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Abstract—In this paper, some new schemes are developed to im-

prove the tracking performance for fast and rapidly time-varying

systems. A generalized recursive least-squares (RLS) algorithm

called the trend RLS (T-RLS) algorithm is derived which takes
into account the effect of local and global trend variations of
system parameters. A bank of adaptive filters implemented with
T-RLS algorithms are then used for tracking an arbitrarily fast
varying system without knowing a priori the changing rates of
system parameters. The optimal tracking performance is attained
by Bayesiana posterioricombination of the multiple filter outputs,
and the optimal number of parallel filters needed is determined
by extended Akaike's Information Criterion and Minimum
Description Length information criteria. An RLS algorithm
with modification of the system estimation covariance matrix is
employed to track a time-varying system with rare but abrupt
(jump) changes. A new online wavelet detector is designed for
accurately identifying the changing locations and the branches of
changing parameters. The optimal increments of the covariance
matrix at the detected changing locations are also estimated. Thus,
for a general time-varying system, the proposed methods can
optimally track its slowly, fast and rapidly changing components
simultaneously.

Index Terms—Dyadic wavelet transform (DWT), recursive
wavelet change detector, system identification, time-varying
system, trend recursive least-squares (T-RLS) algorithm.

|I. INTRODUCTION

N MANY applications such as speech recognition, com
nication channel equalization, process control, and biom

filtering algorithm have been used to track fast varying sys-
tems in [6], [7]. Further, when the varying trends of system
parameters are unknown, one way to overcome this problem
is to assume that the variations of system parameters satisfy a
first-order Markov chain model and a multiple adaptive Kalman
filtering (MAKF) algorithm is developed for parameter tracking
(see, e.g., [9]). Another way is to employ the vector space adap-
tive filtering and tracking algorithm [10]. However, the compu-
tational loads of all the above methods are heavy and the exact
statistical characteristics of system and measurement noises are
required.

In this paper, a new trend reciursive least-squares (T-RLS)
algorithm is derived for tracking a fast varying system with de-
terministic and known trends. One of the advantages of this
T-RLS algorithm is that it does not require the exact information
on system and measurement noise variances, and state space
equation coefficient matrices. Moreover, extended Akaike’s In-
formation Criterion (AIC) and Minimum Description Length
(MDL) criteria are proposed to determine the optimal order of a
time-varying system online. For tracking a general fast varying
system with unknown order trends, a multiple T-RLS algorithm
is developed which attains the optimal posterior estimation and
is computationally simpler than the MAKF algorithm.

When a time-varying system is subject to rare but abrupt

mdlumping) changes, the estimated parameters by conventional
ffaptive algorithms cannot track the variations of true system

ical signal processing, the underlying time-varying systems d}@rameters in the vicinity of these jumping locations, resulting

subject to fast and/or rapidly changing environments [1], [4].
To track a fast varying system, several variable-step-size adz
tive algorithms have been proposed to improve the tracking p

the so called “lag” estimation. Three methods can be used
Eb_mitigate the effect of “lag” estimation. The first method

Is.to use variable forgetting factor RLS algorithms [3]. The

formance [1], [3], [4], [8]. However, if the variations of System'second is to increase the system estimation covariance matrix

parameters show obvious deterministic local or global tren

At the jumping locations [11], [12]. The third includes various

stochastically perturbed difference equation constraints shogigyesian Kalman filtering algorithms [13], [14]. In this paper,

be used as smooth priors for system parameters [5]. Based
these prior trend models, a multistep algorithm and a Kalm&H SYst

R, second method will be adopted to track the abrupt changes
em parameters. One difficulty of this method is how to
identify the unknown locations and amplitudes of the abrupt
changes online. Some approaches have been developed toward
this task [15]-[18]. The obvious tradeoff between detection
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the abruptly changing components so that it is very robust teation and tracking. However, the explicit statistical charac-
interferences (with low false alarm probability) and sensitivieristics of system and measurement noises are required before
to jumping changes (with high detection probability) comparddtering can be performed [6]. In this subsection, we derive a
with the conventional detectors. A new algorithm for selectively-RLS algorithm which can adaptively track fast varying pa-
modifying the elements of the covariance matrix is proposedmeters without knowing the explicit statistical characteristics
Moreover, the optimal increments of the covariance matrix aoé (possibly nonstationary) system and measurement noises. It
determined. is well known that a conventional varying forgetting factor RLS
The rest of the paper is organized as follows. In Section Ejgorithm has to compromise its tracking performance with es-
a T-RLS algorithm and a multiple T-RLS algorithm are detimation variance. Similar to the trend Kalman filter algorithm
veloped which can track an arbitrarily fast varying system. lpresented in [5], [6], the proposed T-RLS algorithm can achieve
Section Ill, a new wavelet detector is proposed for identifyinfqist tracking and small estimation variance simultaneously.
the abrupt changes and a scheme for selectively modifying theAssume the system parameters of a fast varying system can
estimation covariance matrix is presented for tracking rapidbe modeled with a general random walk model [7]
changing systems. In Section IV, simulation results are provided
which verify the superior performance of the proposed algo- Ori1 = Al + wy @)
rithms. Concluding remarks are given in Section V. ye =0T 0 + e (8)

Il. RECURSIVEADAPTIVE ALGORITHM FORFAST CHANGING  Where the various prior trend information can be included in a
SYSTEMS nonsingular matrixd; with size N4 x N 4, and the sizes ap;
A. T-RLS Algorithm ?ndet are bth ofV4 x 1. Obviously, (7) isamore pref:ise model
or fast varying system parameters. In the following, assume
A time-varying system commonly can be represented bytigat there arei(1 < ¢ < n) available observation samples
linear regression equation and the changes of system paramejers. . | y,, and the variables at time= 0 represent the initial

’

can be modeled with an order one (first-order) random wallglues in the following. To derive a T-RLS algorithm, rewriting

model [10], [11], [25], [26] (7) afp 41 = Anb, +w, and then reversely iterating(it — ;)
times forj = n, ..., 0, we obtain
0t+1 =0; + wy (1) n
Yt :wfet + eq. (2) 0] = \Iljnen - Z \I/jiwi—lv J = 07 ey I (9)
i=j+1

Here,#, is the true system parameter vector of S¥e 1, v, is } N ) .
the scalar observation (output) signal, is the system (input) Where the inverse transition matni;, is defined as

regressor vector of siz¥ x 1, w; is the system noise vector of (Aper--- A1, dfj<n

sizeN x 1 with covariance matrixCov(w;) = Q, ande; is the U, = { " oY (10)

measurement noise signal with varianée(e;) = o2. When 1, if j = n.

the variations of system parameters are slow enough, an R&§bstituting (9) into (8) fot = j = 0, ..., n gives

algorithm can be used to track the time-varying system [25], .

126} Y = ‘P?\I}jnen +e; — (P? Z Ww;—1, 7=0,...,n.
Ht = Ht—l + GtEt (3) =i+l (11)
er =1y — 9T 04 (4) Define an(n + 1) x N4 matrix

P;_ _ T T
Gu=Pipy = i — (5) Hn=Lon (ona¥i-nn)”, .
P t_l(if ’ (@?an)T7 ) (@gWOn)T] (12)
1 Py 1p107 Pry
P =— - — 6
L=, < eV TP 1on (6) and two(n + 1) x 1 vectors
. . . . L N A . T 13

wheree; is thea priori prediction error(; is the filtering gain, *» = [Yns Yn—15 -5 Yjs -, Yol (13)

P, is the estimation covariance matrix, akdis the forgetting n

factor. Vo= le. e 1 —of T U w;

. ) ) . n — ny En—1 Pn_1Wn—1y -+, € ("2H i Wi—1,
However, if the time-varying parameters change fast, the first- ! ! ! i:]zil !

order random walk model is not sufficient to describe the vari- T

ations of the system parameters [5], [6]. To accurately model —

the time-dependent parameters and increase the tracking ability -res €0~ Po Z Wjiwo | - (14)

=1

for a fast varying system, a general random walk model can be

adopted which sufficiently includes the prior information sucack (11) in column fob < j < n and use notations (12)(14)
as theqth order deterministic trend, stochastic trend, and seg-5rrive a vector-matrix e_quaﬁon

sonal components of a nonstationary process [5]. By this model,

Kalman filtering can be employed for system parameter esti- Yo, = Hp0, + Vy. (15)



604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2003

From (15), the optimal estimation of system parameteBubstituting (12), (13), (19). and (20) into (16) and using (22)
f, based on observation daig (in the sense of weighted gives

least-squares solution) can be obtained as [2] )
0, = P(H YY)

t
=D Z alt, )Uhe;y;
whereY denotes a weighting matrix. If takes the inverse of 3=0
the covariance matrix of the equivalent noise vedfgri.e.,

O = (HIYH,) " (HITY,) (16)

t—1
At A:{ 1) ! a(t -1, j)\IjT(t_l)‘Pjyj + QY
T = (Var(Va)) ™ = (E(V, V) (17) =0 !
Kalman filtering can be readily derived to achieve an unbiased N
minimal variance estimation [2]. For deriving the T-RLS ~ Ae(Ai—1) Pt 1
algorithm, a reasonable choice is to introduce the following
weighting matrix with a set of discounting factors on the

diagonal elements [25]: AP, Z a(t—1, J')‘I/;"F(t_l)sﬁjyj + orye

T = diag {a(n, n), a(n, n — 1), a(n, n — 1),

— T —1p-1p
ca(n, g), (0} g) AP Aot P

= (I — Ptﬁpt‘PtT)At—lét—l + Pipry;. (23)
wherea(n, n) = 1, {a(n, j)}o<j<n—1 are discounting factors
defined as The final equality in (23) is just
a(n, j) =Ape(n— 1, j) = I7_; 1 A b = Ay 10; 1 + Prpy (yt - @%F(Atqétq)) . (24)
j=n—-1n-2...,0 (19) By applying the matrix inverse lemma [25], (21) can be

rewritten in another equivalent form
and)\ (1 < k < n)is named as thith forgetting factor. Typi-
cally,0 < A\, < 1[25], [26]. To derive the recursive estimation,, 1

P, A1 P AT |

equations, define W
1 _At—IPt—lA?_1@t¢?At—1Pt—1Af_1 (25)
‘ . At + @tTAt—lpt—lAtT_lﬁpt ’
Py=(HYH)™ = | Y alt, )V 00 ¥ | . (20)
j=0 In summary, for a fast varying system modeled with a gen-
eral random walk model (7) and (8), the T-RLS algorithm can
Thus be realized by applying (24) and (25) alternatively. Notice that

whenA, = Iy, = Iy, (7)and (8) reduce to (1) and (2) and the

i T-RLS algorithm reduces to the conventional RLS algorithm.
= ZO‘ (t, 9)Wj0505 Ujt Commonly, we choosg; = --- =\, = Awith0 < A < 1to
=0 simplify the computation. If the order of a general random walk
t—1 model is properly choserh, commonly takes a value less than
= A Z a(t =1, ) (W1 A1) vie] but close to 1.
7=0

1 T B. Multiple T-RLS Algorithm for Tracking Arbitrarily Fast
(-1 Ais) + erpy Varying Systems

t—1 If the prior trend information of a fast time-varying system is
=MAL) T D alt =1, DT, yeie] Ue- exactly known, i.e., the matrid, is deterministic and known,

j=0 the T-RLS algorithm can be used for accurate parameter
estimation. Howeverd, commonly is not explicitly known or

(a1 T
(Aim1) + @ even completely unknown. In this case, a bank of T-RLS filters

= ,\t(AtT_l)*lpt_lAt—_l1 + opof with a spreading of assumeti matrices can be performed in
LT T parallel for parameter estimation separately and at the same
=M(A 1 P Ay )T+ oy (21)  time a Bayesian posterior combination is employed to attain
the optimal parameter estimation. We name this scheme as the
From (21), it is easy to show Multiple T-RLS (MT-RLS) algorithm. The MT-RLS algorithm

does not estimate the unknowt, of a fast varying system
MP(AT )T'PTY = (I - Prprpl )Ai_1. (22) directly. Instead, it obtains the optimal parameter estimation
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through weighted averaging the multiple adaptive filter outputand; is p(y; |02, i) = (2ro?)~Y/2 exp (—(e})?/207). Thus the
The optimal weighting coefficients can be determined kpint conditional likelihood function of recerdt samples can be
Bayesian probability inference. It is shown in the followingepresented as

that the MT-RLS algorithm can be realized with quite simple

computations and yet has good performance. p(Yy piilo7, 0)
For an unknown system (7) and (8) (where mattix vari- .
ance ofe; and covariance ofv; all are unknown)M T-RLS _ H P(Uj|0t2 i)

adaptive filters can be adopted for parallel adaptive filtering. Let

j=t—L+1
theith (1 < i < M) filter corresponds to the following hypo- !
thetical values of the design parametits= {4, = A}}. The 2n—L/2 ¢ (e5)?
recursive parameter estimation by thie filter is performed as = (2m0y) exp | — Z 207 | (32)
j=t—L+1
fi = Al 10 | + Pigel 26
f et ' tipt ¢ (26) As in [20], we assign noninformative prior distributionsitand
e =yt — o1 (Aj_10;_1) (27) o} as
t )\ t—1+t—1 t—1 P M
i i i i i i . 1
_ At—1Pt—1(At—1)T<Pt‘:0$At—1Pt—1(At—1)T) p(ot]i) =p(o}) = =. (34)
i 7 i g
A+ ‘P;At—lpt—l(At—l)T‘Pt t

(28) Substituting (32)—(34) into (31), it is easy to derive

whereA; is the_assu.med _tre_nd matrix for tith fllter. Without p(i|Y, ) =& / (Y p 1|02, i)p(o2li)p(i)do? (35)
loss of generality, théh priori prediction errog} is assumed an

i.i.d. Gaussian distributed sequence with zero mean and variance . —L/2
Var(ei) = o2 [12]. The optimal parameter estimation based on . Z ()2 (36)
the completed observation sequente= [y, ¥ 1, ---, y1] - = €
can be obtained as J=tmb
M Here,c¢; andé, are two different constants. Define
0, = E(0:Y") = 0i6; (29) t i
i1=1 t
. . N . w=| Y (&) (37)
where3; is the posterior probability of the hypothetical model jet—L+1
N’ given the data set?, i.e.,3; = ; = p(i|Y'?).
A more general assumption is to consider a nonstationasich can be estimated recursively as
system where the measurement noise itself possibly changes
with time slowly. In this case, sincg; and 3! are both slowly - i ovean Lo —L/2
varying, only L most recent observation data samples are used Ty (@i1) + ¥(Et) ’
to rel_iably esti_mata@; so thato, is assumed invariant in this i = if1<t<lL, (38)
time interval (i.e.,0t—r41 = -+ = qt)- DenoteY,f_LJrl = ' . 4 L)
[yt Ye-1, - - - ye—r41], and redefingg; as (i)™ + (e = (ei_L)?) "7
B = p(ilY;_p41)- (30) ’
_ ; _ SinceY_;”, i = 1, B} can be recursively estimated based
To estimates;, Bayes rule can be applied onw' as
. p(Yf_ , 1) i w;
plilY ) = 52—, Bi= 5 (39)
; p(YﬁL+U ‘) ; wy
o yi 2 2010 (1) do2 In summary, the MT-RLS algorithm can be recursively imple-
/0 P(Yemrialor, Dp(ocli)p(i)do mented by (26)—(29), (38), and (39). Like the T-RLS algorithm,

o M . ) - (8D the MT-RLS does not require the information of system and
;P(Yt—ulv i) measurement noises and, thus, is computationally simpler than
- the MAKF algorithm. At this point, several parametdrs M
The denominator of the above equation is a constant which is moid A: (1 < i < M) in the MT-RLS algorithm remain to be
relevant toi. Under i.i.d. Gaussian assumption and accordirgglected. In the following section, we will discuss the problem
to (27), the conditional likelihood function of; based orv?  of optimal parameter selection.
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C. Parameter Selection for the MT-RLS Algorithm AIC or MDL sequencedIC} and M DL for the trend model

of theith filter at timet can be derived as follows:
The filtering lengthL should be chosen to ensure the signal ¢

in this interval is approximately stationary, so thet can be S (e4)? )

considered as unchanged and can be estimated efficiently by the - 47¢(p(i)) = log | Z=22E + 20(4)

observed data set in this interval. Recall that the memory of the L L

RLS algorithm is approximatelf—1/In A) = (1/(1 — X)) if A

is less than but close to 1 [25], [26]. Thuscan take

wi)—2/ i
=g (" t)LQL>+2QL() (42)
1
MDLi(o(i)) = lo f:f—Lzl e(z')lzg(L)

where[.]+ means rounding toward positive infinity.

The forms and values of: may be chosen by referring to the
varying trend of the system parameters to be studied. On the one = log
hand, A} should be selected general enough to encompass the
frue type and prder of the underlying system. Commonly usﬁﬁ’lereg(z‘) corresponds to the assumdgl. For a system with
trend models include local polynomial trend model, stochas $i of the three trends,
trend model and local polynomial seasonal component model
etc. [_5]. Onthe other hand, takmg small numperof pgrallel adap-g(i) = Mj + 2Mi + M + 6(M}) + §(M) + §(M3) (44)
tive filters can reduce the algorithm complexity and improve the
computational efficiency. Therefore, we should find a methagihere M, M3, andMj are the model orders of the local poly-
to determine the optimal filter numbéd = M (acting as the nomial trend, the AR trend, and the seasonal trend ofitihe
bandwidth of the adaptive algorithm), which best balances tfiker, respectivelys(M;) = 1, if M; # 0 and6(M;) = 0, if
algorithm complexity and performance. M;ﬁ = 0foreachl <i < M,1 < j < 3. See [5] for more

For tracking a time-varying system with deterministic but urdetails. We select th&h filter as the most matched filter which
known trend, the assumet} in (7) can take different (integer) leads to the minimallIC;} or M DL, i.e.,
order fixed matrices. For example, if the system parameters are , ,
assumed to follow gth order polynomial trend, theth order AIC{ <AIC; or MDL{ < MDL,
stochastically perturbed difference equation can be used to rep- . .
resent the dynamics of the system parameters. Hapegll be L<isM; i#l (45)
afixed matrix with sizg/N' x ¢V (N4 = gIV) as (41), shown at 54,(1) as the optimal integer trend model order. Without loss
the bottom of the page, Wh_e@ repre_sents Kronecker product generality, we sorfo(i) iy . s @s
andC¥ = (¢!/k!(¢q — k)!). Similarly, if the system parameters T
are assumed to followegh order autoregressive (AR) stochastic o(1)>--->o(I) < --- < o(M). (46)
trend, A, is also agN x ¢gN fixed matrix but with different
elements (see [5] and [6] for details). Taking large orders cdo reduce the number of parallel filters while keeping
improve the tracking ability but also increase the model corgood performance, we can design an MT-RLS algorithm
plexity, and taking small orders is computationally simple butith constant filter number (bandwidth) which can opti-
will decrease the tracking ability. Obviously, an optimal trenchally balance the algorithm performance and the compu-
model order can be chosen for an unknown system once thgonal complexity. Explicitly, we takeM as a constant
forms and values of A;},—; s are selected. This order canodd number and the correspondinfaj{ filker orders as
be determined by the AIC or MDL information criteria, etc. [6lo(I — (M —1)/2)), ..., o(I), ..., o(I + (M —1)/2)).
which optimally balance model representation ability and modelere, the filter with tend model ordes(I) corresponds to
complexity. Assumé/ T-RLS adaptive filters are performed inthe most matched filter, the filter with trend model order
parallel and theth (1 < i < M) filter takes trend model order o(I — (M — 1)/2)) corresponds to the least underdetermined
o(i). To determine the optimal trend model order, an extendélier, the filter with trend model ordep(I + ((M — 1)/2))

(
L :[ﬁL (40) ( SR
g
(

<wz‘>2/L> GLCLA R

A= A= : QR IN (41)
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corresponds to the most overdetermined filter in the chosemuch higher detection probability when using the same false
constant bandwidch\E{) adaptive algorithm. alarm probability as the one used by the T & L detector (i.e.,
using the same detection threshold).
[1l. RECURSIVE ADAPTIVE ALGORITHM FOR RAPIDLY
CHANGING (JUMPING) SYSTEMS
A. Changing Points Detection for Tracking Rapidly Changing A dyadic wavelet transform (DWT) of functiofy at time?
Systems and scalg/ (1 < j < J andJ is the maximum decomposition

. ) scale) can be implemented via a set of discrete digital filters as
There are two methods to adjust the RLS algorithm (3)(g)jiows [21], [22] (without loss of generality, the initial condi-

B. Wavelet Jump Detector for Abrupt Change Detection

when it is used for_tracklng a rapidly cha_ngmg system. OnR s are assumed g5 =f 1= = f_psz = O):
method is to adaptively adjust the forgetting faciqrat the

rapidly changing points while keeping its nominal values at 27-1

other locations [3]. The other is to increase the estimation co- ze(j) = Wai fy = Z hi(J) fi—k (52)
variance matrix?; or P;_; at the locations of jumping points so k=—2i42

that the filtering gain can be increased significantly to track the

rapu;ily changlng components [11]. Wher_1 using e|ther methol ter of DWT in the jth scale. It is odd symmetrical with re-
the jumping points need to be knovenpriori and this com- ecttal /2 [i.e., hu(j) = —h_r41(j)] and its region of support
monly is unrealistic in practice. Therefore, a recursive parame [ number. o.f1 NONZero co;ffingients) at scalis Z_j ok
change detection algorithm is required to identify the locations 2 [21], [23]. Unfortunatelyhy (5) fo?eachks:clalg’ is

H H H H H H H - ] . )k
of jumping points online. Once a jumping change is detecn"‘\d’noncausal filter. Hence, (52) cannot be used for calculating

. : i . a
the above R.LS algonthm with changing .the fprgettmg fact WT online causally. For detecting the changing points on-
or the covariance matrix at the detected jumping point can €

herehs(j)(—27 + 2 < k < 27 — 1) is the equivalent digital

adopted ne, arecursiveDWT algorithm is desired that can calculate
pred. t é?_ DWT coefficients in different scales once a new observation
ata sample is available. Assuming the available data sequence

2t timet is th = [f1, ..., ft], we consider an extended se-

quence?} = [f1. ---, fiy2/_o] Dy an even-symmetric exten-
sion of Y} as

Denote the DWT off, at timet and scalej asz:(j), i.e.,
Z: = Wa; f,. We will show in the following theorem that, ()

can be online calculated fror?fft using an equivalent causal
filter. Obviously, if a jumping point off; occurring at timet

can be detected from(j), it also can be detected from(j)
since the even-symmetric extension sigfiatioes not alter the
jumping point features of the original signal Sincez;(j) can

be recursively calculated online, it should be used instead of

Some recursive change detection algorithms have been
veloped in [15]-[18]. An attractive method is the one used

Trigg and Leach (T & L) [15]. In this method, two filtering sig-

nals gained from the prediction error sigaalare used

(47)
(48)

(1 —7)ef_1 + e

er

a
t

ef =(1—=7)ei_1 + el
where| - | denotes absolute value afdakes a very small posi-
tive value (commonly).005 < v < 0.05). The T & L detection
signal is defined as [15]

o
e

-
€t

According to the central limiting theorerd; is asymptotically

b

Trs

f2t7k7

1<k<t

Tk t+1<k<t+2 -2 (43)

Gaussian distributed. It is shown in [15] and [16] that, for sma (J) for online detecting the abrupt changes of sigfial

v, d; is a zero-mean signal with variance approximately as

Var(dy) = E(d2) ~ =1

e (50)

Assume a detection thresholdriswhen|d;| > r at time index

t, a parameter change is considered to have happened [11].
notesf, as the false alarm probability of detection. According o a7,

to the Chebyshev’s inequality(|d;| > r) < (E(d?)/r?), the
detection threshold can be chosen as

T v 1
\/ 22—~ fp

TR

(51)

Theorem 1:: Let the even-symmetric extension sequeﬁf}e
be given in (53), the DWE,(5) of f, at timet and scalg can
be calculated fronY’; as

2]
Zi(§) =Wa fo = Waifo = D hi(i)fi-r  (54)
De- k=0

From the above, we see that there exists a tradeoff betweenfH&thermorez, (j) can be recursively calculated as

false alarm probability and the detection probability of the

& L detector. In the following subsection, we will develop a

wavelet domain change detection algorithm which can achieve

¢(4), k = 0, ..., 27 is an equivalent causal filter for
scalej defined as
hi(§) = he(d) +h-r(§), 1<k <2 -2 (55)
h2j—1(j>7 k=2 —1.
T Q(j) = D) + fHE(j) (56)
() =9 (). (57)
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Here, Q) (5), Q¢=1(4), andH*(j) are column vectors of size  Denotez, () as the causal DWT of the T & L detection signal

27 x 1 which are defined as follows: d; (49) at timet and scalg. That is
N, —),. — ) R Z(j) = Wi dy (62)
QU)(]) = |:Zt (J)s s t+2.y71(l7)} (58)
. t1 t1 , which can be recursively calculated as (56) and (57). The mul-
Q=) = [Z(JFI )(j), Z(Jr;j)_l(j), 0] (59) tiscale product signal of the firgt scales can be calculated as
He(5) =[hg()s s b 1 (4] (60) . s
v K=T]z0). (63)
=1

To save space, the proof is omitted here but can be found in [24,
pp. 91-92]. Define a new (multiscale product) detection sighddy filtering
We name (54) as a causal DWT of the original sighalThe &/ as follows:
above theorem shows tha{(j) at timet can be recursively cal- -
culated online using (56) and (57) once a new data sarfele G = (1 =n)C—1+n&; (64)
rives. The scale filter$hf(j), 7 = 1, ... J} can be calculated ren is an exponential smoothing factor which commonl
and stored in advance before performing the recursive cauVsV%Ie 't xp ' ng whi nonty
DWT. | N . B ) takes a value in the range [0.05, 0.13]. Although is
I (52), 2k(7) = ha(j) when fi. = 0. Thus, the filter | 0 o non-Gaussian distributed obtained above i
coefficients of{hy(j), j = 1, ....J} can be calculated by ap- -2 Y taled hon-i>aussian dis uted,obtained above is
: . : . . : Gaussian distributed signal according to the central limiting
plying the iterative DWT algorithm introduced in [21] toéa theorem. Now. a new wavelet detector can be formed as
input signal. Oncé () is obtainedhs () can be easily calcu- - NOW, wwav
lated by (55). The filter coefficients dff,(j) for scalej =1-4
. ~ Var(dt)
can be found in [24]. dy = v
Now, consider multiscale product of the firéf scale se- ar(Gy)
guences in wavelet domain at time index

G- (65)

Obviously, if ¢; is a Gaussian distributed signal, is also a
. Gaussian distributed signal whose variance is the same as that
K = H_ () (61) of d;. However, ifd; has some local maxima (minima) corre-
t 2ed)- sponding to the abrupt changes of the original signal, these local
j=1 : s ; I
maxima (minima) will be enlarged and sharpened/inThis

Sj h | d for DWT in thi is ch characteristics can be employed to provide a more robust and
Ince the wavelet used for In this paper Is chosen 8a a1e identification of the possible abrupt changes. Thus, if

the first-order derivative of a smooth func.tion (a cubic Sp“nﬁ/e choose the detection threshaldf the wavelet detection
func_:t|o_n, see [21]), the DWTE,(j) can be mterprete‘d as thesignalcit equal to the threshold of the T & L detection signal
denvatlv_e of local smooth (average) g% at fscale] [22]: d;, we can achieve much higher detection probability. To get
Henc_e, i f? (thES ft) has some singular points (especiallyy e accurate estimation of the variance,p{Var((;)) in (65),
jumping pomts),z_t(J) will appear as quulus maxima at thesea robust method will be proposed shortly based on an empirical
Iocayons. More importantly, the amplitude of noise moduly guation. We first postulate two transformations as follows.
maxima will decrease from small scales to large scales while; o ihe log of the ratio of the variance @fto the variance
the amplitude of signal modulus maxima will increase fro fEK s,atisfies an order. polynomial function ofy

small scales to large scales in the wavelet domain [21], [22].
Therefore, multiscale product sequen€f sharpens and Var(d,) m .
enhances the modulus maxima dominated by signal edges and 1 <7~K> = vy (66)
at the same time suppresses the modulus maxima dominated by Var(&i) i=0

noises. It has been further shown in that the probability dens{%(_}rey0 — 1. Taking log operation can compress the dynamic
function (PDF) of a multiscale product sequence is heavy tailgg&hge ofVar(dt)/Var(}"’) and hence an orden polynomial

compared with that of a Gaussian distributed one with the samg ction is sufficient to approximate the log function in the left
variance. Employing these characteristics, a DWT multiscalgye of (66).

product sequence of an existing detection signal (for example gecongd. the log of the ratio of the variance(pto the vari-

obtain_ed fr_om the T_ & L detector) can be used as a NeYhce OfétK satisfies a log functioiog(n/(2 — 1)) plus a linear
detection signal. It will enhance the components representighction wn + 7 Of

possible abrupt changes in the original detection signal and

thus a larger detection threshold can be used, which will lead ) ( Var(¢:) ) L (
- . L ——>~ | =log

to a smaller false alarm probability. At the same time, it will Var(€K)

suppress the noise interference components in the original

detection signal, which will decrease the miss alarm probability ¢X is a white-noise sequence, the variance

and thus increase the detection probability. Motivated by thatio ~ Var(¢;)/Var(¢X) is  n/(2—n) and thus

above discussion, a new wavelet jump detector is now proposeg|( Var(¢;)/Var(¢X)) = log(n/(2 — 1)) [obtained by taking

for online change detection. variance on both sides of (64)]. Although wavelet transform

n
m) +(I€77+’7‘). (67)
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can decorrelate a signal to some degra¢;) in (62) is a (4)]. Assume otherN wavelet detectorsi!, ..., dN (gain
correlated signal sincé; is highly correlated. Thereforé{" detectory are obtained from the estimated filtering gains
in (63) is a correlated signal. A linear function pfis added G(1), ..., Gi(N) [see (5)], respectively. Without loss of
in (67) to account for the bias produced by the correlation generality, we assume here a system jumping change at a
signal¢X. specific time is produced by an abrupt change of only one

Combining (66) and (67), the ratio of the variance of newarameter branch (the case of several parameter branches
wavelet multiscale product detection signal to the variance dfianging at the same time is a simple extension). The proposed
the T & L detection signal (R-W-TL) is defined as selective wavelet detectarses both theorediction detector

and thegain detectordor parameter change detection. More

R-W-TL explicitly, an abrupt change is considered to be detected at the
_ Var(¢) Var(¢,)/Var(EK) ith(i =1, ..., N) parameter branch at timeif
Var(de)  Var(dy)/Var(£f) ds| > 7 and |di| > 7 (70)

— exp | Lo n T — i i (68) where the detection thresholdis set ag = r and, thus, can
- s\2= n K e 7 be determined by (51) in advance. At this timeve setA; =

_ N . [0] N x newceptAy(i, i) # 0. To determine the value @, (4, i),
and the wavelet detector (65) using the empirical variance rafignsider the following equality (see [25, Appendix 3.D]):
estimation (68) can be representedias A\
2

By =AS + —————c (1)
b= (69) ST AL
VR-W_TL
=AEi1+ (1 — @] Plo)e; (72)

where the values ok, =, and {v;}i—1,. . can be esti- . o o
mated by applying least-squares method to experimen‘fﬂ?ereﬂ_t is the sum thhea priori prediction mean—squareQer-
data through Monte Carlo simulations. RecommendatidArs attimel. WhenJis close to 1, we cantake — \)=; = o

values arex = —5.1043, 7 = 1.0026, m = 9, and and o? is the measurement noise variance [25]. Modify the
v ={1.272x 10", —5.9549 x 1010, 1.179x 1010, —1.2877x Matrix P,_, as (settingh, = Aj)

9 7 =005 6 4 4
107, 8.4984 x 10", —3.5005 x 10°, 9.0861 x 10*, —1.5622 x Pl =P +Al (73)

103, 2.5120 x 10'}. Extensive simulations have verified that
the empirical equations (68) and (69) are effective and produggbstituting (73) into (71) gives

quite accurate results (see [11] for more details). o2 A
C. Selectively Tracking of Rapidly Changing Systems Using e At el Piapn+ of Al
Wavelet Jump Detectors Thus,Aj(i, 7) can be estimated as
For a time-varying system, different branches of system o2 T
arameters are not always subject to abrupt changes simul- A A (5_2 B 1) ~ @ B
p y! | p g AL, i) = ¢ (75)

taneously when a jump occurs. When modifying the matrix 02 (4)

P, 1 or P, [in (5) or (6)] with A, it is common to select\, Similarly, modify the matrix?; as (setting, = A”)
as a diagonal matrix where each diagonal element reflects the '
change of the corresponding parameter branch. When one or Pl =P, + A} (76)

several branches have changed rapidly at a specificitjrie T . Nesos .
corresponding elements iA; should be increased while theSUbStItUtIng (76) into (72), and (7, i) can be estimated as

remaining elements should keep unchanged [11]. This requires . # — g—

that the jump detector cannot only identify the locations where Af(i, i) = =50~ (77)

the jumps have happened but also determine the branches pro- 210

ducing these jumps. In a summary, we list the complete RLS algorithm using es-

It is well known that thepriori prediction error signal can timation covariance matrix modification and selective wavelet
be used to construct the jump detector [15], [16]. Howeved€tector (abbreviated as RLS-MSWD) at timas follows.
this detector (hamed gsediction detectgronly can determine « (a) RLS algorithm

where a jump happens for a time-varying system. To judge Using (3)—(6) to calculaté,, e;, G, and P;;
which branches this jump is produced by, a set of jump detec- « (b) Selective wavelet detector for change detection
tors can be constructed directly from the estimated filtering —(b1l) From &, calculating (47)—(49), (62) [imple-
gains (named again detectors Combining theprediction mented with (56) and (57)], (63), (64), (68), and (69)
detectorwith gain detectorsa newselective wavelet detector to get thepredictive detectotz,
is proposed in the following, which can determine not only —(b2) Fori = 1: N {Using G.(7) instead ofe; in (47)
the locations of jumping points but also the branches that have and (48), calculating equations as in (b1) to getithe
produced the jumps. gain detectord:} End

Assume a wavelet detectaif (prediction detector is — (b3) Using (70) to detect if a jumping change has hap-

obtained from the priori prediction error signal [see pened. If yes, determine which parameter branch pro-
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Fig. 1. Track a ramp time-varying system by (a), (c) the RLS algorithm and (b), (d) the T-RLS algorithm. (Solid lines represent true values andeslotted li
represent estimation results.)

duces this change and go to (c); Otherwise ¢ + 1 inrecursive equations (7) and (8) [see also (41)]. The estimation
and go to (a); results by the RLS algorithm (with a forgetting factor 0.97) are
« (c) Estimation covariance matrix modification shown in Fig. 1(a) and (c). Obviously, the estimated ramp func-
Modify P;_1 or P; as (73) and (75) or (76) and (77).tion lags the true values. The estimation results by the T-RLS
t =t + 1 and go to (a). algorithm with the same forgetting factor are shown in Fig. 1(b)
The RLS-MSWD algorithm above is performed recursiveland (d), where the estimated ramp function can track the true
to track a rapidly changing system. If we use a T-RLS or @lues very well.
MT-RLS algorithm instead of the RLS algorithm in step (a) !nFigs. 2 and 3, we show that the performance of a MT-RLS
and keep steps (b) and (c) unchanged, the extended algorifdgprithm. AnARX (1, 1) systemwithb, (1) as sin-like function
can identify and track an arbitrary time-varying system witBndc:(1) asaconstantis simulated. Here we assume that the true
slowly, fast and rapidly varying components simultaneously. arder of the trend model used for modeling system parameters
typical example will be used in the next section to illustrate thi§ unknown. The MDL values for assumed deterministic trend
promising tracking method. model order from 1 to 4 are calculated and shown in Fig. 2.
The forgetting factor is taken as 0.98 and thus= 50. We
can see that the third-order trend model is the best matched
model since its MDL sequence values are minimal among
The T-RLS and RLS algorithm are used for tracking a rampe four MDL sequences of different order trend models after
function in Fig. 1. The system simulated is aRX (1, 1) the algorithm converges. If we select the number of parallel
model filters M = 3, the three filters should take the trend models
with orders 2, 3, and 4 respectively. The optimal posterior
estimation by the MT-RLS algorithm using these three filters
is shown in Fig. 3(a), and the estimation results by the T-RLS
whereb;(1) is a ramp-like functiong;(1) is a constant and;  algorithm using order 1-4 trend model are shown in Fig. 3(c)
is assumed a randofil pulse input. The measurement noiseespectively. Fig. 3(b) and (d) are the zoom-in parts of Fig. 3(a)
variance ofe; takes 0.01. The RLS algorithm is used for thand (c), respectively. Obviously, the adaptive filter taking order
identification of the aboved RX (1, 1) system assuming that1 or 2 trend model underestimates the true system parameters
the system parameters are modeled with an order one randehile the adaptive filter taking order 3 or 4 trend model
walk model. The T-RLS algorithm is used for the identificatiomverestimates the true system parameters. Thus, we can infer
of the same system assuming that the system parameterstlaae the true trend model order is between 2—3 but closer to
modeled with a second order deterministic trend model, whege Although we cannot estimate the true trend model order
we take vecto; = [b:(1), c:(1), by—1(1), c;—1(1)]’, vector accurately, the optimal estimation of system parameters can
@1 = [y1—1, us_1, 0, 0, and matrix still be obtained by the MT-RLS algorithm.
In Fig. 4, the proposed wavelet detector is compared with
A= A= [212 —12]

IV. SIMULATION RESULTS

yr = be(D)ye—1 + et (Dug—1 + ur + €4

the T & L detector. Fig. 4(a) shows a stationary white Gaussian
I, 0 noisy signal which has three abrupt changes at the vicinity of
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Fig. 3. Track a sin-like unknown order time-varying system by the MT-RLS algorithm. (a) Optimal tracking by the MT-RLS algorithm. (c) Tracking by the
T-RLS algorithm with different order trend models. (b), (d) Zoom in of (a) and (c).

time locations 100, 700, and 1500, respectively. The amplitudeig). 4(c), the former can provide sharper and more accurate

and shapes of these changes are shown in Fig. 4(b). In Fig. 4i{dlication of the abrupt changing points and this is very
the solid line represents the T & L detection signal and thmportant for detecting small amplitude or/and concentrated

dotted line represents the wavelet detection signal obtaingorupt changes.
using the theoretical R-W-TL. Fig. 4(d) shows the same traceNext, an ARX(2, 1) system

as the one represented by the dotted line in Fig. 4(c), i.e.,
wavelet detection signal obtained using the theoretical R-W-TL ¥t = be(1)ys—1 + be(2)ye—2 + ce(ue—1 + ur + ¢

(wavelet decomposition scale numbfér= 3). Comparing the s ysed to verify the performance of the proposed abrupt change
wavelet detection signal with the T & L detection signal Rracking algorithm. Here, the system parametgfs) andb, (2)
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Fig. 5. An ARX(2, 1) abruptly changing system identification by the proposed RLS-MSWD algorithm. (Solid lines represent tracking results alikdotted
represent true values.)

are both with abrupt changes and1) is constant as shown in changes of different parameter branches; while the estimation
Fig. 5. The identification results by the proposed RLS-MSWDf different parameter branches by the RLS-MTLD method in
are shown in Fig. 5, wher¢ = 0.02, = 0.10, K = 3, Fig. 6 are disturbed and affected by each other.

and the empirical formulas (68) and (69) are used for producingFinally, an example of tracking a general system with slowly,
the wavelet detectors. It can be seen that the estimation cdast(with ramp and quadratic trend), and abruptly changing
cides with the true parameter values very well. For comparisagmponents is illustrated in the following. The system to be
identification results by the RLS algorithm using T & L desimulated is an ARX(1, 1) system whose paramétét) is
tector (abbreviated as RLS-MTLD) are shown in Fig. 6. Sincghown by the dotted line in Fig. 7 ang(1) is a constant. The
the T & L detector is not so sensitive to the abrupt changes B§-RLS algorithm using both estimation covariance matrix
the selective wavelet detector, the identification results by theodification and selective wavelet detector is applied for
RLS-MTLD method can not track abrupt changes with smadlystem identification and parameter tracking. The algorithm
amplitude [seé,(2) between time index 330 and 500] and conparameters are selected as= 0.98, M = 3,y = 0.01,
centrated abrupt changes [sk€1) between time index 570 = 0.12, and K = 3. The estimation result df;(1) is shown
and 620] in Fig. 6. Moreover, from Fig. 5 we can see that the Fig. 7(a) which coincides with the true values very well.
proposed RLS-MSWD method can selectively track the abruphe MT-RLS alone X = 0.98, M = 3) is used for system
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Fig. 7. Track a general system with slowly varying, fast varying, and rapidly changing components by the: (a) MT-RLS algorithm with covariamegiomodifi
using selective wavelet detector; (b) MT-RLS algorithm; (c) RLS algorithm. (Solid lines represent tracking results and dotted lines represeestjue

parameter estimation and the result is shown in Fig. 7(l@lgorithm has been developed to optimally estimate the system
Although the trend changes of time-varying parameters gsarameters through Bayesian posterior combination of multiple
estimated well, this method cannot track the abrupt changegaptive filter outputs. To track an abruptly changing system,
sufficiently. The estimation by the RLS metholl £ 0.98) is a new online wavelet detector has been proposed which is
shown in Fig. 7(c) which fails to track both the fast and theomputationally simpler and can achieve much higher detection
abruptly changing components. probability than commonly used abrupt detection methods.
Selectively tracking the rapidly changing parameter branches
via estimation covariance modification at the jumping points
has been rigorously discussed. Both the jumping locations and
In this paper, the problem of tracking fast and abruptliyncrement values of covariance matrix for the detected pa-
changing systems has been tackled. A T-RLS algorithm hiasneter branches can be determined. Combining the proposed
been proposed to track fast changing parameters with local aAd@-RLS algorithm with the covariance modification method
global trends. For an unknown fast varying system, a MT-RUSing wavelet detectors, slowly, fast, and abruptly changing

V. CONCLUSION
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components of a general time-varying system all can be trackegdo]

well.
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