB for the parameter es(n, m) (n =0,1,..., N—1;m=0,1, ..., M —1)ofthe
timation problem for 2-D damped exponential signals is noteasured output of a 2-D separable-denominator continuous
available in the literature, although its 1-D counterpart was isystem at various point3y,,, t2..), i.e.,
vestigated two decades ago in [11]. Moreover, mixed signals
consisting of 1-D and 2-D terms like those in (1) have seldom so(n, m) = Yo (tin, t2m) +w(n, m)
been studied in the signal processing community, although thgyare yo(tin, tam) is the noise free data acquired at the
do arise in many practical situations. sampling point(tin, tom) (@ = 0,1, ..., N — 1; m =

To derive a systematic approach to data sets describedin =~ 57 _ 1), and w(n, m) is the measurement noise
(1), we consider a 2-D complex single-input single-output coRy mponent assumed to be complex Gaussian with zero mean.
tinuous system with a separable denominator using ROess&i% real and imaginary parts af(n, m) are assumed to

model (RM) have variancer? ,, and to be independent/uncorrelated, i.e.,
9 ity 1) X varRe{w(n, m)}) = varlm{w(n, m)}) = o,%,m, and
oty ’ Ay Ags | [76 (e, t2) E(Re{w(n, m)}Im{w(n, m)}) = 0. Note that one of the
) { 0 AQJ |:5175(t17 t2>} main results (Theorem 2.1) will deal with the general noise
Oty zg(t1, t2) model introduced here in which the variance depends on the
By indicesn and m. For some later results, we will, however,
+ {BJ u(ty, t2) (2) assume that the variance is uniform for all data points, i.e.,
s 1) 0 = 0n,m, n, m > 0. The general noise model was used in
xg(t1, t2 our earlier paper [13] on NMR spectroscopy, where a particular
va(t1, 12) =[C1 CQ]Lg(tl_ t }+Du(t1’ ) experiment could be interpreted as dealing with different
t1> 0,1 >0 ’ (3) Variance levels (at least in one of the two dimensions).
By the Cramér—Rao lower bound [9], [17], any unbiased es-
whereAys, Az, Azz, B, Bz, C1, C2, andD are complex ma- timator© of © has a variance (provided certain regularity con-
trices of appropriate dimensions, depending on the unknoWpions hold) such that

parameter vecto® := [0; 6, --- Ox]T, xQ(th t2), and R

zj(t1, t2) are horizontal and vertical state vectors, respectively, var (@) >I11e)

u(t1, t2) is the input, and/0t; denotes partial derivative with .

respect ta; (j = 1, 2). The boundary conditions are given bywhere vaf©) > I~!(0) is interpreted as meaning that the ma-
trix (var(®) — I=1(©)) is positive semidefinite [9]. Herd(©)

750, 12), @t 0), 120, >0. is the FIM given by
In the following lemma, we characterize the input—output de- 92 In(p(S; ©))
scription of such a system. See Appendix A for a proof. 1(O)]s =—-F (W) ; 1<s, 1<K
Lemma 1.1: The output of the above 2-D separable-denom- s oo
inator continuous system is given by where® is the unknown parameter vectst,is the measured

data setp(S; ©) is the probability density function of the mea-
Yo(t1, t2) = vg(ts, t2) +qo(ts, t2), 11 20,42 20. surements, and(-) is the expected value with respect to the

Here,vy(t1, t2) is the system response due to nonzero bounda#pderlying probability measure.

conditions, and](_)(t17 tg) is the system response due to system In Section Il, we discuss the derivation of the FIM for the

input, which are given by data set generated from a 2-D separable-denominator contin-
PR Aot uous system model. For the special but important case of uni-
j— 11t1 3 2212 U . .
vg(ty, t2) = Cre” g (0, t2) + Coe” 2z (ty, 0) formly sampled data, we show in Section III that the compu-

tation of the FIM of a 2-D separable-denominator continuous
system can be reduced to the computation of solutions to certain
Lyapunov equations. The techniques introduced in this paper
. are then illustrated with an example that is motivated by NMR
Qo (t1, ta) = / Cre (M=) By, ty) dy spectroscopy in Section IV. The results and approaches obtained
Jo here are compared with those in [13]. In particular, the differ-
ences between finite and infinite data sets are discussed. Finally,
a conclusion is presented in Section V.
ty pto We denote by diag\fy, Mo, ..., M,) the block diagonal

+ / / Cretnti=m) gy e (ta=T2) matrix whose diagonal block entries &g, M, ..., M,,and

Jo J0 all other block entries are zero matrices. Throughout the paper,
the phrase “2-D system” refers to the 2-D separable-denomi-

Note that the data model that motivated our study in (1) carator continuous system described by (2) and (3), and “noise”
be seen to be the output of such a system if wei§gt ¢,) = refers to the complex Gaussian noise with zero mean whose real
§(t1, t2), which is the 2-D unitimpulse functiomy (¢,, 0) = 0, and imaginary parts are assumed to have variatjcg and to
ah(0,ty) = F, By =0, Cy = 0, andD = 0. be uncorrelated. '

t1
+/ CleA“(tl_Tl)AueAzztzxg(Tl, 0) dr
0

and

to
n / C26A22(t277—2)32u(t17 TQ) dry
0

~B2u(7'1, 7'2) dridr + Du(tl, tz).
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Il. FISHER INFORMATION MATRIX In the following lemma, we consider the derivative of a
oduct of matrices depending on the parameter ve€tor
|ch can be regarded as an extension of a lemma for the
ulation of the derivative of the 1-D functigjft) = ceb

In this section, we are going to derive an expression for ti
FIM I(©) for the parameter estimation problem for a 2-D datd
set with Gaussian measurement noise discussed in the prev
section. The data sampling scheme employed for obtaining B?L 2]. A proof is given in Appendix B.
data samples can be either uniform sampling or nonunlfomh mma 2.3: Consider the_ matrix pro_ducHlH2...H,,
sampling in this section. With the Gaussian noise model i, erefly, i, ..., Hy are matrices depending on the parameter

cussed in Section I, the probability density function is given b¥F¢ ctor®. Then
1 1
p(S; ©) = HN 1Hf\n[ 012 eXp<_202 O(HHy---Hy) {8H1 " } 8122 0
n m n,m 805 = 898 1 9 I
: [(Re{SQ(TM m)} - Re{y9<t1n7 t2m)})2 865 2
2 Hy— 0 H,
+ (Im{s9(n, )} = 1M (g (trn, t2m) D)) > , e n
o6, ]| g,

In the following lemma, we are going to collect some basic
results on the FIM adapted to the particular data model that w:

consider (see e.g., [9]). S the following lemma, we can now give the desired system

theoretic expression of the derivative of the output with respect

Lemma 2.1. to the elements of the parameter vector.
1) Forl <s,t < K Lemma 2.4:With the notations in Section I, consider for
9% 1In(p(S; ©)) t1 >0,t2 >0
I — _E ) - 1 iy
[7(O)]st < 90, 08,
NobMo1oy yo(t1, t2) = va(t1, t2) + qa(t1, t2).
n=0 m=0 "M Then, forl < s < K
Re{ Yo (tln t2m) ayg(tln t2m)}
00, 00, 8y9(t1, tg) _ avg(th tg) 8q€(t17 tg)
- = +
where(-)* denotes conjugate. a0, a0, a0,
2) Let H
i ay&(tlnv t2m) T where
96 81)9(t1 tg)
) _ O A1ty h
8y9(t1n, t?'m) 805 _85016 agxg (0, tQ)
Dyo(thut%n) = 692 ) + asCZQaSAQQtzaswg(th 0)
. "
: + 8,C 3sA11(t1*Tl)asA O0s Aaato
ay&(tlnv t2m) /0 1¢ 12¢
L 80[{ . . 8gxg (Tl, 0) dTl
Then
N—1 M-1 1 and
1(©) = Z Z o2 Re{Dyo(t1 =t2m)Dyo(t1n,t2m)} 1) for bounded piecewise continuous inpuft,, ¢2)
=0 m=0 ™™
where(-)* denotes complex conjugate transpose. Oqe(t, t2)

In order to calculate the FIM, it is necessary to compute the a0,

derivative2¥ ('gg:””) of the output with respect to the elements t o)
6, of the parameter vect®, s = 1, ..., K. This can be done = / 0sCye% =Y Bru(Ty, t2) dmy
either onyy(t1n, tam) directly [13] or on the state-space real- 0 b
ization ofyg(t1,,, t2m ), as to be done in the following. We first + / 0,Cpe? 4222729 Bou(ty, 15) dry
quote a lemma from [12] that is essentially the continuous time 0
. t to
equivalent of [5, Lemma 5.2-30]. + / 9,004 (=) g4 0nAna(ta=r2)
Lemma 2.2: Let A be any complex square matrix depending Jo Jo
on the parameter vectér, and denotefos =1, ..., K,t >0 - 0s Bou(T1,T2) d11 dTo 4+ Os Du(ty, t2);
eAt 0 A 0
as(eAt) = | 9eAt | 9sA:=|0A . 2) for impulse response input(ty, t2) = 6(t1, t2), with
895 e 805 A B =0,C=0 andD =0
We have fors = 1, ..., K andt > 0, Dgo(t1, t2)
9 (eAt) _ 685"“. % — 8501685A11t18SA12685A22t28532~
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Here Then
1) for t1 > 0,150 > 0
0C, 00, [ Oye(t1, t2) T
0,C; = Ch |, 0,C5 = C. JIoN°L, B2)
' [ 905 1} v { 99, 2} 06,
oD A11 0 3y0(t1; t2)
05D = 90.° 0sA11 == 0411 A Dyo(h,tz) = 06 = Dvo(h,tz) + qu(h,tz)
: o6, M :
[ A12 0 A22 0 ay&(th t2)
0sA12 := 0A1> 5 O0sAgg = 0Ass A o 861{ -
L 00, b 09 - where
[ Bl B2
6831 = 831 s 8532 = aBQ Dvo(h,tz) = DCleDAutlDa:g(O,tg) 4+ DCgeDAZZtQng(tl,O)
L 0f, a0, ty b b
ty—T 5o b2
[ @(t1,0) £(0.12) T A
8ng(t17 0) = 8$‘g(t17 0) ) as$3(07 t2) = axg(o/ f'z)
L o0, a9, and

a) for bounded piecewise continuous inpt;, t2)

Proof: The proof of part 1) is an application of Lemmas _
2.2 and 2.3 and the fact that derivation and integration can bete (t1:t2) =
exchanged since the integrand is bounded and the integration is
over afinite interval. The proof of part 2) is a direct consequence

t1
/ DC1 ePan (h_ﬂ)DBl’u,(Tl, t2) dmy
J0

ta
+ / DCZGDA22 (tQ*TQ)DBQu(tl, 7'2) dro
0

of the expression of the impulse response of the system and an ti pta
L + Do ePanti—m)p,  gDasyy(t2—2)

application of Lemmas 2.2 and 2.3. O o Jo C Aqa

In the following theorem, we summarize the previous results ,DB_ u'(ﬁ 7o) dr1 drs + Dpulty, ta);
and state the general expression for the FIM for the data set cor- ’ '
responding to the output of a 2-D separable-denominator con- b) for impulse response input(t1, t3) = 8(ty, t2),
tinuous system. with B; = 0,Cy = 0andD =0

Theorem 2.1:Consider the augmented derivative system
given by qu(thh) = D¢, ePanta DA]QeDAtaZ Dg,;

2) for the 2-D data set sampled &ti,, t2,) (n =

Dy, :=diagd1 A1y, &A1, ..., Ok An) 0,1,....,N—1L:m=0,1,..., M—1), the FIMis
DA22 = diaq01A227 82A227 . aKAZQ)
- N-1M-1
D = A Aia, ..., 0 A 1
Al d!aq(% 12, 02412, ..., Ok A12) I1(©) = Z Z 5 Re{Dyo(tM tQm)D;{o(t . )}.
l)c1 = dlaqal()h 8201, e 8[{01) On,m ’ o Tam

n=0 m=0
DC2 = diag(ang, 8202, ey 8}(02)
Proof: Item 1) follows immediately from Lemma 2.4 by

glgl glgz stacking up the variables for the system. Item 2) is the content
Dp,=| o |, Dg =] " of Lemma 2.1. 0
: : In the next theorem, we are going to give a more explicit
L Ok B1 O Bs expression for the FIM for the type of 2-D signals introduced
i D12 (0, t2) in (1) in Section I.
oD ! i P Theorem 2.2:Assume that the 2-D system is such that we
Do 92D D, | P2y (0, 12) have the following:
P : P T (0 t2) : 1) A finite number of samples of the output are acquired
LOx D h in both thet; andt, variables, i.e., atti,, t2,,) (n =
* Iy (0, ) 0,1,...7N—1;m:0,1,...7M—(1). :
[ O1xy(t1, 0) 2) The inputu(t;, t») is a 2-D unit impulse function, i.e.,
Dol (t1, 0) u_(tl, ta) = 6(t1, t2). The boundary conditions are
Dy (1,,0) = : : given byzy(t1, 0) = 0 andz?(0, t;) = F, whereF
: may depend on the parameter vectr The matrices
| Oy (t1, 0) By, C5, and D are all zero matrices. These assumptions
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; et ; N-1
imply that the deterministic part of the measured signal 1
L = —Rel D¢, | M Z eParrtin DFDg(eD"‘lltl”)H
is given by o2 1
n=0
Anrtin Anitin Asatam N-1 M-1
Y(tin, tam) = Cre™ 0 F + Cre™ i Appe”m By DAy tin Dagytom "
+ ) Pt (N Dy, ePrntn Dy, DY
n=0,1,....N—1;m=0,1,...,M —1. — —
@) -1
+ DFDgQ (eDAZthm)Hng (eDAlltln)H
Then, the FIM for the above data set with noise variance m=0
2 2 . : H N—-1M-1
o =: 0%, n > 0;m > 0is given by
n, m + eDaytin DAIQeDA22t27n DBQDJSIZ
1 N-1 n=0 m=0
1(0) = — Re{ Do, [M > ePantin DpDE (ePantin)H
g ne0 . (eD/122t2m)HDEIQ(eDAlltln)H Dgl ) |
N-1 M-1
+ Z eDaiitin <Z DAIQeDAzthmDBzDII;I
n=0 m=0 [l. FISHER INFORMATION MATRIX FOR
= UNIFORMLY SAMPLED 2-D DATA
+ Z DFDIIZE;IZ(eDAmtzm)HDg12 (eDAutln)H
m=0 Although Theorem 2.2 in the previous section is valid for both
N—1 M-1 uniform and nonuniform sampling schemes, it is computation-

+ E § ePayitin DAneDA”tszBg

n=0 m=0

- DgxeDA»fzm)HDig(eDAuW] Déﬁ} ©)

where
o F
F O F
OsF:= | 0F |, and Dp:= .
0b, )
i ok F

ally rather inefficient to directly compute the 2-D summations in
(5), particularly in the case when the number of samples is large
in one or both of the variables. In this section, we develop an
efficient method for calculating the FIM for 2-D data generated
by uniformly sampling the output of a 2-D separable-denomi-
nator continuous system. To this end, it is assumed that all the
eigenvalues o417t ande“2272 are in the open unit disc or,
equivalently, the eigenvalues df ; andA,» are in the open half
plane, wherd; andT, are the sampling intervals for the vari-
ablest; andto, respectively. Theorem 2.2 can then be simplified
significantly with the Lyapunov approach. For convenience of

Proof: With the given assumptions and from Theorem 2. EXposition, we denoté ; := eP41: 7 and Ay, := eP4227>.In

the FIM can be written as
N—1 M-—1

1 H
1(6) = o2 Re{DyO(tlmtQm)Dyo(tln;tQm)}
n=0 m=0 ™™
| N1
=32 > Re{(De,e” i Dp

v eDasotam DBZ)
. (l)c,1 eDAlltlnDF + DC1 eDAlltln

Doayytom H
-DA12€ Agat2 DBg) }

1 N—-1 M-1
~ irefDe [ X0 X Pt Dty

n=0 m=0

N—-1 M-1
+ E § : ePai tlnDAlzeDAQQthDBQDg
n=0 m=0

N-1 M-1
‘(eDAntm)H_i_ E E eDAlltlnDFDgQ

n=0 m=0
. (eDA22 tam )Hl)g12 (eDA11 tin )H

N—-1 M—-1
§ E Daytin Dayytom
+ e AL DAH@ 22 Z)B2

n=0 m=0

.Dgg(eDAzzbm)HDf{u(eDA“t“')H] Dgl}

the following lemma, a standard result on the Lyapunov equa-
tion is summarized [8].
Lemma 3.1:Let

N-1
P="7" A"Q(Am)"
n=0

where all the eigenvalues of are in the open unit disc, and
Q is a Hermitian matrix, i.e) = Q. Then,P is the unique
solution to the following Lyapunov equation:

APAH — P = —Q + ANQ(AM)H. (6)

Moreover
n=0

is the unique solution to the following Lyapunov equation:
APAT —p=_qQ.

There are standard methods for solving Lyapunov equations
in the literature (see, e.g., [1] and [4]). In the following theorem,
we are going to characterize the FIM for the data model in (1)
through the solutions of Lyapunov equations.

Theorem 3.1:Consider the data model of Theorem 2.2, and
assume that the signal is uniformly sampled with sampling in-
terval T; for the variablet; and 1> for to, respectively, i.e.,
atty, = nly, n = 0,1, N —1; toy, = miy, m =



2684 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 10, OCTOBER 2003

0,1, ..., M — 1. Moreover, assume that all the eigenvalues of Due to the way by whichD 4,, and D4,, are constructed
Aq1 and A,s are in the open left half plane. Then, the FIM foffrom A;; and A, respectively, it is easy to show that the as-
the 2-D data set is given by sumption that all the eigenvalues4f, andA,, are in the open

1 left half plane implies that all the eigenvaluesdf; = eP41: ™
1(0)=— Re{D¢,[MPy + P, + P5]D{ } andAg, = eP422T: are in the open unit disc. By Lemma 3.1,

wherePy, P,, andPs can be obtained as follows. P, is therefore the unique solution to the following Lyapunov

P is the unique solution to the following Lyapunov equation: equation:
AP A — Py = —DpDE + AN DpDE(AN)T. AnPL A, — P = —DpDy + AJ Dp Dy (Ag)"

M-1 ,m __ M —
P, is the unique solution to the following Lyapunov equation: AS fOr 2. smcez 0 Ay = (I = Ap)(I — Aa2)™1, Ps
¢an be rewritten as

APy Al — Py = —R+ AN R(A})Y N-1 M-1
where Py= Y Ap (DAH > ApDp, DY
n=0 m=0
R=Da,(I—Ap)(I — Ap)~' Dp, DE M1
+DpDE (I — Agy)™Y)H(I — AY)HDH + DpDf, Y (4] )HD412> (A"
m=0
P, is the unique solution to the following Lyapunov equation:
y _ n M -1 H
ApPyAY, — Py = —Dp, DE + AMDp, DE (AM)H = D A (Day,(I = AR)I — Aaz) ™' D, DF
and P3 is the unique solution to the following Lyapunov + DFDgZ((I_Ad2>—1)H(]_A3£)HDgH) (An)H

equation:

Let
ApPsAf\—Py = —D 4, PuDY +A} D4, PDY (AN)Y

R:=Da,,(I = Ajp)(I — Aaz) ™' Dp, D

Proof: In Theorem 2.2 and the assumptiai _ y
PG +DpDE (I - Ag) (I - AYY" DY .

nTy,n=0,1 ..., N=1;te, =mTo,m=0,1, ..., M—1,

the FIM for the given 2-D data set can be written as It is then clear from Lemma 3.1 thd&; is the unique solution
. N_1 to the following Lyapunov equation:
_ n H n \H
1(0) == Re{Dcl [M ;0 A3 DeDE (Agy) ApPyAT — Py = R4 AN R(AN)H
N-1 M-1 To calculatePs, rewrite it as
+ 3 (X pasonof
n=0 m=0 Py = AL D
M1 3 ng d17 Ar2
+ Z DpDg, ( Z’E)HD512> (Ag)" M1
]:rn Mt <Z Al D, D, (A%) ) DY (A5
m=0
+ Z Z AZlDAIQA:lTéDBZDgQ N—
n=0 m=0 Z 1 Da, PADY (An)H
whereAd,; = eP4uTr andAg, = ePa22T2 | Let = m
" N_1 & P4 - Z AIIQDBZDBQ( (l2)H'
m=0
Pri= Y ALDpDPE(A)Y
nzz:o “ r () It is easy to see tha®, is the unique solution to the following
M—1 Lyapunov equation:
I n m H ’
Py = Z A (mz:o Dy, ,ADp, Dy Ad2P4A¢Il{2 —p = _DBQDgQ n Aé\éDBZDgQ(A%)H
M—1 Hence, P; is the unique solution to the following Lyapunov
+ Y DrDg,(A%)"DY, | (A%) equation:
m=0
and AnPsAfy—Py = =D, P,DY +AN D4, PADY (A})"
N—-1 M- The proof is thus completed. O
Z Z A% D4, A Dp, DR (AP DY (An)H. In the case that there are an infinite number of equidistant
n=0 m=0 samples in the, variable, i.e.,N — oo in Theorem 3.1, the
We then have previous theorem can be simplified with the help of Lemma 3.1.

1 " Corollary 3.1: Assume that the 2-D system is the same as
1(0)=— Re{D¢,[MPy + P, + P3]D¢, } . in Theorem 3.1, except that there are an infinite number of
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equidistant samples in thg variable, i.e.t,, = nTy, n = Corollary 3.3: Assume that the 2-D system is the same as in
0,1, ..., co. Then, the FIM is given by Corollary 3.1, except that! (0, t2) = F = 0, i.e., assume that
o 1 T the deterministic part of the measured signal is given by
= —=Re
( ) o2 { Cl[ 1+ 12+ 3] Cl} y(tln, tQm) :C,leAllnTlAl?eAszT,_)B2
wh_erePl, Pg_, and P; can b_e obtained as foIIov_vsI?l is the n=01,...,00;m=0,1,....,M—1.
unigue solution to the following Lyapunov equation:

Then, the FIM is given by
Ag Pl AR — Py = —DpDE.

1
P, is the unique solution to the following Lyapunov equation: 10) = — Re{D¢, PsD¢ }

An Py A = Py = — (Da,, (I = AR)(I — Aw)™'Dp, Dt wherePs is solved as follows. Obtaif?; as the unigue solution
+ DFD§2((I ~ Ag)"HE(I - Afz\é)HDfn) _ to the following Lyapunov equation:

P, is the unique solution to the following Lyapunov equation: ~ Aa2PsAgy — Py = —Dp, D, + Agi D, D (A33)"

Agp Py A — Py = —Dp, DE + AMDp DE (AM)H and then geP’; as the unique solution to the following Lyapunov
C ’ equation:
and P; is the unique solution to the following Lyapunov
equation: ApPsAl} — Ps=—D,,,P,DY .
Agp PsAl — Py = —DA12P4DEH. In Corollary 3.3, as the 1-D term disappears due to the zero

boundary condition, it is feasible to have an infinite number of

Note that th? expressions for the FIM given in Corollary 3,‘(11quidistant samples for both theandt, variables. In this case,
are not only simpler than those in Theorem 3.1 but also g'\f,eorollary 3.3 can be further simplified as follows.

the asymptotic FIM when an infinite number of samples are Corollary 3.4: Assume that the 2-D system is the

availableintl.Notethatwhenthenumberofsamplesincreases%me as that in Corollary 3.3, except that an infinite
further positive terms are added to the FIM, and hence, the F mber of equidistant samples are acquired in both the
becomes larger in the sense of positive definite matrices. T?isand t, variables, i.e.fr, = nTy, n = 0,1,.... 00

then implies the corresponding decrease in the inverse, i.e., ;be
CRLB. Hence, the asymptotic FIM is useful in determining the
lowest possible CRLB that can be achieved by increasing the 1(0) = 1 Re{ D¢, PsDE
number of acquired data points. a? ! !

Further simplifications of the expression for the FIM can bahereP; can be solved as follows. First, obtd as the unigue
achieved by assuming that the boundary conditions are all zgution to the Lyapunov equation
i.e., zh(0, ty) = F = 0in Theorem 2.2. In this case, the 2-D
noise free signal in (4) is given by

=mly, m=0,1,...,00.. Then, the FIM is given by

ApPyAL, — Py = —Dp,DE,
Y(tin, tam) = Cpefitin 4, eA2tm B, and thenPs as the unique solution to the Lyapunov equation
n=0,1,....,N—-1;m=0,1,....,.M—1 ApPsAYl — Py = -D,4, P,DY .

and Theorem 3.1 and Corollary 3.1 reduce to Corollary 3.2 and|n the next section, we present an examp|e to illustrate the

Corollary 3.3, respectively, as given below. novel methods developed in this section and compare the new

Corollary 3.2: Assume that the 2-D system is the same agsults with those by an existing method of [13].
that in Theorem 3.1, except thaf (0, t2) = F = 0, i.e., as-
sume that the deterministic part of the measured signal is given IV. EXAMPLE

by In this example, the methods that were introduced earlier will
Y(tin, tom) = Cre " Apped2mT2 B, be illustrated with a concrete example that arose from our ear-
n=0,1,...,N—1;m=0,1,...,M —1. lier work on the use of the CRLB in NMR spectroscopy [13].
Consider a simulated 2-D NMR data
2 2

1 _ (rir+iwg )t +H(rar+Hiwog ) ta+idy
I(@) _ ﬁ Re{D01 P3Dg1} yG(th tz) — kz_l ;Ckle 1k 1k)t1 l 21)t2 kil

Then, the FIM is given by

whereP is solved as follows. Obtaift, as the unique solution \here the parameter vector is given by
to the following Lyapunov equation:
Ad2P4AdHQ - P, = —l)le)g2 + Afi\éDBngZ (A(];é)H

92[011 Ci12 €21 C22 Ti11 Ti12 T21 T22

W11 Wi2 W21 W22 §/>11 <Z>12 </>21 ¢22]T-
and P; as the unique solution to the following Lyapuno

equation: \Ll'he signal is assumed to be measured with additive complex

Gaussian white noise, whose real and imaginary parts are uncor-
ApP3sAfi—Py = =Dy, P.DY +AN DA, P,DY (A))". related and both have zero mean and fixed variatice, = o2.
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In [13], the FIM was calculated for the finite sample situation Similarly, let D4,, := diag{d1A12, 2412, ..., O16A12}-
by calculating the partial derivatives term by term. Here, we willVe thus have
demonstrate that system theoretic methods allow a much more T A 0 1
systematic approach that is easily adapted to other problems. In A = | [eitnn 0]
addition, the system theoretic approach also permits the calcula- 0 0 Agp
tion of the FIM and CRLB for the case when an infinite number -k - -
of sampled data points are available. Having an infinite number i Aqo 0
of data points is, of course, not a situation that is encountered in O2A1x = | [0 ei%12]
a practical situation. Itis, however, a limiting case that indicates L0 0 Az l
to what extent the CRLB could be improved by increasing the - -
number of data points, given that the other experimental param- Az 0
eters such as the sampling interval are kept constant. O3A12 = ‘2 8 Aps
67' 21
A. Data as Output of a 2-D Separable-Denominator [ Aq 0 7
Continuous System AL =1To0 o
To apply the earlier results, it is important to note that the [ |0 eid22 Alz_
above simulated 2-D NMR data can be considered as the output . 4 ’ 01
of a 2-D separable-denominator continuous system with a state- 9 Ave — | s i;i 01
space realization given by 13412 50118 0 Ao
Ay = ri1 +iwin 0. :| - At 0
0 T2 F w1 O1sA12 = | [0 dciei®2 | A
[ Clleid)u c1262'4)12 L]0 0 12 ]
A12 = Coq etP21 i¢22:| - B _
| €21€ Ca2€ Aqy 0
Ao — 721 + iwan 0 O15A12=| [ 0 0] 4
22 0 722 + twa2 i _2'021614)21 0] 12|
1 [ Aqo 0 7
Cy=[1 1], C; =0, B; =0, BQ_L}, D= edis — | o 0
L _0 i0226i¢22 | Atz ]

where the input and initial conditions are given by o ; ) ) )
and all the remaining diagonal entries Bfy,, are identically

ulty, t) = 8(t1, ta), xh(0,t2) = F =0, xy(t;, 0)=0. equaltodiagds, Aip}.

In addition, letting D4,, := diag{d1A422, d2A29, ...,
Hence, we describe the data as the uniformly sampled outputio A2z }, we have
the 2-D signal [ Ay 0 Asy 0
Aoy = L Ox Aoy =

Yo(t1, t2) = Cre ™ Ajpe?>™ By, t1 20,1220 orie [(1) 8] Az | R [8 ﬂ A2

whereAqq, A2, Ass, C1, and B are given in the above. [ Ao 0 T Aoy 0
o OnApn=|T1i 0 ;01242 = | [0 0

B. Derivative System 0 0 Az 0 i Az

A central step in our approach is based on the calculationgdq all the remaining diagonal entries bf,,, are identically
the derivative system. The expressions that are of relevance hegal to diagA.s, Az}

will be determined now, i.eD 4,,, D a,,, Da,,, Dc,,andDgp, . Proceeding in the same manner, we have
Let DA11 = diag{alAll, 821411, ey 816A11}. It is then

easy to show that 1
All 0 All 0 81B2 = 82B2 =...= 61632 = H
OsAui=1|J1 0 , 06A11= |10 0
{0 0 Ay 0 1 Ay 0
and hence
A 0 A 0 T
Dp,=[1100 1100 1100} .
09 Ay = i 0 A , 010411 = 0 0 A B = | | | | ]
0 0 H 0 i u Similarly
and all the remaining diagonal entries Bfy,, are identically 0101 =00, =---=d6C1 =[0 0 | 1 1]

equal to diaQAn, All}- l)(j1 = diag{alCl, 8201, RN 61601}.
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Thus, A4 is given by of the page, the remaining diagonal block entriesigf are all

identically equal to
diag{e(Tm-szl)Tz7 6(7‘22+iw22)Tz
whereT; is the sampling interval for the continuous variable

t1, and, as shown in the first set of equations at the bottom of

the page, the remaining diagonal block entriesdgf are all C. CRLB

identically equal to

Having determined the components of the derivative system
that are of importance for our data set, it is now possible to
calculate the FIM once the remaining experimental parameters
are set. We assume that the above simulated 2-D NMR data
(with additive noise) is uniformly sampled in both theand
to variables. For the; variable, the sampling interval 5, =
0.015 s, and the number of samples acquiredvVis= 1024.
wherel; is the sampling interval for the continuous variabl&ort,, the sampling interval i$5 = 1.54 s, and the number of
t2, and as shown in the second set of equations at the botteamples acquired i = 16. Itis further assumed that the noise

Ag = eDAllTl — diag{ealA“Tl, 602A11T17 ealﬁAllTl}

e(T21 +iwa1)Th . (roz+iwz2)Ts }

e

diag{e(1’11+iw11)T1 , e(T12+iw12)T1 ,

e(T11+iw11)T1 T‘12+iW12)T1}
, .

el
Similarly, A4 is given by

Agy = ePanTe = diag{ealA”TQ, P2 AnT ealGAﬂTl}

r e(T11+iw11)T1 0 0 0
05 ATy 0 e(’"12+iw12)T1 0 0
e = Tle(T11+iW11)T1 0 e(rll+iW11)Tl 0
- 0 0 0 o (riatiw) Ty
r 6(7‘11 +iwi1)Th 0 0 0
- 2 - T
s AT 0 e(ri2tiwi2)Th 0 0
0 0 e(riitiwin) Ty 0
L 0 Tle(r12+iw12)T1 0 e(T12+’iw12)T1
r 6(T11+iw11)T1 0 0 0
99 A11Th 0 e(riz+iwi2)Ty 0 0
e = Z'Tle(hl+iw11)Tl 0 e(r11+iw11)Tl 0
- 0 0 0 e(rizt+iw12)Ty
e(T11+iw11)T1 0 0 0
- 2 - T
ed10An T _ 0 e(ri2tiwi2)Th 0 0
0 0 e(riitivin) Ty 0
0 'L.Tle(rlz-i_iwu)Tl 0 e(T12+iw12)T1
r e(T21+iw21)T2 0 0 0 )
87 Ass T 0 e(r22+iw2)Th 0 0
e T26(r21+1ﬁw21)T2 0 o(r21+iws1)Ts 0
L 0 0 0 (2o +iwno)Ts |
_e(rz1+iw21)T2 0 0 0 )
98 A22T2 0 e(r22t+iwz2)To 0 0
0 0 e(ra1tiws )Ty 0
- 0 TZe(T22+iw22)T2 0 6(7‘22 +iwgo)Ts ]
r 6(7’21 +iwa1)Th 0 0 0 i
6811A22T2 . 0 ) . 6(7‘22+zw22) D 0 . 0
ZTZG(T21+M21) 2 0 e(r21tiw1) Ty 0
L 0 0 0 e(r2a+iwsn)Ts |
r e(T21+iw21)T2 0 0 0 ]
912422 T2 0 e(ra2+iwss) Ty 0 0
0 0 e(r21tiw1) Ty 0
L 0 f[;TQe(T22+’iw22)Tz 0 e(r22+1',w22)T2 ]
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TABLE |

CRLB FOR DIFFERENT METHODS WITH 77 = 0.015,
To = 1.54, N = 1024, M =16
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TABLE 1l

CRLB FOR DIFFERENT METHODS WITH 77 = 0.03,
T, =1.54, N = 1024, M = 16

Parameter | Method of [13] | Corollary 3.2 Corollary 3.3 Corollary 3.4 Parameter | Method of [13] | Corollary 3.2 Corollary 3.3 Corollary 3.4
e 6.0825535¢-005 | 6.0837388¢-005 | 5.0550442¢-005 | 4.9898934¢-005 e 1.0284806e-004 | 1.0286326e-004 | 1.0085283¢-004 | 9.9553409e-005
12 9.7595153€-005 | 9.7615157e-005 | 7.7776752e-005 | 7.7365093¢-005 12 1.5923391e-004 | 1.5925897e-004 | 1.5517096e-004 | 1.5435005¢-004
cn 1.2564098e-004 | 1.2566020e-004 | 1.1645558e-004 | 1.1609027e-004 e 2.3269368e-004 | 2.3272173e-004 | 2.3098609¢-004 | 2.3025777¢-004
2 2.2393692e-004 | 2.2398477e-004 | 1.9971263¢-004 | 1.9956275¢-004 oo 4.0176069e-004 | 4.0182800e-004 | 3.9631455¢-004 | 3.9601594e-004
on 2.4572188e-005 | 2.4577153e-005 | 1.0231312¢-005 | 1.0228864¢-005 ™ 2.2833559¢-005 | 2.2836619¢-005 | 2.0432256¢-005 | 2.0427368¢-005
12 1.2490656e-003 | 1.2492219¢-003 | 1.1568085¢-003 | 1.1563498e-003 12 2.3226337e-003 | 2.3228503e-003 | 2.3016239¢-003 | 2.3007113¢-003
21 7.8325749¢-005 | 7.8331453¢-005 | 7.4050262¢-005 | 7.0916432¢-005 1 1.4807943¢-004 | 1.4808958¢-004 | 1.4771751e-004 | 1.4146639¢-004
T2 4.4494788e-004 | 4.4494467¢-004 | 4.3022980e-004 | 4.2877092¢-004 o 8.5935800e-004 | 8.5935253¢-004 | 8.5803951e-004 | 8.5513198¢-004
w1 2.4572188e-005 | 2.4577153e-005 | 1.0231312¢-005 | 1.0228864¢-005 wii 2.2833559¢-005 | 2.2836619e-005 | 2.0432256e-005 | 2.0427368¢-005
wi2 1.2490656e-003 | 1.2492219¢-003 | 1.1568085¢-003 | 1.1563498e-003 wiz 2.3226337e-003 | 2.3228503e-003 | 2.3016239¢-003 | 2.3007113¢-003
wn 7.8325749¢-005 | 7.8331453e-005 | 7.4050262e-005 | 7.0916432¢-005 wa1 1.4807943e-004 | 1.4808958¢-004 | 1.4771751e-004 | 1.4146639¢-004
wa2 4.4494788e-004 | 4.4494467¢-004 | 4.3022980e-004 | 4.2877092e-004 wa2 8.5935800e-004 | 8.5935253e-004 | 8.5803951e-004 | 8.5513198¢-004
P11 2.7033571e-003 | 2.7038839¢-003 | 2.2466863e-003 | 2.2177304¢-003 b1 4.5710249¢-003 | 4.5717007¢-003 | 4.4823481e-003 | 4.4245960e-003
P12 2.0164288e-003 | 2.0168421e-003 | 1.6069577¢-003 | 1.5984523¢-003 b12 3.2899568¢-003 | 3.2904747¢-003 | 3.2060115¢-003 | 3.1890506¢-003
é21 8.7250678¢-003 | 8.7264031e-003 | 8.0871927e-003 | 8.0618243¢-003 $21 1.6159284e-002 | 1.6161231e-002 | 1.6040701e-002 | 1.5990123¢-002
622 1.3250705e-002 | 1.3253537e-002 | 1.1817315¢-002 | 1.1808447e-002 b 2.3772822¢-002 | 2.3776805e-002 | 2.3450565¢-002 | 2.3432896¢-002
varianceo?, ,, = o = 0.1 in this example. For the purpose of CRLE FOR DIFFERENIIT\:IBI;_TI?—i(;I;lSWITH T, = 0.015.
illustration, we fix the value of the parameter vector as T, = 1.54, N = 2048, M = 16
[0.15, 0.22, 0.12, 0.13, —0.1, —0.35, —0.15, —0.45, 1.445 Parameter | Method of [13] | Corollary 3.2 | Corollary 3.3 | Corollary 3.4
2.136, 2.702, 0.88, 0.683, 1.366, 2.4167, 0,982]T, e 5.1551933¢-005 | 5.1559553¢-005 | 5.0550442¢-005 | 4.9898934¢-005

C
We then obtain the CRLB of the given data using the methc CZ
presented in [13], as well as the new methods proposed in t

7.9816302¢-005

7.9828867¢-005

7.7776752¢-005

7.7365093¢-005

1.1731652¢-004

1.1733065¢-004

1.1645558¢-004

1.1609027¢-004

€22

2.0245998e-004

2.0249390e-004

1.9971263e-004

1.9956275e-004

paper. As the boundary condition$ (0, t5), 3 (¢, 0) of the

1.1433735e-005

1.1435266e-005

1.0231312¢-005

1.0228864e-005

associated 2-D system are both zero, Corollaries 3.2-3.4 (-
be applied. The resultant values for the CRLB are given 2

1.1673677¢-003

1.1674765¢-003

1.1568085¢-003

1.1563498¢-003

Table I. As the given simulated data are uniformly sample

7.4231879¢-005

7.4236965¢-005

7.4050262¢-005

7.0916432¢-005

722

with finite samples in both variablds andt,, the method of

4.3089170e-004

4.3088896e-004

4.3022980e-004

4.2877092e-004

[13] and Corollary 3.2 would give the exact CRLB, wherea wi

1.1433735e-005

1.1435266e-005

1.0231312e-005

1.0228864e-005

Corollaries 3.3 and 3.4 could give only the approximate CRLE w2

1.1673677e-003

1.1674765e-003

1.1568085e-003

1.1563498e-003

From Table I, it can be seen that the values in columns 1 ant w,,

7.4231879¢-005

7.4236965e-005

7.4050262¢-005

7.0916432¢-005

are indeed very close (the differences are caused by numer ,,

4.3089170e-004

4.3088896¢-004

4.3022980e-004

4.2877092¢-004

errors only), whereas there are some small differences betwr, |

2.2911970e-003

2.2915357e-003

2.2466863e-003

2.2177304e-003

the values in columns 1 and 3 (or 4). Note that the value

1.6490972¢-003

1.6493568e-003

1.6069577e-003

1.5984523e-003

column 3 is consistently smaller than the corresponding valu

in columns 1 and 2 but greater than that in column 4 for any rc—

8.1469805e-003

8.1479615e-003

8.0871927e-003

8.0618243e-003

1.1979881e-002

1.1981888e-002

1.1817315e-002

1.1808447¢-002

(parameter). In fact, it is easy to see that Corollary 3.3 giv'ff22
expressions for the FIM associated with the asymptotic CRLB
for an infinite number of samples for, whereas Corollary 3.4 is close to what is achievable with an infinite data set with the
gives expressions for the FIM associated with the asymptoiame sampling interval. This argument applies similarly to the
CRLB for an infinite number of samples for both andts, as case when the number of samples increases while the lengths of
verified by this example. the sampling intervals remain unchanged and, furthermore, to
When the lengths of the sampling intervals increase, whillke case when both the lengths of the sampling intervals and the
the number of samples remains unchanged, the relative diffetimber of samples increase. Table Il gives results on the CRLB
ences between the values in columns 1 and 3 (or 4) decreaseyifis the same setting as in Table |, except that the sampling in-
can be seen from Tables Il and Ill. A heuristic explanation @érval fort; is now equal to 0.03 s, whereas in Table lll, the
this phenomenon rests on the fact that the data is exponentiallymber of samples far is 2048 (the sampling interval fag
decaying. Therefore, the data eventually decays into the noisestill 0.015 for Table III).
and contributes little to the information content of the data set. Despite the similar values between columns 1 and 2 in all
Hence, a finite data set of suitable length can lead to a FIM ththtee tables, there is a significant difference between the method
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of [13] and Corollary 3.2 in that Corollary 3.2 is much more effiWith simple matrix algebra, we have
cientcomputationally than the method of [13] (atleast 100times__,

1 h
more efficient based on our simulations carried out using tiﬁ0 (51’32)} _ [51]11 —An A } [XO <s2)}
same PC). Moreover, as it takes almost the same effort and tim&} (s1, s2) 0 Sola9 — Ago Xg(s1)
to apply Corollaries 3.2—-3.4 to the computation of the CRLB, s1lh; — Aqg —Aqp “1rB,
we recommend that Corollary 3.2 should be adopted when one + 0 Ioo— A B U(s1, s2)
is interested in calculating the exact CRLB for parameter esti- S2f22 — A2 2
mation for 2-D NMR data with zero boundary conditions for fiand
nite samples in both variables. On the other hand, if one is inter)—/
ested in knowing the asymptotic CRLB, i.e., for infinite samples o(s1:52) o
in one or both variables, Corollary 3.3 or 3.4 should be adopted —[Cy O] [31]11 —An —Aqp } [Xob(sz)}
instead. b 0 salay — Ao Xg(s1)
I —A —A -
V. CONCLUSION +[C1 C7] [81 H H - }
0 sal32 — Ago

In this paper, we have developed an efficient method for the .
calculation of the Cramér—Rao lower bound for a wide class of - [ } U(s1,82) + DU(s1, s2).
2-D signals that are samples of outputs of 2-D separable-denom- 2
inator continuous systems. Explicit expression for the assoftiis easy to verify that
ated FIM is derived for the class of 2-D signals with a general 1
data sampling scheme. For the special but important case of dnia i1 — An — A }
form sampling, the Lyapunov approach is exploited, which has 0 S9do9 — Ago
speeded up considerably the calculation of the FIM. Although 1 (sy 77— A1)~ (51011~ A11) " Aga(salan— Age) ™t
the results are derived for 2-D separable-denominator systems 0 (32Tpp— Agy) L
and the associated 2-D data sets, they can be easily generalized
to multidimensional ¢ > 2) separable-denominator systemsvhen(s; ;11— A11)~! and(sa s — Aso)~1 exist. Therefore, the
and the associated multidimensional £ 2) data sets. How- response due to nonzero boundary conditions ifidhes.)-do-
ever, it is nontrivial to generalize the results in this paper to tmeain is given by
multidimensional ¢ > 2) nonseparable-denominator system%,/
and this is a challenging problem for further investigation. o(s1, 52)

We believe that the presented results will have a significant [C1 C2]
impact on applications dealing with a large number of data sam- [ (s1/11—A11)™" (s1fi1—Aq1) " Aga(salop— Agg) ™!
ples and a large number of parameters to be estimated, such asin [ 0 (s9lay— Aps) 1
multidimensional NMR spectroscopy. An illustrative example is Xl(s2)
also presented and compared with a recent result on the topic. - [ ]

Xg(s1)
APPENDIX A = Ci(s1Ti1 — A11) T X (s2) + Ca(salz2 — Aza) 7' X((51)
PROOF OFLEMMA 1.1 + C1(s1li1 — Ann) " Ara(salay — Agp) 7 X( (1),

First, we represent the 2-D Laplace transformygfts, £2),  Thus, in the(t, t,)-domain, we have
g (1, ta), w4 (t1, t2), andu(ty, t2) by Ya(s1, s2), X§ (51, 52),
XY (s1, s2), and U(sy, s5), respectively. Taking the 2-D vg(t1, t2) = Cre 11 a™(0, ty) + Coe2222" (11, 0)
Laplace transform of both sides of (2) and (3) and taking into t Avs(tr—m1) Aoats v
account the initial conditions?: (0, t2), xj(t1, 0), we obtain +/0 Cre Arze™2 " (71, 0) dry.

?

51Xy (51, 52) — X(})L(SZ)} _ [All Au} [X5L(51732)] The system response to the inputin the, s5)-domain is given

SQXg(Sl,SQ) —Xg(sl) 0 A22 Xé”(sl,SQ) by
B
+ |:BI:|U(81782) Q9(317 52)
? Xh = [Cl 02]
Yo(s1,82) = [C1 Cz]{ 9(81782)} {(51111_1411)_1 (s111—A11) "  Arz (59022 — Azo) !
Xj(s1,52) 0 (s2lpp—Agp) ™t

+ DU(817 82) Bl

Where . |:B2:| U(Sh 32)+DU(817 32)
Kbt = [ b0, e = Culnlis — ) B, 5

and 0 + Co(s2I20 — A22) ' BoU((s1, 82)

. Rl —sity + Ci(s1l11 — A11) "M Ara(salan — Ago) T BaU(s1, $2)
XO (31> = /0 gsg(th 0)6 dtl. +DU(81, 82).
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Thus
t1
qo(t1, t2) = / Cret =TI By, to) dry
Jo

/ / CeAn(tl n)A eAzz(tz )
- Bou(7y, 72) dm1 dmo + Du(ty, t2).
Therefore

yo(t1, t2) = va(t1, t2) + qo(t1, t2), t1 > 0,12 > 0.

APPENDIX B
PROOF OFLEMMA 2.3

We prove this lemma by induction. Wheénr= 2

H,
Jd(H1Hy) 0H, oH, [ OH,
08, 00, Hy + Hy —0= 2. | 90, H, OH,
a0,
[1]
Whenl = 3
O(H\HyH3) 0H OH, Oy [2]
12113 1
H>H. H H
00, ~ 08, oldl3 + Hy 0. ) 2 3. 3]
Hy 0 H,
oOH
:[aal Hl] OH, || 0Hs 4]
’ a6, 1L oe, 5]
Assume this lemma is true féor— 1 (I > 2), i.e o
O(H\Hs---Hi1) _ [31{1 H ] OH; 0 [7]
99 ~loe, 2
' g, I g
Hi—e 0 Hy_ [9]
o6, 12| | 5
Then (1]
a(HlHZ Hl)
90, a2
O(H{Hy - H;_ OH
= ( 1 gas l )H1+H1H2 ..Hl_lﬁg [13]
{—aHl big } 3122 ’ 812_2 0 [14]
age ! —2 H -2
| . 7 a9, - [25)
[ Hi—1
OH,
aHl Hl + |: 895 H1:| [16]
L 09,
T H. 0 H_ 0 171
on ot { : }@ .
o, S e | L Jos, 0
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OH, H, 0 H;_» 0
:[W Hl} O0H, OH;_» H
¥ 20, 2 00, =2
iy | ]2
- l Y
H, 4| 00,
9. -1
[ oH, Hy 0 H_ s 0
Hl} (’9H2 aHl_g
o,
ETR Hz o0, Hi—s
H_, 0 H,
8Hl_1 aFII
00, Hiy 00,
|:(9H1 H, 0 H;_4 0
= | a5 H1:| aHz aHl,1
o0, H. _
00, ? 00, Hiy
H;
o,
a0,
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