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Abstract. The problem of output feedback stabilizability of multi-input-multi-output (MIMO) multidimensional
(n-D) linear systems is investigated usingD polynomial matrix theory. A simple necessary and sufficient
condition for output feedback stabilizability of a given MIM®D linear system is derived in terms of the
generating polynomials associated with any matrix fraction descriptions of the system. When a given unstable
plant is feedback stabilizable, constructive method is provided for obtaining a stabilizing compensator. Moreover,
a strictly causal compensator can always be constructed for a causal (not necessarily strictly causal) plant. A
non-trivial example is illustrated.
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1. Introduction

The problem of feedback stabilization of multi-input-multi-output (MIMO) linear systems
has drawn much attention in the past years because of its importance in control and systems
(see, e.g., [1]-[8] and the references therein). Consider the feedback system shown in
Figure 1, whereP represents a plant ar@ represents a compensator. The relationship
betweeru, u; andey, & can be expressed as:

e (I+PC)™t —PU+CP)™ [ u L
e| |ca+Pot (+cCP)? U @)

Heu

A given plantP is said to be (output) feedback stabilizable if and only if there exists
a compensato€ such that the feedback systef, is stable, i.e., each entry éfe, has
no poles in the unstable region [2], [3]. For linear multidimensiomaD] system, the
feedback system is structurally stabieand only if each entry oHe, has no poles in the
closed unit polydis&™ [9], [10].

The problem of feedback stabilizability of MIMO 2-D systems using the matrix fraction
description (MFD) approach has been investigated by a number of researchers (see, e.g.,
[4]-[7] and the references therein). Itis now well known that by decomposing a given plant
P into an MFDP = DN, whereD andN are minor coprime 2-D polynomial matrices
of appropriate dimension, a necessary and sufficient condition for feedback stabilizability

of P is that all the maximal order minors of the matr@ [N] have no common zeros o’
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Figure 1. Feedback system.

[4], [5]. Constructive algorithms for the feedback stabilizability and stabilization problem
have also been presented for MIMO 2-D systems [4]-[7].

However, generalization of results on MIMO 2-D systems toriHe (n > 3) case is a
non-trivial task because of some fundamental differences between MIMO 2-D systems and
theirn-D (n > 3) counterparts [11]-[14]. In particular, since a gived (n > 3) system
P may not always admit a minor coprime MFD [11], [13], existing criterion for feedback
stabilizability of MIMO 2-D systems is not applicable to arD (n > 3) systemP that
does not admit a minor coprime MFD.

Recently, Shankar and Sule have solved the problem of feedback stabilizability and
stabilization for single-input-single-output (SISO) systems over a general integral domain,
whichinclude SISO-D systems as special cases [15]. Their method has later been extended
to the MIMO case by Sule [8]. However, unlike those earlier results on MIMO 2-D systems
[41-[7] which used mainly polynomial matrix theory, the method presented by Sule in [8]
relies heavily on the mathematical theory of commutative algebra and topology, with which
some control and systems engineers may be unfamiliar.

Although the theory of commutative algebra and topology is necessary for discussing the
feedback stabilizability of linear systems over commutative rings as in [8], it may not be so
when one is only interested in lineaD systems. The objective of this paper is to present a
solution to the problem of feedback stabilizability of MIMO lineaD systems using only
the polynomial matrix theory, and thus avoiding the sophisticated theory of commutative
algebra and topology. Using polynomial matrix manipulations, we are able to develop
a computationally more efficient method for constructing a stabilinitigy compensator
when a givem-D plant is stablizable.

After recalling some necessary definitions and related known results in the next section,
a tractable criterion for feedback stabilizability of MIM@®D systems is presented and
proved in Section 3. This section also shows how to construct a strictly causal stabilizing
n-D compensator when a given causal (not necessarily strictly caugalplant is sta-
bilizable. Comparison of the main results of this paper with Sule’s results [8] is given at
the end of Section 3. A non-trivial example is illustrated in Section 4 and conclusion is in
Section 5.
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2. Preliminaries

For convenience, in this section we reproduce some definitions and results which are re-
quired for the derivation of new results in the next section. In the following, we shall denote

R(2) = R(z, ..., z,) the set of rational functions in complex variabtas. . ., z, with
coefficients in the field of real numbeRs R[Zz] the set of polynomials in complex variables
71, - - -, Zn With coefficients in the field of real numbeRs R™![Z] the set ofm x | matrices

with entries inR[z], etc. Throughout this paper, the argumént is omitted whenever its
omission does not cause confusion.

Next, as in [13], we require some preliminaries regarding the ordering of the submatrices
and minors of a matrix. Let

F=1[f- fou] e R™D[Z], ()

and consider all thex | submatrices ofF. The number of these submatricegis= (mf').

If a submatrixF (1 <i < B) is formed by selectingrows £ iy < --- < iy < m+1,

we associaté; with anl-tuple(iy, ..., I)). Itis easy to see that there exists a one to one
correspondence between all the | submatrices of and the collection of all strictly
increasind-tuple(iy, ..., i), where 1<i; < --- < iy <= m+1. Now by enumerating the
abovel -tuple(iy, ..., i}) in the lexicographic order, tHex | submatrices ofF are ordered
accordingly. This ordering of thiex | submatrices of will be assumed throughout the
paper. The x | minors of the matrix-, denoted byay, .. ., ag, will always be ordered in
the same way aBy, ..., Fg,i.e.,a =detk, i =1,..., 8.

Definition 1[2], [3], [9], [10]. Consider the feedback system in Figure 1. Bet R™!(z)
represents an-D plant,C e R'*™(2) represents an-D compensator. The feedback system
is stable if and only if each entry of tlmeD rational matrixHg, as defined in (1) has no poles
inU". An unstable planP is said to be output feedback stabilizable if and only if there
exists a compensat@ (called stabilizing compensator) such that the feedback system is
stable.

Definition 2[11], [13]. LetD e R'™¥![z], N e R™![z], andF = [DT NT]T, whereD"
denotes the transposed matrix@f ThenD andN are said to be:

(i) minor right coprime (MRC) if thé x | minors of DT NT]T are factor coprime.

(ii) factor right coprime (FRC) if in any polynomial decompositién= F;F,, thel x |
matrix F» is a unimodular matrix, i.e., d€ = k € R*.2

In a dual mannerD € R™™[z], andN e R™![Z], are said to be minor left coprime
(MLC) if DT andNT are MRC etc

Definition 3[13]. LetF = [DT NT]T € RMx![Z] be of normal full rank® and let
a, ..., ag denote thd x | minors of the matrix=, with a; = detD, whereg = (mf').
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Extracting a greatest common divisor (g.c.d.9f a;, ..., ag gives:
a =dh, i=1...,8 (3)
Then,by, ..., bg are called the “generating polynomials” bt

The generating polynomials & = [D N] can be similarly defined [13]. The term
“generating polynomials” is justified by the following tow propositions [13], which show
that the generating polynomials are essentially unique for all left and right MFDs of a given
n-D rational matrix.

PROPOSITIONI [13] Let P € R™!(2) be of normal full rank. If
P = N;D;* = N;D, %,

b1, ..., bys are the generating polynomials @] N[]7, by, ..., bys are the generating
polynomials of D; NJ]T, then

by = by, i=1...,6 (4)

PROPOSITION2 [13] Let P € R™!(2) be of normal full rank. Decompose P into the
following MFD’s:

P=DN=ND"

Denote byb;, ..., by the generating polynomials §D NJ, and by h, ..., by the gener-
ating polynomials ofDT NT]T. Then

b = +b/, i=1,...,8 (5)

whereby, ..., b are obtained by reordering,. ..., by appropriately, with p = b;.

Remark 1. The definition of “generating polynomials” given in [13] is equivalent to the
definition of “family of reduced minors” in [8]. The results stated in Propositions 1 and 2
were first presented in [13]. They were also stated without proof in [8]. Also notice the
original results in [13] ardo,;; = kby; for (4) andb;, = :i:kf)i’ for (5) for some non-zero
constank. For convenience of exposition, the non-zero condtasdropped here since it
can always be absorbed into a g.c.d. of the maximal order minors of a matrix.

PROPOSITION3 [1_3I1 An n-D system represented by=PN D~1 € R™!(z) is stable if and
onlyifly #0inU", where fy, ..., by are the generating polynomials pp™ NT]T.

PrOPOSITION4 [16] Leth € R[Z], fori =1,..., 8. If by, ..., bg have no common zeros
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in Un, then there existy, ..., Ag € R[Z], such that
B
Y b =s (6)
i=1

for some sc R[z] with s 0inU" .
The following definitions and results are generalization from the 2-D case [4] toihe
case.

Definition 4. A rational functionn(z)/d(z) with n,d € R[Z] is called causal id(0) =
d(0,...,0) # 0. Itis called strictly causal if in addition(0) = 0. A rational function
matrix P € R™! (z) is called causal if all its entries are causal. It is called strictly causal if
all its entries are strictly causal.

PROPOSITIONS If P € R™!(2) is causal (strictly causal), there exists a right MFD P
N D~ such thaidetD (0) # O (in addition, N(0) = Op,).

PROPOSITIONG If P = ND™1 € R™!(z), anddetD(0) # 0, then P is causal. If in
addition N(0) = On,, then P is strictly causal.

Similar statements for the above two propositions of course follow for left MFB.of

3. Main Results

In this section, a tractable criterion for feedback stabilizability of MIM®D systems and
a construction of a strictly causal stabilizingd compensator for a stabilizable causdD
plant are presented. First, we need the following lemma.

LEMMA 1 Let F, F> € R*![Z] be of normal full rank, with k> |, and let d, denote a
g.c.d. ofthe Ix | minors of i, (p =1, 2). If

Fi=UFR (7

for some unimodular matrix W R**K[Z], then d = rod, for some g € R*.

Proof: Leta, ..., ay denote the x | minors of Fy (p = 1, 2) whereg = (¥). Since
d, is a g.c.d. of theé x | minors of F, (p = 1, 2), we have

B =dpby  i=1...pp=12 (®)

whereby; € R[z]. Let U; denote thé x k matrix formed by selecting the rows, .. ., i
from U, and letqiy, ..., gz denote thé x | minors ofU;. From (7), and by using the
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Cauchy-Binet formula [17], it follows that
B
a; = ZqijaZj
j=1

B
= ZQijdzij

=1

B
:dZZqi,-sz i=1,...,,3.
i=1
Thus, d; is a common divisor oByy, ..., ai. Since by assumptiord; is a g.c.d. of
a1, ..., aig, do is necessarily a divisor @f;.

Next, from (7), we havé~, = U ~1F;, whereU ! € R**K[Z] is a unimodular matrix. It
can be similarly argued as above thats a divisor ofd,. Therefored; = rod, for some
ro € R*. |

The main results of this paper are stated in the following two theorems. Theorem 1
presents a constructive solution to D polynomial matrix equation, while Theorem 2
gives a criterion on the output feedback stabilizabilityed systems.

THEOREM1 Letacausaln-D plant P= ND~! € R™!(z) with D € R™¥![2], N € R™![Z]
anddetD(0) # 0. Denote by b, ..., bs the generating polynomials 0T NT]T, where
p=("").

Ifb1, ..., bg have nocommon zerosth', then there exists a strictly causal compensator
C = X71Y e R™*™(z) with X € R™¥![z], Y € R'*™[Z], detX(0) # 0 and* Y(0) = O m,
such that the generating polynomials[of Y], denoted by £ . . ., eg, satisfy

-

b =5 9)
i=1

for some s € R[z] with s, #0in U

Proof: A proof consists of the following four steps: o
Step 1: Sinceby, ..., bg have no common zeros id ", by Proposition 4, there exist
A1, ..., Ag € R[Z], such that

B
> abi=s (10)
i—1
for somes € R[z] with s £ 0inU". Let
f1
= . D (M)
=| ¢ |=|x|¢cR [, (11)
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wherefi e R™[z] (i =1,...,m+1). LetFq, ..., Fg denote the x | submatrices of,
ie.
fi,
. (12)
fi,
where 1<ij <--- <ij <m+l,fori =1,..., 8. Letg =detF, G =[g,---0,] =
adj F, fori =1,..., 8. By Definition 3, = dby, fori = 1,..., 8, whered is a g.c.d.

ofay,...,ag.

Anl x (I +m) matrix B; is now constructed as follows. In columns. .., i, of B, we
placegi,, ..., g,. Theremaining columns @ are filled with zeros. Using the determinant
formula [17], it can be easily verified that

BF =al (13)
and
FB =W (14)
where any entry of/ is either equal to O or equal to some element§desdy, . . ., Lag}.
Therefored is a divisor of any entry of/'. Let
B
H=> xB (15)
i=1
we have

HF

B
(Zki Bi> F
i=1
B
Z)\i Bi F
i=1
B
= Y mal
i=1
B
= Z)\idbll
i=1
B
= dz)\ibill
i=1

= ds} (16)
Step 2: Let W = FH. From (14) and (15), we have

W=F (Z::,\i Bi>
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17

B
Zki FB;
i=1

B
S
i=1

Sinced is a divisor of any entry ofV/, it is clear thad is also a divisor of any entry aiV.

Let Hy, ..., Hg denote thé x | submatrices oH, and letA4, ..., Az deote the corre-
sponding minors. Consider an arbitrary submaHlix(1 < p < g), and letW, = FH,.
Letcy, ..., cg denote the x | minors of W,. SinceW, is a submatrix oV, it is clear that

d is also a divisor of any entry ai,. It follows thatd' divides thd x | minors ofW,. i.e.
G =d'd, i=1...,8, (18)
wherec| € R[z]. On the other hand, sind&, = F Hy, it follows that

G = Apai
= Apdh i=1....8 (19)

Combining (18) and (19) yields

Apby = d'c, i=1...,8. (20)
Sinceby, ..., by are factor coprimegd'~1 is necessarily a divisor of,. Because of the
arbitrary choice ofp, it can be concluded that—* is a common divisor ofA1, . . ., Ag.

Step 3: PartitionH asH = [Xo Yo] where Xy € R'¥[Z], Yo € R*M[Z]. Letey, ..., e
denote the generating polynomialsteéf= [ Xq Y], i.e.

~

Ai=de i=1,...,8 (21)
whered is a g.c.d. ofAy, ..., Ag. Since we have shown in Step 2 tiait? is a common
divisor of Ay, ..., Ag, it follows thatd' 1 is necessarily a divisor , i.e.

d=d"1s (22)

for somes, € R[z]. Hence,

Ai=dlse  i=1... 8 (23)
Recalling (16) gives

HF =dsl, (24)
or

XoD + YoN =dsi|,. (25)
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It follows
detHF) =d's. (26)

On the other hand, by the Cauchy-Binet formula, we have

detHF)

sedb

B
ZAiai
i1
S
Jq-

B
=ds ) eb (27)
i=1

Combining (26) and (27) gives

%) eb=¢s (28)
i=1
Therefore,
B
Z eb =g (29)
i=1

for somes; € R[Z] such thats' = s;s,. Sinces # 0inU ", it follows thats; # 0inU".
We have thus shown that a sufficient condition égr. . ., s to satisfy (9) is that' 1 is

a common divisor oAy, ..., Ag. On the other hand, id'~! is not a common divisor of
A1, ..., Ag, thenzlee.bi will contain d'* for some positive integds. Consequently,
e, ..., € cannot satisfy (9) whed is irreducible and has a zerolh'.

Now If detXo(0) # 0 andYp(0) = Q nm, it is obvious deXo(z) # 0. Let X = Xo,
Y = Yo andC = X~1Y, and the proof is completed. Otherwise, proceed to Step 4.
Step 4: DecomposeP into a left MFD

P=D"!N (30)
whereD € R™™M[z], N € R™![Z], with detD(0) # 0.
Note that
X = Xo— SN
Y = Yo+ SD (31)
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is also a solution to (25),i.eXD + Y N = ds}. Let

d~1(2)

S= T30

Yo(0)D~*(0) (32)

Now Y (0) = O, detX (0) = det{d(0)s(0)D~1(0)} # 0.
Let Ay, ..., Ay deote thd x | minors of H = [X Y]. We next show that'~* is a
common divisor ofA4, .. ., Aﬁ. RewriteH as a summation of two matrices:

H=H+H (33)

whereH = [Xo Yo] andH’ = [-SN SD]. From the theory of determinant, it is easy to
see that for an arbitrary, A; is a summation of a finite number of determinants of some
I x | matrices which consist of either all columns frdinor at least one column frord’.
From Step 2, we know' 1 is a divisor of the determinant of &nx | matrix which consists

of all columns fromH. On the other hand, from the w&is constructed, it is clear that
d'~1is a divisor of any entry ofi’. It follows thatd'~* is a divisor of the determinant of
anl x | matrix which consists of at least one column fréih Therefored'—? is a divisor

of A;. Because of the arbitrary choiceigfwe conclude thad'~* is a common divisor of
A1, ..., A,g. Leté,, ..., & denote the generating polynomials of [Y]. Proceeding as in
Step 3, it can be shown that

s
Zé.bi =§ (34)

for some$, € R[Z] with & # 0inU". LetC = X~1V, the proof is thus completed.
|

Remark 2. The technique for constructing anD polynomial matrixH (z) such that
H(z)F(z) = s(z)l; has been adopted in [5,11,18,19]. However, the case whetexte
minors of F (z) have a non-trivial g.c.dd(z) that may have a zero id" has not yet been
discussed before. The main contribution of Theorem 1 is to shovdth) is a common
divisor of thel x | minors ofH(z) constructed in (15). As shown in Step 3 of the proof

of Theorem 1, this property is a necessary and sufficient conditio® for. , es to satisfy

(9) whend(z) is irreducible and has a zero . The reason foB(2) to containd'~1(z)

in (32) rather than just to be a constant matrix as for the 2-D case [6] is to preserve this
property.

In the next theorem, a necessary and sufficient condition for the feedback stabilizability
of an MIMO n-D systemP is derived in terms of the generating polynomials associated
with an MFD of P.

THEOREM 2 Let P = ND! € R™!(2) represent an n-D system, and leth .., b
denote the generating polynomiald 8" NT]", with g = (™). The following statements
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are equivalent:
1) P isoutput feedback stabilizable.
2) byg, ..., by have no common zerosh .

3) There exists an n-D compensator€ X~1Y e R'*M(z) such that the generating
polynomials of X Y], denoted by B, . . ., by, satisfy:

B
Z biby =5 (35)
-1

for some s € R[z] with s, £ 0in U .

Moreover, if a stabilizable P is causal (not necessarily strictly causal), a strictly causal
stabilizing compensator C can be constructed.

Proof: Theimplication 3= 2) is obvious, and the implication 2= 3) is the statement
of Theorem 1. Therefore, it suffices to show the equivalence of statements 1) and 3).
Decompose an-D compensato€ € R'*™(z) into a right MFD,

cC=vYXx1 (36)
Let
— D (m+1) xI
. X
F2 — |: V i| c R(m+l)><m[z]’
F, = [XY]e R'X(m-H)[ZL
and let
a1, ..., ayg denote thé x | minors of Fy;
81, . . ., 8y denote then x m minors of Fy;
a1, ..., ayp denote thé x | minors of .

By Definition 3, we have

whered, isag.c.d. oy, ..., ag (p = 1, 2). By Definition 3 and Proposition 2, we have
Gy =+dby;, i=1...,8 (38)

whered,isa g.c.d.oByy, ..., &y, andol,, .. ., b/zﬂ are obtained by re-orderimgy, .. ., by
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appropriately. In particular, we have
81 = obpy (39)
Next,

y [ (Im+ PO P +CP)7*
Yl cm+ POt (1 +CP)E

T, P
L-c

][5
= - (40)
OI,m D -Y D

B A

whereA, B ¢ RMDxMD[7] et

X N
A -Y D
Fs = = ~ (41)
B X Om’|
Om D
andletagy, ..., ag, denote thém+1) x (m+1) minors ofFs, wherey = (2((;1“;'))). Suppose
thatbss, . . ., by, are the generating polynomials B%, i.e.,
ag = dsbg i=1...,u, (42)
whered; is a g.c.d. ofy, ..., ag,.

Direct calculation gives

X N
detA = det|: }

-Y D
detX(detX)"1det XD + Y N) (43)
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By the Cauchy-Binet formula,

detXD+YN) = det{[XY] [3]}

B
= Z ai &j
i=1

B
= thdp Y byby

i=1

Thus,

B
detA = detX(detX) did, Y _ lyby

1 B
= a,,—d.d by; by;
Zla21 1 2; 1i M2i

~ 1
= thb
2021 4 b

B
= Oty Z b1 by

i=1

Let

OGm O Om |
Im Omi —Im Om,
On Omi Im  Omi
Om =l Om |

U:

Then,

Om D

Om N
UFs =

0m |
Y
—_—
Fa

Letayy, ..., a4, denote thgm+1) x (m+ 1) minors of F4.

B
dydy ) by
i1

161

(44)

(45)

(46)

(47)

Due to the special structure
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of F4, by appropriately re-orderingys, . .., a4, asay, ..., ajm, we can obtain
Ay = a1d1, Ay pyq = A2l1, v, Ay pp_nyp1 = ApdL;
ayy = A11822, Ay pip = A2z, v, Ay pp_1yi2 = Apdo2)
) ) . (48)
Qs = A1dpp, A = Aolop, -, &, g = Aupdzg,
and
Qo= =, =0
It is convenient to express (48) in a more compact form:
a‘lﬂ(lil)JrJ:ahaz] izl,...,ﬁ;jzl,...,ﬁ.
Recalling (37) and (38) gives
A pi-n+j = Tdbiby i =18 ]=1....8 (49)
A poyy = =8, =0
Sincebyy, .. ., byg are factor coprime, anidh,, . . ., by, are factor coprime, it is clear from

(49) thatd.d; is a g.c.d. ofay,, .. .,agu and hence is a g.c.d. @k, ...,a4,. Since
F, = UF3; andU is a unimodular matrix, it follows from Lemma 1 that

d3 = r1dydy (50)
for somer; € R*. By Definition 3, we know that
detA = az; = ds3ba; (51)
From (45), (50) and (51), it follows easily that
B
by =r;t Z by by (52)
i=1

Therefore, by Definition 1 and Proposition 3, thd systemP is feedback stabilizable if
and only if

bay =ry'sy, (53)
or
B
> bbby =5 (54)
i—1

for somes; € R[Z] with s,  0inU". Thus the equivalence of statements 1) and 3) has
been shown.
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Finally, when a stabilizable plarR is causal (not necessarily strictly causal), from the
above proof procedure and by using Theorem 1, we can find a stabilizing compeDsator
which is strictly causal. The proof is thus completed. ]

We are now in a position to compare the method presented in this paper for testing the
output feedback stabilizability and obtaining a stabilizing compensator for a given causal
MIMO n-D linear plantP € R™!(z) with the method by Sule in [8].

The method presented in this paper may be summarized in the following steps:

1) Decompose P into a right and a left MFB,= ND~! = D—IN.

2) Obtainthd x | minors ofF = [DT NT]T, denoted by, . .., ag, and the generating
polynomialsby, ..., bg, wherea; =db (i =1,..., 8),anddisag.c.d. ofy, ..., az.

3) Ifby,..., bg have a common zero id", P cannot be output feedback stabilized, stop
here. Otherwise, proceed to the next step.

4) Find polynomials.y, ..., Ag such thatZ{S:1 Aibi =swiths=£0in U

5) Fori =1,..., 8, construct polynomial matri; from F such thatBiF = g I,, and
then construcH = Y7 | 4; B; such thatH F = ds}.

6) PartitionH = [Xo Yo]. LetX = Xo—SN, Y = Yo+SD, whereS = —;’,'%%YO(O)EH(O).

ThenC = X~1Y is a strictly causal stabilizing compensator for
The method by Sule in [8] may be summarized in the following steps:

1) Decompose PintoarightandaleftMFD= Nd=! = d~N. LetT =[(d)" NT]T,
andW =[N dD)].

2) Obtain thd x | minors of T, denoted byay, ..., ag, and the reduced minors (or the
generating polynomiald), ..., bg, whereg; = db (i =1, ..., 8), andd is a g.c.d.
ofay,...,as.

3) Ifby, ..., bg have a common zero id", P cannot be output feedback stabilized, stop
here. Otherwise, proceed to the next step.

4) Obtain the family of elementary factorsbfdenoted by fy, ..., f;},r < g8, the family
of elementary factor dfV, denoted byig,, ..., g/},| < B, and the family of elementary
factors of P, denoted byH = {hy, ..., h} = {figj,i=1,...,r;j=1... 1}

5) For eachh; in H (i = 1,...,k), obtain rational matrice;, Y;, U;, V; such that
XiN = Uid, N = Vid andNY; = (I — X;)d. The denominators of entries of
Xi, Y, Ui, Vi are integer power dfj.

6) Finda sufficiently large integey such thah! X;, h" Y;, h" U; andh V; are polynomial
matrices.
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7) Find rational function; whose denominator is not equal to zeroUn such that
K aih™ = 1, or equivalently, find polynomialss, ..., 5 such thaty"<_, A;h"
—swiths#0inU".

8) LetX =Y ¥ oih"X;, Y =Y ohMY,. ThenC = Y X~1is a stabilizing compen-
sator forP.

From the above summary of two different methods, it is clear that the procedure for testing
the feedback stabilizability is the same for both methods, while for obtaining a stabilizing
compensator, our method is computationally simpler than the one given by Sule in [8]. As
can be seen, the most difficult part for obtaining a stabilizing compensator in our method
is in step 4) for finding polynomials, ..., Ag such thatZ{S:1 Aibp = swiths = 0in
U". Sule’s method also requires in step 7) to obtain polynoniigls. ., Ax such that
Z:‘zl Aih" = swiths # 0in U". The other computationally more involved steps in Sule’s
method are to obtain the family of elementary factors (which are more difficult to obtain
than the generating polynomials, as pointed out by Sule himself in [8]) and the construction
of rational matricesX;, Y;, U;, V; suchthaiXiN = U;d, ;N = Vid andNY, = (I — X)d,
fori =1,...,k. Since a sufficiently larger integer is required to converX;, Y;, Ui, Vi
into polynomial matrices using Sule’s method, the resultant stabilizing compensator given
in step 8) is in general more complicated than the one using our method. Furthermore, for a
causal but not strictly causal system, we are able to construct a strictly causal compensator,
while Sule’s method cannot guarantee to give a causal compensator (p. 1694 in [8]). An
illustrative example will be given in the next section.

4. Example

Consider an unstable 3-D system represented by:

1 [ 221+ 22) (221 + 3)(222 + 223 + 3) }
, (55)

p| Qo —D(z3+2) 2221 + 22523+ 42, + 225+ 723 + 7)

whereAp = (221 + 1)(z2 + 2)(z3 — 2).
DecomposeP(z3, 2,, Z3) into a left and a right MFD:

P(z1.22,23) = D N(z1, 22, Z5)N (21, 22, Z3)
= N(z1. 22, 2D X212, 22. 23) (56)
where
5_p— [ 2z + D (z2+2)(z3— 2 0 }
i 0 Cz+D(zZ2+2(z3—-2)

and

2
Il
P4
Il

2(z1 + 2o) (223 + 3)(2z, + 223+ 3)
| 22— 1)(z3+2) 2Qz +2223+ 42+ 284+ T23+7) |
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Let
Cu+D)(z+2(z3-2) 0
D 0 2z +D)(z2+2)(z3—-2)
B [ N } B 221 + 25) 221+ 3)(22 + 225+ 3)

(22, — D)(z3 + 2) 2(221 + 22,23+ 42p + 225 + 723+ 7)

The 2x 2 minors ofF are:

a=db, ay=dhby,

aa=dbs, ay=dhby,

as=dbs, ag=dbs.
whered = (2z; + 1), andb, ..., bg are the generating polynomials bt

by = (221 + 1)(z2 + 2)%(z5 — 2),

by = (22 + 2)(z3 — 2)(221 + 3) (222 + 223+ 3),

bs = 2(z, + 2)(zs — )22y + 22,23 + 42, + 225 + T23 + 7),

by = —2(z1 + 22) (22 + 2)(z3 - 2),

bs = —(222 — D)(22+ 2)(Z5 - &),

be =4z + 18— 8223 — 42223+ 42, + 2173 + 6232 — 82,2 — 42, 732,

It can be checked using a criterion developed in [14] thé&t;, 5, z3) does not admit a
primitive factorization, and thuB (zi, z,, z3) andN(zy, 2, z3) are FRC. Since; has zeros

in U3, by Proposition 3, the plar® is unstable. This agrees with the fact that all entry of

P have poles irUS. It is easy to test thdb,, ..., bs have no common zeros Ea. By
Proposition 4, it is possible to findy, . . ., Ag € R[z1, 22, z3] such that

6

> (21, 22, 23) bi (21, 22, 23) = S(21, 2, 23)
i=1

for somes € R[zi, 25, 23], with s(z1, 25, z3) # 0in US. In fact, if we choosé.; = A3 =
A =i =0, Ao = (zz + 2), andrs = (2z; + 3), then

6
Z)\i b
i=1

X2bz + Asbs

Z+ {221+ 3 (22 + (23 — 2 (22, + 223 + 3)} +
2z + 3){— (222 — (22 + 2)(Z — 4)}
2221 + 3)(z2 + 2)(z5 — 2)(z5 + 2)?

£ 0in0°
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Let F;, andF; denote the Z 2 submatrices oF, corresponding tb, andbs respectively,
ie.

o= [ Rz +D(z2+2(z-2) 0 ]
2(z1 + 2) (223 + 3)(22, + 223 + 3)

and

= [ 0 2z + 1) (22 +2)(z3— 2) } .

| 22— 1)(z3+2) 2221+ 22,23+ 42, + 225+ 723+ 7)

Then

ad £} [ (221 + 3)(22, + 223+ 3) 0 }

—2(z1+ 22) 221+ D(z2+2)(z3— 2)

and

) FL = [ 2224 + 22023 + 42, + 225+ T23+ 7) —(221+ 1) (22 + 2)(23 — 2) } |

i —(22,-D(zz3+2) 0

Let g»,. gz, denote columns 1 and 2 of aBj, and letgs,, gs, denote columns 1 and 2 of
adjF.. Let:

By = [0, 021, 02,5 021], Bs=1[021, 05, 021, Gs,].

Then

H =i, BZ+A5B5=|:hll hi2 his h141|

hot hoo hoz hyg
where

hi1 = (z3+2)(221 + 3)(22; + 223+ 3),

hi2 = 2(221 + 3)(221 + 22,25 + 42, + 225 + T2 + 7),
hi3 =0,

his = —(221 + 3)(2z1 + V(22 + 2)(z3 — 2),

h21 = —2(z3 + 2)(z1 + 22),

hao = —(2z1 + 3)(22, — 1)(z3 + 2),

h2s = (z3 + 2)(221 + 1) (22 + 2)(z3 — 2),

hos = 0.
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Direct calculation yields
HF = 2221432z + 122+ 2)(zz— 2)(zz+ 2)? |,
= d(z, 22, 3) (21, 22, Z3) 2.
The 2x 2 minors ofH are:
Ar=de, Ar=de,
Az=de As=de,
As=de, Ag=de.

whered = 2z + 1)(2z; + 3)(zz + 2), andey, ..., & are the generating polynomials of
H:

e=42+18—8272 —42°23+ 42+ 2173 + 6252 — 82,% — 42,25,
& = (22 + 2)(Z5 — H(22, + 223 + 3),
& =-221+2)(22+2)(z3 - 2),
&1 =22+ 2) (23— 2)(22y + 22523+ 42, + 22 + 123+ 7),
&=-2zun+3)(2z%—-D(z+2(zz - 2),
& = (2z1+ 1)(22 + 2)*(z3 — 2.
Direct calculation gives:
26: eb =42z + 3)(2o + 2)%(zs — 22z + 22 #0inU".
i—1

Therefore, by Theorem & (z,, 25, z3) is output feedback stabilizable. To obtain a stabi-
lizing compensator, the matrid (z, z,, z3) is partitioned as

H(zi, 2, z3) = [Xo(z1, 22, z3)  Yo(z1, 22, 23)]

whereXo — [ Ei []Z ] andYo — [ Ez E; ] Let

—1
C(n1,22,23) = Xy (21, 2, 23)Yo(2Z1, 22, Z3)

_ 1 |:011 C12:| (57)

Ac | Cx1
where
Ac = 421+ 18— 8223 — 42°23+ 42, + 2123+ 6232 — 82,° — 42,232,

Cli = 22+ 2)(23— (22 + 22523 + 42, + 225+ T23+ 7),
Ciz2 = 2z1+3)(222 — (22 + 2)(z3 - 2),

Ca = (22 + 223+ 3) (22 + 2)(z3 + 2)(2z3 — 2),

Cn = —2(21+2)(22+ 2)(z3 — 2).
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We have thus obtained a stabilizing compens@t@;, z,, z3) for P(zy, 22, z3). To verify
that the feedback system is indeed stable, we directly olbtaitz:, 2o, z3) as follows:

Im PT"
Heu =
—C |

hi, hi, hig hiy
1 | ha hyy hag hyy,
An | hy; hg, hgs h,

/ / / /
hi1 hy Mg hy

where
An = 2QRu+3) (Z+2%Z—2 (22+2),
hy = ~Qza+3@Z+2z-2Q2z2-1)(z+2),
hp =2@+2)Ra+3)(2+2) (-2,
h/13 =0
hiy = —(4z1+ 18— 8223 — 42’23+ 42, + 2123+ 625° — 82,2 — 42, 757)
X (275 +3),
hyy = —2(2z4+222+4+222+72+7) (2 +2) (zs—2) (z+2),

hy, = +2) (242 (-2 2za+3)(2z+2z+3),
h/23 = (4Z]_+18—82223—422223+422+2123+6232—8222—422232)

X (zz+2),
hy, = 0,
hy, = 0,
hy, = —Qz+1)@Z+2%=z-2%2zu+3),

hyy = Z3+2)(2+2) (-2 Qa+3)(2zn+2z5+3),
h/34 = 2(221+22223~|—422+2232+723+7) (221+3)(22+2) (23—2),
hy = Qza+1)@2+2°@3-2°®+2),

hitz = 0,
hy; = 2@+2)@2+2)(Z-2)(z+2),
hy = —Qau+3 @2+ (B-22n-D(+72).

Clearly, Ay, has no zeros i® and hence by Definition 1 the feedback system is stable.
Since defX((0, 0, 0) = 108, the constructed stabilizing compens&t@r,, z,, z3) is causal.
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However, sincery(0, 0, 0) = —08 102} C(z1, 2o, z3) is not strictly causal. To obtain a
strictly causal compensator, let
d(z1, 2, z3) < 1
71, 2o, = — ————"Y,0,0,00D7(0,0,0
S(z1, 22, Z3) d4(0.0.0) of YD ™( )
0 127 -4 o 7™
= -2z +1
-8 0 0 -4
0 3(2 z1+1)
= . (58)
—212z1+1) 0

We then have

X(z1,22,23) = Xo(z1, 22, 23) — S(21, 22, 23)N (24, 22, Z3)

X11 X12
= [ } (59)
X21 X22
where
Xiu = —2(&+2)(-2a-32+422-6-62),
x12 = =82 2z +2n+4n+2%°+ T3 +7),

X1 = 2(-z3+42)(a+2),
Xoo = 22z1+3)B8z1+8z23+ 1220 +8—-22723+52).

and
Y (21,22, 23) = Yo(z1, 22, 23) + S(z1, 22, 23) D(z1, 22, 23)
Y11 Y12
= (60)
Y21 Y22
where
yiu = 0,
Yio = 421 (B3—-2)(2+2)(2zn+1]),
Voo = —(z3—2Rzu+1)(—zz+427)(2+2),
Yoo = 0.

Clearly, we now have de (0, 0, 0) = 576, andY (0, 0, 0) = 0,. Moreover, it can be easily
checked using a symbolic computation software such as Maple that the unstable factor
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(221 + 1) is a common divisor of the 2 2 minors of the matrixX Y]. The compensator
C = X~1Y is thus the required strictly causal stabilizing compensator.

As pointed out in Remark 2, the inclusion of the fact@rz; + 1) in S(zy, 2, z3) in
0 3
-20
X(z1, 22, 3) andY (z1, 22, z3) according to (59) and (60), as we did in [6] for the 2-D case,
then, it can be verified that the unstable faq®z; + 1) is nownota common divisor of
the 2x 2 minors of the matrixX Y]. Consequently, the resultant compens&tor XY,
although still strictly causal, is no longer a stabilizing compensator since it can be easily
checked using Maple that the feedback system with such a compensator is unstable!

Finally, for comparison, we have also worked out this example using Sule’s method
suggested in [8]. After a laborious computation, we have also obtained a stabilizing
compensator. The resultant compensator is, however, much more complicated than the
one derived using our method. The details of a stabilinifigg compensator using Sule’s
method [8] are omitted here to save space. The reader is encouraged to work out the given
example using two different methods.

(58) is very important. For example, if we chooSe= in (58) and calculate

5. Conclusion

In this paper, we have investigated the output feedback stabilizability of MihIDinear
systems. Using the concept of “generating polynomials” introduced by the authorin[13], we
are able to derive a necessary and sufficient condition for the output feedback stabilizability
of MIMO n-D linear systems. This condition turns out to be the same as the one by Sule [8],
who investigated the problem of feedback stabilization of linear systems over commutative
rings using the theory of commutative algebra and topology. By restricting our study to the
important class of MIMOn-D linear systems, we have obtained the same result as in [8]
on output feedback stabilizability ofD systems using only the polynomial matrix theory
that is conceptually and technically simpler than the theory of commutative algebra and
topology. Our approach may be considered as a non-trivial generalization of related results
on MIMO 2-D linear systems [4]-[7].

Besides deriving a criterion for output feedback stabilizability of MIMKD systems, we
have also shown how to obtain a stabilizimdp compensator if a given unstabieD plant
is feedback stabilizable. This is accomplished by solving a generalized polynomial matrix
Bezout equation. Itturns outthat using matrix manipulations, our method is computationally
more efficient than the method by Sule, who uses the theory of commutative algebra and
topology [8]. Moreover, using the method proposed in this paper, a strictly causal stabilizing
n-D compensator can always be constructed for a stabilizable causal (not necessarily strictly
causal)n-D plant. In contrast, using Sule’s method [8], one can only obtain a causal
stabilizingn-D compensator for a strictly causalD plant, or a compensator (may not be
causal) for a causal plant. A non-trivial example is illustrated. The example has clearly
demonstrated the validity and advantages of the new results developed in this paper.

As mentioned at the end of Section 3, a very important and difficult part for the design
problem of stabilizingn-D compensator for both our method and Sule’s method [8] is
the construction of, ..., Az such thaty"’_, Aib = s, withs # 0 in U". Although a
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constructive solution for obtainiriy, . . ., A4 has been suggested in [16], a computationally
more tractable solution is desirable, possibly by exploiting theb@er basis [7], [20].

The question of whether an unstable but stabilizabl2 systemP admits a right MFD
P = N D! where the maximal order minors of the matrRT NT]" have no common
zerosinU" remains unsolved at this stage. The same open problem has also been raised in
[8]. Based on the results developed in this paper, we conjecture thas ibutput feedback
stabilizable,P admits an MFDP = N D~! where the maximal order minors of the matrix
[DT NT]™ have no common zeros Ia". We feel that the Gibiner basis [20] is likely to
be the right tool for this open problem.

Notes

=

In this paper, stability means structural stability rather than BIBO stability [9].

N

R* = R\{0}, the set of non-zero real numbers.

w

A p x g matrix A(z) is of normal full rank if there exists anx r minor of A(z) that is not identically zero,
wherer = min{p, q}.

4. Denote Pm anm x | zero matrix, @ anm x m zero matrix and, anm x m identity matrix.
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