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and, for a fixedi, the maximum value assumed Hw;(k)| is Feedback Stabilization of MIMO 3-D Linear Systems

v e (0)

3k,

Observe that wherla;(k)| assumes its maximum value, the Zhiping Lin
remainder components of the vectotk) have to be zero due to

inequality (57). Hence, for the worst case k) # 0 anda; (k) = 0
for j # i.

Abstract—In this paper, the authors solve the open problem of the
existence of double coprime factorizations for a large class of multi-

From (47) input/multi-output (MIMO) three-dimensional (3-D) linear systems. It

is proven that if all the unstable zeros of the contents associated with
a left and a right matrix fraction descriptions of a given feedback
stabilizable causal MIMO 3-D plant are simple, then the plant has a

Jim Y (k) (8(k) — p) = 0. (58)

WithOLft loss of generality, we will assume for the worst case thgbuble coprime factorization. The authors then give a parameterization
a;(k) is equal toyr~'||2(0)]|3*, which implies of all stabilizing compensators for an MIMO 3-D system in this class. The

. " key result developed in the paper is a novel and constructive technique
h(k) = v~ ||z (0|3 hi. (59)  of “replacing” an unstable polynomial with a stable polynomial step by
step. An illustrative example is also provided.

Substituting (59) into (58), yields

Index Terms—Coprime factorization, feedback stabilization, multidi-

klim o 2 (0)|| 85 [p — 6(k)] = 0. (60) mensional systems.
Using (52) and (60), we can write, for the worst case, that
) - I. INTRODUCTION
1}520 [y(k +d) = (k+ d)e(k)] The problem of feedback stabilization of multi-input/multi-output
= lim a;(k+ d)hl-T[p —6(k)] (MIMO) linear systems has drawn much attention in the past years
koo ) e T because of its importance in control and systems (see, e.g., [1]-[11]
= lim v [e(O)IB*F R [p — 6(k)] and the references therein). Consider the feedback system shown in

This completes the proof. {e1 }

Fig. 1, whereP represents a plant and represents a compensator.
The relationship between;, u; ande:, e; can be expressed as

=l re Tahens )@

-

Heu

= 3% lim O3 - 0] = 0. (61)
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Il. DouBLE COPRIME FACTORIZATIONS

uz
In the following, we shall denoteC (R)) the field of complex (real)
+ numbers;C(z) = C(zi, ---, z,) the set of rational functions in
uy + el yro4 ez — Y2 : ’ T . .
() c {) 1P complex variables;, - - -, z, with coefficients inC; C[z] the set of

- polynomials in complex variables, - - -, z,, with coefficients inC;

C.(z) the set of rational functions i€(z) having no poles irU™;

C™*![z] the set ofm x I matrices with entries irC[z], Cs"*!(z)

the set ofm x [ matrices with entries itCs(z), etc. Throughout this

paper, a zero of an-D polynomial is called a stable zero if it is not

in U™; otherwise, it is called an unstable zero. AFD polynomial

is called a stable polynomial if it has no zerosliry; otherwise, it
Forn-D (n > 3) systems, it becomes much more difficult to tacklés called an unstable polynomial.

the feedback stabilization problem because of some fundamentalVe now reproduce the definition of DCF.

differences between MIMO 2-D systems and theiD (n > 3) Definition 1 [3], [4]: Let P € C™*!(z). ThenP is said to have

counterparts [14]-[18]. In particular, since a given MIM®@D a DCF if:

(n > 3) systemP may not always admit a minor coprime MFD 1) there existD, € C."*™(z), D. € Cs'*!(z), andN., N, €

Fig. 1. Feedback system.

[14], [16], existing criterion for feedback stabilizability of MIMO C." " (z);

2-D systems is not applicable to anD (» > 3) systemP that 2) there existX, € C.'*!(z), X, € C,"*™(z), andYs, Y, €
does not admit a minor coprime MFD. Suppose tfiatadmits a C.*™ (2); ’

factor coprime (but not minor coprime) MFIP = D‘HN:; Sule 3) D., D., X., X, are all nonsingular;

[9] and Lin [10] have_recently shown that the conditipf V] 4) P=DI'N, = N,D-" and the identity holds

being of full rank inU™ is not necessary fo’ to be feedback . .

stabilizable. By introducing the new concept of “reduced minors” { X Y. } {Ds _YS} = { I Olﬂm}

[9] and “generating polynomial3”[16], it has been shown that a =Ns Ds ] [Ns Xs Ot Im |

necessary and sufficient condition fér to be feedback stabilizable | this section, we solve the DCF problem constructively for a

is that the reduced minors of the matfiz  N'] have no common |arge class of MIMO 3-D systems. Some lemmas are first required.
zeros inU™ [9], [10]. Lemma l:Let P € C™(zy, 22, z3). Then P(z, z2, 23)

However, it is still unknown whether or not there exists a doublgan pe decomposed into MFD'E = D~'N = ND~', where
coprime factorization (DCF) for a given stabilizable MIM®-D ) ¢ ¢™*™ [z, 2, 23], D € C™™!z, 22, 23], and N, N €
(n 2 3) linear system [9]-{11]. This problem is in fact a speciao™=[.,, -, -,], such that the greatest common divisor (g.c.d.),
case of a more general problem posed by Vidyasagal. in [3]  denoted byd(z1, z2, z3), of thel x I minors of F = [D” NT|T
“Is it always necessary thaf’ and P individually have coprime and the g.c.dd(z1, z2. z3) of them x m minors of F = [-N D]
factorizations when the closed loop is stalilhe answer to this zre poth independent of the variables =s.
question is affirmative for MIMO 1-D and 2-D linear systems [1]-{5]. A proof can be given by considering(z:, ., z3) as a rational
However, for general linear systems, the above question is not easy{grix in two variables:, z; over the field of rational functions
answer. Anantharam showed via an example that for linear syste@s., ), applying the known result on factorization of 2-D polynomial
over an arbitrary integral domain, it is possible to stabilize planigatrices over an arbitrary coefficient field [20] and then using a
which have no coprime factorizations [19]. Lin conjectured in [10}enormalization technique proposed in [21]. The details are omitted
that a stabilizable MIMO:-D linear system also has a DCF, but &ere to save space. In the remainder of this paper and particularly in
proof is not available currently. Theorem 2, we assume that the MFD’s of a given MIMO 3-D system

Another closely related important problem is the parameterizatigfivays possess the property stated in Lemma 1, d(es, z2, 23)
of all stabilizing compensators for a given stabilizable MIMO  (j(-,, z,, z4)) is equal to its contefty(z1) (§(z1)). For this reason,
D plant. Sule gave a characterization of stabilizing compensatQyg simply callg(z1) (j(z1)) the content ofF (F).
for a stabilizablen-D plant in [9]. However, as to be discussed | emma 2: Let F(z) € C**'[z;] be of normal full rank with
in Section Ill, his characterization [9] is not equivalent to the welly, > 7 | et (z,) be the g.c.d. of thé x I minors of F(z1). If z1; is
known Q-parameterization [1]-{5] in the sense that the characterizg-simple zerd of a(z/), then rankF(z,) = I — 1.
tion given in [9] is not constructive. Proof: By transforming F'(z1) into its Smith form [22], the

In this paper, we show that for a large class of MIMO 3-D lineaesyt follows immediately. O
systems, it is always possible to construct DCF’s, thus proving in part| emma 3: Let  F(z1, 22, z3) € CF¥![z, 22, 23] be of
the conjecture raised in [10]. The parameterizatiomlbfstabilizing normal full rank, with & > 1. Let ai(z1, 2o, 23), -+,
compensators for this class of MIMO 3-D systems is also given. (., -, =) be the I x I minors of F(z1, z2, z3), and

The organization of the paper is as follows. In the next sectiop, (., :,. =) = g(z)bi(21, 22, 23) ( = 1,---, B) such that
we give a constructive proof for the existence of DCF's for a largg (., -, z3),---, bs(z1, 2. 23) have no common divisors of the
class of MIMO 3-D linear systems. In Section Ill, the problemorm (-, — » ) for any 2y € C. Assume that,; is a simple zero
of parameterization ofall stabilizing compensators for a givenof ;(.,). If for some fixedzs = 201, 23 = z31, (211, 221, 231)
stabilizable n-D plant is discussed. An example is illustrated ing not a common zero ofy (=1, =2, =3), -+, ba(z1, 22, z3), then
Section 1V, and conclusions are given in Section V. To save Spaggnk F(z,, z1, z31) = I — 1. Furthermore, the normal rank of
we refer the reader to the cited references for some definitions whigh. | ., ..) is equal tol — 1.
require rather lengthy descriptions such as content, coprimeness, arld _ S ]
reduced minors. I is thel x I identity matrix and0;, 0,,,,; denote the x I andm x I

zero matrices, respectively.
5See [13] and [17] for the definition of content for arD polynomial.

3Both are in fact equivalent; see [9], [10], and [16] for the definitions and 6z, is called a simple zero af(z1) if 1 — 211 is a divisor ofa(z1 ), but

more details. (21 — #11)? is not a divisor ofa(z1).
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Proof: Consider the 1-D polynomial matri¥'(z1, z21, z31). with the first column ofB(z2, z3) being identically zero. Combining

Leta)(z1), ---, aj(z1) denote thd x I minors of F(z1, 221, z31). (4) and (5) gives
We haVe, F(U)(Zz, Z;g) "V(Zz. 33) = Bl(Zg, Z’;;) (6)
ai(z1) = ai(z1, 221, 231) , i , o
. ) with the first column of Bi(z2, z3) being identically

=g(2)bi(21, 221, Z51), p=1 0 @ ero. Since FO (25, 23) = F(z11, %2, 23), (6) leads to
Letc(z ) denote the g.c.d. @f (z1, 201, 231)s - -+, Da(21, 201, 231).  F(211, 22, 23) W22, 23) = Bi(2a, 23), OF
The assumption thatzi1, z21, 231) is not a common zero of e NI e o\ — T o o
bi(z1, 22, 23), -+, ba(z1, 22, 23) inzlplies thatwn is not a zero of Fn1, 2, 2) Wz, ) = Fi(1, 22, 20) Bu(21) 0
e(z1). Hence,an is a simple zero ofj(z1) c(z1). From (2) and the Where F1 € C"[z, 2, %], and B, = diag{(z -
faCtthatC(71)|Sthe ng Ob1(41,721,431), . ,b’}(/.l., 721,431), Zi1) 1} O
it follows that g(z1) ¢(z1) is the g.c.d. ofa)(z1), -- -, a)3(z1). By Theorem 2:Let a causdl 3-D plant P = D'N =

Lemma 2, rankF'(z11, 221, z31) = I—1. Furthermore, we claim that y D~
there indeed exists some = z21, 23 = 231 suchthatzi1, 201, 2z31) D €
is not a common zero ofbi(z1, 22, 23), -+, bg(z1, 22, 23). such
For otherwise, (/.1 — z11) would be a common divisor of F = [DT N7|7 € C*[z, 2, z3] (k = m + 1) is equal
bi(z1, 22, 23), -+, bs(z1, 22, 23), contradicting to the assumption.to the contenty(z:) of F and the g.c.d. of the family ofn x m
Therefore, the normal rank df(zy;, 22, z3)isequaltol —1. O minors of I = [—A D] is equal to the contenj(z,) of F.

€ C™ Nz, 2, 23), where D € C™X™[z, 2, 23],
CIXI[Zl, Z2, 23], and [V, N € C'”Xl[‘/l 22, 43]
that the g.c.d. of the family off x [ minors of

Lemma 4 [14], [18]: Let F € C™*![z2, 23] be of normal rank

r with » < min{m, I}. Then F(z2, 23) can be factorized as F = [D”

F=HNREF, for someF; € C™*" [z, z3] and Fh
with F»>(z2, z3) being MLP.

Lemma5 [5]: Let F € C"*'[zs, 23] be of normal rank- with
r < [. If Fis MLP and all the common zeros of thex » minors
of F(z2, z3) are not inU? = {(z, z3) : |22] < 1, |z3] < 1},
then there existdV € C'*'[z,, 23], with w = det W # 0 in U?,
such thatFW = B, with the firsti — » columns ofB(z2, z3) being
identically zero. O

S CTXI[ZQ, Zg],

Let by (z1, 22, 23), < -+, bg(z1, 22, z3) be the reduced minors of
J\'l ]1 . |f bl(zl, zZ92, 23), HRIEN bﬂ(zl, Z2, 23) have no
common zeros i7® and all the unstable zeros ¢fz;) and j(z1)
are simple, therP(z, 22, z3) has a DCF.

Proof: Let g(z1) = =y (21 — 21n) go(z1), Where |z1,,| <
1 (n = <+, N') and go(z1) is a stable polynomial. Since
bi(z1, 22, 23), -+, ba(z1, 22, z3) have no common zeros IA* and
z11 is a simple unstable zero g@f(z;,), by Theorem 1 there exists
W, € CIXI[ZQ, 23], with wH (2‘2, Z%) = det W, (227 Z%) 75 0in FQ,
such that

We are now in a position to present the key results of this paper

in the following two theorems.

Theorem 1:Let F € C**'[z,
ai(z1, z2, 23), -+, ag(z1, z2, 23)
F(Zl. Z2, Zg). SUppOSG thaﬁi(l 1, 22, ),3) = g(x.l)b (/,1 Z2, 143)
(i = 1,"',/3) such that bi(z1, 22, 23), -+, /3(/. s ,23)
have no common divisors of the forntz; — zi0) for any
z10 € C. If z11 is a simple zero ofg(z:) with |z11] < 1,
and .b1(2‘1., Z2, /‘.’g), RN b’3(31, Z9, 33)
in T, then there existdV € C'%![zy, 23], With w(zs, z3) =
det W(za, z3) # 0 in U?, such that

F(Z], zZ2, Zg)”/'(ZQ, 23) = F](Z], z2
CL:X’[ZL z

z2, z3], with & > 1, and let
denote thel x [ minors of

, 23) B (z1)
and Ey =

®)

where Fy € diag{(z1 —
211), 1, ey 1}

Proof: Let F©(zy, z3) = F(z11, z2, z3). By Lemma 3, the
normal rank ofF(®)(zy, z3) is!—1. By Lemma 4,F(®)(z,, z3) can

be factorized as
F(U) (22,

2, 23],

23) F®) (23, 23) )

where F(V ¢ CF*U=D1zy, 2], F® ¢ CU=DX 2, 23], with
F®(z, z3) being MLP. SinceF®(z,, z3) is MLP, there are
only a finite number of pointgzs;, z3;) (j = 1,---, J) such
that rank F?)(z,, z3) is smaller than! — 1. From (4), rank
F) (2, z3;) is also smaller thar — 1. This, in turn, implies
that rankF(z11, z2;, z3,) is smaller thari — 1 since F(¥) (z,, z3) =

z5) = FY(z,

F(z11, 22, z3). By Lemma 3,(z11, 225, z3;) must be a common : ne
. ba(z1, 22, z3). The assumptions that desired factorization

zero of bi(z1, z2, 23), « -
bi(z1, 22, 23), -+, ba(21, 22, z3) have no common zeros it?
and|z11| < 1 imply that we cannot have,;| < 1 and |z3;] < 1,
for j = 1,.--,.J. By Lemma 5, there exist}) € C"![z, 23],
With w(z2, 23) = det W (22, 23) # 0 in UZ, such that

F()(2~ I‘(/«Q /-%)—
7In the rest of this paper, we defif& = {(z2, 23)

®)

Dze] <1, zs| < 13

42, 23)

have no common zeros

FW, =F E, (8)
where Fl € Ckxt[ll. z2, 33], and Ey = dlag{(zl —
2i1), 1, -0, 1),
Rewrlte (8) as
=FW,E] (9)

Let a11(z1, 22, 23), -+, a18(z21, 22, z3) denote thd x [ minors
1(z1, 22, z3). From (9), we have

ali(Zl, Z2, 33) :ari(zh Z2, 23)’1L’1(227 23) (21 - 311)71

i=1--,8 (10)
or
ai(z1, z2, z3) = g1 (21) bi(z1, 22, z3) wi (22, 23),
i=1,-, f (11)

where g1(z1) = H;Y:,Z(zl — z1n) go(z1). Notice that the unstable
1-D polynomial (z1 — z11) has been replaced by the stable 2-D
polynomial wi (22, 23).

Let bh‘(Zl, Z9, 23) = bi(/‘.’l, Z9, 33)71,'1(22, /‘.’3) for i = 1, e, U’
Clearly, bi1(z1, z2, z3), -+ -, big(z1, 22, z3) have no common
zeros in U®. Since wi(z2, z3) is independent of z,
bii(z1, 22, z3), -+, big(z1, 22, z3) have no common divisors
of the form (z1 — z10) for any z10 € C. Hence, Theorem 1 can
be again applied td(z1, z2, 23).

Repeating the above proceduré times, we finally obtain the

N’
FI[waE"

n=1

where FN/ € Cle[Zl, 292, Zg], W, S C!XI[ZQ, Zg], with
Wn (22, 23) = det Wy(z2, 23) # 0 in U* and E,, = diag{(z —

Fyr = (12)

8See [5] and [10] for the definition of causality afD systems.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 10, OCTOBER 1999 1953

Zin)y 1, +oo, 1} Let ansi(z1, 22, 23). -+, anrg(z1, 22, z3) de- following equation:
note thel x I minors of Fiy:(z1, 22, z3). It can be easily shown
that XN, =U.d,
N YN, =W,d,
anri(z1, 22, 23) = go(z1) bi 21, 22, 23) H wn (22, 23), N.Y. = (I — X.)d. (18)
n=1
i=1,---,0 (13)

where X, € C.,"*™(z), Y. € C,'*"(z), U, € C,"*(z),
WhereH;N;l wn (22, z3) is a stable 2-D polynomial. Singg (z1)is s € C."*!(z). It was shown in [9] that all stabilizing compensators
also a stable polynomial andy(z1, 22, z3), -+, ba(z1, 22, z5) fOF P are given byC' = Y, X' whereX, andY, satisfy (18). The
have no common zeros iU’®, it follows immediately that advantage of this method is that it does not reqiiire> have a DCF. _
ann(z1, 22, 23), =+, ansg(z1, 22, 23) have no common zeros in However, unllike FheQ-parameterization, such a characterizatipn is
T, i.e., Fxr(z1, 22, 2s) is of full rank in 7. not constructive since ther_e are no fr_e_e_ parameters to ch_oose in (18)!
Let Fxv = [D! N']', where D, € C'%{[z1, =, ;] and N fac_t, even when a partlcula_r stabilizing compensator is ave_u_la_ble,
N. € C™[z, 25, zs]. We next show that® = N.D;'. Let We still have to resolve (18) in order to obtain another stabilizing

E = [[Y, W.ET". Clearly, det E # 0. From (12), we have compensator.

Fy/ = FE, of D, = DE. N. = NE. SinceP = ND™', it From the above discussion, it is clear that theparameterization
follows that’P — NbEElelf ; {NE}{'DE}A — N.D-1 ' (17) is preferred ifP has a DCF. We have shown in the previous
It can be si;nilarly shown thatP — DN : fohr .some section that a MIMO 3-D plant has a DCF when all the unstable zeros

of its associated contentgz;) and g(z,) are simple. Therefore,
following [2]-[5], we are able to give &)-parameterization of all
stabilizing compensators for a large class of MIMO 3-D systems as
follows.

Theorem 3: Let P(z1, z2, z3) be given as in Theorem 2. Then all

D, € C"™*™[z, 2, 23] and N, € C"™*[z, z,, z3] such that
[-N. D,]is of full rank in T°.

Applying a result in [23], we can find, € C."*'(z1, 2o, 23),
X, € C™ " (2, 2, z3), and Vi, Ya € Ca'X" (21, 25, 23) such

that o .
stabilizing compensators faP are parameterized by
XiDs +YiN, =1, (14) ~ o . .
N.Yi + DX, = L. 5 =X —QN)T' (Y4 QD) Q€ Gz 2. z)
i . o o i and det(X, — QN,) # 0. (19)
LetA =-X,Y, +V1X,,andX. = X, + AN,, Y. =Y, — AD..
It can be easily checked that the following identity holds:
) ) IV. EXAMPLE
X, Y. ||IDs Y, _ L 0im (16) Consider a causal unstable 3-D system represented by
_—'7Vs -D 5 —’7\75 AYS 0777,, l I m ’
~ . . 1 |z1405 0
We have shown thab. and D, are nonsingular. It remains to show P(zy, 22, z3) = N - P (20)
P ~ e

that X, and X, are nonsingular. Sinc® is causal by assumption,

using a technique similar to the one in [7] and [11], it is easy to show ) _ )
that det X,(0, 0, 0) # 0 anddet X,(0, 0, 0) # 0, implying that WNe€r€2, = =1 +0.5. Applying Lemma 1, we can decompoge
X, and X, are nonsingular. O into MFD's P = D~ N = ND™", where

Ill. PARAMETERIZATION OF STABILIZING COMPENSATORS D=D= {m +0.5 0 }

There are apparently two methods for characterizing all stabilizing 0 2405
compensators for a given stabilizableD plant. The first method is N=N=— {:1 + 0.5 0 }
the celebrated)-parameterization formula [1]-[5], while the second Zy z3+2
method is the characterization formula proposed recently by Sule [9].

We briefly review these two methods. Let F = [DT NTJT, F = [-N D], and letas (=1, 2, z3),

1) First Method: For a stabilizablen-D plant P € C™*!(z), -+, ag(z1, 22, z3) denote the 2x 2 minors of F. We have
we first obtain a DCF given in Definition 1. Then all stabilizing,; (., -, =3) = g(z1)b:(21, 22, 23), for i = 1, ---, 6, where
compensators fo” are parameterized as 9(z1) = §(z1) = 21 4+ 0.5, and by (21, 22, 23), =+, be(21, 22, 23)

: N . N are the reduced minors df given by
C=(X.—-QN) "(Y.+QD,):

Q€ C*"(z)and det (X, — QN,) #0.  (17) = +0.5, 0,  z3+2,  —(x405),  —z,  z3+2.
The beauty of the abov@-parameterization formula is that we onlylt is easy to see thab;, ---, bs have no common zeros >,
need to obtain a particular solution for the DCF problem and thesence, P(z1, z2, z3) is feedback stabilizable [9], [10]. However,
derive all stabilizing compensators according to (17). This methathce g(z1) has a zero at;, = —0.5 inside the unit disd’", F

is constructive as one can obtain all stabilizing compensators isynot of full rank inT>. Applying a criterion for the existence of
varying @ freely in C,'*™(z) (with the constraint thatX, — QN,) primitive factorizations for 3-D polynomial matrices [17], it can be
is nonsingular). A limitation of this method is that it requiresto  easily tested thaf’ is already FRP. Thus, unlike the 2-D case [20],
have a DCF. we cannot extract a right divisor with determinant equalyte: )

2) Second Method:Consider an MFDP = N,d;' for a stabi- from F. As a result, a DCF of is not readily available. Since the
lizable P, where N, € Cs™*!(z) andd, € Cs(z). Then solve the only unstable zero of(z1) (§(z1)) is simple, by Theorem 2P has
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a DCF. Forz; = —0.5, we have V. CONCLUSIONS

r 0 7 In this paper, we have solved the open problem of the existence of
0 DCF'’s for a large class of MIMO 3-D linear systems. We have proven
0 that if all the unstable zeros of the associated contgnts) andg(z1 )

of a feedback stabilizable causal MIMO 3-D plaRtz, z2, z3)

3 are simple, thenP(z;, z2, z3) has a DCF, thus proving in part a

conjecture raised in [10]. We have also given a parameterization of

} all stabilizing compensators for an MIMO 3-D system in this class.

We hope our results stimulate further research in this direction.

- The key result developed in this paper is a novel and constructive
technique of “replacing” an unstable polynomial with a stable one, as
presented in Theorem 1. This technique is in some sense similar to
the technique presented in [7] but is much more complicated, since

v 3 we have to deal with 3-D polynomial matrices here instead of 2-D

ones in [7]. The main contribution is that we are able to construct a
DCF for a given MIMO 3-D plant in the class discussed in a finite

F(z1, 22, 23)Wi(2a, 23) = Fs(21, 22, 23)E1(21) number of steps. However, it is nontrivial to extend the proposed

sy 42 0 technique to the generalD (n > 3) case, as in general we are not

—s 1+ 05 able to decompose a give MIM@-D (» > 3) linear systemP(z)

2 0 into MFD's P = D™'N = ND~' such as the g.c.d(z) of thel x1

0 I minors of[D¥  N']" is equal to its contenj(z;). The problem of
. the existence of a DCF for a general stabilizable MIM@ (n > 3)

Ei(z) = {Zl "(')0") ﬂ linear system remains open at this stage.

Throughout this paper, we have assumed the ground field to

. . LT i be C. It is natural to ask ifP € R™*!(z, 25, z3), and is it
It can be easily tested thdf, is of full rank in U>. Similarly, we . . ST T
y dt y possible to decompos® into MFD's P = D;'N, = N,D7',

can obtain . -
with Ds € RmX”?[Zl,Zz./ 23], DS € RIXI[ZhZz,Z;;], and

Fu(er, oo ) = {—1 0 1 0 } N, Ny € R™ [z, 2y, 2], such that the matriceD! N[|”

$ -z —(z+2) 0 z2+05 and [N, D,] are of full rank inT®? The answer is affirmative
. _ ~ if all the unstable zeros ofi(z1) and g(z1) are simple and real,
with F(z1, 22, 23) being of full rank inU”. Partition . and Fx as  sjnce in this case the ground field of all the definitions, lemmas,
F,=[D; N/]"andF, = [-N. D.] and theorems can be restricted Ba However, if g(z1) or j(z1)

F(—()S, Z2, Z;;) =

cco Y oo o
o
&
+
[\V]

F(—()Sq Z2, Z;;)”"Yl(lz, 23) =

N
o

w

+ )
V]

OO OO w

This implies

Fo(z1, 22,

Z;g):

M

. 1 0 N 1 0 has some unstable complex zeros, we cannot guaranted’thas
D, = {0 4+ 0 5}, N = LZ o+ 2} a DCF with coefficients oveR. More research is required before
an answer could be given. Another unresolved open problem arising
D, = { z3 +2 0 _ } N, = {33 +2 0 } from this paper is to investigate whether or defz1, z2, z3) has a
—z 2105 0 3+ 2 DCF wheng(z1) or §(z1) has a multiple zero.
We next construct
¥ -1 0 i 1 z3+ 3 0 ACKNOWLEDGMENT
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