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Based on this principle, two CMOS current gain cells have been
proposed: one for differential inputs and the other for single-
ended input. The main features of the proposed circuits are a
large gain achievable and variable linearly via a small dc current
as the gain is proportional to the aspect ratio of the MOS
transistors and to the control current, constant bandwidth inde-
pendent of the gain, very linear transfer characteristic, and very
large input range. The linear controllability has been verified on
the single-ended gain cell and the results show a THD of less
than 0.5% for input up to 70% of the control current, a constant
bandwidth of 1.4 MHz, a gain range from 0.75 to 132 via control
current from 4 to 15uA, and a maximum gain-bandwidth product
of 185 MHz.
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On Primitive Factorizations for 3-D Polynomial
Matrices

Zhiping Lin

Abstract—This paper presents a criterion for the existence of primitive
factorizations for a class of 3-D polynomial matrices. The criterion can
also be used to construct a primitive factorization, when it exists, for a
3-D polynomial matrix in this class. Two illustrative examples are also
included.

1. INTRODUCTION

During the last three decades, much attention has been di-
rected to the development of multidimensional systems theory,
which has applications in digital filtering, image processing,
seismic data processing, some distributed-parameter systems,
and other areas (see, e.g., [1]-[3]. While the 2-D systems theory
is getting mature gradually, its n-D (n > 3) counterpart is not
progressing at the same speed, because n-D (n > 3) systems are
inherently more complex. A number of problems peculiar to the
n-D (n = 3) systems theory remain completely or partially un-
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solved [1]-{5]. This paper is concerned with one of these prob-
lems: the primitive factorizations for 3-D polynomial matrices.
The existence of primitive factorizations for 2-D polynomial
matrices was proved and algorithms were developed in [6}, (7).
An important consequence of the feasibility of primitive factor-
ization is the derivation of algorithms for the decomposition of a
2-D rational matrix into a factor (minor) coprime matrix fraction
description (MFD) [6], [7], and the MFD approach has great
potential in the analysis and synthesis of 2-D linear systems [2],
{8]. Unfortunately, it was demonstrated via examples in [4] and
[9] that there exist some n-D (n = 3) polynomial matrices that
do not admit primitive factorizations. However, to the author’s
knowledge, a tractable criterion for the existence of primitive
factorizations for n-D (n = 3) polynomial matrices is absent in
the literature. Since the existence of primitive factorizations for
n-D polynomial matrices is closely related to the existence of
coprime MFD’s of n-D rational matrices [4], [5], it is desirable to
be able to test whether or not a given n-D polynomial matrix
admits a primitive factorization. In this paper, we present a
criterion for the existence of primitive factorizations for a class
of 3-D polynomial matrices. The criterion can also be used to
construct a primitive factorization, when it exists, for a 3-D
polynomial matrix in this class. Two nontrivial examples from
the literature are worked out using the criterion derived in this

paper.
I1. PRELIMINARIES

In this section, we recall some definitions and known results in
[1], (4], [6], and [10], from which the new results in the next
section are developed. In the following, we shall denote
Clzy, 2,) = Clz] the set of polynomials in complex variables
24,77 Zp with coefficients in the field of complex numbers C;
Clz,llz,, ", 2,] the set of polynomials in C[z), each written as a
polynomial in z5,"*, 2, with coefficients in Clz,]; Cc™*![z] the
set of m x [ matrices each of whose elements is in C[z], etc.

Definition 1 [1]: Let f(z) € Cl[z] be written as

f = % o B foa(z)zk e Clallz 2.
i 1

i=0 i,=

Then the greatest common divisor (gcd) d(z)) of foi (20
(i, = 0,0, mp; e iy = 0,---,m,) is called the content of f(z)
with respect to Clz;]. o
The next two definitions are straightforward generalizations
from [1] and [6] for 2-D polynomial matrices to the n-D case.
Definition 2: Let A(z) € €™ z] be of full normal rank, with
m > 1. Then A(z) is said to be primitive in Clz, 1z, 2, if for
all fixed z;, € C, Az}, 27 2,) € Cm*!zy, 0, 2,] is of full
normal rank. )
Definition 3: Let A(z) € C™*/[z] be of full normal rank, with
m > I; e(z) € Clz] the g.c.d. of all the 1 % | minors of A(z) and
g(z;) € Clz,] the content of e(z). We say that A(z) has a
primitive factorization in Clz Mz, 2,) i AR = L(z)R(2)
for some L(z) € C™*![z], R(z) € C™'[z]with det R(2) = g(zy),
and L(z) being primitive in Clz}[z5, 2,) O
Definition 4 [4]: Let M(z) € C™*![z], with m = [. Then M(2)
s said to be zero right-prime (ZRP) if all the | X | minors of
M(z) do not have a common Zero. m|
Proposition 1 [4]: Let Az}, 2,) € C™¥[z,,2,] be of nor-
mal rank r < min{m,}. Then A(z,,z,) can be factored as
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Az, z5) = Az, 2,) A2y, 2,), with A, € C"™¥'[zy, 2,], 4, €
C™¥z,, z,). [m}

Proposition 2 [10]: Let A(z) € C™[z] with m > L. If A(z)
in ZRP, there exists B € C"* D[z} such that the m X m
matrix U(z) = [A(z) B(z)]is a unimodular matrix. O

II1. THE MAIN RESULTS

The main results are presented after a lemma. Theorems 1
and 2 are about factoring a 3-D polynomial matrix A(z,, z,, z3)
into a product of two 3-D polynomial matrices
A(zy, 25, 23)R (24, 2, 23), with det R, = (z, — z;;). Theorem 3
is a criterion for the existence of primitive factorizations for a
class of 3-D polynomial matrices A(z,, z,, z3).

Lemma 1: Let A(z,) € C"™*[z,] and a(z,) = det A(z,) # 0.
If z;;, € C is a simple zero of a(z,), then rank A(zy;) =/ — 1.

Proof: A proof can be carried out easily by transforming
A(z,) to the Smith canonic form and making use of the fact that
2y, is a simple zero of a(z,). The details are omitted here. o

Theorem 1: Let A € C'™!'[z,, z,, z;), and a(z)) =
det A(z,, z,, z3) € C[z,], with a(z,) # 0. If z;, is a simple zero
of a(z,), there exist unimodular matrices U,, U, € C**[z,, z,],
with det U, = det U, = 1, such that

U2y, 23) A(zy, 73, 23)
=diag {(z; — z11), L, 1}A(21, 25, 23) (1)
and
A(zy, 23, 23)Uy(25, 23)
= A,(z,, 25, z3) diag {(z; — z17), 1,...,1} (2)

for some A, A, € C"*'[z,, z,, z5).
Proof: Write A(z,, z,, z3) as

A(z1, 25, 23) =A("’(z2,z3)(zl _le)k
+ o +AD(2,, 23)(2, — 21y) + A0(2,, 23).

We show by contradiction that rank A(z,y, z,,25) =1 —1 for
every (z,, z3) € C2. Suppose for some fixed z, = z,;, 23 = 23,

3)

Since A(zy, 241, 23) € C'™'[z,] and det A(z,, z,), z3;) = a(z,),
applying Lemma 1 to A(z,, z,;, z4,) gives

rank A(zyy, 251, 231) <I— 1.

rank A(zyy, 251, 25) =1 — 1.

4
Equations (3) and (4) lead to a contradiction. Therefore, rank

A(zyy, 25, z5) = rank A(z,,23) =1 — 1 for every (z,,2;) €
C2. By Proposition 1, A%(z,, z;) can be factored as

AV(z,, z3) = A(lo)(zz, 2;,) AD(25, z3)

for some Az, z5) € CXU=Vz,, 23], AWz, 2,) €
CU=DxXl[7, 2,). Since rank A®(z,,z,) =1-1 for every
(2,3, z3) € C?, AV(z,, z;) must be ZRP. By Proposition 2, we
can find a € C'*[z,,z;] such that V{(z,,z;) = [a(z,, z;)
AP(z,, z3)] is a unimodular matrix. Let U(z,, 25) = Vi (25, z3).
Clearly, U, € C"*[z,, z;] is a unimodular matrix and

Uy(z;, z3)[a(z,, Z})A(lo) (23, 2)] =1,

or

0--0
U(zz, 23) A (23, 25) = [ I_, ]
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Hence,
Ui(zy, 23) A( 2115 225 23) = U(23, Zs)A(O)(zz’Zs)
_[o-0
x |-
Therefore,
Ui(2,, 23) A(21, 25, 23)

= diag {(z; — z1), 1,,+, 1}A44(2y, 25, 23)

for some 4, € C*[z,, z,, z;].
Analogously, there exists a unimodular matrix U, €
C"™![ z,, z,], such that
A(zy5 23, 23)Ux(23, 23)
= Ay(zy, 23, 73) diag {(z; — z11, 1, 1)}

for some A, € C™*![z,, z,, z5).

Theorem 2: Let A € C"*[z,, z,, ;] be of full normal rank,
with m > I; e(z,, z,, z3) the g.c.d. of all the / X [ minors of
Alzy, z,, 25), g(zy) the content of e(z;, z,, z3), and z;, a zero of
g(z,). Then, A(z,, z,, z;) admits a factorization:

A(zy, 25, 23) = A2y, 23, 23)Ri(21, 23, 23) Q)
for some A, € C"*[z,, z,, z3), Ry € C™[z}, z;, z;] with
det R, = (z; — zyy), iff there exists a ZRP vector w; €
C™ [ z,, z5] such that

A(zyy, 235 23)W1(22, 23) = [0,"',0]T- ©)

Proof: (Sufficiency): Suppose that there exists a ZRP vector

w, € C'*![z,, z;] such that

A(zyy, 22, 23)wi(23, 23) = [07"',0]T-
By Proposition 2, we can find B € C**¢~V[z,, z,], such that
U(z,, 23) = [w(z,, z3) B(z,,25)] is a unimodular matrix with
det U; = 1. Thus

0
A(z11, 22, 23)U(22, 23) = | : X

or
A(zy, 23, 23)Ui( 22, 25) = A2y, 2, 23) diag {(z; — z11), 1, 1}
for some 4, € C™*![z,, z,, z;]. Hence,
A(zy, 23, 23)
= A\(zy, 25, 23) diag {(z, — 211), 1,7+, JUT (25, 23).
Therefore,
A(zy, 23, 23) = A(21, 22, 23)R (2, 23, 23)
where R, = diag {(z; — zyy), 1,--+, QU7 (2, z;3) €
CP™ 2y, 25, 23], with det Ry = (z; — z;9).
(Necessity): Suppose that A(zy, z,, z3) can be factored as
A(z1, 23, 23) = A(21, 22, 23)Ri(21, 23, 23) O
for some A, € C™*z,, z,, z;], R, € C*z, 2,, 23] with
det R, = (z; — z;). By Theorem 1, there exists a unimodular
matrix V,(z,, z;) € C'*[2,, z;] such that

Ri(21, 225 23)Vo((225 23) = Vi(21, 23, 23) diag {(z; — z11), 1, 1}
or
R(21, 23, 23)
= Vi(z1, 22, z3) diag {(z; — z01), 1, W5 (22, 23) (8)
for some V; € C"*/[z,, z,, z;]. From (7) and (8) we obtain
A(zy, 23, 23) = A(21, 72, 23)V1( 21, 22, 23)
~diag {(z; = z;1), 1+, 1V5 Y22, 23)
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or
A(zy, 23, 23)V,(25, 23) = Ai(2y, 25, 23)Vi(21, 23, 23)

: dlag {(Zl - le)’ 1, l}
Hence,

A(z11, 23, 23)WVo(22,23) = | - x|
0

Let wy(z,, z3) denote the first column of V(z,, z;). Clearly,
w(z,, z5) is ZRP and

A2y, 23, 23)W((25, 23) = [0,+,0]". d

Theorem 3: Let A € C™*/[z,, z,, z;] be of full normal rank,
with m > I; e(z,, z,, z;) the g.c.d. of all the ! X ! minors of
Az, 25, 23); g(z;) the content of e(zy, z,,z3), and g(z;) =
M2 (zy — z;,;) where zy; #z,;, for k #j. Then A(z,,z,,2,)
admits a primitive factorization

©)

for some L € C™*![z,, 2,, 25}, and R € C'*Y[z,, z,, z5] with det
R = g(z,), iff for every i = 1,---, p, there exists a ZRP vector
w; € C'X1[z,, z,] such that

A(zy;, 25, 23)w(25, 23) = [07"',0]T‘ (10)

Moreover, if a primitive factorization (9) exists, L(z,, z,, z3) is
unique (modulo a right unimodular matrix), and R(z,, z,, z3) is
unique (modulo a left unimodular matrix).

Proof: (Sufficiency): Suppose that the condition (10) holds.
A primitive factorization (9) can be carried out via the following
steps.

A(zy, 23, 23) = L(21, 22, 23)R(21, 25, 23)

Step 1: By assumption, there exists a ZRP vector w, €
C"1[z,, z;] such that

A(zy1, 23, 23)w1(22, 23) = [0,"',0]T-
Applying Theorem 2 to A(z,, z,, z5) gives
an

for some A; € C™[z,, z,,2;], R, € C'*)[z,, z,, z3] with
det R(zy, z,, z3) = (z; — z;)-

Step 2: By assumption, there exists a ZRP vector w, €
C™[z,, 23] such that

A(212, 23, 23)Wa(23, 23) = [0,+-,0]".
Recalling (11) gives

A(z12, 22, 23)Ri(215, 25, 23)W5(25, 23) = [Os""O]T

A(zy, 23, 23) = Az, 22, 23) Ri(21, 25, 23)

or
Al(z]Za 22, Z3)Wé(22, 23) = [07'“’ O]T

where wi(z,, z3) = R\(z15, 25, 23)W5(2,, 23).

Since zy, # zy; by assumption, det Rz, z,, z3) = 25 —
zy; # 0, and hence R\(zy,, 25, z3) is a unimodular matrix. Thus,
wi(z,, z3) is a ZRP vector. By Theorem 2, 4,(z;, z,, ;) can be
factored as

A2y, 23, 23) = Ax(2y, 23, 23) Ro(2y, 225 23) (12)
for some A, € C™* [z, z,, 23], R, € C™¥[zy, z,, z;] with
det Ry(zy, z,, z3) = (z; — z;,). Combining (11) and (12) gives

A(zy, 23, 23) = Ay(21, 23, 3)Ro(21, 75, 23) R(21, 73, 23)

(13)
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Step p: We have
A(Zh 225 23) = Ap(zh 225 23)Rp(zl’ 225 23)
= Ry(2y, 25, 23) Ry(24, 23, 23)
for some A, € C™ [z, z,, 23], R, € C*z,, z,, z;] with
det Rz, 25, 23) = (zy —zy;), for i = 1,..., p. Let R(zy, 2, z3)
= R,(2y, 23, 23) - R(zy, 23, 23)R (2, 25, 23), and L(zy, 25, z5)
= A,(zy, 25, 23). We obtain
A(zy, 23, 23) = L(2y, 23, 23)R(21, 23, 23)
with det R(zy, 2, z3) = T1Z. (2, — z;;) = g(z).
(Necessity): Suppose that A(z,, z,, z3) can be factored as
A(zy, 23, 23) = L(z2y, 23, 23)R(21, 225 23)

for some L € C™*'[zy, z,, 23], and R € C"![zy, z,, z;] with det
R =T1F. (2, — z;;) = g(zy). Since z;; (i = 1,---, p) is a simple
zero of g(z,), by Theorem 1, we can find a unimodular matrix
U € C'™[z,, z;], with det U, = 1, such that

R(zy, 25, 23)Ui( 2, 23) = Ri(2y, 25, 23) diag {(z; — 2,,), 1, 1}
or
R(zy, 25, 23) = Ri(21, 2, 23)

~diag {(z; ~ 21;), L, YU (25, 23)
for some R] € C*![z,, z,, z3]. Thus,
A(zy, 25, 23) = L2y, 23, 23) Ri(2y, 23, 23)

~diag {(z; — 21,), L, JUT (22, 23)
or
A(zy, 25, 23)U((23, 23) = L(2y, 23, 23) R 21, 22, 23)

-diag {(z; — zy;), 1,-++, 1}.
Let w(z,,z;) denote the first column of U(z,, z;). Clearly,
w{(z,, z;) is a ZRP vector and satisfies
A(zy5 25, 23)Wi( 22, 23) = [0,--,0]".

Finally, if the primitive factorization (9) exists, the uniqueness
of L(z,, z,, z;) (modulo a right unimodular matrix) and
R(z,, z,, z3) (modulo a left unimodular matrix) can be proved
similarly as it is for the 2-D case [6], [7]. The proof is omitted
here to save space. O

Remark 1: With minor modification, Theorems 2 and 3 can be
applied to the case where A(z,, z,, z;) € C™*/[zy, z,, 23] is of
full normal rank, with m < /. It should also be pointed out that
Theorem 2 is not a special case of Theorem 3, since z,; in
Theorem 2 is not necessarily a simple zero of g(z,). m]

IV. EXAMPLES

In this section, we present two nontrivial examples from the
literature to illustrate the usefulness of the results derived in the
last section. As it will be seen, the criterion for the existence of
primitive factorizations for the class of 3-D polynomial matrices
as given in Theorem 3 is quite simple to apply.

Example 1 [4]: Let

2323 — Z? Z% 2123
A(Zl,zz’zs) = 2 2 3
I3 T Z1Zp; 223 — %4

We have a(z,, z,, z;) = det A(z,, 2,,2;) = z(z] — 322,25 +
2,23 + z3), and z, is the content of a(zy, z,, z3). Theorem 3 is
now applied to testing whether or not A(z, z,, z;) admits a
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primitive factorization:
A(zy, 22, 23) = L(z1, 22, z3)R(zy, 22, 23)
with det R(z;, 25, 23) = z;. For z; = 0, we have

223 73 %2
2 =1z [z3 zl

Z3 2323

A0, 25,23) =

Consider all the 2 X 1 vectors w(z,, z3), such that
0
A0, z,, 23)W(25,23) = [0] .

Clearly, w(z,, z5) is parametrized by

z,b(z3, z3) ]

~23b(23,23)

W(Zz, 23) = ‘:

where b € Clz,, z,] is arbitrary. Obviously, w(z,, z3) is not ZRP
for any choice of b € Clz,, z3). Therefore, A(z,, z,,z3) does
not admit a primitive factorization (9). O
It can be seen that the above proof is more elementary and
simpler than the one given in [4].
Example 2 [1]': Let

z 0
A(zy,25,23) = ‘:z; 2223].

We have a(zy, 25, 23) = det A(z5, 23, 23) = 212273, and z, is the
content of a(zy, z,, z3). It was stated in (1] that A(zy, 25, 23)
cannot have a primitive factorization:

A(zy, 23, 23) =L(Z]’ZZ’Z3)R(ZI7ZZVZ3) ®

with det R(z,, ,, z;) = z;. However, by using Theorem 3, it will
be shown that this statement is not true. For z; = 0,

0 0
A0, 25,23) = [22 Za]'

23
Let w(z,, z3) = [ _1], we have

AR

0
A0, z;, z3)w(zy, 73) = [zz

23

Let U(z,, 23) = [ 1

1
0 . Illell,

0 0
A0, 2, 23)U(25,23) = [0 zz]'

0 z3 1
Z3z3]| -1 O
% 2= 0
0 zf{o 1}

Z3 Iy z 0 z 1 -

A(zy,25,23) = [0 zz] [01 1][—31 0]
S———

L(zy,2;5,23) R(z1,23,23)

1 : .
The variables z; and z; have been exchanged for convenience of
exposition here.

Thus

z
A(zy, 75, 23)U(22, 23) = [z;

So
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where L, R € C¥¥z), 25, z,), with det R = z;. Therefore,
A(z,, z,, z;) does admit a primitive factorization . a

Remark 2: The criterion for the existence of primitive factor-
izations presented in Theorem 3 works for the class of 3-D
polynomial matrices A(zy, 25, z5) whose associated content g(zy)
having only simple zeroes. It is natural to ask whether or not one
can generalize this criterion to the n-D (n > 3) case. The
generalization is not straightforward since an extension of
Proposition 1 to the n-D (n = 3) case cannot be made in general
(4], and further investigation is required. It may also be interest-
ing to study the applicability of the developed criterion when
g(z,) has multiple zeroes.
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An Exact Expression for the Noise Voltage Across a
Resistor Shunted by a Capacitor

Vittal P. Pyati

Abstract—The mean square voltage developed across a noisy resistor
(R) with a white spectral density shunted by a capacitor (C) is known to
be (kT /C), where k is Boltzmann’s constant and T the absolute
temperature of R. A puzzling aspect of this simple result is that the
value of the resistor (which is the real source of noise) appears to play
no part and gives no clue on the outcome in the limiting cases of R—0
or C — 0. The difficulty is resolved by first noting that due to quantum
effects, the simple white noise model breaks down at frequencies of 10°
Hz or so. Using a quantum-corrected expression for the spectral density,
the problem of the RC network has been reworked exactly. It is verified
that the new expression yields correct results for all values of the
parameters. A Taylor series expansion of the output in terms of the noise
equivalent bandwidth of the RC circuit shows that the old result
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