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Cramer–Rao Lower Bound for Parameter
Estimation in Nonlinear Systems

Zhiping Lin, Qiyue Zou, E. Sally Ward, and Raimund J. Ober

Abstract—Calculation of the Cramer–Rao lower bound, i.e., the
inverse of the Fisher information matrix, for output data sets of
a general nonlinear system is a challenging problem and is consid-
ered in this letter. It is shown that the Fisher information matrix for
a data set generated by a nonlinear system with additive Gaussian
measurement noise can be expressed in terms of the outputs of its
derivative system that is also a nonlinear system. An example is
considered arising from surface plasmon resonance experiments
to determine the dynamic parameters of molecular interactions.

Index Terms—Cramer–Rao lower bound (CRLB), Fisher infor-
mation matrix, molecular interactions, nonlinear systems, param-
eter estimation, surface plasmon resonance (SPR) experiments.

I. INTRODUCTION

A typical approach to studying complicated biomedical phe-
nomenon is to investigate mathematical models that de-

scribe the underlying phenomena. Unknown parameters of an
underlying model are estimated from experimental data. For ex-
ample, surface plasmon resonance (SPR) biosensors are used
to estimate the kinetic constants of protein–protein interactions
[1], [2]. The accuracy with which the parameters can be deter-
mined depends on a variety of factors, such as measurement
noise level, sampling rate, number of repeat experiments, etc.
The production of the reagents for such experiments can often
be very costly. Therefore, an efficient setup of the experimental
conditions is of great importance to avoid unnecessary costs
in executing the experiments. A classical tool for experiment
design is the Fisher information matrix (see, e.g., [3]). The in-
verse of the Fisher information matrix gives a lower bound, the
Cramer–Rao lower bound (CRLB), on the covariance matrix of
any unbiased estimator of the parameters [4], [5]. It is widely
used as a benchmark to evaluate the performance of an estima-
tion algorithm and can provide guidance to improve the exper-
imental design.

The acquired data in biophysical experiments can often be
modeled as the output of a linear or nonlinear system, with the
sampled output being corrupted by white noise (see, e.g., [6] for
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nuclear magnetic resonance data and [7] for biosensor data). A
crucial aspect is that the data arising in biophysical experiments
are typically nonstationary, which means that existing results on
the CRLB for nonlinear filtering that deal with stationary time
series (see, e.g., [8]) cannot be applied to the problem at hand.
To date, no effective approach appears to be available to com-
pute the CRLB for parameter estimation for the case of nonsta-
tionary deterministic nonlinear systems corrupted by measure-
ment noise.

Recently, a systematic approach has been proposed for cal-
culating the CRLB for output data sets of one-dimensional non-
stationary linear dynamic systems with deterministic input and
Gaussian measurement noise [9]. The approach has been ex-
tended to data sets generated by multidimensional linear sepa-
rable-denominator systems [10]. The above approach is based
on the concept of a derivative system associated with the orig-
inal dynamic system. Here we will show that the concept of the
derivative system can be further generalized to a nonlinear dy-
namic system and that the derivative system is again a nonlinear
system of the same structure as the original system. The Fisher
information matrix can then be calculated by determining the
outputs of the derivative system at the time points at which the
experimental data are obtained.

II. FISHER INFORMATION MATRIX AND CRLB

We consider a nonlinear system with inputs and out-
puts, described in the state-space form as (see [11])

(1)

(2)

where is the unknown parameter vector
to be estimated, the state is assumed to be an element of

, the inputs are real-valued functions of that
are not dependent on is the system output, the
mappings are -valued functions of and

, and the output function is an -valued function of
and . Throughout the letter, we use and to rep-
resent the th element of and ,
respectively, i.e., and

. Similarly, we use
and to represent

the th element of and ,
respectively. Throughout the letter, we assume the following.

Assumption 2.1:

1) The nonlinear system is represented by (1)–(2), where
, and are smooth functions of
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and , i.e., all entries of , and are
real-valued functions of and with continuous partial
derivatives of any order. The input functions
are assumed to be piecewise continuous in and indepen-
dent of the parameter vector .

2) The acquired noise corrupted data samples are
the measured output of the nonlinear system , i.e.,

where is the
th noise-free output element at the sampling instant
, and is the measurement noise component

; the measurement noise compo-
nents have independent Gaussian distributions with zero
mean and variance .

The parameter space , i.e., the set of all possible
values for the parameter vector , is assumed to be an
open subset of the Euclidean space . The proba-
bility density function for the acquired data set

is assumed to
satisfy the standard regularity conditions (see, e.g., [12]). The
Fisher information matrix is then given by

, where is the expected value with respect to the
underlying probability measure. If is positive definite for
all , by the CRLB, any unbiased estimator of has a
variance such that var .

In the following theorem, we first show that the derivative
system (with respect to the given parameter vector ) of a gen-
eral nonlinear dynamic system given by (1)–(2) can also be ex-
pressed as a nonlinear system of the same form. In the second
part of the theorem, this fact is used to show that the Fisher infor-
mation matrix for the sampled output data of a nonlinear system
with white Gaussian measurement noise can be expressed using
the output samples of its derivative system.

Theorem 2.1: Consider the nonlinear system repre-
sented by (1)–(2) and assume that Assumption 2.1 is satis-
fied. Let with

.
Then, we have the following.

is equal to the output of the derivative system
represented by

(3)

(4)

where , and for

...
(5)

...

(6)

with

...

Here , and are the Ja-
cobian matrices of , and with respect
to , respectively.

The Fisher information matrix is given by

Here is defined as

(7)

where denotes the zero matrix and the
identity matrix.

Proof: It follows from Assumption 2.1 that
is continuous with respect to and , piecewise partially
differentiable with respect to , and partially differentiable with
respect to for all and (Assume
and throughout the proof). Then with the possible
exception of the discrete discontinuities of ,
we have (see [13, p. 359])

. Taking the partial
derivative of (1) with respect to gives

. The
partial derivative of , with
respect to , is given by

.
Since
and

, stacking the corresponding equations produces
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and
. Since ,

the derivative system is then obtained by stacking the cor-
responding equations as . The initial
condition of is given by .

From a classic result on the Fisher information matrix (see,
e.g., [4])

(8)

The above theorem shows that the Fisher information matrix
arising from the estimation of unknown parameters using the
output data set of a nonlinear system represented by (1)–(2) can
be conveniently expressed in terms of its associated derivative
system, which has a similar representation. Although, in gen-
eral, there does not exist an analytical solution for a general non-
linear system, there are a number of good numerical methods for
solving nonlinear systems numerically. It follows that the Fisher
information matrix and the CRLB can be computed using one
of these numerical methods.

The parameter vector is said to be locally identifiable if
there exists an open neighborhood of containing no other pa-
rameter vector that is observably equivalent to [14]. As a corol-
lary, we can obtain a criterion for the local identifiability in our
context that draws an interesting connection between identifia-
bility and the output reachability of the derivative system.

Corollary 2.1: Given the assumptions of Theorem 2.1,
the parameter vector is locally identifiable if and only if
rank

.
Proof: It follows from [15] that the parameter vector is

locally identifiable if and only if the Fisher information matrix
is invertible. By Theorem 2.1, is invertible if and only

if the above rank condition is satisfied.

III. EXAMPLE

Biosensors such as instruments by the BIAcore company
allow for the monitoring of protein–protein interactions in
real time using an optical detection principle based on SPR
technology (see, e.g., [1] and [2]). In the experiments, one of
the proteins (ligand) is coupled to a sensor chip, and the second
protein (analyte) is flowed across the surface coupled ligand
using a microfluidic device. The SPR response reflects a change
in mass concentration at the detector surface as molecules bind
or dissociate from the sensor chip. The resulting acquired data
can be used to estimate the kinetic constants of protein–protein
interactions.

A notorious problem in conducting such experiments is the
presence of mass transport (see e.g., [16]). The following com-
partmental model, written in standard form , has been sug-
gested (see, e.g., [16] and [17]) to estimate the kinetic parame-
ters of an interaction in the presence of mass transport

(9)

(10)

where

Here is the concentration of analyte on the sensor surface,
is the measured SPR response in resonance units (RU) that

are proportional to the mass accumulated on the surface, and
are the kinetic association and dissociation constants of the

interaction, respectively, is a parameter that indicates the in-
fluence of mass transport on the kinetics, is the maximum
analyte binding capacity in RU, is the concentration value
of analyte in the flow cell that can be controlled as an input in
the experiments, and the initial SPR response is assumed to be
zero. The unknown parameter vector to be estimated in the ex-
periments is .
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The first step of the proposed method is the calculation of the
derivative system by Theorem 2.1. The derivative system of
the system is represented by

(11)

(12)

where

and (see the equation
at the bottom of the previous page).

We simulate the SPR experiments with the parameters
. The input of the system is as-

sumed to be

for
otherwise

and the starting time is . As we mentioned earlier, is a
parameter whose value indicates the influence of mass transport
on the kinetic interaction. In this letter, the range of is from

to , where a small (large) value indicates a large (small)
influence of mass transport on the data.

Using a numerical algorithm provided by Matlab [18], we
obtain the outputs of the derivative system represented by
(11) and (12). We then calculate the Fisher information matrix
for the data sets generated by the nonlinear system repre-
sented by (9) and (10) with white Gaussian measurement noise.
We assume that the output of the experiment is uniformly sam-
pled at , where is the sampling in-
terval and . Let the noise variance be
for . In the following discussion, we
fix .

Fig. 1 plots the best achievable normalized standard devia-
tions (STDs) (i.e., the square roots of the corresponding entries
of the inverse of the Fisher information matrix) of ,
and (STD , etc.) as functions of the parameter
in log scale. It can be seen that the best achievable normalized
standard deviations of all the four parameters are large when
is very small (near ). This confirms that the kinetic param-
eters are difficult to estimate in the presence of significant mass
transport effects, if the other experimental conditions remain un-
changed. On the other hand, when is very large (near ),
i.e., the mass transport effect is small, the best achievable nor-
malized standard deviations of , and are reasonably

Fig. 1. Normalized standard deviations (STDs) of k ; k ; k , and R as
functions of the parameter k .

small, while the best achievable normalized standard deviation
of becomes very large.
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